Merge ../linux-2.6-watchdog-mm
[linux-drm-fsl-dcu.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/unaligned.h>
68 #include <net/arp.h>
69
70 #include "config_roms.h"
71 #include "csr1212.h"
72 #include "eth1394.h"
73 #include "highlevel.h"
74 #include "ieee1394.h"
75 #include "ieee1394_core.h"
76 #include "ieee1394_hotplug.h"
77 #include "ieee1394_transactions.h"
78 #include "ieee1394_types.h"
79 #include "iso.h"
80 #include "nodemgr.h"
81
82 #define ETH1394_PRINT_G(level, fmt, args...) \
83         printk(level "%s: " fmt, driver_name, ## args)
84
85 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
86         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
87
88 #define DEBUG(fmt, args...) \
89         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
90 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
91
92 struct fragment_info {
93         struct list_head list;
94         int offset;
95         int len;
96 };
97
98 struct partial_datagram {
99         struct list_head list;
100         u16 dgl;
101         u16 dg_size;
102         u16 ether_type;
103         struct sk_buff *skb;
104         char *pbuf;
105         struct list_head frag_info;
106 };
107
108 struct pdg_list {
109         struct list_head list;          /* partial datagram list per node       */
110         unsigned int sz;                /* partial datagram list size per node  */
111         spinlock_t lock;                /* partial datagram lock                */
112 };
113
114 struct eth1394_host_info {
115         struct hpsb_host *host;
116         struct net_device *dev;
117 };
118
119 struct eth1394_node_ref {
120         struct unit_directory *ud;
121         struct list_head list;
122 };
123
124 struct eth1394_node_info {
125         u16 maxpayload;                 /* Max payload                  */
126         u8 sspd;                        /* Max speed                    */
127         u64 fifo;                       /* FIFO address                 */
128         struct pdg_list pdg;            /* partial RX datagram lists    */
129         int dgl;                        /* Outgoing datagram label      */
130 };
131
132 /* Our ieee1394 highlevel driver */
133 #define ETH1394_DRIVER_NAME "eth1394"
134 static const char driver_name[] = ETH1394_DRIVER_NAME;
135
136 static kmem_cache_t *packet_task_cache;
137
138 static struct hpsb_highlevel eth1394_highlevel;
139
140 /* Use common.lf to determine header len */
141 static const int hdr_type_len[] = {
142         sizeof (struct eth1394_uf_hdr),
143         sizeof (struct eth1394_ff_hdr),
144         sizeof (struct eth1394_sf_hdr),
145         sizeof (struct eth1394_sf_hdr)
146 };
147
148 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
149 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
150
151 /* For now, this needs to be 1500, so that XP works with us */
152 #define ETH1394_DATA_LEN        ETH_DATA_LEN
153
154 static const u16 eth1394_speedto_maxpayload[] = {
155 /*     S100, S200, S400, S800, S1600, S3200 */
156         512, 1024, 2048, 4096,  4096,  4096
157 };
158
159 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
160 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
161 MODULE_LICENSE("GPL");
162
163 /* The max_partial_datagrams parameter is the maximum number of fragmented
164  * datagrams per node that eth1394 will keep in memory.  Providing an upper
165  * bound allows us to limit the amount of memory that partial datagrams
166  * consume in the event that some partial datagrams are never completed.
167  */
168 static int max_partial_datagrams = 25;
169 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
170 MODULE_PARM_DESC(max_partial_datagrams,
171                  "Maximum number of partially received fragmented datagrams "
172                  "(default = 25).");
173
174
175 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
176                             unsigned short type, void *daddr, void *saddr,
177                             unsigned len);
178 static int ether1394_rebuild_header(struct sk_buff *skb);
179 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
180 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
181 static void ether1394_header_cache_update(struct hh_cache *hh,
182                                           struct net_device *dev,
183                                           unsigned char * haddr);
184 static int ether1394_mac_addr(struct net_device *dev, void *p);
185
186 static void purge_partial_datagram(struct list_head *old);
187 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
188 static void ether1394_iso(struct hpsb_iso *iso);
189
190 static struct ethtool_ops ethtool_ops;
191
192 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
193                            quadlet_t *data, u64 addr, size_t len, u16 flags);
194 static void ether1394_add_host (struct hpsb_host *host);
195 static void ether1394_remove_host (struct hpsb_host *host);
196 static void ether1394_host_reset (struct hpsb_host *host);
197
198 /* Function for incoming 1394 packets */
199 static struct hpsb_address_ops addr_ops = {
200         .write =        ether1394_write,
201 };
202
203 /* Ieee1394 highlevel driver functions */
204 static struct hpsb_highlevel eth1394_highlevel = {
205         .name =         driver_name,
206         .add_host =     ether1394_add_host,
207         .remove_host =  ether1394_remove_host,
208         .host_reset =   ether1394_host_reset,
209 };
210
211
212 /* This is called after an "ifup" */
213 static int ether1394_open (struct net_device *dev)
214 {
215         struct eth1394_priv *priv = netdev_priv(dev);
216         int ret = 0;
217
218         /* Something bad happened, don't even try */
219         if (priv->bc_state == ETHER1394_BC_ERROR) {
220                 /* we'll try again */
221                 priv->iso = hpsb_iso_recv_init(priv->host,
222                                                ETHER1394_ISO_BUF_SIZE,
223                                                ETHER1394_GASP_BUFFERS,
224                                                priv->broadcast_channel,
225                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
226                                                1, ether1394_iso);
227                 if (priv->iso == NULL) {
228                         ETH1394_PRINT(KERN_ERR, dev->name,
229                                       "Could not allocate isochronous receive "
230                                       "context for the broadcast channel\n");
231                         priv->bc_state = ETHER1394_BC_ERROR;
232                         ret = -EAGAIN;
233                 } else {
234                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
235                                 priv->bc_state = ETHER1394_BC_STOPPED;
236                         else
237                                 priv->bc_state = ETHER1394_BC_RUNNING;
238                 }
239         }
240
241         if (ret)
242                 return ret;
243
244         netif_start_queue (dev);
245         return 0;
246 }
247
248 /* This is called after an "ifdown" */
249 static int ether1394_stop (struct net_device *dev)
250 {
251         netif_stop_queue (dev);
252         return 0;
253 }
254
255 /* Return statistics to the caller */
256 static struct net_device_stats *ether1394_stats (struct net_device *dev)
257 {
258         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
259 }
260
261 /* What to do if we timeout. I think a host reset is probably in order, so
262  * that's what we do. Should we increment the stat counters too?  */
263 static void ether1394_tx_timeout (struct net_device *dev)
264 {
265         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
266                        ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
267
268         highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
269
270         netif_wake_queue (dev);
271 }
272
273 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
274 {
275         struct eth1394_priv *priv = netdev_priv(dev);
276
277         if ((new_mtu < 68) ||
278             (new_mtu > min(ETH1394_DATA_LEN,
279                            (int)((1 << (priv->host->csr.max_rec + 1)) -
280                                  (sizeof(union eth1394_hdr) +
281                                   ETHER1394_GASP_OVERHEAD)))))
282                 return -EINVAL;
283         dev->mtu = new_mtu;
284         return 0;
285 }
286
287 static void purge_partial_datagram(struct list_head *old)
288 {
289         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
290         struct list_head *lh, *n;
291
292         list_for_each_safe(lh, n, &pd->frag_info) {
293                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
294                 list_del(lh);
295                 kfree(fi);
296         }
297         list_del(old);
298         kfree_skb(pd->skb);
299         kfree(pd);
300 }
301
302 /******************************************
303  * 1394 bus activity functions
304  ******************************************/
305
306 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
307                                                   struct unit_directory *ud)
308 {
309         struct eth1394_node_ref *node;
310
311         list_for_each_entry(node, inl, list)
312                 if (node->ud == ud)
313                         return node;
314
315         return NULL;
316 }
317
318 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
319                                                        u64 guid)
320 {
321         struct eth1394_node_ref *node;
322
323         list_for_each_entry(node, inl, list)
324                 if (node->ud->ne->guid == guid)
325                         return node;
326
327         return NULL;
328 }
329
330 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
331                                                          nodeid_t nodeid)
332 {
333         struct eth1394_node_ref *node;
334         list_for_each_entry(node, inl, list) {
335                 if (node->ud->ne->nodeid == nodeid)
336                         return node;
337         }
338
339         return NULL;
340 }
341
342 static int eth1394_probe(struct device *dev)
343 {
344         struct unit_directory *ud;
345         struct eth1394_host_info *hi;
346         struct eth1394_priv *priv;
347         struct eth1394_node_ref *new_node;
348         struct eth1394_node_info *node_info;
349
350         ud = container_of(dev, struct unit_directory, device);
351
352         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
353         if (!hi)
354                 return -ENOENT;
355
356         new_node = kmalloc(sizeof(*new_node),
357                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
358         if (!new_node)
359                 return -ENOMEM;
360
361         node_info = kmalloc(sizeof(*node_info),
362                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
363         if (!node_info) {
364                 kfree(new_node);
365                 return -ENOMEM;
366         }
367
368         spin_lock_init(&node_info->pdg.lock);
369         INIT_LIST_HEAD(&node_info->pdg.list);
370         node_info->pdg.sz = 0;
371         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
372
373         ud->device.driver_data = node_info;
374         new_node->ud = ud;
375
376         priv = netdev_priv(hi->dev);
377         list_add_tail(&new_node->list, &priv->ip_node_list);
378
379         return 0;
380 }
381
382 static int eth1394_remove(struct device *dev)
383 {
384         struct unit_directory *ud;
385         struct eth1394_host_info *hi;
386         struct eth1394_priv *priv;
387         struct eth1394_node_ref *old_node;
388         struct eth1394_node_info *node_info;
389         struct list_head *lh, *n;
390         unsigned long flags;
391
392         ud = container_of(dev, struct unit_directory, device);
393         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
394         if (!hi)
395                 return -ENOENT;
396
397         priv = netdev_priv(hi->dev);
398
399         old_node = eth1394_find_node(&priv->ip_node_list, ud);
400
401         if (old_node) {
402                 list_del(&old_node->list);
403                 kfree(old_node);
404
405                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
406
407                 spin_lock_irqsave(&node_info->pdg.lock, flags);
408                 /* The partial datagram list should be empty, but we'll just
409                  * make sure anyway... */
410                 list_for_each_safe(lh, n, &node_info->pdg.list) {
411                         purge_partial_datagram(lh);
412                 }
413                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
414
415                 kfree(node_info);
416                 ud->device.driver_data = NULL;
417         }
418         return 0;
419 }
420
421 static int eth1394_update(struct unit_directory *ud)
422 {
423         struct eth1394_host_info *hi;
424         struct eth1394_priv *priv;
425         struct eth1394_node_ref *node;
426         struct eth1394_node_info *node_info;
427
428         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
429         if (!hi)
430                 return -ENOENT;
431
432         priv = netdev_priv(hi->dev);
433
434         node = eth1394_find_node(&priv->ip_node_list, ud);
435
436         if (!node) {
437                 node = kmalloc(sizeof(*node),
438                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
439                 if (!node)
440                         return -ENOMEM;
441
442                 node_info = kmalloc(sizeof(*node_info),
443                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
444                 if (!node_info) {
445                         kfree(node);
446                         return -ENOMEM;
447                 }
448
449                 spin_lock_init(&node_info->pdg.lock);
450                 INIT_LIST_HEAD(&node_info->pdg.list);
451                 node_info->pdg.sz = 0;
452
453                 ud->device.driver_data = node_info;
454                 node->ud = ud;
455
456                 priv = netdev_priv(hi->dev);
457                 list_add_tail(&node->list, &priv->ip_node_list);
458         }
459
460         return 0;
461 }
462
463
464 static struct ieee1394_device_id eth1394_id_table[] = {
465         {
466                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
467                                 IEEE1394_MATCH_VERSION),
468                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
469                 .version = ETHER1394_GASP_VERSION,
470         },
471         {}
472 };
473
474 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
475
476 static struct hpsb_protocol_driver eth1394_proto_driver = {
477         .name           = "IPv4 over 1394 Driver",
478         .id_table       = eth1394_id_table,
479         .update         = eth1394_update,
480         .driver         = {
481                 .name           = ETH1394_DRIVER_NAME,
482                 .bus            = &ieee1394_bus_type,
483                 .probe          = eth1394_probe,
484                 .remove         = eth1394_remove,
485         },
486 };
487
488
489 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
490 {
491         unsigned long flags;
492         int i;
493         struct eth1394_priv *priv = netdev_priv(dev);
494         struct hpsb_host *host = priv->host;
495         u64 guid = get_unaligned((u64*)&(host->csr.rom->bus_info_data[3]));
496         u16 maxpayload = 1 << (host->csr.max_rec + 1);
497         int max_speed = IEEE1394_SPEED_MAX;
498
499         spin_lock_irqsave (&priv->lock, flags);
500
501         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
502         priv->bc_maxpayload = 512;
503
504         /* Determine speed limit */
505         for (i = 0; i < host->node_count; i++)
506                 if (max_speed > host->speed[i])
507                         max_speed = host->speed[i];
508         priv->bc_sspd = max_speed;
509
510         /* We'll use our maxpayload as the default mtu */
511         if (set_mtu) {
512                 dev->mtu = min(ETH1394_DATA_LEN,
513                                (int)(maxpayload -
514                                      (sizeof(union eth1394_hdr) +
515                                       ETHER1394_GASP_OVERHEAD)));
516
517                 /* Set our hardware address while we're at it */
518                 memcpy(dev->dev_addr, &guid, sizeof(u64));
519                 memset(dev->broadcast, 0xff, sizeof(u64));
520         }
521
522         spin_unlock_irqrestore (&priv->lock, flags);
523 }
524
525 /* This function is called right before register_netdev */
526 static void ether1394_init_dev (struct net_device *dev)
527 {
528         /* Our functions */
529         dev->open               = ether1394_open;
530         dev->stop               = ether1394_stop;
531         dev->hard_start_xmit    = ether1394_tx;
532         dev->get_stats          = ether1394_stats;
533         dev->tx_timeout         = ether1394_tx_timeout;
534         dev->change_mtu         = ether1394_change_mtu;
535
536         dev->hard_header        = ether1394_header;
537         dev->rebuild_header     = ether1394_rebuild_header;
538         dev->hard_header_cache  = ether1394_header_cache;
539         dev->header_cache_update= ether1394_header_cache_update;
540         dev->hard_header_parse  = ether1394_header_parse;
541         dev->set_mac_address    = ether1394_mac_addr;
542         SET_ETHTOOL_OPS(dev, &ethtool_ops);
543
544         /* Some constants */
545         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
546         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
547         dev->features           = NETIF_F_HIGHDMA;
548         dev->addr_len           = ETH1394_ALEN;
549         dev->hard_header_len    = ETH1394_HLEN;
550         dev->type               = ARPHRD_IEEE1394;
551
552         ether1394_reset_priv (dev, 1);
553 }
554
555 /*
556  * This function is called every time a card is found. It is generally called
557  * when the module is installed. This is where we add all of our ethernet
558  * devices. One for each host.
559  */
560 static void ether1394_add_host (struct hpsb_host *host)
561 {
562         struct eth1394_host_info *hi = NULL;
563         struct net_device *dev = NULL;
564         struct eth1394_priv *priv;
565         u64 fifo_addr;
566
567         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
568                 return;
569
570         fifo_addr = hpsb_allocate_and_register_addrspace(
571                         &eth1394_highlevel, host, &addr_ops,
572                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
573                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
574         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
575                 goto out;
576
577         /* We should really have our own alloc_hpsbdev() function in
578          * net_init.c instead of calling the one for ethernet then hijacking
579          * it for ourselves.  That way we'd be a real networking device. */
580         dev = alloc_etherdev(sizeof (struct eth1394_priv));
581
582         if (dev == NULL) {
583                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
584                                  "etherdevice for IEEE 1394 device %s-%d\n",
585                                  host->driver->name, host->id);
586                 goto out;
587         }
588
589         SET_MODULE_OWNER(dev);
590         SET_NETDEV_DEV(dev, &host->device);
591
592         priv = netdev_priv(dev);
593
594         INIT_LIST_HEAD(&priv->ip_node_list);
595
596         spin_lock_init(&priv->lock);
597         priv->host = host;
598         priv->local_fifo = fifo_addr;
599
600         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
601
602         if (hi == NULL) {
603                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
604                                  "hostinfo for IEEE 1394 device %s-%d\n",
605                                  host->driver->name, host->id);
606                 goto out;
607         }
608
609         ether1394_init_dev(dev);
610
611         if (register_netdev (dev)) {
612                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
613                 goto out;
614         }
615
616         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
617                        host->id);
618
619         hi->host = host;
620         hi->dev = dev;
621
622         /* Ignore validity in hopes that it will be set in the future.  It'll
623          * be checked when the eth device is opened. */
624         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
625
626         priv->iso = hpsb_iso_recv_init(host,
627                                        ETHER1394_ISO_BUF_SIZE,
628                                        ETHER1394_GASP_BUFFERS,
629                                        priv->broadcast_channel,
630                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
631                                        1, ether1394_iso);
632         if (priv->iso == NULL) {
633                 ETH1394_PRINT(KERN_ERR, dev->name,
634                               "Could not allocate isochronous receive context "
635                               "for the broadcast channel\n");
636                 priv->bc_state = ETHER1394_BC_ERROR;
637         } else {
638                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
639                         priv->bc_state = ETHER1394_BC_STOPPED;
640                 else
641                         priv->bc_state = ETHER1394_BC_RUNNING;
642         }
643
644         return;
645
646 out:
647         if (dev != NULL)
648                 free_netdev(dev);
649         if (hi)
650                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
651
652         return;
653 }
654
655 /* Remove a card from our list */
656 static void ether1394_remove_host (struct hpsb_host *host)
657 {
658         struct eth1394_host_info *hi;
659
660         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
661         if (hi != NULL) {
662                 struct eth1394_priv *priv = netdev_priv(hi->dev);
663
664                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
665                                           priv->local_fifo);
666
667                 if (priv->iso != NULL)
668                         hpsb_iso_shutdown(priv->iso);
669
670                 if (hi->dev) {
671                         unregister_netdev (hi->dev);
672                         free_netdev(hi->dev);
673                 }
674         }
675
676         return;
677 }
678
679 /* A reset has just arisen */
680 static void ether1394_host_reset (struct hpsb_host *host)
681 {
682         struct eth1394_host_info *hi;
683         struct eth1394_priv *priv;
684         struct net_device *dev;
685         struct list_head *lh, *n;
686         struct eth1394_node_ref *node;
687         struct eth1394_node_info *node_info;
688         unsigned long flags;
689
690         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
691
692         /* This can happen for hosts that we don't use */
693         if (hi == NULL)
694                 return;
695
696         dev = hi->dev;
697         priv = (struct eth1394_priv *)netdev_priv(dev);
698
699         /* Reset our private host data, but not our mtu */
700         netif_stop_queue (dev);
701         ether1394_reset_priv (dev, 0);
702
703         list_for_each_entry(node, &priv->ip_node_list, list) {
704                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
705
706                 spin_lock_irqsave(&node_info->pdg.lock, flags);
707
708                 list_for_each_safe(lh, n, &node_info->pdg.list) {
709                         purge_partial_datagram(lh);
710                 }
711
712                 INIT_LIST_HEAD(&(node_info->pdg.list));
713                 node_info->pdg.sz = 0;
714
715                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
716         }
717
718         netif_wake_queue (dev);
719 }
720
721 /******************************************
722  * HW Header net device functions
723  ******************************************/
724 /* These functions have been adapted from net/ethernet/eth.c */
725
726
727 /* Create a fake MAC header for an arbitrary protocol layer.
728  * saddr=NULL means use device source address
729  * daddr=NULL means leave destination address (eg unresolved arp). */
730 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
731                             unsigned short type, void *daddr, void *saddr,
732                             unsigned len)
733 {
734         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
735
736         eth->h_proto = htons(type);
737
738         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
739                 memset(eth->h_dest, 0, dev->addr_len);
740                 return(dev->hard_header_len);
741         }
742
743         if (daddr) {
744                 memcpy(eth->h_dest,daddr,dev->addr_len);
745                 return dev->hard_header_len;
746         }
747
748         return -dev->hard_header_len;
749
750 }
751
752
753 /* Rebuild the faked MAC header. This is called after an ARP
754  * (or in future other address resolution) has completed on this
755  * sk_buff. We now let ARP fill in the other fields.
756  *
757  * This routine CANNOT use cached dst->neigh!
758  * Really, it is used only when dst->neigh is wrong.
759  */
760 static int ether1394_rebuild_header(struct sk_buff *skb)
761 {
762         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
763         struct net_device *dev = skb->dev;
764
765         switch (eth->h_proto) {
766
767 #ifdef CONFIG_INET
768         case __constant_htons(ETH_P_IP):
769                 return arp_find((unsigned char*)&eth->h_dest, skb);
770 #endif
771         default:
772                 ETH1394_PRINT(KERN_DEBUG, dev->name,
773                               "unable to resolve type %04x addresses.\n",
774                               ntohs(eth->h_proto));
775                 break;
776         }
777
778         return 0;
779 }
780
781 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
782 {
783         struct net_device *dev = skb->dev;
784         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
785         return ETH1394_ALEN;
786 }
787
788
789 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
790 {
791         unsigned short type = hh->hh_type;
792         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
793                                                       (16 - ETH1394_HLEN));
794         struct net_device *dev = neigh->dev;
795
796         if (type == htons(ETH_P_802_3))
797                 return -1;
798
799         eth->h_proto = type;
800         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
801
802         hh->hh_len = ETH1394_HLEN;
803         return 0;
804 }
805
806 /* Called by Address Resolution module to notify changes in address. */
807 static void ether1394_header_cache_update(struct hh_cache *hh,
808                                           struct net_device *dev,
809                                           unsigned char * haddr)
810 {
811         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
812 }
813
814 static int ether1394_mac_addr(struct net_device *dev, void *p)
815 {
816         if (netif_running(dev))
817                 return -EBUSY;
818
819         /* Not going to allow setting the MAC address, we really need to use
820          * the real one supplied by the hardware */
821          return -EINVAL;
822  }
823
824
825
826 /******************************************
827  * Datagram reception code
828  ******************************************/
829
830 /* Copied from net/ethernet/eth.c */
831 static inline u16 ether1394_type_trans(struct sk_buff *skb,
832                                        struct net_device *dev)
833 {
834         struct eth1394hdr *eth;
835         unsigned char *rawp;
836
837         skb->mac.raw = skb->data;
838         skb_pull (skb, ETH1394_HLEN);
839         eth = eth1394_hdr(skb);
840
841         if (*eth->h_dest & 1) {
842                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
843                         skb->pkt_type = PACKET_BROADCAST;
844 #if 0
845                 else
846                         skb->pkt_type = PACKET_MULTICAST;
847 #endif
848         } else {
849                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
850                         skb->pkt_type = PACKET_OTHERHOST;
851         }
852
853         if (ntohs (eth->h_proto) >= 1536)
854                 return eth->h_proto;
855
856         rawp = skb->data;
857
858         if (*(unsigned short *)rawp == 0xFFFF)
859                 return htons (ETH_P_802_3);
860
861         return htons (ETH_P_802_2);
862 }
863
864 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
865  * We also perform ARP translation here, if need be.  */
866 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
867                                         struct net_device *dev,
868                                         nodeid_t srcid, nodeid_t destid,
869                                         u16 ether_type)
870 {
871         struct eth1394_priv *priv = netdev_priv(dev);
872         u64 dest_hw;
873         unsigned short ret = 0;
874
875         /* Setup our hw addresses. We use these to build the
876          * ethernet header.  */
877         if (destid == (LOCAL_BUS | ALL_NODES))
878                 dest_hw = ~0ULL;  /* broadcast */
879         else
880                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
881                                       priv->host->csr.guid_lo);
882
883         /* If this is an ARP packet, convert it. First, we want to make
884          * use of some of the fields, since they tell us a little bit
885          * about the sending machine.  */
886         if (ether_type == htons(ETH_P_ARP)) {
887                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
888                 struct arphdr *arp = (struct arphdr *)skb->data;
889                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
890                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
891                         ntohl(arp1394->fifo_lo);
892                 u8 max_rec = min(priv->host->csr.max_rec,
893                                  (u8)(arp1394->max_rec));
894                 int sspd = arp1394->sspd;
895                 u16 maxpayload;
896                 struct eth1394_node_ref *node;
897                 struct eth1394_node_info *node_info;
898                 __be64 guid;
899
900                 /* Sanity check. MacOSX seems to be sending us 131 in this
901                  * field (atleast on my Panther G5). Not sure why. */
902                 if (sspd > 5 || sspd < 0)
903                         sspd = 0;
904
905                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
906
907                 guid = get_unaligned(&arp1394->s_uniq_id);
908                 node = eth1394_find_node_guid(&priv->ip_node_list,
909                                               be64_to_cpu(guid));
910                 if (!node) {
911                         return 0;
912                 }
913
914                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
915
916                 /* Update our speed/payload/fifo_offset table */
917                 node_info->maxpayload = maxpayload;
918                 node_info->sspd =       sspd;
919                 node_info->fifo =       fifo_addr;
920
921                 /* Now that we're done with the 1394 specific stuff, we'll
922                  * need to alter some of the data.  Believe it or not, all
923                  * that needs to be done is sender_IP_address needs to be
924                  * moved, the destination hardware address get stuffed
925                  * in and the hardware address length set to 8.
926                  *
927                  * IMPORTANT: The code below overwrites 1394 specific data
928                  * needed above so keep the munging of the data for the
929                  * higher level IP stack last. */
930
931                 arp->ar_hln = 8;
932                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
933                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
934                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
935
936                 if (arp->ar_op == htons(ARPOP_REQUEST))
937                         memset(arp_ptr, 0, sizeof(u64));
938                 else
939                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
940         }
941
942         /* Now add the ethernet header. */
943         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
944                              skb->len) >= 0)
945                 ret = ether1394_type_trans(skb, dev);
946
947         return ret;
948 }
949
950 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
951 {
952         struct fragment_info *fi;
953
954         list_for_each_entry(fi, frag_list, list) {
955                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
956                        ((offset + len - 1) < fi->offset)))
957                         return 1;
958         }
959         return 0;
960 }
961
962 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
963 {
964         struct partial_datagram *pd;
965
966         list_for_each_entry(pd, pdgl, list) {
967                 if (pd->dgl == dgl)
968                         return &pd->list;
969         }
970         return NULL;
971 }
972
973 /* Assumes that new fragment does not overlap any existing fragments */
974 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
975 {
976         struct list_head *lh;
977         struct fragment_info *fi, *fi2, *new;
978
979         list_for_each(lh, frag_info) {
980                 fi = list_entry(lh, struct fragment_info, list);
981                 if ((fi->offset + fi->len) == offset) {
982                         /* The new fragment can be tacked on to the end */
983                         fi->len += len;
984                         /* Did the new fragment plug a hole? */
985                         fi2 = list_entry(lh->next, struct fragment_info, list);
986                         if ((fi->offset + fi->len) == fi2->offset) {
987                                 /* glue fragments together */
988                                 fi->len += fi2->len;
989                                 list_del(lh->next);
990                                 kfree(fi2);
991                         }
992                         return 0;
993                 } else if ((offset + len) == fi->offset) {
994                         /* The new fragment can be tacked on to the beginning */
995                         fi->offset = offset;
996                         fi->len += len;
997                         /* Did the new fragment plug a hole? */
998                         fi2 = list_entry(lh->prev, struct fragment_info, list);
999                         if ((fi2->offset + fi2->len) == fi->offset) {
1000                                 /* glue fragments together */
1001                                 fi2->len += fi->len;
1002                                 list_del(lh);
1003                                 kfree(fi);
1004                         }
1005                         return 0;
1006                 } else if (offset > (fi->offset + fi->len)) {
1007                         break;
1008                 } else if ((offset + len) < fi->offset) {
1009                         lh = lh->prev;
1010                         break;
1011                 }
1012         }
1013
1014         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1015         if (!new)
1016                 return -ENOMEM;
1017
1018         new->offset = offset;
1019         new->len = len;
1020
1021         list_add(&new->list, lh);
1022
1023         return 0;
1024 }
1025
1026 static inline int new_partial_datagram(struct net_device *dev,
1027                                        struct list_head *pdgl, int dgl,
1028                                        int dg_size, char *frag_buf,
1029                                        int frag_off, int frag_len)
1030 {
1031         struct partial_datagram *new;
1032
1033         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1034         if (!new)
1035                 return -ENOMEM;
1036
1037         INIT_LIST_HEAD(&new->frag_info);
1038
1039         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1040                 kfree(new);
1041                 return -ENOMEM;
1042         }
1043
1044         new->dgl = dgl;
1045         new->dg_size = dg_size;
1046
1047         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1048         if (!new->skb) {
1049                 struct fragment_info *fi = list_entry(new->frag_info.next,
1050                                                       struct fragment_info,
1051                                                       list);
1052                 kfree(fi);
1053                 kfree(new);
1054                 return -ENOMEM;
1055         }
1056
1057         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1058         new->pbuf = skb_put(new->skb, dg_size);
1059         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1060
1061         list_add(&new->list, pdgl);
1062
1063         return 0;
1064 }
1065
1066 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1067                                           char *frag_buf, int frag_off, int frag_len)
1068 {
1069         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1070
1071         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1072                 return -ENOMEM;
1073         }
1074
1075         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1076
1077         /* Move list entry to beginnig of list so that oldest partial
1078          * datagrams percolate to the end of the list */
1079         list_move(lh, pdgl);
1080
1081         return 0;
1082 }
1083
1084 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1085 {
1086         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1087         struct fragment_info *fi = list_entry(pd->frag_info.next,
1088                                               struct fragment_info, list);
1089
1090         return (fi->len == dg_size);
1091 }
1092
1093 /* Packet reception. We convert the IP1394 encapsulation header to an
1094  * ethernet header, and fill it with some of our other fields. This is
1095  * an incoming packet from the 1394 bus.  */
1096 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1097                                   char *buf, int len)
1098 {
1099         struct sk_buff *skb;
1100         unsigned long flags;
1101         struct eth1394_priv *priv = netdev_priv(dev);
1102         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1103         u16 ether_type = 0;  /* initialized to clear warning */
1104         int hdr_len;
1105         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1106         struct eth1394_node_info *node_info;
1107
1108         if (!ud) {
1109                 struct eth1394_node_ref *node;
1110                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1111                 if (!node) {
1112                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1113                                    "lookup failure: " NODE_BUS_FMT,
1114                                    NODE_BUS_ARGS(priv->host, srcid));
1115                         priv->stats.rx_dropped++;
1116                         return -1;
1117                 }
1118                 ud = node->ud;
1119
1120                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1121         }
1122
1123         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1124
1125         /* First, did we receive a fragmented or unfragmented datagram? */
1126         hdr->words.word1 = ntohs(hdr->words.word1);
1127
1128         hdr_len = hdr_type_len[hdr->common.lf];
1129
1130         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1131                 /* An unfragmented datagram has been received by the ieee1394
1132                  * bus. Build an skbuff around it so we can pass it to the
1133                  * high level network layer. */
1134
1135                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1136                 if (!skb) {
1137                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1138                         priv->stats.rx_dropped++;
1139                         return -1;
1140                 }
1141                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1142                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1143                 ether_type = hdr->uf.ether_type;
1144         } else {
1145                 /* A datagram fragment has been received, now the fun begins. */
1146
1147                 struct list_head *pdgl, *lh;
1148                 struct partial_datagram *pd;
1149                 int fg_off;
1150                 int fg_len = len - hdr_len;
1151                 int dg_size;
1152                 int dgl;
1153                 int retval;
1154                 struct pdg_list *pdg = &(node_info->pdg);
1155
1156                 hdr->words.word3 = ntohs(hdr->words.word3);
1157                 /* The 4th header word is reserved so no need to do ntohs() */
1158
1159                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1160                         ether_type = hdr->ff.ether_type;
1161                         dgl = hdr->ff.dgl;
1162                         dg_size = hdr->ff.dg_size + 1;
1163                         fg_off = 0;
1164                 } else {
1165                         hdr->words.word2 = ntohs(hdr->words.word2);
1166                         dgl = hdr->sf.dgl;
1167                         dg_size = hdr->sf.dg_size + 1;
1168                         fg_off = hdr->sf.fg_off;
1169                 }
1170                 spin_lock_irqsave(&pdg->lock, flags);
1171
1172                 pdgl = &(pdg->list);
1173                 lh = find_partial_datagram(pdgl, dgl);
1174
1175                 if (lh == NULL) {
1176                         while (pdg->sz >= max_partial_datagrams) {
1177                                 /* remove the oldest */
1178                                 purge_partial_datagram(pdgl->prev);
1179                                 pdg->sz--;
1180                         }
1181
1182                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1183                                                       buf + hdr_len, fg_off,
1184                                                       fg_len);
1185                         if (retval < 0) {
1186                                 spin_unlock_irqrestore(&pdg->lock, flags);
1187                                 goto bad_proto;
1188                         }
1189                         pdg->sz++;
1190                         lh = find_partial_datagram(pdgl, dgl);
1191                 } else {
1192                         struct partial_datagram *pd;
1193
1194                         pd = list_entry(lh, struct partial_datagram, list);
1195
1196                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1197                                 /* Overlapping fragments, obliterate old
1198                                  * datagram and start new one. */
1199                                 purge_partial_datagram(lh);
1200                                 retval = new_partial_datagram(dev, pdgl, dgl,
1201                                                               dg_size,
1202                                                               buf + hdr_len,
1203                                                               fg_off, fg_len);
1204                                 if (retval < 0) {
1205                                         pdg->sz--;
1206                                         spin_unlock_irqrestore(&pdg->lock, flags);
1207                                         goto bad_proto;
1208                                 }
1209                         } else {
1210                                 retval = update_partial_datagram(pdgl, lh,
1211                                                                  buf + hdr_len,
1212                                                                  fg_off, fg_len);
1213                                 if (retval < 0) {
1214                                         /* Couldn't save off fragment anyway
1215                                          * so might as well obliterate the
1216                                          * datagram now. */
1217                                         purge_partial_datagram(lh);
1218                                         pdg->sz--;
1219                                         spin_unlock_irqrestore(&pdg->lock, flags);
1220                                         goto bad_proto;
1221                                 }
1222                         } /* fragment overlap */
1223                 } /* new datagram or add to existing one */
1224
1225                 pd = list_entry(lh, struct partial_datagram, list);
1226
1227                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1228                         pd->ether_type = ether_type;
1229                 }
1230
1231                 if (is_datagram_complete(lh, dg_size)) {
1232                         ether_type = pd->ether_type;
1233                         pdg->sz--;
1234                         skb = skb_get(pd->skb);
1235                         purge_partial_datagram(lh);
1236                         spin_unlock_irqrestore(&pdg->lock, flags);
1237                 } else {
1238                         /* Datagram is not complete, we're done for the
1239                          * moment. */
1240                         spin_unlock_irqrestore(&pdg->lock, flags);
1241                         return 0;
1242                 }
1243         } /* unframgented datagram or fragmented one */
1244
1245         /* Write metadata, and then pass to the receive level */
1246         skb->dev = dev;
1247         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1248
1249         /* Parse the encapsulation header. This actually does the job of
1250          * converting to an ethernet frame header, aswell as arp
1251          * conversion if needed. ARP conversion is easier in this
1252          * direction, since we are using ethernet as our backend.  */
1253         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1254                                               ether_type);
1255
1256
1257         spin_lock_irqsave(&priv->lock, flags);
1258         if (!skb->protocol) {
1259                 priv->stats.rx_errors++;
1260                 priv->stats.rx_dropped++;
1261                 dev_kfree_skb_any(skb);
1262                 goto bad_proto;
1263         }
1264
1265         if (netif_rx(skb) == NET_RX_DROP) {
1266                 priv->stats.rx_errors++;
1267                 priv->stats.rx_dropped++;
1268                 goto bad_proto;
1269         }
1270
1271         /* Statistics */
1272         priv->stats.rx_packets++;
1273         priv->stats.rx_bytes += skb->len;
1274
1275 bad_proto:
1276         if (netif_queue_stopped(dev))
1277                 netif_wake_queue(dev);
1278         spin_unlock_irqrestore(&priv->lock, flags);
1279
1280         dev->last_rx = jiffies;
1281
1282         return 0;
1283 }
1284
1285 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1286                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1287 {
1288         struct eth1394_host_info *hi;
1289
1290         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1291         if (hi == NULL) {
1292                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1293                                 host->driver->name);
1294                 return RCODE_ADDRESS_ERROR;
1295         }
1296
1297         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1298                 return RCODE_ADDRESS_ERROR;
1299         else
1300                 return RCODE_COMPLETE;
1301 }
1302
1303 static void ether1394_iso(struct hpsb_iso *iso)
1304 {
1305         quadlet_t *data;
1306         char *buf;
1307         struct eth1394_host_info *hi;
1308         struct net_device *dev;
1309         struct eth1394_priv *priv;
1310         unsigned int len;
1311         u32 specifier_id;
1312         u16 source_id;
1313         int i;
1314         int nready;
1315
1316         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1317         if (hi == NULL) {
1318                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1319                                 iso->host->driver->name);
1320                 return;
1321         }
1322
1323         dev = hi->dev;
1324
1325         nready = hpsb_iso_n_ready(iso);
1326         for (i = 0; i < nready; i++) {
1327                 struct hpsb_iso_packet_info *info =
1328                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1329                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1330
1331                 /* skip over GASP header */
1332                 buf = (char *)data + 8;
1333                 len = info->len - 8;
1334
1335                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1336                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1337                 source_id = be32_to_cpu(data[0]) >> 16;
1338
1339                 priv = netdev_priv(dev);
1340
1341                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1342                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1343                         /* This packet is not for us */
1344                         continue;
1345                 }
1346                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1347                                        buf, len);
1348         }
1349
1350         hpsb_iso_recv_release_packets(iso, i);
1351
1352         dev->last_rx = jiffies;
1353 }
1354
1355 /******************************************
1356  * Datagram transmission code
1357  ******************************************/
1358
1359 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1360  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1361  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1362  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1363  * judge.
1364  *
1365  * Now that the EUI is used for the hardware address all we need to do to make
1366  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1367  * speed, and unicast FIFO address information between the sender_unique_id
1368  * and the IP addresses.
1369  */
1370 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1371                                             struct net_device *dev)
1372 {
1373         struct eth1394_priv *priv = netdev_priv(dev);
1374
1375         struct arphdr *arp = (struct arphdr *)skb->data;
1376         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1377         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1378
1379         /* Believe it or not, all that need to happen is sender IP get moved
1380          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1381         arp1394->hw_addr_len    = 16;
1382         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1383         arp1394->max_rec        = priv->host->csr.max_rec;
1384         arp1394->sspd           = priv->host->csr.lnk_spd;
1385         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1386         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1387
1388         return;
1389 }
1390
1391 /* We need to encapsulate the standard header with our own. We use the
1392  * ethernet header's proto for our own. */
1393 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1394                                                       __be16 proto,
1395                                                       union eth1394_hdr *hdr,
1396                                                       u16 dg_size, u16 dgl)
1397 {
1398         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1399
1400         /* Does it all fit in one packet? */
1401         if (dg_size <= adj_max_payload) {
1402                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1403                 hdr->uf.ether_type = proto;
1404         } else {
1405                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1406                 hdr->ff.ether_type = proto;
1407                 hdr->ff.dg_size = dg_size - 1;
1408                 hdr->ff.dgl = dgl;
1409                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1410         }
1411         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1412 }
1413
1414 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1415                                                  unsigned int max_payload,
1416                                                  union eth1394_hdr *hdr)
1417 {
1418         union eth1394_hdr *bufhdr;
1419         int ftype = hdr->common.lf;
1420         int hdrsz = hdr_type_len[ftype];
1421         unsigned int adj_max_payload = max_payload - hdrsz;
1422
1423         switch(ftype) {
1424         case ETH1394_HDR_LF_UF:
1425                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1426                 bufhdr->words.word1 = htons(hdr->words.word1);
1427                 bufhdr->words.word2 = hdr->words.word2;
1428                 break;
1429
1430         case ETH1394_HDR_LF_FF:
1431                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1432                 bufhdr->words.word1 = htons(hdr->words.word1);
1433                 bufhdr->words.word2 = hdr->words.word2;
1434                 bufhdr->words.word3 = htons(hdr->words.word3);
1435                 bufhdr->words.word4 = 0;
1436
1437                 /* Set frag type here for future interior fragments */
1438                 hdr->common.lf = ETH1394_HDR_LF_IF;
1439                 hdr->sf.fg_off = 0;
1440                 break;
1441
1442         default:
1443                 hdr->sf.fg_off += adj_max_payload;
1444                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1445                 if (max_payload >= skb->len)
1446                         hdr->common.lf = ETH1394_HDR_LF_LF;
1447                 bufhdr->words.word1 = htons(hdr->words.word1);
1448                 bufhdr->words.word2 = htons(hdr->words.word2);
1449                 bufhdr->words.word3 = htons(hdr->words.word3);
1450                 bufhdr->words.word4 = 0;
1451         }
1452
1453         return min(max_payload, skb->len);
1454 }
1455
1456 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1457 {
1458         struct hpsb_packet *p;
1459
1460         p = hpsb_alloc_packet(0);
1461         if (p) {
1462                 p->host = host;
1463                 p->generation = get_hpsb_generation(host);
1464                 p->type = hpsb_async;
1465         }
1466         return p;
1467 }
1468
1469 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1470                                               struct hpsb_host *host,
1471                                               nodeid_t node, u64 addr,
1472                                               void * data, int tx_len)
1473 {
1474         p->node_id = node;
1475         p->data = NULL;
1476
1477         p->tcode = TCODE_WRITEB;
1478         p->header[1] = (host->node_id << 16) | (addr >> 32);
1479         p->header[2] = addr & 0xffffffff;
1480
1481         p->header_size = 16;
1482         p->expect_response = 1;
1483
1484         if (hpsb_get_tlabel(p)) {
1485                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1486                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1487                 return -1;
1488         }
1489         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1490                 | (1 << 8) | (TCODE_WRITEB << 4);
1491
1492         p->header[3] = tx_len << 16;
1493         p->data_size = (tx_len + 3) & ~3;
1494         p->data = (quadlet_t*)data;
1495
1496         return 0;
1497 }
1498
1499 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1500                                               struct eth1394_priv *priv,
1501                                               struct sk_buff *skb, int length)
1502 {
1503         p->header_size = 4;
1504         p->tcode = TCODE_STREAM_DATA;
1505
1506         p->header[0] = (length << 16) | (3 << 14)
1507                 | ((priv->broadcast_channel) << 8)
1508                 | (TCODE_STREAM_DATA << 4);
1509         p->data_size = length;
1510         p->data = ((quadlet_t*)skb->data) - 2;
1511         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1512                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1513         p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1514                                  ETHER1394_GASP_VERSION);
1515
1516         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1517          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1518          * value based on packet->node_id if packet->node_id is not set. */
1519         p->node_id = ALL_NODES;
1520         p->speed_code = priv->bc_sspd;
1521 }
1522
1523 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1524 {
1525         if (packet->tcode != TCODE_STREAM_DATA)
1526                 hpsb_free_tlabel(packet);
1527         hpsb_free_packet(packet);
1528 }
1529
1530 static void ether1394_complete_cb(void *__ptask);
1531
1532 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1533 {
1534         struct eth1394_priv *priv = ptask->priv;
1535         struct hpsb_packet *packet = NULL;
1536
1537         packet = ether1394_alloc_common_packet(priv->host);
1538         if (!packet)
1539                 return -1;
1540
1541         if (ptask->tx_type == ETH1394_GASP) {
1542                 int length = tx_len + (2 * sizeof(quadlet_t));
1543
1544                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1545         } else if (ether1394_prep_write_packet(packet, priv->host,
1546                                                ptask->dest_node,
1547                                                ptask->addr, ptask->skb->data,
1548                                                tx_len)) {
1549                 hpsb_free_packet(packet);
1550                 return -1;
1551         }
1552
1553         ptask->packet = packet;
1554         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1555                                       ptask);
1556
1557         if (hpsb_send_packet(packet) < 0) {
1558                 ether1394_free_packet(packet);
1559                 return -1;
1560         }
1561
1562         return 0;
1563 }
1564
1565
1566 /* Task function to be run when a datagram transmission is completed */
1567 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1568 {
1569         struct sk_buff *skb = ptask->skb;
1570         struct net_device *dev = skb->dev;
1571         struct eth1394_priv *priv = netdev_priv(dev);
1572         unsigned long flags;
1573
1574         /* Statistics */
1575         spin_lock_irqsave(&priv->lock, flags);
1576         if (fail) {
1577                 priv->stats.tx_dropped++;
1578                 priv->stats.tx_errors++;
1579         } else {
1580                 priv->stats.tx_bytes += skb->len;
1581                 priv->stats.tx_packets++;
1582         }
1583         spin_unlock_irqrestore(&priv->lock, flags);
1584
1585         dev_kfree_skb_any(skb);
1586         kmem_cache_free(packet_task_cache, ptask);
1587 }
1588
1589
1590 /* Callback for when a packet has been sent and the status of that packet is
1591  * known */
1592 static void ether1394_complete_cb(void *__ptask)
1593 {
1594         struct packet_task *ptask = (struct packet_task *)__ptask;
1595         struct hpsb_packet *packet = ptask->packet;
1596         int fail = 0;
1597
1598         if (packet->tcode != TCODE_STREAM_DATA)
1599                 fail = hpsb_packet_success(packet);
1600
1601         ether1394_free_packet(packet);
1602
1603         ptask->outstanding_pkts--;
1604         if (ptask->outstanding_pkts > 0 && !fail) {
1605                 int tx_len;
1606
1607                 /* Add the encapsulation header to the fragment */
1608                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1609                                                &ptask->hdr);
1610                 if (ether1394_send_packet(ptask, tx_len))
1611                         ether1394_dg_complete(ptask, 1);
1612         } else {
1613                 ether1394_dg_complete(ptask, fail);
1614         }
1615 }
1616
1617
1618
1619 /* Transmit a packet (called by kernel) */
1620 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1621 {
1622         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1623         struct eth1394hdr *eth;
1624         struct eth1394_priv *priv = netdev_priv(dev);
1625         __be16 proto;
1626         unsigned long flags;
1627         nodeid_t dest_node;
1628         eth1394_tx_type tx_type;
1629         int ret = 0;
1630         unsigned int tx_len;
1631         unsigned int max_payload;
1632         u16 dg_size;
1633         u16 dgl;
1634         struct packet_task *ptask;
1635         struct eth1394_node_ref *node;
1636         struct eth1394_node_info *node_info = NULL;
1637
1638         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1639         if (ptask == NULL) {
1640                 ret = -ENOMEM;
1641                 goto fail;
1642         }
1643
1644         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1645          * it does not set our validity bit. We need to compensate for
1646          * that somewhere else, but not in eth1394. */
1647 #if 0
1648         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1649                 ret = -EAGAIN;
1650                 goto fail;
1651         }
1652 #endif
1653
1654         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1655                 ret = -ENOMEM;
1656                 goto fail;
1657         }
1658
1659         /* Get rid of the fake eth1394 header, but save a pointer */
1660         eth = (struct eth1394hdr*)skb->data;
1661         skb_pull(skb, ETH1394_HLEN);
1662
1663         proto = eth->h_proto;
1664         dg_size = skb->len;
1665
1666         /* Set the transmission type for the packet.  ARP packets and IP
1667          * broadcast packets are sent via GASP. */
1668         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1669             proto == htons(ETH_P_ARP) ||
1670             (proto == htons(ETH_P_IP) &&
1671              IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
1672                 tx_type = ETH1394_GASP;
1673                 dest_node = LOCAL_BUS | ALL_NODES;
1674                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1675                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1676                 dgl = priv->bc_dgl;
1677                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1678                         priv->bc_dgl++;
1679         } else {
1680                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1681
1682                 node = eth1394_find_node_guid(&priv->ip_node_list,
1683                                               be64_to_cpu(guid));
1684                 if (!node) {
1685                         ret = -EAGAIN;
1686                         goto fail;
1687                 }
1688                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1689                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1690                         ret = -EAGAIN;
1691                         goto fail;
1692                 }
1693
1694                 dest_node = node->ud->ne->nodeid;
1695                 max_payload = node_info->maxpayload;
1696                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1697
1698                 dgl = node_info->dgl;
1699                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1700                         node_info->dgl++;
1701                 tx_type = ETH1394_WRREQ;
1702         }
1703
1704         /* If this is an ARP packet, convert it */
1705         if (proto == htons(ETH_P_ARP))
1706                 ether1394_arp_to_1394arp (skb, dev);
1707
1708         ptask->hdr.words.word1 = 0;
1709         ptask->hdr.words.word2 = 0;
1710         ptask->hdr.words.word3 = 0;
1711         ptask->hdr.words.word4 = 0;
1712         ptask->skb = skb;
1713         ptask->priv = priv;
1714         ptask->tx_type = tx_type;
1715
1716         if (tx_type != ETH1394_GASP) {
1717                 u64 addr;
1718
1719                 spin_lock_irqsave(&priv->lock, flags);
1720                 addr = node_info->fifo;
1721                 spin_unlock_irqrestore(&priv->lock, flags);
1722
1723                 ptask->addr = addr;
1724                 ptask->dest_node = dest_node;
1725         }
1726
1727         ptask->tx_type = tx_type;
1728         ptask->max_payload = max_payload;
1729         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1730                                                              &ptask->hdr, dg_size,
1731                                                              dgl);
1732
1733         /* Add the encapsulation header to the fragment */
1734         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1735         dev->trans_start = jiffies;
1736         if (ether1394_send_packet(ptask, tx_len))
1737                 goto fail;
1738
1739         netif_wake_queue(dev);
1740         return 0;
1741 fail:
1742         if (ptask)
1743                 kmem_cache_free(packet_task_cache, ptask);
1744
1745         if (skb != NULL)
1746                 dev_kfree_skb(skb);
1747
1748         spin_lock_irqsave (&priv->lock, flags);
1749         priv->stats.tx_dropped++;
1750         priv->stats.tx_errors++;
1751         spin_unlock_irqrestore (&priv->lock, flags);
1752
1753         if (netif_queue_stopped(dev))
1754                 netif_wake_queue(dev);
1755
1756         return 0;  /* returning non-zero causes serious problems */
1757 }
1758
1759 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1760 {
1761         strcpy (info->driver, driver_name);
1762         /* FIXME XXX provide sane businfo */
1763         strcpy (info->bus_info, "ieee1394");
1764 }
1765
1766 static struct ethtool_ops ethtool_ops = {
1767         .get_drvinfo = ether1394_get_drvinfo
1768 };
1769
1770 static int __init ether1394_init_module (void)
1771 {
1772         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1773                                               0, 0, NULL, NULL);
1774
1775         /* Register ourselves as a highlevel driver */
1776         hpsb_register_highlevel(&eth1394_highlevel);
1777
1778         return hpsb_register_protocol(&eth1394_proto_driver);
1779 }
1780
1781 static void __exit ether1394_exit_module (void)
1782 {
1783         hpsb_unregister_protocol(&eth1394_proto_driver);
1784         hpsb_unregister_highlevel(&eth1394_highlevel);
1785         kmem_cache_destroy(packet_task_cache);
1786 }
1787
1788 module_init(ether1394_init_module);
1789 module_exit(ether1394_exit_module);