Merge branch 'master' into for_paulus
[linux-drm-fsl-dcu.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #define ASSERT(x)                                                       \
56         if (!(x)) {                                                     \
57                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
58                        __FILE__, __LINE__, #x);                         \
59         }
60
61 #define PT64_PT_BITS 9
62 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
63 #define PT32_PT_BITS 10
64 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
65
66 #define PT_WRITABLE_SHIFT 1
67
68 #define PT_PRESENT_MASK (1ULL << 0)
69 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
70 #define PT_USER_MASK (1ULL << 2)
71 #define PT_PWT_MASK (1ULL << 3)
72 #define PT_PCD_MASK (1ULL << 4)
73 #define PT_ACCESSED_MASK (1ULL << 5)
74 #define PT_DIRTY_MASK (1ULL << 6)
75 #define PT_PAGE_SIZE_MASK (1ULL << 7)
76 #define PT_PAT_MASK (1ULL << 7)
77 #define PT_GLOBAL_MASK (1ULL << 8)
78 #define PT64_NX_MASK (1ULL << 63)
79
80 #define PT_PAT_SHIFT 7
81 #define PT_DIR_PAT_SHIFT 12
82 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
83
84 #define PT32_DIR_PSE36_SIZE 4
85 #define PT32_DIR_PSE36_SHIFT 13
86 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
87
88
89 #define PT32_PTE_COPY_MASK \
90         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
91
92 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 9
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
99
100 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
101 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
102
103 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
104 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
105
106 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
107
108 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
109
110 #define PT64_LEVEL_BITS 9
111
112 #define PT64_LEVEL_SHIFT(level) \
113                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
114
115 #define PT64_LEVEL_MASK(level) \
116                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
117
118 #define PT64_INDEX(address, level)\
119         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
120
121
122 #define PT32_LEVEL_BITS 10
123
124 #define PT32_LEVEL_SHIFT(level) \
125                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
126
127 #define PT32_LEVEL_MASK(level) \
128                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
129
130 #define PT32_INDEX(address, level)\
131         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132
133
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
135 #define PT64_DIR_BASE_ADDR_MASK \
136         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137
138 #define PT32_BASE_ADDR_MASK PAGE_MASK
139 #define PT32_DIR_BASE_ADDR_MASK \
140         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
141
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 struct kvm_rmap_desc {
158         u64 *shadow_ptes[RMAP_EXT];
159         struct kvm_rmap_desc *more;
160 };
161
162 static int is_write_protection(struct kvm_vcpu *vcpu)
163 {
164         return vcpu->cr0 & CR0_WP_MASK;
165 }
166
167 static int is_cpuid_PSE36(void)
168 {
169         return 1;
170 }
171
172 static int is_nx(struct kvm_vcpu *vcpu)
173 {
174         return vcpu->shadow_efer & EFER_NX;
175 }
176
177 static int is_present_pte(unsigned long pte)
178 {
179         return pte & PT_PRESENT_MASK;
180 }
181
182 static int is_writeble_pte(unsigned long pte)
183 {
184         return pte & PT_WRITABLE_MASK;
185 }
186
187 static int is_io_pte(unsigned long pte)
188 {
189         return pte & PT_SHADOW_IO_MARK;
190 }
191
192 static int is_rmap_pte(u64 pte)
193 {
194         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
195                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
196 }
197
198 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
199                                   size_t objsize, int min)
200 {
201         void *obj;
202
203         if (cache->nobjs >= min)
204                 return 0;
205         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
206                 obj = kzalloc(objsize, GFP_NOWAIT);
207                 if (!obj)
208                         return -ENOMEM;
209                 cache->objects[cache->nobjs++] = obj;
210         }
211         return 0;
212 }
213
214 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
215 {
216         while (mc->nobjs)
217                 kfree(mc->objects[--mc->nobjs]);
218 }
219
220 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
221 {
222         int r;
223
224         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
225                                    sizeof(struct kvm_pte_chain), 4);
226         if (r)
227                 goto out;
228         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
229                                    sizeof(struct kvm_rmap_desc), 1);
230 out:
231         return r;
232 }
233
234 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
235 {
236         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
237         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
238 }
239
240 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
241                                     size_t size)
242 {
243         void *p;
244
245         BUG_ON(!mc->nobjs);
246         p = mc->objects[--mc->nobjs];
247         memset(p, 0, size);
248         return p;
249 }
250
251 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
252 {
253         if (mc->nobjs < KVM_NR_MEM_OBJS)
254                 mc->objects[mc->nobjs++] = obj;
255         else
256                 kfree(obj);
257 }
258
259 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
260 {
261         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
262                                       sizeof(struct kvm_pte_chain));
263 }
264
265 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
266                                struct kvm_pte_chain *pc)
267 {
268         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
269 }
270
271 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
272 {
273         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
274                                       sizeof(struct kvm_rmap_desc));
275 }
276
277 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
278                                struct kvm_rmap_desc *rd)
279 {
280         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
281 }
282
283 /*
284  * Reverse mapping data structures:
285  *
286  * If page->private bit zero is zero, then page->private points to the
287  * shadow page table entry that points to page_address(page).
288  *
289  * If page->private bit zero is one, (then page->private & ~1) points
290  * to a struct kvm_rmap_desc containing more mappings.
291  */
292 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
293 {
294         struct page *page;
295         struct kvm_rmap_desc *desc;
296         int i;
297
298         if (!is_rmap_pte(*spte))
299                 return;
300         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
301         if (!page->private) {
302                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
303                 page->private = (unsigned long)spte;
304         } else if (!(page->private & 1)) {
305                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
306                 desc = mmu_alloc_rmap_desc(vcpu);
307                 desc->shadow_ptes[0] = (u64 *)page->private;
308                 desc->shadow_ptes[1] = spte;
309                 page->private = (unsigned long)desc | 1;
310         } else {
311                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
312                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
313                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
314                         desc = desc->more;
315                 if (desc->shadow_ptes[RMAP_EXT-1]) {
316                         desc->more = mmu_alloc_rmap_desc(vcpu);
317                         desc = desc->more;
318                 }
319                 for (i = 0; desc->shadow_ptes[i]; ++i)
320                         ;
321                 desc->shadow_ptes[i] = spte;
322         }
323 }
324
325 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
326                                    struct page *page,
327                                    struct kvm_rmap_desc *desc,
328                                    int i,
329                                    struct kvm_rmap_desc *prev_desc)
330 {
331         int j;
332
333         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
334                 ;
335         desc->shadow_ptes[i] = desc->shadow_ptes[j];
336         desc->shadow_ptes[j] = NULL;
337         if (j != 0)
338                 return;
339         if (!prev_desc && !desc->more)
340                 page->private = (unsigned long)desc->shadow_ptes[0];
341         else
342                 if (prev_desc)
343                         prev_desc->more = desc->more;
344                 else
345                         page->private = (unsigned long)desc->more | 1;
346         mmu_free_rmap_desc(vcpu, desc);
347 }
348
349 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
350 {
351         struct page *page;
352         struct kvm_rmap_desc *desc;
353         struct kvm_rmap_desc *prev_desc;
354         int i;
355
356         if (!is_rmap_pte(*spte))
357                 return;
358         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
359         if (!page->private) {
360                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
361                 BUG();
362         } else if (!(page->private & 1)) {
363                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
364                 if ((u64 *)page->private != spte) {
365                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
366                                spte, *spte);
367                         BUG();
368                 }
369                 page->private = 0;
370         } else {
371                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
372                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
373                 prev_desc = NULL;
374                 while (desc) {
375                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
376                                 if (desc->shadow_ptes[i] == spte) {
377                                         rmap_desc_remove_entry(vcpu, page,
378                                                                desc, i,
379                                                                prev_desc);
380                                         return;
381                                 }
382                         prev_desc = desc;
383                         desc = desc->more;
384                 }
385                 BUG();
386         }
387 }
388
389 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
390 {
391         struct kvm *kvm = vcpu->kvm;
392         struct page *page;
393         struct kvm_memory_slot *slot;
394         struct kvm_rmap_desc *desc;
395         u64 *spte;
396
397         slot = gfn_to_memslot(kvm, gfn);
398         BUG_ON(!slot);
399         page = gfn_to_page(slot, gfn);
400
401         while (page->private) {
402                 if (!(page->private & 1))
403                         spte = (u64 *)page->private;
404                 else {
405                         desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
406                         spte = desc->shadow_ptes[0];
407                 }
408                 BUG_ON(!spte);
409                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
410                        page_to_pfn(page) << PAGE_SHIFT);
411                 BUG_ON(!(*spte & PT_PRESENT_MASK));
412                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
413                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
414                 rmap_remove(vcpu, spte);
415                 kvm_arch_ops->tlb_flush(vcpu);
416                 *spte &= ~(u64)PT_WRITABLE_MASK;
417         }
418 }
419
420 static int is_empty_shadow_page(hpa_t page_hpa)
421 {
422         u64 *pos;
423         u64 *end;
424
425         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
426                       pos != end; pos++)
427                 if (*pos != 0) {
428                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
429                                pos, *pos);
430                         return 0;
431                 }
432         return 1;
433 }
434
435 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
436 {
437         struct kvm_mmu_page *page_head = page_header(page_hpa);
438
439         ASSERT(is_empty_shadow_page(page_hpa));
440         list_del(&page_head->link);
441         page_head->page_hpa = page_hpa;
442         list_add(&page_head->link, &vcpu->free_pages);
443         ++vcpu->kvm->n_free_mmu_pages;
444 }
445
446 static unsigned kvm_page_table_hashfn(gfn_t gfn)
447 {
448         return gfn;
449 }
450
451 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
452                                                u64 *parent_pte)
453 {
454         struct kvm_mmu_page *page;
455
456         if (list_empty(&vcpu->free_pages))
457                 return NULL;
458
459         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
460         list_del(&page->link);
461         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
462         ASSERT(is_empty_shadow_page(page->page_hpa));
463         page->slot_bitmap = 0;
464         page->global = 1;
465         page->multimapped = 0;
466         page->parent_pte = parent_pte;
467         --vcpu->kvm->n_free_mmu_pages;
468         return page;
469 }
470
471 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
472                                     struct kvm_mmu_page *page, u64 *parent_pte)
473 {
474         struct kvm_pte_chain *pte_chain;
475         struct hlist_node *node;
476         int i;
477
478         if (!parent_pte)
479                 return;
480         if (!page->multimapped) {
481                 u64 *old = page->parent_pte;
482
483                 if (!old) {
484                         page->parent_pte = parent_pte;
485                         return;
486                 }
487                 page->multimapped = 1;
488                 pte_chain = mmu_alloc_pte_chain(vcpu);
489                 INIT_HLIST_HEAD(&page->parent_ptes);
490                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
491                 pte_chain->parent_ptes[0] = old;
492         }
493         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
494                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
495                         continue;
496                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
497                         if (!pte_chain->parent_ptes[i]) {
498                                 pte_chain->parent_ptes[i] = parent_pte;
499                                 return;
500                         }
501         }
502         pte_chain = mmu_alloc_pte_chain(vcpu);
503         BUG_ON(!pte_chain);
504         hlist_add_head(&pte_chain->link, &page->parent_ptes);
505         pte_chain->parent_ptes[0] = parent_pte;
506 }
507
508 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
509                                        struct kvm_mmu_page *page,
510                                        u64 *parent_pte)
511 {
512         struct kvm_pte_chain *pte_chain;
513         struct hlist_node *node;
514         int i;
515
516         if (!page->multimapped) {
517                 BUG_ON(page->parent_pte != parent_pte);
518                 page->parent_pte = NULL;
519                 return;
520         }
521         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
522                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
523                         if (!pte_chain->parent_ptes[i])
524                                 break;
525                         if (pte_chain->parent_ptes[i] != parent_pte)
526                                 continue;
527                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
528                                 && pte_chain->parent_ptes[i + 1]) {
529                                 pte_chain->parent_ptes[i]
530                                         = pte_chain->parent_ptes[i + 1];
531                                 ++i;
532                         }
533                         pte_chain->parent_ptes[i] = NULL;
534                         if (i == 0) {
535                                 hlist_del(&pte_chain->link);
536                                 mmu_free_pte_chain(vcpu, pte_chain);
537                                 if (hlist_empty(&page->parent_ptes)) {
538                                         page->multimapped = 0;
539                                         page->parent_pte = NULL;
540                                 }
541                         }
542                         return;
543                 }
544         BUG();
545 }
546
547 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
548                                                 gfn_t gfn)
549 {
550         unsigned index;
551         struct hlist_head *bucket;
552         struct kvm_mmu_page *page;
553         struct hlist_node *node;
554
555         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
556         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
557         bucket = &vcpu->kvm->mmu_page_hash[index];
558         hlist_for_each_entry(page, node, bucket, hash_link)
559                 if (page->gfn == gfn && !page->role.metaphysical) {
560                         pgprintk("%s: found role %x\n",
561                                  __FUNCTION__, page->role.word);
562                         return page;
563                 }
564         return NULL;
565 }
566
567 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
568                                              gfn_t gfn,
569                                              gva_t gaddr,
570                                              unsigned level,
571                                              int metaphysical,
572                                              u64 *parent_pte)
573 {
574         union kvm_mmu_page_role role;
575         unsigned index;
576         unsigned quadrant;
577         struct hlist_head *bucket;
578         struct kvm_mmu_page *page;
579         struct hlist_node *node;
580
581         role.word = 0;
582         role.glevels = vcpu->mmu.root_level;
583         role.level = level;
584         role.metaphysical = metaphysical;
585         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
586                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
587                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
588                 role.quadrant = quadrant;
589         }
590         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
591                  gfn, role.word);
592         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
593         bucket = &vcpu->kvm->mmu_page_hash[index];
594         hlist_for_each_entry(page, node, bucket, hash_link)
595                 if (page->gfn == gfn && page->role.word == role.word) {
596                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
597                         pgprintk("%s: found\n", __FUNCTION__);
598                         return page;
599                 }
600         page = kvm_mmu_alloc_page(vcpu, parent_pte);
601         if (!page)
602                 return page;
603         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
604         page->gfn = gfn;
605         page->role = role;
606         hlist_add_head(&page->hash_link, bucket);
607         if (!metaphysical)
608                 rmap_write_protect(vcpu, gfn);
609         return page;
610 }
611
612 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
613                                          struct kvm_mmu_page *page)
614 {
615         unsigned i;
616         u64 *pt;
617         u64 ent;
618
619         pt = __va(page->page_hpa);
620
621         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
622                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
623                         if (pt[i] & PT_PRESENT_MASK)
624                                 rmap_remove(vcpu, &pt[i]);
625                         pt[i] = 0;
626                 }
627                 kvm_arch_ops->tlb_flush(vcpu);
628                 return;
629         }
630
631         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
632                 ent = pt[i];
633
634                 pt[i] = 0;
635                 if (!(ent & PT_PRESENT_MASK))
636                         continue;
637                 ent &= PT64_BASE_ADDR_MASK;
638                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
639         }
640 }
641
642 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
643                              struct kvm_mmu_page *page,
644                              u64 *parent_pte)
645 {
646         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
647 }
648
649 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
650                              struct kvm_mmu_page *page)
651 {
652         u64 *parent_pte;
653
654         while (page->multimapped || page->parent_pte) {
655                 if (!page->multimapped)
656                         parent_pte = page->parent_pte;
657                 else {
658                         struct kvm_pte_chain *chain;
659
660                         chain = container_of(page->parent_ptes.first,
661                                              struct kvm_pte_chain, link);
662                         parent_pte = chain->parent_ptes[0];
663                 }
664                 BUG_ON(!parent_pte);
665                 kvm_mmu_put_page(vcpu, page, parent_pte);
666                 *parent_pte = 0;
667         }
668         kvm_mmu_page_unlink_children(vcpu, page);
669         if (!page->root_count) {
670                 hlist_del(&page->hash_link);
671                 kvm_mmu_free_page(vcpu, page->page_hpa);
672         } else {
673                 list_del(&page->link);
674                 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
675         }
676 }
677
678 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
679 {
680         unsigned index;
681         struct hlist_head *bucket;
682         struct kvm_mmu_page *page;
683         struct hlist_node *node, *n;
684         int r;
685
686         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
687         r = 0;
688         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
689         bucket = &vcpu->kvm->mmu_page_hash[index];
690         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
691                 if (page->gfn == gfn && !page->role.metaphysical) {
692                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
693                                  page->role.word);
694                         kvm_mmu_zap_page(vcpu, page);
695                         r = 1;
696                 }
697         return r;
698 }
699
700 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
701 {
702         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
703         struct kvm_mmu_page *page_head = page_header(__pa(pte));
704
705         __set_bit(slot, &page_head->slot_bitmap);
706 }
707
708 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
709 {
710         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
711
712         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
713 }
714
715 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
716 {
717         struct kvm_memory_slot *slot;
718         struct page *page;
719
720         ASSERT((gpa & HPA_ERR_MASK) == 0);
721         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
722         if (!slot)
723                 return gpa | HPA_ERR_MASK;
724         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
725         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
726                 | (gpa & (PAGE_SIZE-1));
727 }
728
729 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
730 {
731         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
732
733         if (gpa == UNMAPPED_GVA)
734                 return UNMAPPED_GVA;
735         return gpa_to_hpa(vcpu, gpa);
736 }
737
738 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
739 {
740 }
741
742 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
743 {
744         int level = PT32E_ROOT_LEVEL;
745         hpa_t table_addr = vcpu->mmu.root_hpa;
746
747         for (; ; level--) {
748                 u32 index = PT64_INDEX(v, level);
749                 u64 *table;
750                 u64 pte;
751
752                 ASSERT(VALID_PAGE(table_addr));
753                 table = __va(table_addr);
754
755                 if (level == 1) {
756                         pte = table[index];
757                         if (is_present_pte(pte) && is_writeble_pte(pte))
758                                 return 0;
759                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
760                         page_header_update_slot(vcpu->kvm, table, v);
761                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
762                                                                 PT_USER_MASK;
763                         rmap_add(vcpu, &table[index]);
764                         return 0;
765                 }
766
767                 if (table[index] == 0) {
768                         struct kvm_mmu_page *new_table;
769                         gfn_t pseudo_gfn;
770
771                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
772                                 >> PAGE_SHIFT;
773                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
774                                                      v, level - 1,
775                                                      1, &table[index]);
776                         if (!new_table) {
777                                 pgprintk("nonpaging_map: ENOMEM\n");
778                                 return -ENOMEM;
779                         }
780
781                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
782                                 | PT_WRITABLE_MASK | PT_USER_MASK;
783                 }
784                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
785         }
786 }
787
788 static void mmu_free_roots(struct kvm_vcpu *vcpu)
789 {
790         int i;
791         struct kvm_mmu_page *page;
792
793 #ifdef CONFIG_X86_64
794         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
795                 hpa_t root = vcpu->mmu.root_hpa;
796
797                 ASSERT(VALID_PAGE(root));
798                 page = page_header(root);
799                 --page->root_count;
800                 vcpu->mmu.root_hpa = INVALID_PAGE;
801                 return;
802         }
803 #endif
804         for (i = 0; i < 4; ++i) {
805                 hpa_t root = vcpu->mmu.pae_root[i];
806
807                 ASSERT(VALID_PAGE(root));
808                 root &= PT64_BASE_ADDR_MASK;
809                 page = page_header(root);
810                 --page->root_count;
811                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
812         }
813         vcpu->mmu.root_hpa = INVALID_PAGE;
814 }
815
816 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
817 {
818         int i;
819         gfn_t root_gfn;
820         struct kvm_mmu_page *page;
821
822         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
823
824 #ifdef CONFIG_X86_64
825         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
826                 hpa_t root = vcpu->mmu.root_hpa;
827
828                 ASSERT(!VALID_PAGE(root));
829                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
830                                         PT64_ROOT_LEVEL, 0, NULL);
831                 root = page->page_hpa;
832                 ++page->root_count;
833                 vcpu->mmu.root_hpa = root;
834                 return;
835         }
836 #endif
837         for (i = 0; i < 4; ++i) {
838                 hpa_t root = vcpu->mmu.pae_root[i];
839
840                 ASSERT(!VALID_PAGE(root));
841                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
842                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
843                 else if (vcpu->mmu.root_level == 0)
844                         root_gfn = 0;
845                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
846                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
847                                         NULL);
848                 root = page->page_hpa;
849                 ++page->root_count;
850                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
851         }
852         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
853 }
854
855 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
856 {
857         return vaddr;
858 }
859
860 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
861                                u32 error_code)
862 {
863         gpa_t addr = gva;
864         hpa_t paddr;
865         int r;
866
867         r = mmu_topup_memory_caches(vcpu);
868         if (r)
869                 return r;
870
871         ASSERT(vcpu);
872         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
873
874
875         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
876
877         if (is_error_hpa(paddr))
878                 return 1;
879
880         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
881 }
882
883 static void nonpaging_free(struct kvm_vcpu *vcpu)
884 {
885         mmu_free_roots(vcpu);
886 }
887
888 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
889 {
890         struct kvm_mmu *context = &vcpu->mmu;
891
892         context->new_cr3 = nonpaging_new_cr3;
893         context->page_fault = nonpaging_page_fault;
894         context->gva_to_gpa = nonpaging_gva_to_gpa;
895         context->free = nonpaging_free;
896         context->root_level = 0;
897         context->shadow_root_level = PT32E_ROOT_LEVEL;
898         mmu_alloc_roots(vcpu);
899         ASSERT(VALID_PAGE(context->root_hpa));
900         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
901         return 0;
902 }
903
904 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
905 {
906         ++kvm_stat.tlb_flush;
907         kvm_arch_ops->tlb_flush(vcpu);
908 }
909
910 static void paging_new_cr3(struct kvm_vcpu *vcpu)
911 {
912         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
913         mmu_free_roots(vcpu);
914         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
915                 kvm_mmu_free_some_pages(vcpu);
916         mmu_alloc_roots(vcpu);
917         kvm_mmu_flush_tlb(vcpu);
918         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
919 }
920
921 static void mark_pagetable_nonglobal(void *shadow_pte)
922 {
923         page_header(__pa(shadow_pte))->global = 0;
924 }
925
926 static inline void set_pte_common(struct kvm_vcpu *vcpu,
927                              u64 *shadow_pte,
928                              gpa_t gaddr,
929                              int dirty,
930                              u64 access_bits,
931                              gfn_t gfn)
932 {
933         hpa_t paddr;
934
935         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
936         if (!dirty)
937                 access_bits &= ~PT_WRITABLE_MASK;
938
939         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
940
941         *shadow_pte |= access_bits;
942
943         if (!(*shadow_pte & PT_GLOBAL_MASK))
944                 mark_pagetable_nonglobal(shadow_pte);
945
946         if (is_error_hpa(paddr)) {
947                 *shadow_pte |= gaddr;
948                 *shadow_pte |= PT_SHADOW_IO_MARK;
949                 *shadow_pte &= ~PT_PRESENT_MASK;
950                 return;
951         }
952
953         *shadow_pte |= paddr;
954
955         if (access_bits & PT_WRITABLE_MASK) {
956                 struct kvm_mmu_page *shadow;
957
958                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
959                 if (shadow) {
960                         pgprintk("%s: found shadow page for %lx, marking ro\n",
961                                  __FUNCTION__, gfn);
962                         access_bits &= ~PT_WRITABLE_MASK;
963                         if (is_writeble_pte(*shadow_pte)) {
964                                     *shadow_pte &= ~PT_WRITABLE_MASK;
965                                     kvm_arch_ops->tlb_flush(vcpu);
966                         }
967                 }
968         }
969
970         if (access_bits & PT_WRITABLE_MASK)
971                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
972
973         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
974         rmap_add(vcpu, shadow_pte);
975 }
976
977 static void inject_page_fault(struct kvm_vcpu *vcpu,
978                               u64 addr,
979                               u32 err_code)
980 {
981         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
982 }
983
984 static inline int fix_read_pf(u64 *shadow_ent)
985 {
986         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
987             !(*shadow_ent & PT_USER_MASK)) {
988                 /*
989                  * If supervisor write protect is disabled, we shadow kernel
990                  * pages as user pages so we can trap the write access.
991                  */
992                 *shadow_ent |= PT_USER_MASK;
993                 *shadow_ent &= ~PT_WRITABLE_MASK;
994
995                 return 1;
996
997         }
998         return 0;
999 }
1000
1001 static void paging_free(struct kvm_vcpu *vcpu)
1002 {
1003         nonpaging_free(vcpu);
1004 }
1005
1006 #define PTTYPE 64
1007 #include "paging_tmpl.h"
1008 #undef PTTYPE
1009
1010 #define PTTYPE 32
1011 #include "paging_tmpl.h"
1012 #undef PTTYPE
1013
1014 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1015 {
1016         struct kvm_mmu *context = &vcpu->mmu;
1017
1018         ASSERT(is_pae(vcpu));
1019         context->new_cr3 = paging_new_cr3;
1020         context->page_fault = paging64_page_fault;
1021         context->gva_to_gpa = paging64_gva_to_gpa;
1022         context->free = paging_free;
1023         context->root_level = level;
1024         context->shadow_root_level = level;
1025         mmu_alloc_roots(vcpu);
1026         ASSERT(VALID_PAGE(context->root_hpa));
1027         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1028                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1029         return 0;
1030 }
1031
1032 static int paging64_init_context(struct kvm_vcpu *vcpu)
1033 {
1034         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1035 }
1036
1037 static int paging32_init_context(struct kvm_vcpu *vcpu)
1038 {
1039         struct kvm_mmu *context = &vcpu->mmu;
1040
1041         context->new_cr3 = paging_new_cr3;
1042         context->page_fault = paging32_page_fault;
1043         context->gva_to_gpa = paging32_gva_to_gpa;
1044         context->free = paging_free;
1045         context->root_level = PT32_ROOT_LEVEL;
1046         context->shadow_root_level = PT32E_ROOT_LEVEL;
1047         mmu_alloc_roots(vcpu);
1048         ASSERT(VALID_PAGE(context->root_hpa));
1049         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1050                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1051         return 0;
1052 }
1053
1054 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1055 {
1056         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1057 }
1058
1059 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1060 {
1061         ASSERT(vcpu);
1062         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1063
1064         if (!is_paging(vcpu))
1065                 return nonpaging_init_context(vcpu);
1066         else if (is_long_mode(vcpu))
1067                 return paging64_init_context(vcpu);
1068         else if (is_pae(vcpu))
1069                 return paging32E_init_context(vcpu);
1070         else
1071                 return paging32_init_context(vcpu);
1072 }
1073
1074 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1075 {
1076         ASSERT(vcpu);
1077         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1078                 vcpu->mmu.free(vcpu);
1079                 vcpu->mmu.root_hpa = INVALID_PAGE;
1080         }
1081 }
1082
1083 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1084 {
1085         int r;
1086
1087         destroy_kvm_mmu(vcpu);
1088         r = init_kvm_mmu(vcpu);
1089         if (r < 0)
1090                 goto out;
1091         r = mmu_topup_memory_caches(vcpu);
1092 out:
1093         return r;
1094 }
1095
1096 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1097 {
1098         gfn_t gfn = gpa >> PAGE_SHIFT;
1099         struct kvm_mmu_page *page;
1100         struct kvm_mmu_page *child;
1101         struct hlist_node *node, *n;
1102         struct hlist_head *bucket;
1103         unsigned index;
1104         u64 *spte;
1105         u64 pte;
1106         unsigned offset = offset_in_page(gpa);
1107         unsigned pte_size;
1108         unsigned page_offset;
1109         unsigned misaligned;
1110         int level;
1111         int flooded = 0;
1112
1113         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1114         if (gfn == vcpu->last_pt_write_gfn) {
1115                 ++vcpu->last_pt_write_count;
1116                 if (vcpu->last_pt_write_count >= 3)
1117                         flooded = 1;
1118         } else {
1119                 vcpu->last_pt_write_gfn = gfn;
1120                 vcpu->last_pt_write_count = 1;
1121         }
1122         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1123         bucket = &vcpu->kvm->mmu_page_hash[index];
1124         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1125                 if (page->gfn != gfn || page->role.metaphysical)
1126                         continue;
1127                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1128                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1129                 if (misaligned || flooded) {
1130                         /*
1131                          * Misaligned accesses are too much trouble to fix
1132                          * up; also, they usually indicate a page is not used
1133                          * as a page table.
1134                          *
1135                          * If we're seeing too many writes to a page,
1136                          * it may no longer be a page table, or we may be
1137                          * forking, in which case it is better to unmap the
1138                          * page.
1139                          */
1140                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1141                                  gpa, bytes, page->role.word);
1142                         kvm_mmu_zap_page(vcpu, page);
1143                         continue;
1144                 }
1145                 page_offset = offset;
1146                 level = page->role.level;
1147                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1148                         page_offset <<= 1;          /* 32->64 */
1149                         page_offset &= ~PAGE_MASK;
1150                 }
1151                 spte = __va(page->page_hpa);
1152                 spte += page_offset / sizeof(*spte);
1153                 pte = *spte;
1154                 if (is_present_pte(pte)) {
1155                         if (level == PT_PAGE_TABLE_LEVEL)
1156                                 rmap_remove(vcpu, spte);
1157                         else {
1158                                 child = page_header(pte & PT64_BASE_ADDR_MASK);
1159                                 mmu_page_remove_parent_pte(vcpu, child, spte);
1160                         }
1161                 }
1162                 *spte = 0;
1163         }
1164 }
1165
1166 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1167 {
1168 }
1169
1170 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1171 {
1172         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1173
1174         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1175 }
1176
1177 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1178 {
1179         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1180                 struct kvm_mmu_page *page;
1181
1182                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1183                                     struct kvm_mmu_page, link);
1184                 kvm_mmu_zap_page(vcpu, page);
1185         }
1186 }
1187 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1188
1189 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1190 {
1191         struct kvm_mmu_page *page;
1192
1193         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1194                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1195                                     struct kvm_mmu_page, link);
1196                 kvm_mmu_zap_page(vcpu, page);
1197         }
1198         while (!list_empty(&vcpu->free_pages)) {
1199                 page = list_entry(vcpu->free_pages.next,
1200                                   struct kvm_mmu_page, link);
1201                 list_del(&page->link);
1202                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1203                 page->page_hpa = INVALID_PAGE;
1204         }
1205         free_page((unsigned long)vcpu->mmu.pae_root);
1206 }
1207
1208 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1209 {
1210         struct page *page;
1211         int i;
1212
1213         ASSERT(vcpu);
1214
1215         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1216                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1217
1218                 INIT_LIST_HEAD(&page_header->link);
1219                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1220                         goto error_1;
1221                 page->private = (unsigned long)page_header;
1222                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1223                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1224                 list_add(&page_header->link, &vcpu->free_pages);
1225                 ++vcpu->kvm->n_free_mmu_pages;
1226         }
1227
1228         /*
1229          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1230          * Therefore we need to allocate shadow page tables in the first
1231          * 4GB of memory, which happens to fit the DMA32 zone.
1232          */
1233         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1234         if (!page)
1235                 goto error_1;
1236         vcpu->mmu.pae_root = page_address(page);
1237         for (i = 0; i < 4; ++i)
1238                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1239
1240         return 0;
1241
1242 error_1:
1243         free_mmu_pages(vcpu);
1244         return -ENOMEM;
1245 }
1246
1247 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1248 {
1249         ASSERT(vcpu);
1250         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1251         ASSERT(list_empty(&vcpu->free_pages));
1252
1253         return alloc_mmu_pages(vcpu);
1254 }
1255
1256 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1257 {
1258         ASSERT(vcpu);
1259         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1260         ASSERT(!list_empty(&vcpu->free_pages));
1261
1262         return init_kvm_mmu(vcpu);
1263 }
1264
1265 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1266 {
1267         ASSERT(vcpu);
1268
1269         destroy_kvm_mmu(vcpu);
1270         free_mmu_pages(vcpu);
1271         mmu_free_memory_caches(vcpu);
1272 }
1273
1274 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1275 {
1276         struct kvm *kvm = vcpu->kvm;
1277         struct kvm_mmu_page *page;
1278
1279         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1280                 int i;
1281                 u64 *pt;
1282
1283                 if (!test_bit(slot, &page->slot_bitmap))
1284                         continue;
1285
1286                 pt = __va(page->page_hpa);
1287                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1288                         /* avoid RMW */
1289                         if (pt[i] & PT_WRITABLE_MASK) {
1290                                 rmap_remove(vcpu, &pt[i]);
1291                                 pt[i] &= ~PT_WRITABLE_MASK;
1292                         }
1293         }
1294 }
1295
1296 #ifdef AUDIT
1297
1298 static const char *audit_msg;
1299
1300 static gva_t canonicalize(gva_t gva)
1301 {
1302 #ifdef CONFIG_X86_64
1303         gva = (long long)(gva << 16) >> 16;
1304 #endif
1305         return gva;
1306 }
1307
1308 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1309                                 gva_t va, int level)
1310 {
1311         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1312         int i;
1313         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1314
1315         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1316                 u64 ent = pt[i];
1317
1318                 if (!ent & PT_PRESENT_MASK)
1319                         continue;
1320
1321                 va = canonicalize(va);
1322                 if (level > 1)
1323                         audit_mappings_page(vcpu, ent, va, level - 1);
1324                 else {
1325                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1326                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1327
1328                         if ((ent & PT_PRESENT_MASK)
1329                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1330                                 printk(KERN_ERR "audit error: (%s) levels %d"
1331                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1332                                        audit_msg, vcpu->mmu.root_level,
1333                                        va, gpa, hpa, ent);
1334                 }
1335         }
1336 }
1337
1338 static void audit_mappings(struct kvm_vcpu *vcpu)
1339 {
1340         int i;
1341
1342         if (vcpu->mmu.root_level == 4)
1343                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1344         else
1345                 for (i = 0; i < 4; ++i)
1346                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1347                                 audit_mappings_page(vcpu,
1348                                                     vcpu->mmu.pae_root[i],
1349                                                     i << 30,
1350                                                     2);
1351 }
1352
1353 static int count_rmaps(struct kvm_vcpu *vcpu)
1354 {
1355         int nmaps = 0;
1356         int i, j, k;
1357
1358         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1359                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1360                 struct kvm_rmap_desc *d;
1361
1362                 for (j = 0; j < m->npages; ++j) {
1363                         struct page *page = m->phys_mem[j];
1364
1365                         if (!page->private)
1366                                 continue;
1367                         if (!(page->private & 1)) {
1368                                 ++nmaps;
1369                                 continue;
1370                         }
1371                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1372                         while (d) {
1373                                 for (k = 0; k < RMAP_EXT; ++k)
1374                                         if (d->shadow_ptes[k])
1375                                                 ++nmaps;
1376                                         else
1377                                                 break;
1378                                 d = d->more;
1379                         }
1380                 }
1381         }
1382         return nmaps;
1383 }
1384
1385 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1386 {
1387         int nmaps = 0;
1388         struct kvm_mmu_page *page;
1389         int i;
1390
1391         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1392                 u64 *pt = __va(page->page_hpa);
1393
1394                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1395                         continue;
1396
1397                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1398                         u64 ent = pt[i];
1399
1400                         if (!(ent & PT_PRESENT_MASK))
1401                                 continue;
1402                         if (!(ent & PT_WRITABLE_MASK))
1403                                 continue;
1404                         ++nmaps;
1405                 }
1406         }
1407         return nmaps;
1408 }
1409
1410 static void audit_rmap(struct kvm_vcpu *vcpu)
1411 {
1412         int n_rmap = count_rmaps(vcpu);
1413         int n_actual = count_writable_mappings(vcpu);
1414
1415         if (n_rmap != n_actual)
1416                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1417                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1418 }
1419
1420 static void audit_write_protection(struct kvm_vcpu *vcpu)
1421 {
1422         struct kvm_mmu_page *page;
1423
1424         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1425                 hfn_t hfn;
1426                 struct page *pg;
1427
1428                 if (page->role.metaphysical)
1429                         continue;
1430
1431                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1432                         >> PAGE_SHIFT;
1433                 pg = pfn_to_page(hfn);
1434                 if (pg->private)
1435                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1436                                " mappings: gfn %lx role %x\n",
1437                                __FUNCTION__, audit_msg, page->gfn,
1438                                page->role.word);
1439         }
1440 }
1441
1442 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1443 {
1444         int olddbg = dbg;
1445
1446         dbg = 0;
1447         audit_msg = msg;
1448         audit_rmap(vcpu);
1449         audit_write_protection(vcpu);
1450         audit_mappings(vcpu);
1451         dbg = olddbg;
1452 }
1453
1454 #endif