Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME                "ib_srpt"
54 #define DRV_VERSION             "2.0.0"
55 #define DRV_RELDATE             "2011-02-14"
56
57 #define SRPT_ID_STRING  "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64                    "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68  * Global Variables
69  */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78                  "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83                  "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87         return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90                   0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92                  "Using this value for ioc_guid, id_ext, and cm_listen_id"
93                  " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106         switch (dir) {
107         case DMA_TO_DEVICE:     return DMA_FROM_DEVICE;
108         case DMA_FROM_DEVICE:   return DMA_TO_DEVICE;
109         default:                return dir;
110         }
111 }
112
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120         return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125         unsigned long flags;
126         enum rdma_ch_state state;
127
128         spin_lock_irqsave(&ch->spinlock, flags);
129         state = ch->state;
130         spin_unlock_irqrestore(&ch->spinlock, flags);
131         return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137         unsigned long flags;
138         enum rdma_ch_state prev;
139
140         spin_lock_irqsave(&ch->spinlock, flags);
141         prev = ch->state;
142         ch->state = new_state;
143         spin_unlock_irqrestore(&ch->spinlock, flags);
144         return prev;
145 }
146
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154                            enum rdma_ch_state new)
155 {
156         unsigned long flags;
157         enum rdma_ch_state prev;
158
159         spin_lock_irqsave(&ch->spinlock, flags);
160         prev = ch->state;
161         if (prev == old)
162                 ch->state = new;
163         spin_unlock_irqrestore(&ch->spinlock, flags);
164         return prev == old;
165 }
166
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176                                struct ib_event *event)
177 {
178         struct srpt_device *sdev;
179         struct srpt_port *sport;
180
181         sdev = ib_get_client_data(event->device, &srpt_client);
182         if (!sdev || sdev->device != event->device)
183                 return;
184
185         pr_debug("ASYNC event= %d on device= %s\n", event->event,
186                  srpt_sdev_name(sdev));
187
188         switch (event->event) {
189         case IB_EVENT_PORT_ERR:
190                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191                         sport = &sdev->port[event->element.port_num - 1];
192                         sport->lid = 0;
193                         sport->sm_lid = 0;
194                 }
195                 break;
196         case IB_EVENT_PORT_ACTIVE:
197         case IB_EVENT_LID_CHANGE:
198         case IB_EVENT_PKEY_CHANGE:
199         case IB_EVENT_SM_CHANGE:
200         case IB_EVENT_CLIENT_REREGISTER:
201                 /* Refresh port data asynchronously. */
202                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203                         sport = &sdev->port[event->element.port_num - 1];
204                         if (!sport->lid && !sport->sm_lid)
205                                 schedule_work(&sport->work);
206                 }
207                 break;
208         default:
209                 printk(KERN_ERR "received unrecognized IB event %d\n",
210                        event->event);
211                 break;
212         }
213 }
214
215 /**
216  * srpt_srq_event() - SRQ event callback function.
217  */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220         printk(KERN_INFO "SRQ event %d\n", event->event);
221 }
222
223 /**
224  * srpt_qp_event() - QP event callback function.
225  */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228         pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229                  event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231         switch (event->event) {
232         case IB_EVENT_COMM_EST:
233                 ib_cm_notify(ch->cm_id, event->event);
234                 break;
235         case IB_EVENT_QP_LAST_WQE_REACHED:
236                 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237                                                CH_RELEASING))
238                         srpt_release_channel(ch);
239                 else
240                         pr_debug("%s: state %d - ignored LAST_WQE.\n",
241                                  ch->sess_name, srpt_get_ch_state(ch));
242                 break;
243         default:
244                 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245                        event->event);
246                 break;
247         }
248 }
249
250 /**
251  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252  *
253  * @slot: one-based slot number.
254  * @value: four-bit value.
255  *
256  * Copies the lowest four bits of value in element slot of the array of four
257  * bit elements called c_list (controller list). The index slot is one-based.
258  */
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261         u16 id;
262         u8 tmp;
263
264         id = (slot - 1) / 2;
265         if (slot & 0x1) {
266                 tmp = c_list[id] & 0xf;
267                 c_list[id] = (value << 4) | tmp;
268         } else {
269                 tmp = c_list[id] & 0xf0;
270                 c_list[id] = (value & 0xf) | tmp;
271         }
272 }
273
274 /**
275  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276  *
277  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278  * Specification.
279  */
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282         struct ib_class_port_info *cif;
283
284         cif = (struct ib_class_port_info *)mad->data;
285         memset(cif, 0, sizeof *cif);
286         cif->base_version = 1;
287         cif->class_version = 1;
288         cif->resp_time_value = 20;
289
290         mad->mad_hdr.status = 0;
291 }
292
293 /**
294  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295  *
296  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297  * Specification. See also section B.7, table B.6 in the SRP r16a document.
298  */
299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301         struct ib_dm_iou_info *ioui;
302         u8 slot;
303         int i;
304
305         ioui = (struct ib_dm_iou_info *)mad->data;
306         ioui->change_id = __constant_cpu_to_be16(1);
307         ioui->max_controllers = 16;
308
309         /* set present for slot 1 and empty for the rest */
310         srpt_set_ioc(ioui->controller_list, 1, 1);
311         for (i = 1, slot = 2; i < 16; i++, slot++)
312                 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314         mad->mad_hdr.status = 0;
315 }
316
317 /**
318  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319  *
320  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321  * Architecture Specification. See also section B.7, table B.7 in the SRP
322  * r16a document.
323  */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325                          struct ib_dm_mad *mad)
326 {
327         struct srpt_device *sdev = sport->sdev;
328         struct ib_dm_ioc_profile *iocp;
329
330         iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332         if (!slot || slot > 16) {
333                 mad->mad_hdr.status
334                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335                 return;
336         }
337
338         if (slot > 2) {
339                 mad->mad_hdr.status
340                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341                 return;
342         }
343
344         memset(iocp, 0, sizeof *iocp);
345         strcpy(iocp->id_string, SRPT_ID_STRING);
346         iocp->guid = cpu_to_be64(srpt_service_guid);
347         iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348         iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349         iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350         iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351         iocp->subsys_device_id = 0x0;
352         iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353         iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354         iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355         iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356         iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357         iocp->rdma_read_depth = 4;
358         iocp->send_size = cpu_to_be32(srp_max_req_size);
359         iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360                                           1U << 24));
361         iocp->num_svc_entries = 1;
362         iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363                 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365         mad->mad_hdr.status = 0;
366 }
367
368 /**
369  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370  *
371  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372  * Specification. See also section B.7, table B.8 in the SRP r16a document.
373  */
374 static void srpt_get_svc_entries(u64 ioc_guid,
375                                  u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377         struct ib_dm_svc_entries *svc_entries;
378
379         WARN_ON(!ioc_guid);
380
381         if (!slot || slot > 16) {
382                 mad->mad_hdr.status
383                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384                 return;
385         }
386
387         if (slot > 2 || lo > hi || hi > 1) {
388                 mad->mad_hdr.status
389                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390                 return;
391         }
392
393         svc_entries = (struct ib_dm_svc_entries *)mad->data;
394         memset(svc_entries, 0, sizeof *svc_entries);
395         svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396         snprintf(svc_entries->service_entries[0].name,
397                  sizeof(svc_entries->service_entries[0].name),
398                  "%s%016llx",
399                  SRP_SERVICE_NAME_PREFIX,
400                  ioc_guid);
401
402         mad->mad_hdr.status = 0;
403 }
404
405 /**
406  * srpt_mgmt_method_get() - Process a received management datagram.
407  * @sp:      source port through which the MAD has been received.
408  * @rq_mad:  received MAD.
409  * @rsp_mad: response MAD.
410  */
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412                                  struct ib_dm_mad *rsp_mad)
413 {
414         u16 attr_id;
415         u32 slot;
416         u8 hi, lo;
417
418         attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419         switch (attr_id) {
420         case DM_ATTR_CLASS_PORT_INFO:
421                 srpt_get_class_port_info(rsp_mad);
422                 break;
423         case DM_ATTR_IOU_INFO:
424                 srpt_get_iou(rsp_mad);
425                 break;
426         case DM_ATTR_IOC_PROFILE:
427                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428                 srpt_get_ioc(sp, slot, rsp_mad);
429                 break;
430         case DM_ATTR_SVC_ENTRIES:
431                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432                 hi = (u8) ((slot >> 8) & 0xff);
433                 lo = (u8) (slot & 0xff);
434                 slot = (u16) ((slot >> 16) & 0xffff);
435                 srpt_get_svc_entries(srpt_service_guid,
436                                      slot, hi, lo, rsp_mad);
437                 break;
438         default:
439                 rsp_mad->mad_hdr.status =
440                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441                 break;
442         }
443 }
444
445 /**
446  * srpt_mad_send_handler() - Post MAD-send callback function.
447  */
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449                                   struct ib_mad_send_wc *mad_wc)
450 {
451         ib_destroy_ah(mad_wc->send_buf->ah);
452         ib_free_send_mad(mad_wc->send_buf);
453 }
454
455 /**
456  * srpt_mad_recv_handler() - MAD reception callback function.
457  */
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459                                   struct ib_mad_recv_wc *mad_wc)
460 {
461         struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462         struct ib_ah *ah;
463         struct ib_mad_send_buf *rsp;
464         struct ib_dm_mad *dm_mad;
465
466         if (!mad_wc || !mad_wc->recv_buf.mad)
467                 return;
468
469         ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470                                   mad_wc->recv_buf.grh, mad_agent->port_num);
471         if (IS_ERR(ah))
472                 goto err;
473
474         BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476         rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477                                  mad_wc->wc->pkey_index, 0,
478                                  IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479                                  GFP_KERNEL);
480         if (IS_ERR(rsp))
481                 goto err_rsp;
482
483         rsp->ah = ah;
484
485         dm_mad = rsp->mad;
486         memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487         dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488         dm_mad->mad_hdr.status = 0;
489
490         switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491         case IB_MGMT_METHOD_GET:
492                 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493                 break;
494         case IB_MGMT_METHOD_SET:
495                 dm_mad->mad_hdr.status =
496                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497                 break;
498         default:
499                 dm_mad->mad_hdr.status =
500                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501                 break;
502         }
503
504         if (!ib_post_send_mad(rsp, NULL)) {
505                 ib_free_recv_mad(mad_wc);
506                 /* will destroy_ah & free_send_mad in send completion */
507                 return;
508         }
509
510         ib_free_send_mad(rsp);
511
512 err_rsp:
513         ib_destroy_ah(ah);
514 err:
515         ib_free_recv_mad(mad_wc);
516 }
517
518 /**
519  * srpt_refresh_port() - Configure a HCA port.
520  *
521  * Enable InfiniBand management datagram processing, update the cached sm_lid,
522  * lid and gid values, and register a callback function for processing MADs
523  * on the specified port.
524  *
525  * Note: It is safe to call this function more than once for the same port.
526  */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529         struct ib_mad_reg_req reg_req;
530         struct ib_port_modify port_modify;
531         struct ib_port_attr port_attr;
532         int ret;
533
534         memset(&port_modify, 0, sizeof port_modify);
535         port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536         port_modify.clr_port_cap_mask = 0;
537
538         ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539         if (ret)
540                 goto err_mod_port;
541
542         ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543         if (ret)
544                 goto err_query_port;
545
546         sport->sm_lid = port_attr.sm_lid;
547         sport->lid = port_attr.lid;
548
549         ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550         if (ret)
551                 goto err_query_port;
552
553         if (!sport->mad_agent) {
554                 memset(&reg_req, 0, sizeof reg_req);
555                 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556                 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557                 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558                 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560                 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561                                                          sport->port,
562                                                          IB_QPT_GSI,
563                                                          &reg_req, 0,
564                                                          srpt_mad_send_handler,
565                                                          srpt_mad_recv_handler,
566                                                          sport);
567                 if (IS_ERR(sport->mad_agent)) {
568                         ret = PTR_ERR(sport->mad_agent);
569                         sport->mad_agent = NULL;
570                         goto err_query_port;
571                 }
572         }
573
574         return 0;
575
576 err_query_port:
577
578         port_modify.set_port_cap_mask = 0;
579         port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580         ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582 err_mod_port:
583
584         return ret;
585 }
586
587 /**
588  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589  *
590  * Note: It is safe to call this function more than once for the same device.
591  */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594         struct ib_port_modify port_modify = {
595                 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596         };
597         struct srpt_port *sport;
598         int i;
599
600         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601                 sport = &sdev->port[i - 1];
602                 WARN_ON(sport->port != i);
603                 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604                         printk(KERN_ERR "disabling MAD processing failed.\n");
605                 if (sport->mad_agent) {
606                         ib_unregister_mad_agent(sport->mad_agent);
607                         sport->mad_agent = NULL;
608                 }
609         }
610 }
611
612 /**
613  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614  */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616                                            int ioctx_size, int dma_size,
617                                            enum dma_data_direction dir)
618 {
619         struct srpt_ioctx *ioctx;
620
621         ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622         if (!ioctx)
623                 goto err;
624
625         ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626         if (!ioctx->buf)
627                 goto err_free_ioctx;
628
629         ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630         if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631                 goto err_free_buf;
632
633         return ioctx;
634
635 err_free_buf:
636         kfree(ioctx->buf);
637 err_free_ioctx:
638         kfree(ioctx);
639 err:
640         return NULL;
641 }
642
643 /**
644  * srpt_free_ioctx() - Free an SRPT I/O context structure.
645  */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647                             int dma_size, enum dma_data_direction dir)
648 {
649         if (!ioctx)
650                 return;
651
652         ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653         kfree(ioctx->buf);
654         kfree(ioctx);
655 }
656
657 /**
658  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659  * @sdev:       Device to allocate the I/O context ring for.
660  * @ring_size:  Number of elements in the I/O context ring.
661  * @ioctx_size: I/O context size.
662  * @dma_size:   DMA buffer size.
663  * @dir:        DMA data direction.
664  */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666                                 int ring_size, int ioctx_size,
667                                 int dma_size, enum dma_data_direction dir)
668 {
669         struct srpt_ioctx **ring;
670         int i;
671
672         WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673                 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675         ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676         if (!ring)
677                 goto out;
678         for (i = 0; i < ring_size; ++i) {
679                 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680                 if (!ring[i])
681                         goto err;
682                 ring[i]->index = i;
683         }
684         goto out;
685
686 err:
687         while (--i >= 0)
688                 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689         kfree(ring);
690         ring = NULL;
691 out:
692         return ring;
693 }
694
695 /**
696  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697  */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699                                  struct srpt_device *sdev, int ring_size,
700                                  int dma_size, enum dma_data_direction dir)
701 {
702         int i;
703
704         for (i = 0; i < ring_size; ++i)
705                 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706         kfree(ioctx_ring);
707 }
708
709 /**
710  * srpt_get_cmd_state() - Get the state of a SCSI command.
711  */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714         enum srpt_command_state state;
715         unsigned long flags;
716
717         BUG_ON(!ioctx);
718
719         spin_lock_irqsave(&ioctx->spinlock, flags);
720         state = ioctx->state;
721         spin_unlock_irqrestore(&ioctx->spinlock, flags);
722         return state;
723 }
724
725 /**
726  * srpt_set_cmd_state() - Set the state of a SCSI command.
727  *
728  * Does not modify the state of aborted commands. Returns the previous command
729  * state.
730  */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732                                                   enum srpt_command_state new)
733 {
734         enum srpt_command_state previous;
735         unsigned long flags;
736
737         BUG_ON(!ioctx);
738
739         spin_lock_irqsave(&ioctx->spinlock, flags);
740         previous = ioctx->state;
741         if (previous != SRPT_STATE_DONE)
742                 ioctx->state = new;
743         spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745         return previous;
746 }
747
748 /**
749  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750  *
751  * Returns true if and only if the previous command state was equal to 'old'.
752  */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754                                         enum srpt_command_state old,
755                                         enum srpt_command_state new)
756 {
757         enum srpt_command_state previous;
758         unsigned long flags;
759
760         WARN_ON(!ioctx);
761         WARN_ON(old == SRPT_STATE_DONE);
762         WARN_ON(new == SRPT_STATE_NEW);
763
764         spin_lock_irqsave(&ioctx->spinlock, flags);
765         previous = ioctx->state;
766         if (previous == old)
767                 ioctx->state = new;
768         spin_unlock_irqrestore(&ioctx->spinlock, flags);
769         return previous == old;
770 }
771
772 /**
773  * srpt_post_recv() - Post an IB receive request.
774  */
775 static int srpt_post_recv(struct srpt_device *sdev,
776                           struct srpt_recv_ioctx *ioctx)
777 {
778         struct ib_sge list;
779         struct ib_recv_wr wr, *bad_wr;
780
781         BUG_ON(!sdev);
782         wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784         list.addr = ioctx->ioctx.dma;
785         list.length = srp_max_req_size;
786         list.lkey = sdev->mr->lkey;
787
788         wr.next = NULL;
789         wr.sg_list = &list;
790         wr.num_sge = 1;
791
792         return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794
795 /**
796  * srpt_post_send() - Post an IB send request.
797  *
798  * Returns zero upon success and a non-zero value upon failure.
799  */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801                           struct srpt_send_ioctx *ioctx, int len)
802 {
803         struct ib_sge list;
804         struct ib_send_wr wr, *bad_wr;
805         struct srpt_device *sdev = ch->sport->sdev;
806         int ret;
807
808         atomic_inc(&ch->req_lim);
809
810         ret = -ENOMEM;
811         if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812                 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813                 goto out;
814         }
815
816         ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817                                       DMA_TO_DEVICE);
818
819         list.addr = ioctx->ioctx.dma;
820         list.length = len;
821         list.lkey = sdev->mr->lkey;
822
823         wr.next = NULL;
824         wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825         wr.sg_list = &list;
826         wr.num_sge = 1;
827         wr.opcode = IB_WR_SEND;
828         wr.send_flags = IB_SEND_SIGNALED;
829
830         ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832 out:
833         if (ret < 0) {
834                 atomic_inc(&ch->sq_wr_avail);
835                 atomic_dec(&ch->req_lim);
836         }
837         return ret;
838 }
839
840 /**
841  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842  * @ioctx: Pointer to the I/O context associated with the request.
843  * @srp_cmd: Pointer to the SRP_CMD request data.
844  * @dir: Pointer to the variable to which the transfer direction will be
845  *   written.
846  * @data_len: Pointer to the variable to which the total data length of all
847  *   descriptors in the SRP_CMD request will be written.
848  *
849  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850  *
851  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852  * -ENOMEM when memory allocation fails and zero upon success.
853  */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855                              struct srp_cmd *srp_cmd,
856                              enum dma_data_direction *dir, u64 *data_len)
857 {
858         struct srp_indirect_buf *idb;
859         struct srp_direct_buf *db;
860         unsigned add_cdb_offset;
861         int ret;
862
863         /*
864          * The pointer computations below will only be compiled correctly
865          * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866          * whether srp_cmd::add_data has been declared as a byte pointer.
867          */
868         BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869                      && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871         BUG_ON(!dir);
872         BUG_ON(!data_len);
873
874         ret = 0;
875         *data_len = 0;
876
877         /*
878          * The lower four bits of the buffer format field contain the DATA-IN
879          * buffer descriptor format, and the highest four bits contain the
880          * DATA-OUT buffer descriptor format.
881          */
882         *dir = DMA_NONE;
883         if (srp_cmd->buf_fmt & 0xf)
884                 /* DATA-IN: transfer data from target to initiator (read). */
885                 *dir = DMA_FROM_DEVICE;
886         else if (srp_cmd->buf_fmt >> 4)
887                 /* DATA-OUT: transfer data from initiator to target (write). */
888                 *dir = DMA_TO_DEVICE;
889
890         /*
891          * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892          * CDB LENGTH' field are reserved and the size in bytes of this field
893          * is four times the value specified in bits 3..7. Hence the "& ~3".
894          */
895         add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896         if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897             ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898                 ioctx->n_rbuf = 1;
899                 ioctx->rbufs = &ioctx->single_rbuf;
900
901                 db = (struct srp_direct_buf *)(srp_cmd->add_data
902                                                + add_cdb_offset);
903                 memcpy(ioctx->rbufs, db, sizeof *db);
904                 *data_len = be32_to_cpu(db->len);
905         } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906                    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907                 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908                                                   + add_cdb_offset);
909
910                 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912                 if (ioctx->n_rbuf >
913                     (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914                         printk(KERN_ERR "received unsupported SRP_CMD request"
915                                " type (%u out + %u in != %u / %zu)\n",
916                                srp_cmd->data_out_desc_cnt,
917                                srp_cmd->data_in_desc_cnt,
918                                be32_to_cpu(idb->table_desc.len),
919                                sizeof(*db));
920                         ioctx->n_rbuf = 0;
921                         ret = -EINVAL;
922                         goto out;
923                 }
924
925                 if (ioctx->n_rbuf == 1)
926                         ioctx->rbufs = &ioctx->single_rbuf;
927                 else {
928                         ioctx->rbufs =
929                                 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930                         if (!ioctx->rbufs) {
931                                 ioctx->n_rbuf = 0;
932                                 ret = -ENOMEM;
933                                 goto out;
934                         }
935                 }
936
937                 db = idb->desc_list;
938                 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939                 *data_len = be32_to_cpu(idb->len);
940         }
941 out:
942         return ret;
943 }
944
945 /**
946  * srpt_init_ch_qp() - Initialize queue pair attributes.
947  *
948  * Initialized the attributes of queue pair 'qp' by allowing local write,
949  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950  */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953         struct ib_qp_attr *attr;
954         int ret;
955
956         attr = kzalloc(sizeof *attr, GFP_KERNEL);
957         if (!attr)
958                 return -ENOMEM;
959
960         attr->qp_state = IB_QPS_INIT;
961         attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962             IB_ACCESS_REMOTE_WRITE;
963         attr->port_num = ch->sport->port;
964         attr->pkey_index = 0;
965
966         ret = ib_modify_qp(qp, attr,
967                            IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968                            IB_QP_PKEY_INDEX);
969
970         kfree(attr);
971         return ret;
972 }
973
974 /**
975  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976  * @ch: channel of the queue pair.
977  * @qp: queue pair to change the state of.
978  *
979  * Returns zero upon success and a negative value upon failure.
980  *
981  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982  * If this structure ever becomes larger, it might be necessary to allocate
983  * it dynamically instead of on the stack.
984  */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987         struct ib_qp_attr qp_attr;
988         int attr_mask;
989         int ret;
990
991         qp_attr.qp_state = IB_QPS_RTR;
992         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993         if (ret)
994                 goto out;
995
996         qp_attr.max_dest_rd_atomic = 4;
997
998         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001         return ret;
1002 }
1003
1004 /**
1005  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006  * @ch: channel of the queue pair.
1007  * @qp: queue pair to change the state of.
1008  *
1009  * Returns zero upon success and a negative value upon failure.
1010  *
1011  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012  * If this structure ever becomes larger, it might be necessary to allocate
1013  * it dynamically instead of on the stack.
1014  */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017         struct ib_qp_attr qp_attr;
1018         int attr_mask;
1019         int ret;
1020
1021         qp_attr.qp_state = IB_QPS_RTS;
1022         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023         if (ret)
1024                 goto out;
1025
1026         qp_attr.max_rd_atomic = 4;
1027
1028         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031         return ret;
1032 }
1033
1034 /**
1035  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036  */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039         struct ib_qp_attr qp_attr;
1040
1041         qp_attr.qp_state = IB_QPS_ERR;
1042         return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047  */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049                                     struct srpt_send_ioctx *ioctx)
1050 {
1051         struct scatterlist *sg;
1052         enum dma_data_direction dir;
1053
1054         BUG_ON(!ch);
1055         BUG_ON(!ioctx);
1056         BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058         while (ioctx->n_rdma)
1059                 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061         kfree(ioctx->rdma_ius);
1062         ioctx->rdma_ius = NULL;
1063
1064         if (ioctx->mapped_sg_count) {
1065                 sg = ioctx->sg;
1066                 WARN_ON(!sg);
1067                 dir = ioctx->cmd.data_direction;
1068                 BUG_ON(dir == DMA_NONE);
1069                 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070                                 opposite_dma_dir(dir));
1071                 ioctx->mapped_sg_count = 0;
1072         }
1073 }
1074
1075 /**
1076  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077  */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079                                  struct srpt_send_ioctx *ioctx)
1080 {
1081         struct se_cmd *cmd;
1082         struct scatterlist *sg, *sg_orig;
1083         int sg_cnt;
1084         enum dma_data_direction dir;
1085         struct rdma_iu *riu;
1086         struct srp_direct_buf *db;
1087         dma_addr_t dma_addr;
1088         struct ib_sge *sge;
1089         u64 raddr;
1090         u32 rsize;
1091         u32 tsize;
1092         u32 dma_len;
1093         int count, nrdma;
1094         int i, j, k;
1095
1096         BUG_ON(!ch);
1097         BUG_ON(!ioctx);
1098         cmd = &ioctx->cmd;
1099         dir = cmd->data_direction;
1100         BUG_ON(dir == DMA_NONE);
1101
1102         ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103         ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104
1105         count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106                               opposite_dma_dir(dir));
1107         if (unlikely(!count))
1108                 return -EAGAIN;
1109
1110         ioctx->mapped_sg_count = count;
1111
1112         if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113                 nrdma = ioctx->n_rdma_ius;
1114         else {
1115                 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116                         + ioctx->n_rbuf;
1117
1118                 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119                 if (!ioctx->rdma_ius)
1120                         goto free_mem;
1121
1122                 ioctx->n_rdma_ius = nrdma;
1123         }
1124
1125         db = ioctx->rbufs;
1126         tsize = cmd->data_length;
1127         dma_len = sg_dma_len(&sg[0]);
1128         riu = ioctx->rdma_ius;
1129
1130         /*
1131          * For each remote desc - calculate the #ib_sge.
1132          * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133          *      each remote desc rdma_iu is required a rdma wr;
1134          * else
1135          *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1136          *      another rdma wr
1137          */
1138         for (i = 0, j = 0;
1139              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140                 rsize = be32_to_cpu(db->len);
1141                 raddr = be64_to_cpu(db->va);
1142                 riu->raddr = raddr;
1143                 riu->rkey = be32_to_cpu(db->key);
1144                 riu->sge_cnt = 0;
1145
1146                 /* calculate how many sge required for this remote_buf */
1147                 while (rsize > 0 && tsize > 0) {
1148
1149                         if (rsize >= dma_len) {
1150                                 tsize -= dma_len;
1151                                 rsize -= dma_len;
1152                                 raddr += dma_len;
1153
1154                                 if (tsize > 0) {
1155                                         ++j;
1156                                         if (j < count) {
1157                                                 sg = sg_next(sg);
1158                                                 dma_len = sg_dma_len(sg);
1159                                         }
1160                                 }
1161                         } else {
1162                                 tsize -= rsize;
1163                                 dma_len -= rsize;
1164                                 rsize = 0;
1165                         }
1166
1167                         ++riu->sge_cnt;
1168
1169                         if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170                                 ++ioctx->n_rdma;
1171                                 riu->sge =
1172                                     kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173                                             GFP_KERNEL);
1174                                 if (!riu->sge)
1175                                         goto free_mem;
1176
1177                                 ++riu;
1178                                 riu->sge_cnt = 0;
1179                                 riu->raddr = raddr;
1180                                 riu->rkey = be32_to_cpu(db->key);
1181                         }
1182                 }
1183
1184                 ++ioctx->n_rdma;
1185                 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186                                    GFP_KERNEL);
1187                 if (!riu->sge)
1188                         goto free_mem;
1189         }
1190
1191         db = ioctx->rbufs;
1192         tsize = cmd->data_length;
1193         riu = ioctx->rdma_ius;
1194         sg = sg_orig;
1195         dma_len = sg_dma_len(&sg[0]);
1196         dma_addr = sg_dma_address(&sg[0]);
1197
1198         /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199         for (i = 0, j = 0;
1200              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201                 rsize = be32_to_cpu(db->len);
1202                 sge = riu->sge;
1203                 k = 0;
1204
1205                 while (rsize > 0 && tsize > 0) {
1206                         sge->addr = dma_addr;
1207                         sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209                         if (rsize >= dma_len) {
1210                                 sge->length =
1211                                         (tsize < dma_len) ? tsize : dma_len;
1212                                 tsize -= dma_len;
1213                                 rsize -= dma_len;
1214
1215                                 if (tsize > 0) {
1216                                         ++j;
1217                                         if (j < count) {
1218                                                 sg = sg_next(sg);
1219                                                 dma_len = sg_dma_len(sg);
1220                                                 dma_addr = sg_dma_address(sg);
1221                                         }
1222                                 }
1223                         } else {
1224                                 sge->length = (tsize < rsize) ? tsize : rsize;
1225                                 tsize -= rsize;
1226                                 dma_len -= rsize;
1227                                 dma_addr += rsize;
1228                                 rsize = 0;
1229                         }
1230
1231                         ++k;
1232                         if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233                                 ++riu;
1234                                 sge = riu->sge;
1235                                 k = 0;
1236                         } else if (rsize > 0 && tsize > 0)
1237                                 ++sge;
1238                 }
1239         }
1240
1241         return 0;
1242
1243 free_mem:
1244         srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246         return -ENOMEM;
1247 }
1248
1249 /**
1250  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251  */
1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253 {
1254         struct srpt_send_ioctx *ioctx;
1255         unsigned long flags;
1256
1257         BUG_ON(!ch);
1258
1259         ioctx = NULL;
1260         spin_lock_irqsave(&ch->spinlock, flags);
1261         if (!list_empty(&ch->free_list)) {
1262                 ioctx = list_first_entry(&ch->free_list,
1263                                          struct srpt_send_ioctx, free_list);
1264                 list_del(&ioctx->free_list);
1265         }
1266         spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268         if (!ioctx)
1269                 return ioctx;
1270
1271         BUG_ON(ioctx->ch != ch);
1272         spin_lock_init(&ioctx->spinlock);
1273         ioctx->state = SRPT_STATE_NEW;
1274         ioctx->n_rbuf = 0;
1275         ioctx->rbufs = NULL;
1276         ioctx->n_rdma = 0;
1277         ioctx->n_rdma_ius = 0;
1278         ioctx->rdma_ius = NULL;
1279         ioctx->mapped_sg_count = 0;
1280         init_completion(&ioctx->tx_done);
1281         ioctx->queue_status_only = false;
1282         /*
1283          * transport_init_se_cmd() does not initialize all fields, so do it
1284          * here.
1285          */
1286         memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1287         memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1288
1289         return ioctx;
1290 }
1291
1292 /**
1293  * srpt_abort_cmd() - Abort a SCSI command.
1294  * @ioctx:   I/O context associated with the SCSI command.
1295  * @context: Preferred execution context.
1296  */
1297 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1298 {
1299         enum srpt_command_state state;
1300         unsigned long flags;
1301
1302         BUG_ON(!ioctx);
1303
1304         /*
1305          * If the command is in a state where the target core is waiting for
1306          * the ib_srpt driver, change the state to the next state. Changing
1307          * the state of the command from SRPT_STATE_NEED_DATA to
1308          * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1309          * function a second time.
1310          */
1311
1312         spin_lock_irqsave(&ioctx->spinlock, flags);
1313         state = ioctx->state;
1314         switch (state) {
1315         case SRPT_STATE_NEED_DATA:
1316                 ioctx->state = SRPT_STATE_DATA_IN;
1317                 break;
1318         case SRPT_STATE_DATA_IN:
1319         case SRPT_STATE_CMD_RSP_SENT:
1320         case SRPT_STATE_MGMT_RSP_SENT:
1321                 ioctx->state = SRPT_STATE_DONE;
1322                 break;
1323         default:
1324                 break;
1325         }
1326         spin_unlock_irqrestore(&ioctx->spinlock, flags);
1327
1328         if (state == SRPT_STATE_DONE) {
1329                 struct srpt_rdma_ch *ch = ioctx->ch;
1330
1331                 BUG_ON(ch->sess == NULL);
1332
1333                 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1334                 goto out;
1335         }
1336
1337         pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1338                  ioctx->tag);
1339
1340         switch (state) {
1341         case SRPT_STATE_NEW:
1342         case SRPT_STATE_DATA_IN:
1343         case SRPT_STATE_MGMT:
1344                 /*
1345                  * Do nothing - defer abort processing until
1346                  * srpt_queue_response() is invoked.
1347                  */
1348                 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1349                 break;
1350         case SRPT_STATE_NEED_DATA:
1351                 /* DMA_TO_DEVICE (write) - RDMA read error. */
1352
1353                 /* XXX(hch): this is a horrible layering violation.. */
1354                 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1355                 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1356                 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1357                 break;
1358         case SRPT_STATE_CMD_RSP_SENT:
1359                 /*
1360                  * SRP_RSP sending failed or the SRP_RSP send completion has
1361                  * not been received in time.
1362                  */
1363                 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1364                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1365                 break;
1366         case SRPT_STATE_MGMT_RSP_SENT:
1367                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1368                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1369                 break;
1370         default:
1371                 WARN(1, "Unexpected command state (%d)", state);
1372                 break;
1373         }
1374
1375 out:
1376         return state;
1377 }
1378
1379 /**
1380  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1381  */
1382 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1383 {
1384         struct srpt_send_ioctx *ioctx;
1385         enum srpt_command_state state;
1386         struct se_cmd *cmd;
1387         u32 index;
1388
1389         atomic_inc(&ch->sq_wr_avail);
1390
1391         index = idx_from_wr_id(wr_id);
1392         ioctx = ch->ioctx_ring[index];
1393         state = srpt_get_cmd_state(ioctx);
1394         cmd = &ioctx->cmd;
1395
1396         WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1397                 && state != SRPT_STATE_MGMT_RSP_SENT
1398                 && state != SRPT_STATE_NEED_DATA
1399                 && state != SRPT_STATE_DONE);
1400
1401         /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1402         if (state == SRPT_STATE_CMD_RSP_SENT
1403             || state == SRPT_STATE_MGMT_RSP_SENT)
1404                 atomic_dec(&ch->req_lim);
1405
1406         srpt_abort_cmd(ioctx);
1407 }
1408
1409 /**
1410  * srpt_handle_send_comp() - Process an IB send completion notification.
1411  */
1412 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1413                                   struct srpt_send_ioctx *ioctx)
1414 {
1415         enum srpt_command_state state;
1416
1417         atomic_inc(&ch->sq_wr_avail);
1418
1419         state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1420
1421         if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1422                     && state != SRPT_STATE_MGMT_RSP_SENT
1423                     && state != SRPT_STATE_DONE))
1424                 pr_debug("state = %d\n", state);
1425
1426         if (state != SRPT_STATE_DONE) {
1427                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1428                 transport_generic_free_cmd(&ioctx->cmd, 0);
1429         } else {
1430                 printk(KERN_ERR "IB completion has been received too late for"
1431                        " wr_id = %u.\n", ioctx->ioctx.index);
1432         }
1433 }
1434
1435 /**
1436  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1437  *
1438  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1439  * the data that has been transferred via IB RDMA had to be postponed until the
1440  * check_stop_free() callback.  None of this is necessary anymore and needs to
1441  * be cleaned up.
1442  */
1443 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1444                                   struct srpt_send_ioctx *ioctx,
1445                                   enum srpt_opcode opcode)
1446 {
1447         WARN_ON(ioctx->n_rdma <= 0);
1448         atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1449
1450         if (opcode == SRPT_RDMA_READ_LAST) {
1451                 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1452                                                 SRPT_STATE_DATA_IN))
1453                         target_execute_cmd(&ioctx->cmd);
1454                 else
1455                         printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1456                                __LINE__, srpt_get_cmd_state(ioctx));
1457         } else if (opcode == SRPT_RDMA_ABORT) {
1458                 ioctx->rdma_aborted = true;
1459         } else {
1460                 WARN(true, "unexpected opcode %d\n", opcode);
1461         }
1462 }
1463
1464 /**
1465  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1466  */
1467 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1468                                       struct srpt_send_ioctx *ioctx,
1469                                       enum srpt_opcode opcode)
1470 {
1471         struct se_cmd *cmd;
1472         enum srpt_command_state state;
1473
1474         cmd = &ioctx->cmd;
1475         state = srpt_get_cmd_state(ioctx);
1476         switch (opcode) {
1477         case SRPT_RDMA_READ_LAST:
1478                 if (ioctx->n_rdma <= 0) {
1479                         printk(KERN_ERR "Received invalid RDMA read"
1480                                " error completion with idx %d\n",
1481                                ioctx->ioctx.index);
1482                         break;
1483                 }
1484                 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1485                 if (state == SRPT_STATE_NEED_DATA)
1486                         srpt_abort_cmd(ioctx);
1487                 else
1488                         printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1489                                __func__, __LINE__, state);
1490                 break;
1491         case SRPT_RDMA_WRITE_LAST:
1492                 break;
1493         default:
1494                 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1495                        __LINE__, opcode);
1496                 break;
1497         }
1498 }
1499
1500 /**
1501  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1502  * @ch: RDMA channel through which the request has been received.
1503  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1504  *   be built in the buffer ioctx->buf points at and hence this function will
1505  *   overwrite the request data.
1506  * @tag: tag of the request for which this response is being generated.
1507  * @status: value for the STATUS field of the SRP_RSP information unit.
1508  *
1509  * Returns the size in bytes of the SRP_RSP response.
1510  *
1511  * An SRP_RSP response contains a SCSI status or service response. See also
1512  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1513  * response. See also SPC-2 for more information about sense data.
1514  */
1515 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1516                               struct srpt_send_ioctx *ioctx, u64 tag,
1517                               int status)
1518 {
1519         struct srp_rsp *srp_rsp;
1520         const u8 *sense_data;
1521         int sense_data_len, max_sense_len;
1522
1523         /*
1524          * The lowest bit of all SAM-3 status codes is zero (see also
1525          * paragraph 5.3 in SAM-3).
1526          */
1527         WARN_ON(status & 1);
1528
1529         srp_rsp = ioctx->ioctx.buf;
1530         BUG_ON(!srp_rsp);
1531
1532         sense_data = ioctx->sense_data;
1533         sense_data_len = ioctx->cmd.scsi_sense_length;
1534         WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1535
1536         memset(srp_rsp, 0, sizeof *srp_rsp);
1537         srp_rsp->opcode = SRP_RSP;
1538         srp_rsp->req_lim_delta =
1539                 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1540         srp_rsp->tag = tag;
1541         srp_rsp->status = status;
1542
1543         if (sense_data_len) {
1544                 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1545                 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1546                 if (sense_data_len > max_sense_len) {
1547                         printk(KERN_WARNING "truncated sense data from %d to %d"
1548                                " bytes\n", sense_data_len, max_sense_len);
1549                         sense_data_len = max_sense_len;
1550                 }
1551
1552                 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1553                 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1554                 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1555         }
1556
1557         return sizeof(*srp_rsp) + sense_data_len;
1558 }
1559
1560 /**
1561  * srpt_build_tskmgmt_rsp() - Build a task management response.
1562  * @ch:       RDMA channel through which the request has been received.
1563  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1564  * @rsp_code: RSP_CODE that will be stored in the response.
1565  * @tag:      Tag of the request for which this response is being generated.
1566  *
1567  * Returns the size in bytes of the SRP_RSP response.
1568  *
1569  * An SRP_RSP response contains a SCSI status or service response. See also
1570  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1571  * response.
1572  */
1573 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1574                                   struct srpt_send_ioctx *ioctx,
1575                                   u8 rsp_code, u64 tag)
1576 {
1577         struct srp_rsp *srp_rsp;
1578         int resp_data_len;
1579         int resp_len;
1580
1581         resp_data_len = 4;
1582         resp_len = sizeof(*srp_rsp) + resp_data_len;
1583
1584         srp_rsp = ioctx->ioctx.buf;
1585         BUG_ON(!srp_rsp);
1586         memset(srp_rsp, 0, sizeof *srp_rsp);
1587
1588         srp_rsp->opcode = SRP_RSP;
1589         srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1590                                     + atomic_xchg(&ch->req_lim_delta, 0));
1591         srp_rsp->tag = tag;
1592
1593         srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1594         srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1595         srp_rsp->data[3] = rsp_code;
1596
1597         return resp_len;
1598 }
1599
1600 #define NO_SUCH_LUN ((uint64_t)-1LL)
1601
1602 /*
1603  * SCSI LUN addressing method. See also SAM-2 and the section about
1604  * eight byte LUNs.
1605  */
1606 enum scsi_lun_addr_method {
1607         SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1608         SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1609         SCSI_LUN_ADDR_METHOD_LUN          = 2,
1610         SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1611 };
1612
1613 /*
1614  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1615  *
1616  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1617  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1618  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1619  */
1620 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1621 {
1622         uint64_t res = NO_SUCH_LUN;
1623         int addressing_method;
1624
1625         if (unlikely(len < 2)) {
1626                 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1627                        "more", len);
1628                 goto out;
1629         }
1630
1631         switch (len) {
1632         case 8:
1633                 if ((*((__be64 *)lun) &
1634                      __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1635                         goto out_err;
1636                 break;
1637         case 4:
1638                 if (*((__be16 *)&lun[2]) != 0)
1639                         goto out_err;
1640                 break;
1641         case 6:
1642                 if (*((__be32 *)&lun[2]) != 0)
1643                         goto out_err;
1644                 break;
1645         case 2:
1646                 break;
1647         default:
1648                 goto out_err;
1649         }
1650
1651         addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1652         switch (addressing_method) {
1653         case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1654         case SCSI_LUN_ADDR_METHOD_FLAT:
1655         case SCSI_LUN_ADDR_METHOD_LUN:
1656                 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1657                 break;
1658
1659         case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1660         default:
1661                 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1662                        addressing_method);
1663                 break;
1664         }
1665
1666 out:
1667         return res;
1668
1669 out_err:
1670         printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1671                " implemented");
1672         goto out;
1673 }
1674
1675 static int srpt_check_stop_free(struct se_cmd *cmd)
1676 {
1677         struct srpt_send_ioctx *ioctx = container_of(cmd,
1678                                 struct srpt_send_ioctx, cmd);
1679
1680         return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1681 }
1682
1683 /**
1684  * srpt_handle_cmd() - Process SRP_CMD.
1685  */
1686 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1687                            struct srpt_recv_ioctx *recv_ioctx,
1688                            struct srpt_send_ioctx *send_ioctx)
1689 {
1690         struct se_cmd *cmd;
1691         struct srp_cmd *srp_cmd;
1692         uint64_t unpacked_lun;
1693         u64 data_len;
1694         enum dma_data_direction dir;
1695         sense_reason_t ret;
1696         int rc;
1697
1698         BUG_ON(!send_ioctx);
1699
1700         srp_cmd = recv_ioctx->ioctx.buf;
1701         cmd = &send_ioctx->cmd;
1702         send_ioctx->tag = srp_cmd->tag;
1703
1704         switch (srp_cmd->task_attr) {
1705         case SRP_CMD_SIMPLE_Q:
1706                 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1707                 break;
1708         case SRP_CMD_ORDERED_Q:
1709         default:
1710                 cmd->sam_task_attr = MSG_ORDERED_TAG;
1711                 break;
1712         case SRP_CMD_HEAD_OF_Q:
1713                 cmd->sam_task_attr = MSG_HEAD_TAG;
1714                 break;
1715         case SRP_CMD_ACA:
1716                 cmd->sam_task_attr = MSG_ACA_TAG;
1717                 break;
1718         }
1719
1720         if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1721                 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1722                        srp_cmd->tag);
1723                 ret = TCM_INVALID_CDB_FIELD;
1724                 goto send_sense;
1725         }
1726
1727         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1728                                        sizeof(srp_cmd->lun));
1729         rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1730                         &send_ioctx->sense_data[0], unpacked_lun, data_len,
1731                         MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1732         if (rc != 0) {
1733                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1734                 goto send_sense;
1735         }
1736         return 0;
1737
1738 send_sense:
1739         transport_send_check_condition_and_sense(cmd, ret, 0);
1740         return -1;
1741 }
1742
1743 /**
1744  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1745  * @ch: RDMA channel of the task management request.
1746  * @fn: Task management function to perform.
1747  * @req_tag: Tag of the SRP task management request.
1748  * @mgmt_ioctx: I/O context of the task management request.
1749  *
1750  * Returns zero if the target core will process the task management
1751  * request asynchronously.
1752  *
1753  * Note: It is assumed that the initiator serializes tag-based task management
1754  * requests.
1755  */
1756 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1757 {
1758         struct srpt_device *sdev;
1759         struct srpt_rdma_ch *ch;
1760         struct srpt_send_ioctx *target;
1761         int ret, i;
1762
1763         ret = -EINVAL;
1764         ch = ioctx->ch;
1765         BUG_ON(!ch);
1766         BUG_ON(!ch->sport);
1767         sdev = ch->sport->sdev;
1768         BUG_ON(!sdev);
1769         spin_lock_irq(&sdev->spinlock);
1770         for (i = 0; i < ch->rq_size; ++i) {
1771                 target = ch->ioctx_ring[i];
1772                 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1773                     target->tag == tag &&
1774                     srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1775                         ret = 0;
1776                         /* now let the target core abort &target->cmd; */
1777                         break;
1778                 }
1779         }
1780         spin_unlock_irq(&sdev->spinlock);
1781         return ret;
1782 }
1783
1784 static int srp_tmr_to_tcm(int fn)
1785 {
1786         switch (fn) {
1787         case SRP_TSK_ABORT_TASK:
1788                 return TMR_ABORT_TASK;
1789         case SRP_TSK_ABORT_TASK_SET:
1790                 return TMR_ABORT_TASK_SET;
1791         case SRP_TSK_CLEAR_TASK_SET:
1792                 return TMR_CLEAR_TASK_SET;
1793         case SRP_TSK_LUN_RESET:
1794                 return TMR_LUN_RESET;
1795         case SRP_TSK_CLEAR_ACA:
1796                 return TMR_CLEAR_ACA;
1797         default:
1798                 return -1;
1799         }
1800 }
1801
1802 /**
1803  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1804  *
1805  * Returns 0 if and only if the request will be processed by the target core.
1806  *
1807  * For more information about SRP_TSK_MGMT information units, see also section
1808  * 6.7 in the SRP r16a document.
1809  */
1810 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1811                                  struct srpt_recv_ioctx *recv_ioctx,
1812                                  struct srpt_send_ioctx *send_ioctx)
1813 {
1814         struct srp_tsk_mgmt *srp_tsk;
1815         struct se_cmd *cmd;
1816         struct se_session *sess = ch->sess;
1817         uint64_t unpacked_lun;
1818         uint32_t tag = 0;
1819         int tcm_tmr;
1820         int rc;
1821
1822         BUG_ON(!send_ioctx);
1823
1824         srp_tsk = recv_ioctx->ioctx.buf;
1825         cmd = &send_ioctx->cmd;
1826
1827         pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1828                  " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1829                  srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1830
1831         srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1832         send_ioctx->tag = srp_tsk->tag;
1833         tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1834         if (tcm_tmr < 0) {
1835                 send_ioctx->cmd.se_tmr_req->response =
1836                         TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1837                 goto fail;
1838         }
1839         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1840                                        sizeof(srp_tsk->lun));
1841
1842         if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1843                 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1844                 if (rc < 0) {
1845                         send_ioctx->cmd.se_tmr_req->response =
1846                                         TMR_TASK_DOES_NOT_EXIST;
1847                         goto fail;
1848                 }
1849                 tag = srp_tsk->task_tag;
1850         }
1851         rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1852                                 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1853                                 TARGET_SCF_ACK_KREF);
1854         if (rc != 0) {
1855                 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1856                 goto fail;
1857         }
1858         return;
1859 fail:
1860         transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1861 }
1862
1863 /**
1864  * srpt_handle_new_iu() - Process a newly received information unit.
1865  * @ch:    RDMA channel through which the information unit has been received.
1866  * @ioctx: SRPT I/O context associated with the information unit.
1867  */
1868 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1869                                struct srpt_recv_ioctx *recv_ioctx,
1870                                struct srpt_send_ioctx *send_ioctx)
1871 {
1872         struct srp_cmd *srp_cmd;
1873         enum rdma_ch_state ch_state;
1874
1875         BUG_ON(!ch);
1876         BUG_ON(!recv_ioctx);
1877
1878         ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1879                                    recv_ioctx->ioctx.dma, srp_max_req_size,
1880                                    DMA_FROM_DEVICE);
1881
1882         ch_state = srpt_get_ch_state(ch);
1883         if (unlikely(ch_state == CH_CONNECTING)) {
1884                 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1885                 goto out;
1886         }
1887
1888         if (unlikely(ch_state != CH_LIVE))
1889                 goto out;
1890
1891         srp_cmd = recv_ioctx->ioctx.buf;
1892         if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1893                 if (!send_ioctx)
1894                         send_ioctx = srpt_get_send_ioctx(ch);
1895                 if (unlikely(!send_ioctx)) {
1896                         list_add_tail(&recv_ioctx->wait_list,
1897                                       &ch->cmd_wait_list);
1898                         goto out;
1899                 }
1900         }
1901
1902         switch (srp_cmd->opcode) {
1903         case SRP_CMD:
1904                 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1905                 break;
1906         case SRP_TSK_MGMT:
1907                 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1908                 break;
1909         case SRP_I_LOGOUT:
1910                 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1911                 break;
1912         case SRP_CRED_RSP:
1913                 pr_debug("received SRP_CRED_RSP\n");
1914                 break;
1915         case SRP_AER_RSP:
1916                 pr_debug("received SRP_AER_RSP\n");
1917                 break;
1918         case SRP_RSP:
1919                 printk(KERN_ERR "Received SRP_RSP\n");
1920                 break;
1921         default:
1922                 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1923                        srp_cmd->opcode);
1924                 break;
1925         }
1926
1927         srpt_post_recv(ch->sport->sdev, recv_ioctx);
1928 out:
1929         return;
1930 }
1931
1932 static void srpt_process_rcv_completion(struct ib_cq *cq,
1933                                         struct srpt_rdma_ch *ch,
1934                                         struct ib_wc *wc)
1935 {
1936         struct srpt_device *sdev = ch->sport->sdev;
1937         struct srpt_recv_ioctx *ioctx;
1938         u32 index;
1939
1940         index = idx_from_wr_id(wc->wr_id);
1941         if (wc->status == IB_WC_SUCCESS) {
1942                 int req_lim;
1943
1944                 req_lim = atomic_dec_return(&ch->req_lim);
1945                 if (unlikely(req_lim < 0))
1946                         printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1947                 ioctx = sdev->ioctx_ring[index];
1948                 srpt_handle_new_iu(ch, ioctx, NULL);
1949         } else {
1950                 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1951                        index, wc->status);
1952         }
1953 }
1954
1955 /**
1956  * srpt_process_send_completion() - Process an IB send completion.
1957  *
1958  * Note: Although this has not yet been observed during tests, at least in
1959  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1960  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1961  * value in each response is set to one, and it is possible that this response
1962  * makes the initiator send a new request before the send completion for that
1963  * response has been processed. This could e.g. happen if the call to
1964  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1965  * if IB retransmission causes generation of the send completion to be
1966  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1967  * are queued on cmd_wait_list. The code below processes these delayed
1968  * requests one at a time.
1969  */
1970 static void srpt_process_send_completion(struct ib_cq *cq,
1971                                          struct srpt_rdma_ch *ch,
1972                                          struct ib_wc *wc)
1973 {
1974         struct srpt_send_ioctx *send_ioctx;
1975         uint32_t index;
1976         enum srpt_opcode opcode;
1977
1978         index = idx_from_wr_id(wc->wr_id);
1979         opcode = opcode_from_wr_id(wc->wr_id);
1980         send_ioctx = ch->ioctx_ring[index];
1981         if (wc->status == IB_WC_SUCCESS) {
1982                 if (opcode == SRPT_SEND)
1983                         srpt_handle_send_comp(ch, send_ioctx);
1984                 else {
1985                         WARN_ON(opcode != SRPT_RDMA_ABORT &&
1986                                 wc->opcode != IB_WC_RDMA_READ);
1987                         srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1988                 }
1989         } else {
1990                 if (opcode == SRPT_SEND) {
1991                         printk(KERN_INFO "sending response for idx %u failed"
1992                                " with status %d\n", index, wc->status);
1993                         srpt_handle_send_err_comp(ch, wc->wr_id);
1994                 } else if (opcode != SRPT_RDMA_MID) {
1995                         printk(KERN_INFO "RDMA t %d for idx %u failed with"
1996                                 " status %d", opcode, index, wc->status);
1997                         srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1998                 }
1999         }
2000
2001         while (unlikely(opcode == SRPT_SEND
2002                         && !list_empty(&ch->cmd_wait_list)
2003                         && srpt_get_ch_state(ch) == CH_LIVE
2004                         && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2005                 struct srpt_recv_ioctx *recv_ioctx;
2006
2007                 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2008                                               struct srpt_recv_ioctx,
2009                                               wait_list);
2010                 list_del(&recv_ioctx->wait_list);
2011                 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2012         }
2013 }
2014
2015 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2016 {
2017         struct ib_wc *const wc = ch->wc;
2018         int i, n;
2019
2020         WARN_ON(cq != ch->cq);
2021
2022         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2023         while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2024                 for (i = 0; i < n; i++) {
2025                         if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2026                                 srpt_process_rcv_completion(cq, ch, &wc[i]);
2027                         else
2028                                 srpt_process_send_completion(cq, ch, &wc[i]);
2029                 }
2030         }
2031 }
2032
2033 /**
2034  * srpt_completion() - IB completion queue callback function.
2035  *
2036  * Notes:
2037  * - It is guaranteed that a completion handler will never be invoked
2038  *   concurrently on two different CPUs for the same completion queue. See also
2039  *   Documentation/infiniband/core_locking.txt and the implementation of
2040  *   handle_edge_irq() in kernel/irq/chip.c.
2041  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2042  *   context instead of interrupt context.
2043  */
2044 static void srpt_completion(struct ib_cq *cq, void *ctx)
2045 {
2046         struct srpt_rdma_ch *ch = ctx;
2047
2048         wake_up_interruptible(&ch->wait_queue);
2049 }
2050
2051 static int srpt_compl_thread(void *arg)
2052 {
2053         struct srpt_rdma_ch *ch;
2054
2055         /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2056         current->flags |= PF_NOFREEZE;
2057
2058         ch = arg;
2059         BUG_ON(!ch);
2060         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2061                ch->sess_name, ch->thread->comm, current->pid);
2062         while (!kthread_should_stop()) {
2063                 wait_event_interruptible(ch->wait_queue,
2064                         (srpt_process_completion(ch->cq, ch),
2065                          kthread_should_stop()));
2066         }
2067         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2068                ch->sess_name, ch->thread->comm, current->pid);
2069         return 0;
2070 }
2071
2072 /**
2073  * srpt_create_ch_ib() - Create receive and send completion queues.
2074  */
2075 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2076 {
2077         struct ib_qp_init_attr *qp_init;
2078         struct srpt_port *sport = ch->sport;
2079         struct srpt_device *sdev = sport->sdev;
2080         u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2081         int ret;
2082
2083         WARN_ON(ch->rq_size < 1);
2084
2085         ret = -ENOMEM;
2086         qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2087         if (!qp_init)
2088                 goto out;
2089
2090         ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2091                               ch->rq_size + srp_sq_size, 0);
2092         if (IS_ERR(ch->cq)) {
2093                 ret = PTR_ERR(ch->cq);
2094                 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2095                        ch->rq_size + srp_sq_size, ret);
2096                 goto out;
2097         }
2098
2099         qp_init->qp_context = (void *)ch;
2100         qp_init->event_handler
2101                 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2102         qp_init->send_cq = ch->cq;
2103         qp_init->recv_cq = ch->cq;
2104         qp_init->srq = sdev->srq;
2105         qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2106         qp_init->qp_type = IB_QPT_RC;
2107         qp_init->cap.max_send_wr = srp_sq_size;
2108         qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2109
2110         ch->qp = ib_create_qp(sdev->pd, qp_init);
2111         if (IS_ERR(ch->qp)) {
2112                 ret = PTR_ERR(ch->qp);
2113                 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2114                 goto err_destroy_cq;
2115         }
2116
2117         atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2118
2119         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2120                  __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2121                  qp_init->cap.max_send_wr, ch->cm_id);
2122
2123         ret = srpt_init_ch_qp(ch, ch->qp);
2124         if (ret)
2125                 goto err_destroy_qp;
2126
2127         init_waitqueue_head(&ch->wait_queue);
2128
2129         pr_debug("creating thread for session %s\n", ch->sess_name);
2130
2131         ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2132         if (IS_ERR(ch->thread)) {
2133                 printk(KERN_ERR "failed to create kernel thread %ld\n",
2134                        PTR_ERR(ch->thread));
2135                 ch->thread = NULL;
2136                 goto err_destroy_qp;
2137         }
2138
2139 out:
2140         kfree(qp_init);
2141         return ret;
2142
2143 err_destroy_qp:
2144         ib_destroy_qp(ch->qp);
2145 err_destroy_cq:
2146         ib_destroy_cq(ch->cq);
2147         goto out;
2148 }
2149
2150 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2151 {
2152         if (ch->thread)
2153                 kthread_stop(ch->thread);
2154
2155         ib_destroy_qp(ch->qp);
2156         ib_destroy_cq(ch->cq);
2157 }
2158
2159 /**
2160  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2161  *
2162  * Reset the QP and make sure all resources associated with the channel will
2163  * be deallocated at an appropriate time.
2164  *
2165  * Note: The caller must hold ch->sport->sdev->spinlock.
2166  */
2167 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2168 {
2169         struct srpt_device *sdev;
2170         enum rdma_ch_state prev_state;
2171         unsigned long flags;
2172
2173         sdev = ch->sport->sdev;
2174
2175         spin_lock_irqsave(&ch->spinlock, flags);
2176         prev_state = ch->state;
2177         switch (prev_state) {
2178         case CH_CONNECTING:
2179         case CH_LIVE:
2180                 ch->state = CH_DISCONNECTING;
2181                 break;
2182         default:
2183                 break;
2184         }
2185         spin_unlock_irqrestore(&ch->spinlock, flags);
2186
2187         switch (prev_state) {
2188         case CH_CONNECTING:
2189                 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2190                                NULL, 0);
2191                 /* fall through */
2192         case CH_LIVE:
2193                 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2194                         printk(KERN_ERR "sending CM DREQ failed.\n");
2195                 break;
2196         case CH_DISCONNECTING:
2197                 break;
2198         case CH_DRAINING:
2199         case CH_RELEASING:
2200                 break;
2201         }
2202 }
2203
2204 /**
2205  * srpt_close_ch() - Close an RDMA channel.
2206  */
2207 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2208 {
2209         struct srpt_device *sdev;
2210
2211         sdev = ch->sport->sdev;
2212         spin_lock_irq(&sdev->spinlock);
2213         __srpt_close_ch(ch);
2214         spin_unlock_irq(&sdev->spinlock);
2215 }
2216
2217 /**
2218  * srpt_shutdown_session() - Whether or not a session may be shut down.
2219  */
2220 static int srpt_shutdown_session(struct se_session *se_sess)
2221 {
2222         struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2223         unsigned long flags;
2224
2225         spin_lock_irqsave(&ch->spinlock, flags);
2226         if (ch->in_shutdown) {
2227                 spin_unlock_irqrestore(&ch->spinlock, flags);
2228                 return true;
2229         }
2230
2231         ch->in_shutdown = true;
2232         target_sess_cmd_list_set_waiting(se_sess);
2233         spin_unlock_irqrestore(&ch->spinlock, flags);
2234
2235         return true;
2236 }
2237
2238 /**
2239  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2240  * @cm_id: Pointer to the CM ID of the channel to be drained.
2241  *
2242  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2243  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2244  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2245  * waits until all target sessions for the associated IB device have been
2246  * unregistered and target session registration involves a call to
2247  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2248  * this function has finished).
2249  */
2250 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2251 {
2252         struct srpt_device *sdev;
2253         struct srpt_rdma_ch *ch;
2254         int ret;
2255         bool do_reset = false;
2256
2257         WARN_ON_ONCE(irqs_disabled());
2258
2259         sdev = cm_id->context;
2260         BUG_ON(!sdev);
2261         spin_lock_irq(&sdev->spinlock);
2262         list_for_each_entry(ch, &sdev->rch_list, list) {
2263                 if (ch->cm_id == cm_id) {
2264                         do_reset = srpt_test_and_set_ch_state(ch,
2265                                         CH_CONNECTING, CH_DRAINING) ||
2266                                    srpt_test_and_set_ch_state(ch,
2267                                         CH_LIVE, CH_DRAINING) ||
2268                                    srpt_test_and_set_ch_state(ch,
2269                                         CH_DISCONNECTING, CH_DRAINING);
2270                         break;
2271                 }
2272         }
2273         spin_unlock_irq(&sdev->spinlock);
2274
2275         if (do_reset) {
2276                 if (ch->sess)
2277                         srpt_shutdown_session(ch->sess);
2278
2279                 ret = srpt_ch_qp_err(ch);
2280                 if (ret < 0)
2281                         printk(KERN_ERR "Setting queue pair in error state"
2282                                " failed: %d\n", ret);
2283         }
2284 }
2285
2286 /**
2287  * srpt_find_channel() - Look up an RDMA channel.
2288  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2289  *
2290  * Return NULL if no matching RDMA channel has been found.
2291  */
2292 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2293                                               struct ib_cm_id *cm_id)
2294 {
2295         struct srpt_rdma_ch *ch;
2296         bool found;
2297
2298         WARN_ON_ONCE(irqs_disabled());
2299         BUG_ON(!sdev);
2300
2301         found = false;
2302         spin_lock_irq(&sdev->spinlock);
2303         list_for_each_entry(ch, &sdev->rch_list, list) {
2304                 if (ch->cm_id == cm_id) {
2305                         found = true;
2306                         break;
2307                 }
2308         }
2309         spin_unlock_irq(&sdev->spinlock);
2310
2311         return found ? ch : NULL;
2312 }
2313
2314 /**
2315  * srpt_release_channel() - Release channel resources.
2316  *
2317  * Schedules the actual release because:
2318  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2319  *   trigger a deadlock.
2320  * - It is not safe to call TCM transport_* functions from interrupt context.
2321  */
2322 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2323 {
2324         schedule_work(&ch->release_work);
2325 }
2326
2327 static void srpt_release_channel_work(struct work_struct *w)
2328 {
2329         struct srpt_rdma_ch *ch;
2330         struct srpt_device *sdev;
2331         struct se_session *se_sess;
2332
2333         ch = container_of(w, struct srpt_rdma_ch, release_work);
2334         pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2335                  ch->release_done);
2336
2337         sdev = ch->sport->sdev;
2338         BUG_ON(!sdev);
2339
2340         se_sess = ch->sess;
2341         BUG_ON(!se_sess);
2342
2343         target_wait_for_sess_cmds(se_sess);
2344
2345         transport_deregister_session_configfs(se_sess);
2346         transport_deregister_session(se_sess);
2347         ch->sess = NULL;
2348
2349         ib_destroy_cm_id(ch->cm_id);
2350
2351         srpt_destroy_ch_ib(ch);
2352
2353         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2354                              ch->sport->sdev, ch->rq_size,
2355                              ch->rsp_size, DMA_TO_DEVICE);
2356
2357         spin_lock_irq(&sdev->spinlock);
2358         list_del(&ch->list);
2359         spin_unlock_irq(&sdev->spinlock);
2360
2361         if (ch->release_done)
2362                 complete(ch->release_done);
2363
2364         wake_up(&sdev->ch_releaseQ);
2365
2366         kfree(ch);
2367 }
2368
2369 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2370                                                u8 i_port_id[16])
2371 {
2372         struct srpt_node_acl *nacl;
2373
2374         list_for_each_entry(nacl, &sport->port_acl_list, list)
2375                 if (memcmp(nacl->i_port_id, i_port_id,
2376                            sizeof(nacl->i_port_id)) == 0)
2377                         return nacl;
2378
2379         return NULL;
2380 }
2381
2382 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2383                                              u8 i_port_id[16])
2384 {
2385         struct srpt_node_acl *nacl;
2386
2387         spin_lock_irq(&sport->port_acl_lock);
2388         nacl = __srpt_lookup_acl(sport, i_port_id);
2389         spin_unlock_irq(&sport->port_acl_lock);
2390
2391         return nacl;
2392 }
2393
2394 /**
2395  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2396  *
2397  * Ownership of the cm_id is transferred to the target session if this
2398  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2399  */
2400 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2401                             struct ib_cm_req_event_param *param,
2402                             void *private_data)
2403 {
2404         struct srpt_device *sdev = cm_id->context;
2405         struct srpt_port *sport = &sdev->port[param->port - 1];
2406         struct srp_login_req *req;
2407         struct srp_login_rsp *rsp;
2408         struct srp_login_rej *rej;
2409         struct ib_cm_rep_param *rep_param;
2410         struct srpt_rdma_ch *ch, *tmp_ch;
2411         struct srpt_node_acl *nacl;
2412         u32 it_iu_len;
2413         int i;
2414         int ret = 0;
2415
2416         WARN_ON_ONCE(irqs_disabled());
2417
2418         if (WARN_ON(!sdev || !private_data))
2419                 return -EINVAL;
2420
2421         req = (struct srp_login_req *)private_data;
2422
2423         it_iu_len = be32_to_cpu(req->req_it_iu_len);
2424
2425         printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2426                " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2427                " (guid=0x%llx:0x%llx)\n",
2428                be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2429                be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2430                be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2431                be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2432                it_iu_len,
2433                param->port,
2434                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2435                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2436
2437         rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2438         rej = kzalloc(sizeof *rej, GFP_KERNEL);
2439         rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2440
2441         if (!rsp || !rej || !rep_param) {
2442                 ret = -ENOMEM;
2443                 goto out;
2444         }
2445
2446         if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2447                 rej->reason = __constant_cpu_to_be32(
2448                                 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2449                 ret = -EINVAL;
2450                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2451                        " length (%d bytes) is out of range (%d .. %d)\n",
2452                        it_iu_len, 64, srp_max_req_size);
2453                 goto reject;
2454         }
2455
2456         if (!sport->enabled) {
2457                 rej->reason = __constant_cpu_to_be32(
2458                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2459                 ret = -EINVAL;
2460                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2461                        " has not yet been enabled\n");
2462                 goto reject;
2463         }
2464
2465         if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2466                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2467
2468                 spin_lock_irq(&sdev->spinlock);
2469
2470                 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2471                         if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2472                             && !memcmp(ch->t_port_id, req->target_port_id, 16)
2473                             && param->port == ch->sport->port
2474                             && param->listen_id == ch->sport->sdev->cm_id
2475                             && ch->cm_id) {
2476                                 enum rdma_ch_state ch_state;
2477
2478                                 ch_state = srpt_get_ch_state(ch);
2479                                 if (ch_state != CH_CONNECTING
2480                                     && ch_state != CH_LIVE)
2481                                         continue;
2482
2483                                 /* found an existing channel */
2484                                 pr_debug("Found existing channel %s"
2485                                          " cm_id= %p state= %d\n",
2486                                          ch->sess_name, ch->cm_id, ch_state);
2487
2488                                 __srpt_close_ch(ch);
2489
2490                                 rsp->rsp_flags =
2491                                         SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2492                         }
2493                 }
2494
2495                 spin_unlock_irq(&sdev->spinlock);
2496
2497         } else
2498                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2499
2500         if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2501             || *(__be64 *)(req->target_port_id + 8) !=
2502                cpu_to_be64(srpt_service_guid)) {
2503                 rej->reason = __constant_cpu_to_be32(
2504                                 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2505                 ret = -ENOMEM;
2506                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2507                        " has an invalid target port identifier.\n");
2508                 goto reject;
2509         }
2510
2511         ch = kzalloc(sizeof *ch, GFP_KERNEL);
2512         if (!ch) {
2513                 rej->reason = __constant_cpu_to_be32(
2514                                         SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2515                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2516                 ret = -ENOMEM;
2517                 goto reject;
2518         }
2519
2520         INIT_WORK(&ch->release_work, srpt_release_channel_work);
2521         memcpy(ch->i_port_id, req->initiator_port_id, 16);
2522         memcpy(ch->t_port_id, req->target_port_id, 16);
2523         ch->sport = &sdev->port[param->port - 1];
2524         ch->cm_id = cm_id;
2525         /*
2526          * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2527          * for the SRP protocol to the command queue size.
2528          */
2529         ch->rq_size = SRPT_RQ_SIZE;
2530         spin_lock_init(&ch->spinlock);
2531         ch->state = CH_CONNECTING;
2532         INIT_LIST_HEAD(&ch->cmd_wait_list);
2533         ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2534
2535         ch->ioctx_ring = (struct srpt_send_ioctx **)
2536                 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2537                                       sizeof(*ch->ioctx_ring[0]),
2538                                       ch->rsp_size, DMA_TO_DEVICE);
2539         if (!ch->ioctx_ring)
2540                 goto free_ch;
2541
2542         INIT_LIST_HEAD(&ch->free_list);
2543         for (i = 0; i < ch->rq_size; i++) {
2544                 ch->ioctx_ring[i]->ch = ch;
2545                 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2546         }
2547
2548         ret = srpt_create_ch_ib(ch);
2549         if (ret) {
2550                 rej->reason = __constant_cpu_to_be32(
2551                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2552                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2553                        " a new RDMA channel failed.\n");
2554                 goto free_ring;
2555         }
2556
2557         ret = srpt_ch_qp_rtr(ch, ch->qp);
2558         if (ret) {
2559                 rej->reason = __constant_cpu_to_be32(
2560                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2561                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2562                        " RTR failed (error code = %d)\n", ret);
2563                 goto destroy_ib;
2564         }
2565         /*
2566          * Use the initator port identifier as the session name.
2567          */
2568         snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2569                         be64_to_cpu(*(__be64 *)ch->i_port_id),
2570                         be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2571
2572         pr_debug("registering session %s\n", ch->sess_name);
2573
2574         nacl = srpt_lookup_acl(sport, ch->i_port_id);
2575         if (!nacl) {
2576                 printk(KERN_INFO "Rejected login because no ACL has been"
2577                        " configured yet for initiator %s.\n", ch->sess_name);
2578                 rej->reason = __constant_cpu_to_be32(
2579                                 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2580                 goto destroy_ib;
2581         }
2582
2583         ch->sess = transport_init_session();
2584         if (IS_ERR(ch->sess)) {
2585                 rej->reason = __constant_cpu_to_be32(
2586                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2587                 pr_debug("Failed to create session\n");
2588                 goto deregister_session;
2589         }
2590         ch->sess->se_node_acl = &nacl->nacl;
2591         transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2592
2593         pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2594                  ch->sess_name, ch->cm_id);
2595
2596         /* create srp_login_response */
2597         rsp->opcode = SRP_LOGIN_RSP;
2598         rsp->tag = req->tag;
2599         rsp->max_it_iu_len = req->req_it_iu_len;
2600         rsp->max_ti_iu_len = req->req_it_iu_len;
2601         ch->max_ti_iu_len = it_iu_len;
2602         rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2603                                               | SRP_BUF_FORMAT_INDIRECT);
2604         rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2605         atomic_set(&ch->req_lim, ch->rq_size);
2606         atomic_set(&ch->req_lim_delta, 0);
2607
2608         /* create cm reply */
2609         rep_param->qp_num = ch->qp->qp_num;
2610         rep_param->private_data = (void *)rsp;
2611         rep_param->private_data_len = sizeof *rsp;
2612         rep_param->rnr_retry_count = 7;
2613         rep_param->flow_control = 1;
2614         rep_param->failover_accepted = 0;
2615         rep_param->srq = 1;
2616         rep_param->responder_resources = 4;
2617         rep_param->initiator_depth = 4;
2618
2619         ret = ib_send_cm_rep(cm_id, rep_param);
2620         if (ret) {
2621                 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2622                        " (error code = %d)\n", ret);
2623                 goto release_channel;
2624         }
2625
2626         spin_lock_irq(&sdev->spinlock);
2627         list_add_tail(&ch->list, &sdev->rch_list);
2628         spin_unlock_irq(&sdev->spinlock);
2629
2630         goto out;
2631
2632 release_channel:
2633         srpt_set_ch_state(ch, CH_RELEASING);
2634         transport_deregister_session_configfs(ch->sess);
2635
2636 deregister_session:
2637         transport_deregister_session(ch->sess);
2638         ch->sess = NULL;
2639
2640 destroy_ib:
2641         srpt_destroy_ch_ib(ch);
2642
2643 free_ring:
2644         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2645                              ch->sport->sdev, ch->rq_size,
2646                              ch->rsp_size, DMA_TO_DEVICE);
2647 free_ch:
2648         kfree(ch);
2649
2650 reject:
2651         rej->opcode = SRP_LOGIN_REJ;
2652         rej->tag = req->tag;
2653         rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2654                                               | SRP_BUF_FORMAT_INDIRECT);
2655
2656         ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2657                              (void *)rej, sizeof *rej);
2658
2659 out:
2660         kfree(rep_param);
2661         kfree(rsp);
2662         kfree(rej);
2663
2664         return ret;
2665 }
2666
2667 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2668 {
2669         printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2670         srpt_drain_channel(cm_id);
2671 }
2672
2673 /**
2674  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2675  *
2676  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2677  * and that the recipient may begin transmitting (RTU = ready to use).
2678  */
2679 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2680 {
2681         struct srpt_rdma_ch *ch;
2682         int ret;
2683
2684         ch = srpt_find_channel(cm_id->context, cm_id);
2685         BUG_ON(!ch);
2686
2687         if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2688                 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2689
2690                 ret = srpt_ch_qp_rts(ch, ch->qp);
2691
2692                 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2693                                          wait_list) {
2694                         list_del(&ioctx->wait_list);
2695                         srpt_handle_new_iu(ch, ioctx, NULL);
2696                 }
2697                 if (ret)
2698                         srpt_close_ch(ch);
2699         }
2700 }
2701
2702 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2703 {
2704         printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2705         srpt_drain_channel(cm_id);
2706 }
2707
2708 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2709 {
2710         printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2711         srpt_drain_channel(cm_id);
2712 }
2713
2714 /**
2715  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2716  */
2717 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2718 {
2719         struct srpt_rdma_ch *ch;
2720         unsigned long flags;
2721         bool send_drep = false;
2722
2723         ch = srpt_find_channel(cm_id->context, cm_id);
2724         BUG_ON(!ch);
2725
2726         pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2727
2728         spin_lock_irqsave(&ch->spinlock, flags);
2729         switch (ch->state) {
2730         case CH_CONNECTING:
2731         case CH_LIVE:
2732                 send_drep = true;
2733                 ch->state = CH_DISCONNECTING;
2734                 break;
2735         case CH_DISCONNECTING:
2736         case CH_DRAINING:
2737         case CH_RELEASING:
2738                 WARN(true, "unexpected channel state %d\n", ch->state);
2739                 break;
2740         }
2741         spin_unlock_irqrestore(&ch->spinlock, flags);
2742
2743         if (send_drep) {
2744                 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2745                         printk(KERN_ERR "Sending IB DREP failed.\n");
2746                 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2747                        ch->sess_name);
2748         }
2749 }
2750
2751 /**
2752  * srpt_cm_drep_recv() - Process reception of a DREP message.
2753  */
2754 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2755 {
2756         printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2757                cm_id);
2758         srpt_drain_channel(cm_id);
2759 }
2760
2761 /**
2762  * srpt_cm_handler() - IB connection manager callback function.
2763  *
2764  * A non-zero return value will cause the caller destroy the CM ID.
2765  *
2766  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2767  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2768  * a non-zero value in any other case will trigger a race with the
2769  * ib_destroy_cm_id() call in srpt_release_channel().
2770  */
2771 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2772 {
2773         int ret;
2774
2775         ret = 0;
2776         switch (event->event) {
2777         case IB_CM_REQ_RECEIVED:
2778                 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2779                                        event->private_data);
2780                 break;
2781         case IB_CM_REJ_RECEIVED:
2782                 srpt_cm_rej_recv(cm_id);
2783                 break;
2784         case IB_CM_RTU_RECEIVED:
2785         case IB_CM_USER_ESTABLISHED:
2786                 srpt_cm_rtu_recv(cm_id);
2787                 break;
2788         case IB_CM_DREQ_RECEIVED:
2789                 srpt_cm_dreq_recv(cm_id);
2790                 break;
2791         case IB_CM_DREP_RECEIVED:
2792                 srpt_cm_drep_recv(cm_id);
2793                 break;
2794         case IB_CM_TIMEWAIT_EXIT:
2795                 srpt_cm_timewait_exit(cm_id);
2796                 break;
2797         case IB_CM_REP_ERROR:
2798                 srpt_cm_rep_error(cm_id);
2799                 break;
2800         case IB_CM_DREQ_ERROR:
2801                 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2802                 break;
2803         case IB_CM_MRA_RECEIVED:
2804                 printk(KERN_INFO "Received IB MRA event\n");
2805                 break;
2806         default:
2807                 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2808                        event->event);
2809                 break;
2810         }
2811
2812         return ret;
2813 }
2814
2815 /**
2816  * srpt_perform_rdmas() - Perform IB RDMA.
2817  *
2818  * Returns zero upon success or a negative number upon failure.
2819  */
2820 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2821                               struct srpt_send_ioctx *ioctx)
2822 {
2823         struct ib_send_wr wr;
2824         struct ib_send_wr *bad_wr;
2825         struct rdma_iu *riu;
2826         int i;
2827         int ret;
2828         int sq_wr_avail;
2829         enum dma_data_direction dir;
2830         const int n_rdma = ioctx->n_rdma;
2831
2832         dir = ioctx->cmd.data_direction;
2833         if (dir == DMA_TO_DEVICE) {
2834                 /* write */
2835                 ret = -ENOMEM;
2836                 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2837                 if (sq_wr_avail < 0) {
2838                         printk(KERN_WARNING "IB send queue full (needed %d)\n",
2839                                n_rdma);
2840                         goto out;
2841                 }
2842         }
2843
2844         ioctx->rdma_aborted = false;
2845         ret = 0;
2846         riu = ioctx->rdma_ius;
2847         memset(&wr, 0, sizeof wr);
2848
2849         for (i = 0; i < n_rdma; ++i, ++riu) {
2850                 if (dir == DMA_FROM_DEVICE) {
2851                         wr.opcode = IB_WR_RDMA_WRITE;
2852                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2853                                                 SRPT_RDMA_WRITE_LAST :
2854                                                 SRPT_RDMA_MID,
2855                                                 ioctx->ioctx.index);
2856                 } else {
2857                         wr.opcode = IB_WR_RDMA_READ;
2858                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2859                                                 SRPT_RDMA_READ_LAST :
2860                                                 SRPT_RDMA_MID,
2861                                                 ioctx->ioctx.index);
2862                 }
2863                 wr.next = NULL;
2864                 wr.wr.rdma.remote_addr = riu->raddr;
2865                 wr.wr.rdma.rkey = riu->rkey;
2866                 wr.num_sge = riu->sge_cnt;
2867                 wr.sg_list = riu->sge;
2868
2869                 /* only get completion event for the last rdma write */
2870                 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2871                         wr.send_flags = IB_SEND_SIGNALED;
2872
2873                 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2874                 if (ret)
2875                         break;
2876         }
2877
2878         if (ret)
2879                 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2880                                  __func__, __LINE__, ret, i, n_rdma);
2881         if (ret && i > 0) {
2882                 wr.num_sge = 0;
2883                 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2884                 wr.send_flags = IB_SEND_SIGNALED;
2885                 while (ch->state == CH_LIVE &&
2886                         ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2887                         printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2888                                 ioctx->ioctx.index);
2889                         msleep(1000);
2890                 }
2891                 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2892                         printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2893                                 ioctx->ioctx.index);
2894                         msleep(1000);
2895                 }
2896         }
2897 out:
2898         if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2899                 atomic_add(n_rdma, &ch->sq_wr_avail);
2900         return ret;
2901 }
2902
2903 /**
2904  * srpt_xfer_data() - Start data transfer from initiator to target.
2905  */
2906 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2907                           struct srpt_send_ioctx *ioctx)
2908 {
2909         int ret;
2910
2911         ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2912         if (ret) {
2913                 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2914                 goto out;
2915         }
2916
2917         ret = srpt_perform_rdmas(ch, ioctx);
2918         if (ret) {
2919                 if (ret == -EAGAIN || ret == -ENOMEM)
2920                         printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2921                                    __func__, __LINE__, ret);
2922                 else
2923                         printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2924                                __func__, __LINE__, ret);
2925                 goto out_unmap;
2926         }
2927
2928 out:
2929         return ret;
2930 out_unmap:
2931         srpt_unmap_sg_to_ib_sge(ch, ioctx);
2932         goto out;
2933 }
2934
2935 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2936 {
2937         struct srpt_send_ioctx *ioctx;
2938
2939         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2940         return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2941 }
2942
2943 /*
2944  * srpt_write_pending() - Start data transfer from initiator to target (write).
2945  */
2946 static int srpt_write_pending(struct se_cmd *se_cmd)
2947 {
2948         struct srpt_rdma_ch *ch;
2949         struct srpt_send_ioctx *ioctx;
2950         enum srpt_command_state new_state;
2951         enum rdma_ch_state ch_state;
2952         int ret;
2953
2954         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2955
2956         new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2957         WARN_ON(new_state == SRPT_STATE_DONE);
2958
2959         ch = ioctx->ch;
2960         BUG_ON(!ch);
2961
2962         ch_state = srpt_get_ch_state(ch);
2963         switch (ch_state) {
2964         case CH_CONNECTING:
2965                 WARN(true, "unexpected channel state %d\n", ch_state);
2966                 ret = -EINVAL;
2967                 goto out;
2968         case CH_LIVE:
2969                 break;
2970         case CH_DISCONNECTING:
2971         case CH_DRAINING:
2972         case CH_RELEASING:
2973                 pr_debug("cmd with tag %lld: channel disconnecting\n",
2974                          ioctx->tag);
2975                 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2976                 ret = -EINVAL;
2977                 goto out;
2978         }
2979         ret = srpt_xfer_data(ch, ioctx);
2980
2981 out:
2982         return ret;
2983 }
2984
2985 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2986 {
2987         switch (tcm_mgmt_status) {
2988         case TMR_FUNCTION_COMPLETE:
2989                 return SRP_TSK_MGMT_SUCCESS;
2990         case TMR_FUNCTION_REJECTED:
2991                 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2992         }
2993         return SRP_TSK_MGMT_FAILED;
2994 }
2995
2996 /**
2997  * srpt_queue_response() - Transmits the response to a SCSI command.
2998  *
2999  * Callback function called by the TCM core. Must not block since it can be
3000  * invoked on the context of the IB completion handler.
3001  */
3002 static void srpt_queue_response(struct se_cmd *cmd)
3003 {
3004         struct srpt_rdma_ch *ch;
3005         struct srpt_send_ioctx *ioctx;
3006         enum srpt_command_state state;
3007         unsigned long flags;
3008         int ret;
3009         enum dma_data_direction dir;
3010         int resp_len;
3011         u8 srp_tm_status;
3012
3013         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3014         ch = ioctx->ch;
3015         BUG_ON(!ch);
3016
3017         spin_lock_irqsave(&ioctx->spinlock, flags);
3018         state = ioctx->state;
3019         switch (state) {
3020         case SRPT_STATE_NEW:
3021         case SRPT_STATE_DATA_IN:
3022                 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3023                 break;
3024         case SRPT_STATE_MGMT:
3025                 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3026                 break;
3027         default:
3028                 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3029                         ch, ioctx->ioctx.index, ioctx->state);
3030                 break;
3031         }
3032         spin_unlock_irqrestore(&ioctx->spinlock, flags);
3033
3034         if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3035                      || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3036                 atomic_inc(&ch->req_lim_delta);
3037                 srpt_abort_cmd(ioctx);
3038                 return;
3039         }
3040
3041         dir = ioctx->cmd.data_direction;
3042
3043         /* For read commands, transfer the data to the initiator. */
3044         if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3045             !ioctx->queue_status_only) {
3046                 ret = srpt_xfer_data(ch, ioctx);
3047                 if (ret) {
3048                         printk(KERN_ERR "xfer_data failed for tag %llu\n",
3049                                ioctx->tag);
3050                         return;
3051                 }
3052         }
3053
3054         if (state != SRPT_STATE_MGMT)
3055                 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3056                                               cmd->scsi_status);
3057         else {
3058                 srp_tm_status
3059                         = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3060                 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3061                                                  ioctx->tag);
3062         }
3063         ret = srpt_post_send(ch, ioctx, resp_len);
3064         if (ret) {
3065                 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3066                        ioctx->tag);
3067                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3068                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3069                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3070         }
3071 }
3072
3073 static int srpt_queue_data_in(struct se_cmd *cmd)
3074 {
3075         srpt_queue_response(cmd);
3076         return 0;
3077 }
3078
3079 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3080 {
3081         srpt_queue_response(cmd);
3082 }
3083
3084 static int srpt_queue_status(struct se_cmd *cmd)
3085 {
3086         struct srpt_send_ioctx *ioctx;
3087
3088         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3089         BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3090         if (cmd->se_cmd_flags &
3091             (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3092                 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3093         ioctx->queue_status_only = true;
3094         srpt_queue_response(cmd);
3095         return 0;
3096 }
3097
3098 static void srpt_refresh_port_work(struct work_struct *work)
3099 {
3100         struct srpt_port *sport = container_of(work, struct srpt_port, work);
3101
3102         srpt_refresh_port(sport);
3103 }
3104
3105 static int srpt_ch_list_empty(struct srpt_device *sdev)
3106 {
3107         int res;
3108
3109         spin_lock_irq(&sdev->spinlock);
3110         res = list_empty(&sdev->rch_list);
3111         spin_unlock_irq(&sdev->spinlock);
3112
3113         return res;
3114 }
3115
3116 /**
3117  * srpt_release_sdev() - Free the channel resources associated with a target.
3118  */
3119 static int srpt_release_sdev(struct srpt_device *sdev)
3120 {
3121         struct srpt_rdma_ch *ch, *tmp_ch;
3122         int res;
3123
3124         WARN_ON_ONCE(irqs_disabled());
3125
3126         BUG_ON(!sdev);
3127
3128         spin_lock_irq(&sdev->spinlock);
3129         list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3130                 __srpt_close_ch(ch);
3131         spin_unlock_irq(&sdev->spinlock);
3132
3133         res = wait_event_interruptible(sdev->ch_releaseQ,
3134                                        srpt_ch_list_empty(sdev));
3135         if (res)
3136                 printk(KERN_ERR "%s: interrupted.\n", __func__);
3137
3138         return 0;
3139 }
3140
3141 static struct srpt_port *__srpt_lookup_port(const char *name)
3142 {
3143         struct ib_device *dev;
3144         struct srpt_device *sdev;
3145         struct srpt_port *sport;
3146         int i;
3147
3148         list_for_each_entry(sdev, &srpt_dev_list, list) {
3149                 dev = sdev->device;
3150                 if (!dev)
3151                         continue;
3152
3153                 for (i = 0; i < dev->phys_port_cnt; i++) {
3154                         sport = &sdev->port[i];
3155
3156                         if (!strcmp(sport->port_guid, name))
3157                                 return sport;
3158                 }
3159         }
3160
3161         return NULL;
3162 }
3163
3164 static struct srpt_port *srpt_lookup_port(const char *name)
3165 {
3166         struct srpt_port *sport;
3167
3168         spin_lock(&srpt_dev_lock);
3169         sport = __srpt_lookup_port(name);
3170         spin_unlock(&srpt_dev_lock);
3171
3172         return sport;
3173 }
3174
3175 /**
3176  * srpt_add_one() - Infiniband device addition callback function.
3177  */
3178 static void srpt_add_one(struct ib_device *device)
3179 {
3180         struct srpt_device *sdev;
3181         struct srpt_port *sport;
3182         struct ib_srq_init_attr srq_attr;
3183         int i;
3184
3185         pr_debug("device = %p, device->dma_ops = %p\n", device,
3186                  device->dma_ops);
3187
3188         sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3189         if (!sdev)
3190                 goto err;
3191
3192         sdev->device = device;
3193         INIT_LIST_HEAD(&sdev->rch_list);
3194         init_waitqueue_head(&sdev->ch_releaseQ);
3195         spin_lock_init(&sdev->spinlock);
3196
3197         if (ib_query_device(device, &sdev->dev_attr))
3198                 goto free_dev;
3199
3200         sdev->pd = ib_alloc_pd(device);
3201         if (IS_ERR(sdev->pd))
3202                 goto free_dev;
3203
3204         sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3205         if (IS_ERR(sdev->mr))
3206                 goto err_pd;
3207
3208         sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3209
3210         srq_attr.event_handler = srpt_srq_event;
3211         srq_attr.srq_context = (void *)sdev;
3212         srq_attr.attr.max_wr = sdev->srq_size;
3213         srq_attr.attr.max_sge = 1;
3214         srq_attr.attr.srq_limit = 0;
3215         srq_attr.srq_type = IB_SRQT_BASIC;
3216
3217         sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3218         if (IS_ERR(sdev->srq))
3219                 goto err_mr;
3220
3221         pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3222                  __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3223                  device->name);
3224
3225         if (!srpt_service_guid)
3226                 srpt_service_guid = be64_to_cpu(device->node_guid);
3227
3228         sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3229         if (IS_ERR(sdev->cm_id))
3230                 goto err_srq;
3231
3232         /* print out target login information */
3233         pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3234                  "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3235                  srpt_service_guid, srpt_service_guid);
3236
3237         /*
3238          * We do not have a consistent service_id (ie. also id_ext of target_id)
3239          * to identify this target. We currently use the guid of the first HCA
3240          * in the system as service_id; therefore, the target_id will change
3241          * if this HCA is gone bad and replaced by different HCA
3242          */
3243         if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3244                 goto err_cm;
3245
3246         INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3247                               srpt_event_handler);
3248         if (ib_register_event_handler(&sdev->event_handler))
3249                 goto err_cm;
3250
3251         sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3252                 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3253                                       sizeof(*sdev->ioctx_ring[0]),
3254                                       srp_max_req_size, DMA_FROM_DEVICE);
3255         if (!sdev->ioctx_ring)
3256                 goto err_event;
3257
3258         for (i = 0; i < sdev->srq_size; ++i)
3259                 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3260
3261         WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3262
3263         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3264                 sport = &sdev->port[i - 1];
3265                 sport->sdev = sdev;
3266                 sport->port = i;
3267                 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3268                 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3269                 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3270                 INIT_WORK(&sport->work, srpt_refresh_port_work);
3271                 INIT_LIST_HEAD(&sport->port_acl_list);
3272                 spin_lock_init(&sport->port_acl_lock);
3273
3274                 if (srpt_refresh_port(sport)) {
3275                         printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3276                                srpt_sdev_name(sdev), i);
3277                         goto err_ring;
3278                 }
3279                 snprintf(sport->port_guid, sizeof(sport->port_guid),
3280                         "0x%016llx%016llx",
3281                         be64_to_cpu(sport->gid.global.subnet_prefix),
3282                         be64_to_cpu(sport->gid.global.interface_id));
3283         }
3284
3285         spin_lock(&srpt_dev_lock);
3286         list_add_tail(&sdev->list, &srpt_dev_list);
3287         spin_unlock(&srpt_dev_lock);
3288
3289 out:
3290         ib_set_client_data(device, &srpt_client, sdev);
3291         pr_debug("added %s.\n", device->name);
3292         return;
3293
3294 err_ring:
3295         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3296                              sdev->srq_size, srp_max_req_size,
3297                              DMA_FROM_DEVICE);
3298 err_event:
3299         ib_unregister_event_handler(&sdev->event_handler);
3300 err_cm:
3301         ib_destroy_cm_id(sdev->cm_id);
3302 err_srq:
3303         ib_destroy_srq(sdev->srq);
3304 err_mr:
3305         ib_dereg_mr(sdev->mr);
3306 err_pd:
3307         ib_dealloc_pd(sdev->pd);
3308 free_dev:
3309         kfree(sdev);
3310 err:
3311         sdev = NULL;
3312         printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3313         goto out;
3314 }
3315
3316 /**
3317  * srpt_remove_one() - InfiniBand device removal callback function.
3318  */
3319 static void srpt_remove_one(struct ib_device *device)
3320 {
3321         struct srpt_device *sdev;
3322         int i;
3323
3324         sdev = ib_get_client_data(device, &srpt_client);
3325         if (!sdev) {
3326                 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3327                        device->name);
3328                 return;
3329         }
3330
3331         srpt_unregister_mad_agent(sdev);
3332
3333         ib_unregister_event_handler(&sdev->event_handler);
3334
3335         /* Cancel any work queued by the just unregistered IB event handler. */
3336         for (i = 0; i < sdev->device->phys_port_cnt; i++)
3337                 cancel_work_sync(&sdev->port[i].work);
3338
3339         ib_destroy_cm_id(sdev->cm_id);
3340
3341         /*
3342          * Unregistering a target must happen after destroying sdev->cm_id
3343          * such that no new SRP_LOGIN_REQ information units can arrive while
3344          * destroying the target.
3345          */
3346         spin_lock(&srpt_dev_lock);
3347         list_del(&sdev->list);
3348         spin_unlock(&srpt_dev_lock);
3349         srpt_release_sdev(sdev);
3350
3351         ib_destroy_srq(sdev->srq);
3352         ib_dereg_mr(sdev->mr);
3353         ib_dealloc_pd(sdev->pd);
3354
3355         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3356                              sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3357         sdev->ioctx_ring = NULL;
3358         kfree(sdev);
3359 }
3360
3361 static struct ib_client srpt_client = {
3362         .name = DRV_NAME,
3363         .add = srpt_add_one,
3364         .remove = srpt_remove_one
3365 };
3366
3367 static int srpt_check_true(struct se_portal_group *se_tpg)
3368 {
3369         return 1;
3370 }
3371
3372 static int srpt_check_false(struct se_portal_group *se_tpg)
3373 {
3374         return 0;
3375 }
3376
3377 static char *srpt_get_fabric_name(void)
3378 {
3379         return "srpt";
3380 }
3381
3382 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3383 {
3384         return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3385 }
3386
3387 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3388 {
3389         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3390
3391         return sport->port_guid;
3392 }
3393
3394 static u16 srpt_get_tag(struct se_portal_group *tpg)
3395 {
3396         return 1;
3397 }
3398
3399 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3400 {
3401         return 1;
3402 }
3403
3404 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3405                                     struct se_node_acl *se_nacl,
3406                                     struct t10_pr_registration *pr_reg,
3407                                     int *format_code, unsigned char *buf)
3408 {
3409         struct srpt_node_acl *nacl;
3410         struct spc_rdma_transport_id *tr_id;
3411
3412         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3413         tr_id = (void *)buf;
3414         tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3415         memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3416         return sizeof(*tr_id);
3417 }
3418
3419 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3420                                         struct se_node_acl *se_nacl,
3421                                         struct t10_pr_registration *pr_reg,
3422                                         int *format_code)
3423 {
3424         *format_code = 0;
3425         return sizeof(struct spc_rdma_transport_id);
3426 }
3427
3428 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3429                                             const char *buf, u32 *out_tid_len,
3430                                             char **port_nexus_ptr)
3431 {
3432         struct spc_rdma_transport_id *tr_id;
3433
3434         *port_nexus_ptr = NULL;
3435         *out_tid_len = sizeof(struct spc_rdma_transport_id);
3436         tr_id = (void *)buf;
3437         return (char *)tr_id->i_port_id;
3438 }
3439
3440 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3441 {
3442         struct srpt_node_acl *nacl;
3443
3444         nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3445         if (!nacl) {
3446                 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3447                 return NULL;
3448         }
3449
3450         return &nacl->nacl;
3451 }
3452
3453 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3454                                     struct se_node_acl *se_nacl)
3455 {
3456         struct srpt_node_acl *nacl;
3457
3458         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3459         kfree(nacl);
3460 }
3461
3462 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3463 {
3464         return 1;
3465 }
3466
3467 static void srpt_release_cmd(struct se_cmd *se_cmd)
3468 {
3469         struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3470                                 struct srpt_send_ioctx, cmd);
3471         struct srpt_rdma_ch *ch = ioctx->ch;
3472         unsigned long flags;
3473
3474         WARN_ON(ioctx->state != SRPT_STATE_DONE);
3475         WARN_ON(ioctx->mapped_sg_count != 0);
3476
3477         if (ioctx->n_rbuf > 1) {
3478                 kfree(ioctx->rbufs);
3479                 ioctx->rbufs = NULL;
3480                 ioctx->n_rbuf = 0;
3481         }
3482
3483         spin_lock_irqsave(&ch->spinlock, flags);
3484         list_add(&ioctx->free_list, &ch->free_list);
3485         spin_unlock_irqrestore(&ch->spinlock, flags);
3486 }
3487
3488 /**
3489  * srpt_close_session() - Forcibly close a session.
3490  *
3491  * Callback function invoked by the TCM core to clean up sessions associated
3492  * with a node ACL when the user invokes
3493  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3494  */
3495 static void srpt_close_session(struct se_session *se_sess)
3496 {
3497         DECLARE_COMPLETION_ONSTACK(release_done);
3498         struct srpt_rdma_ch *ch;
3499         struct srpt_device *sdev;
3500         int res;
3501
3502         ch = se_sess->fabric_sess_ptr;
3503         WARN_ON(ch->sess != se_sess);
3504
3505         pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3506
3507         sdev = ch->sport->sdev;
3508         spin_lock_irq(&sdev->spinlock);
3509         BUG_ON(ch->release_done);
3510         ch->release_done = &release_done;
3511         __srpt_close_ch(ch);
3512         spin_unlock_irq(&sdev->spinlock);
3513
3514         res = wait_for_completion_timeout(&release_done, 60 * HZ);
3515         WARN_ON(res <= 0);
3516 }
3517
3518 /**
3519  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3520  *
3521  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3522  * This object represents an arbitrary integer used to uniquely identify a
3523  * particular attached remote initiator port to a particular SCSI target port
3524  * within a particular SCSI target device within a particular SCSI instance.
3525  */
3526 static u32 srpt_sess_get_index(struct se_session *se_sess)
3527 {
3528         return 0;
3529 }
3530
3531 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3532 {
3533 }
3534
3535 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3536 {
3537         struct srpt_send_ioctx *ioctx;
3538
3539         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3540         return ioctx->tag;
3541 }
3542
3543 /* Note: only used from inside debug printk's by the TCM core. */
3544 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3545 {
3546         struct srpt_send_ioctx *ioctx;
3547
3548         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3549         return srpt_get_cmd_state(ioctx);
3550 }
3551
3552 /**
3553  * srpt_parse_i_port_id() - Parse an initiator port ID.
3554  * @name: ASCII representation of a 128-bit initiator port ID.
3555  * @i_port_id: Binary 128-bit port ID.
3556  */
3557 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3558 {
3559         const char *p;
3560         unsigned len, count, leading_zero_bytes;
3561         int ret, rc;
3562
3563         p = name;
3564         if (strnicmp(p, "0x", 2) == 0)
3565                 p += 2;
3566         ret = -EINVAL;
3567         len = strlen(p);
3568         if (len % 2)
3569                 goto out;
3570         count = min(len / 2, 16U);
3571         leading_zero_bytes = 16 - count;
3572         memset(i_port_id, 0, leading_zero_bytes);
3573         rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3574         if (rc < 0)
3575                 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3576         ret = 0;
3577 out:
3578         return ret;
3579 }
3580
3581 /*
3582  * configfs callback function invoked for
3583  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3584  */
3585 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3586                                              struct config_group *group,
3587                                              const char *name)
3588 {
3589         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3590         struct se_node_acl *se_nacl, *se_nacl_new;
3591         struct srpt_node_acl *nacl;
3592         int ret = 0;
3593         u32 nexus_depth = 1;
3594         u8 i_port_id[16];
3595
3596         if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3597                 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3598                 ret = -EINVAL;
3599                 goto err;
3600         }
3601
3602         se_nacl_new = srpt_alloc_fabric_acl(tpg);
3603         if (!se_nacl_new) {
3604                 ret = -ENOMEM;
3605                 goto err;
3606         }
3607         /*
3608          * nacl_new may be released by core_tpg_add_initiator_node_acl()
3609          * when converting a node ACL from demo mode to explict
3610          */
3611         se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3612                                                   nexus_depth);
3613         if (IS_ERR(se_nacl)) {
3614                 ret = PTR_ERR(se_nacl);
3615                 goto err;
3616         }
3617         /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3618         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3619         memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3620         nacl->sport = sport;
3621
3622         spin_lock_irq(&sport->port_acl_lock);
3623         list_add_tail(&nacl->list, &sport->port_acl_list);
3624         spin_unlock_irq(&sport->port_acl_lock);
3625
3626         return se_nacl;
3627 err:
3628         return ERR_PTR(ret);
3629 }
3630
3631 /*
3632  * configfs callback function invoked for
3633  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3634  */
3635 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3636 {
3637         struct srpt_node_acl *nacl;
3638         struct srpt_device *sdev;
3639         struct srpt_port *sport;
3640
3641         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3642         sport = nacl->sport;
3643         sdev = sport->sdev;
3644         spin_lock_irq(&sport->port_acl_lock);
3645         list_del(&nacl->list);
3646         spin_unlock_irq(&sport->port_acl_lock);
3647         core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3648         srpt_release_fabric_acl(NULL, se_nacl);
3649 }
3650
3651 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3652         struct se_portal_group *se_tpg,
3653         char *page)
3654 {
3655         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3656
3657         return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3658 }
3659
3660 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3661         struct se_portal_group *se_tpg,
3662         const char *page,
3663         size_t count)
3664 {
3665         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3666         unsigned long val;
3667         int ret;
3668
3669         ret = strict_strtoul(page, 0, &val);
3670         if (ret < 0) {
3671                 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3672                 return -EINVAL;
3673         }
3674         if (val > MAX_SRPT_RDMA_SIZE) {
3675                 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3676                         MAX_SRPT_RDMA_SIZE);
3677                 return -EINVAL;
3678         }
3679         if (val < DEFAULT_MAX_RDMA_SIZE) {
3680                 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3681                         val, DEFAULT_MAX_RDMA_SIZE);
3682                 return -EINVAL;
3683         }
3684         sport->port_attrib.srp_max_rdma_size = val;
3685
3686         return count;
3687 }
3688
3689 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3690
3691 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3692         struct se_portal_group *se_tpg,
3693         char *page)
3694 {
3695         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3696
3697         return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3698 }
3699
3700 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3701         struct se_portal_group *se_tpg,
3702         const char *page,
3703         size_t count)
3704 {
3705         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3706         unsigned long val;
3707         int ret;
3708
3709         ret = strict_strtoul(page, 0, &val);
3710         if (ret < 0) {
3711                 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3712                 return -EINVAL;
3713         }
3714         if (val > MAX_SRPT_RSP_SIZE) {
3715                 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3716                         MAX_SRPT_RSP_SIZE);
3717                 return -EINVAL;
3718         }
3719         if (val < MIN_MAX_RSP_SIZE) {
3720                 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3721                         MIN_MAX_RSP_SIZE);
3722                 return -EINVAL;
3723         }
3724         sport->port_attrib.srp_max_rsp_size = val;
3725
3726         return count;
3727 }
3728
3729 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3730
3731 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3732         struct se_portal_group *se_tpg,
3733         char *page)
3734 {
3735         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3736
3737         return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3738 }
3739
3740 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3741         struct se_portal_group *se_tpg,
3742         const char *page,
3743         size_t count)
3744 {
3745         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3746         unsigned long val;
3747         int ret;
3748
3749         ret = strict_strtoul(page, 0, &val);
3750         if (ret < 0) {
3751                 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3752                 return -EINVAL;
3753         }
3754         if (val > MAX_SRPT_SRQ_SIZE) {
3755                 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3756                         MAX_SRPT_SRQ_SIZE);
3757                 return -EINVAL;
3758         }
3759         if (val < MIN_SRPT_SRQ_SIZE) {
3760                 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3761                         MIN_SRPT_SRQ_SIZE);
3762                 return -EINVAL;
3763         }
3764         sport->port_attrib.srp_sq_size = val;
3765
3766         return count;
3767 }
3768
3769 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3770
3771 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3772         &srpt_tpg_attrib_srp_max_rdma_size.attr,
3773         &srpt_tpg_attrib_srp_max_rsp_size.attr,
3774         &srpt_tpg_attrib_srp_sq_size.attr,
3775         NULL,
3776 };
3777
3778 static ssize_t srpt_tpg_show_enable(
3779         struct se_portal_group *se_tpg,
3780         char *page)
3781 {
3782         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3783
3784         return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3785 }
3786
3787 static ssize_t srpt_tpg_store_enable(
3788         struct se_portal_group *se_tpg,
3789         const char *page,
3790         size_t count)
3791 {
3792         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3793         unsigned long tmp;
3794         int ret;
3795
3796         ret = strict_strtoul(page, 0, &tmp);
3797         if (ret < 0) {
3798                 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3799                 return -EINVAL;
3800         }
3801
3802         if ((tmp != 0) && (tmp != 1)) {
3803                 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3804                 return -EINVAL;
3805         }
3806         if (tmp == 1)
3807                 sport->enabled = true;
3808         else
3809                 sport->enabled = false;
3810
3811         return count;
3812 }
3813
3814 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3815
3816 static struct configfs_attribute *srpt_tpg_attrs[] = {
3817         &srpt_tpg_enable.attr,
3818         NULL,
3819 };
3820
3821 /**
3822  * configfs callback invoked for
3823  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3824  */
3825 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3826                                              struct config_group *group,
3827                                              const char *name)
3828 {
3829         struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3830         int res;
3831
3832         /* Initialize sport->port_wwn and sport->port_tpg_1 */
3833         res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3834                         &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3835         if (res)
3836                 return ERR_PTR(res);
3837
3838         return &sport->port_tpg_1;
3839 }
3840
3841 /**
3842  * configfs callback invoked for
3843  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3844  */
3845 static void srpt_drop_tpg(struct se_portal_group *tpg)
3846 {
3847         struct srpt_port *sport = container_of(tpg,
3848                                 struct srpt_port, port_tpg_1);
3849
3850         sport->enabled = false;
3851         core_tpg_deregister(&sport->port_tpg_1);
3852 }
3853
3854 /**
3855  * configfs callback invoked for
3856  * mkdir /sys/kernel/config/target/$driver/$port
3857  */
3858 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3859                                       struct config_group *group,
3860                                       const char *name)
3861 {
3862         struct srpt_port *sport;
3863         int ret;
3864
3865         sport = srpt_lookup_port(name);
3866         pr_debug("make_tport(%s)\n", name);
3867         ret = -EINVAL;
3868         if (!sport)
3869                 goto err;
3870
3871         return &sport->port_wwn;
3872
3873 err:
3874         return ERR_PTR(ret);
3875 }
3876
3877 /**
3878  * configfs callback invoked for
3879  * rmdir /sys/kernel/config/target/$driver/$port
3880  */
3881 static void srpt_drop_tport(struct se_wwn *wwn)
3882 {
3883         struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3884
3885         pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3886 }
3887
3888 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3889                                               char *buf)
3890 {
3891         return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3892 }
3893
3894 TF_WWN_ATTR_RO(srpt, version);
3895
3896 static struct configfs_attribute *srpt_wwn_attrs[] = {
3897         &srpt_wwn_version.attr,
3898         NULL,
3899 };
3900
3901 static struct target_core_fabric_ops srpt_template = {
3902         .get_fabric_name                = srpt_get_fabric_name,
3903         .get_fabric_proto_ident         = srpt_get_fabric_proto_ident,
3904         .tpg_get_wwn                    = srpt_get_fabric_wwn,
3905         .tpg_get_tag                    = srpt_get_tag,
3906         .tpg_get_default_depth          = srpt_get_default_depth,
3907         .tpg_get_pr_transport_id        = srpt_get_pr_transport_id,
3908         .tpg_get_pr_transport_id_len    = srpt_get_pr_transport_id_len,
3909         .tpg_parse_pr_out_transport_id  = srpt_parse_pr_out_transport_id,
3910         .tpg_check_demo_mode            = srpt_check_false,
3911         .tpg_check_demo_mode_cache      = srpt_check_true,
3912         .tpg_check_demo_mode_write_protect = srpt_check_true,
3913         .tpg_check_prod_mode_write_protect = srpt_check_false,
3914         .tpg_alloc_fabric_acl           = srpt_alloc_fabric_acl,
3915         .tpg_release_fabric_acl         = srpt_release_fabric_acl,
3916         .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3917         .release_cmd                    = srpt_release_cmd,
3918         .check_stop_free                = srpt_check_stop_free,
3919         .shutdown_session               = srpt_shutdown_session,
3920         .close_session                  = srpt_close_session,
3921         .sess_get_index                 = srpt_sess_get_index,
3922         .sess_get_initiator_sid         = NULL,
3923         .write_pending                  = srpt_write_pending,
3924         .write_pending_status           = srpt_write_pending_status,
3925         .set_default_node_attributes    = srpt_set_default_node_attrs,
3926         .get_task_tag                   = srpt_get_task_tag,
3927         .get_cmd_state                  = srpt_get_tcm_cmd_state,
3928         .queue_data_in                  = srpt_queue_data_in,
3929         .queue_status                   = srpt_queue_status,
3930         .queue_tm_rsp                   = srpt_queue_tm_rsp,
3931         /*
3932          * Setup function pointers for generic logic in
3933          * target_core_fabric_configfs.c
3934          */
3935         .fabric_make_wwn                = srpt_make_tport,
3936         .fabric_drop_wwn                = srpt_drop_tport,
3937         .fabric_make_tpg                = srpt_make_tpg,
3938         .fabric_drop_tpg                = srpt_drop_tpg,
3939         .fabric_post_link               = NULL,
3940         .fabric_pre_unlink              = NULL,
3941         .fabric_make_np                 = NULL,
3942         .fabric_drop_np                 = NULL,
3943         .fabric_make_nodeacl            = srpt_make_nodeacl,
3944         .fabric_drop_nodeacl            = srpt_drop_nodeacl,
3945 };
3946
3947 /**
3948  * srpt_init_module() - Kernel module initialization.
3949  *
3950  * Note: Since ib_register_client() registers callback functions, and since at
3951  * least one of these callback functions (srpt_add_one()) calls target core
3952  * functions, this driver must be registered with the target core before
3953  * ib_register_client() is called.
3954  */
3955 static int __init srpt_init_module(void)
3956 {
3957         int ret;
3958
3959         ret = -EINVAL;
3960         if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3961                 printk(KERN_ERR "invalid value %d for kernel module parameter"
3962                        " srp_max_req_size -- must be at least %d.\n",
3963                        srp_max_req_size, MIN_MAX_REQ_SIZE);
3964                 goto out;
3965         }
3966
3967         if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3968             || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3969                 printk(KERN_ERR "invalid value %d for kernel module parameter"
3970                        " srpt_srq_size -- must be in the range [%d..%d].\n",
3971                        srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3972                 goto out;
3973         }
3974
3975         srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3976         if (IS_ERR(srpt_target)) {
3977                 printk(KERN_ERR "couldn't register\n");
3978                 ret = PTR_ERR(srpt_target);
3979                 goto out;
3980         }
3981
3982         srpt_target->tf_ops = srpt_template;
3983
3984         /*
3985          * Set up default attribute lists.
3986          */
3987         srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
3988         srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
3989         srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
3990         srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
3991         srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
3992         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
3993         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
3994         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
3995         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
3996
3997         ret = target_fabric_configfs_register(srpt_target);
3998         if (ret < 0) {
3999                 printk(KERN_ERR "couldn't register\n");
4000                 goto out_free_target;
4001         }
4002
4003         ret = ib_register_client(&srpt_client);
4004         if (ret) {
4005                 printk(KERN_ERR "couldn't register IB client\n");
4006                 goto out_unregister_target;
4007         }
4008
4009         return 0;
4010
4011 out_unregister_target:
4012         target_fabric_configfs_deregister(srpt_target);
4013         srpt_target = NULL;
4014 out_free_target:
4015         if (srpt_target)
4016                 target_fabric_configfs_free(srpt_target);
4017 out:
4018         return ret;
4019 }
4020
4021 static void __exit srpt_cleanup_module(void)
4022 {
4023         ib_unregister_client(&srpt_client);
4024         target_fabric_configfs_deregister(srpt_target);
4025         srpt_target = NULL;
4026 }
4027
4028 module_init(srpt_init_module);
4029 module_exit(srpt_cleanup_module);