Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38         struct ttm_prime_object prime;
39         struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43         uint32_t handle;
44         uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48         struct vmw_resource res;
49         uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53         struct ttm_base_object base;
54         struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61         .res_type = vmw_res_stream,
62         .needs_backup = false,
63         .may_evict = false,
64         .type_name = "video streams",
65         .backup_placement = NULL,
66         .create = NULL,
67         .destroy = NULL,
68         .bind = NULL,
69         .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75         return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87         kref_get(&res->kref);
88         return res;
89 }
90
91
92 /**
93  * vmw_resource_release_id - release a resource id to the id manager.
94  *
95  * @res: Pointer to the resource.
96  *
97  * Release the resource id to the resource id manager and set it to -1
98  */
99 void vmw_resource_release_id(struct vmw_resource *res)
100 {
101         struct vmw_private *dev_priv = res->dev_priv;
102         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
103
104         write_lock(&dev_priv->resource_lock);
105         if (res->id != -1)
106                 idr_remove(idr, res->id);
107         res->id = -1;
108         write_unlock(&dev_priv->resource_lock);
109 }
110
111 static void vmw_resource_release(struct kref *kref)
112 {
113         struct vmw_resource *res =
114             container_of(kref, struct vmw_resource, kref);
115         struct vmw_private *dev_priv = res->dev_priv;
116         int id;
117         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
118
119         res->avail = false;
120         list_del_init(&res->lru_head);
121         write_unlock(&dev_priv->resource_lock);
122         if (res->backup) {
123                 struct ttm_buffer_object *bo = &res->backup->base;
124
125                 ttm_bo_reserve(bo, false, false, false, 0);
126                 if (!list_empty(&res->mob_head) &&
127                     res->func->unbind != NULL) {
128                         struct ttm_validate_buffer val_buf;
129
130                         val_buf.bo = bo;
131                         res->func->unbind(res, false, &val_buf);
132                 }
133                 res->backup_dirty = false;
134                 list_del_init(&res->mob_head);
135                 ttm_bo_unreserve(bo);
136                 vmw_dmabuf_unreference(&res->backup);
137         }
138
139         if (likely(res->hw_destroy != NULL))
140                 res->hw_destroy(res);
141
142         id = res->id;
143         if (res->res_free != NULL)
144                 res->res_free(res);
145         else
146                 kfree(res);
147
148         write_lock(&dev_priv->resource_lock);
149
150         if (id != -1)
151                 idr_remove(idr, id);
152 }
153
154 void vmw_resource_unreference(struct vmw_resource **p_res)
155 {
156         struct vmw_resource *res = *p_res;
157         struct vmw_private *dev_priv = res->dev_priv;
158
159         *p_res = NULL;
160         write_lock(&dev_priv->resource_lock);
161         kref_put(&res->kref, vmw_resource_release);
162         write_unlock(&dev_priv->resource_lock);
163 }
164
165
166 /**
167  * vmw_resource_alloc_id - release a resource id to the id manager.
168  *
169  * @res: Pointer to the resource.
170  *
171  * Allocate the lowest free resource from the resource manager, and set
172  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
173  */
174 int vmw_resource_alloc_id(struct vmw_resource *res)
175 {
176         struct vmw_private *dev_priv = res->dev_priv;
177         int ret;
178         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
179
180         BUG_ON(res->id != -1);
181
182         idr_preload(GFP_KERNEL);
183         write_lock(&dev_priv->resource_lock);
184
185         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
186         if (ret >= 0)
187                 res->id = ret;
188
189         write_unlock(&dev_priv->resource_lock);
190         idr_preload_end();
191         return ret < 0 ? ret : 0;
192 }
193
194 /**
195  * vmw_resource_init - initialize a struct vmw_resource
196  *
197  * @dev_priv:       Pointer to a device private struct.
198  * @res:            The struct vmw_resource to initialize.
199  * @obj_type:       Resource object type.
200  * @delay_id:       Boolean whether to defer device id allocation until
201  *                  the first validation.
202  * @res_free:       Resource destructor.
203  * @func:           Resource function table.
204  */
205 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
206                       bool delay_id,
207                       void (*res_free) (struct vmw_resource *res),
208                       const struct vmw_res_func *func)
209 {
210         kref_init(&res->kref);
211         res->hw_destroy = NULL;
212         res->res_free = res_free;
213         res->avail = false;
214         res->dev_priv = dev_priv;
215         res->func = func;
216         INIT_LIST_HEAD(&res->lru_head);
217         INIT_LIST_HEAD(&res->mob_head);
218         res->id = -1;
219         res->backup = NULL;
220         res->backup_offset = 0;
221         res->backup_dirty = false;
222         res->res_dirty = false;
223         if (delay_id)
224                 return 0;
225         else
226                 return vmw_resource_alloc_id(res);
227 }
228
229 /**
230  * vmw_resource_activate
231  *
232  * @res:        Pointer to the newly created resource
233  * @hw_destroy: Destroy function. NULL if none.
234  *
235  * Activate a resource after the hardware has been made aware of it.
236  * Set tye destroy function to @destroy. Typically this frees the
237  * resource and destroys the hardware resources associated with it.
238  * Activate basically means that the function vmw_resource_lookup will
239  * find it.
240  */
241 void vmw_resource_activate(struct vmw_resource *res,
242                            void (*hw_destroy) (struct vmw_resource *))
243 {
244         struct vmw_private *dev_priv = res->dev_priv;
245
246         write_lock(&dev_priv->resource_lock);
247         res->avail = true;
248         res->hw_destroy = hw_destroy;
249         write_unlock(&dev_priv->resource_lock);
250 }
251
252 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
253                                          struct idr *idr, int id)
254 {
255         struct vmw_resource *res;
256
257         read_lock(&dev_priv->resource_lock);
258         res = idr_find(idr, id);
259         if (res && res->avail)
260                 kref_get(&res->kref);
261         else
262                 res = NULL;
263         read_unlock(&dev_priv->resource_lock);
264
265         if (unlikely(res == NULL))
266                 return NULL;
267
268         return res;
269 }
270
271 /**
272  * vmw_user_resource_lookup_handle - lookup a struct resource from a
273  * TTM user-space handle and perform basic type checks
274  *
275  * @dev_priv:     Pointer to a device private struct
276  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
277  * @handle:       The TTM user-space handle
278  * @converter:    Pointer to an object describing the resource type
279  * @p_res:        On successful return the location pointed to will contain
280  *                a pointer to a refcounted struct vmw_resource.
281  *
282  * If the handle can't be found or is associated with an incorrect resource
283  * type, -EINVAL will be returned.
284  */
285 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
286                                     struct ttm_object_file *tfile,
287                                     uint32_t handle,
288                                     const struct vmw_user_resource_conv
289                                     *converter,
290                                     struct vmw_resource **p_res)
291 {
292         struct ttm_base_object *base;
293         struct vmw_resource *res;
294         int ret = -EINVAL;
295
296         base = ttm_base_object_lookup(tfile, handle);
297         if (unlikely(base == NULL))
298                 return -EINVAL;
299
300         if (unlikely(ttm_base_object_type(base) != converter->object_type))
301                 goto out_bad_resource;
302
303         res = converter->base_obj_to_res(base);
304
305         read_lock(&dev_priv->resource_lock);
306         if (!res->avail || res->res_free != converter->res_free) {
307                 read_unlock(&dev_priv->resource_lock);
308                 goto out_bad_resource;
309         }
310
311         kref_get(&res->kref);
312         read_unlock(&dev_priv->resource_lock);
313
314         *p_res = res;
315         ret = 0;
316
317 out_bad_resource:
318         ttm_base_object_unref(&base);
319
320         return ret;
321 }
322
323 /**
324  * Helper function that looks either a surface or dmabuf.
325  *
326  * The pointer this pointed at by out_surf and out_buf needs to be null.
327  */
328 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
329                            struct ttm_object_file *tfile,
330                            uint32_t handle,
331                            struct vmw_surface **out_surf,
332                            struct vmw_dma_buffer **out_buf)
333 {
334         struct vmw_resource *res;
335         int ret;
336
337         BUG_ON(*out_surf || *out_buf);
338
339         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
340                                               user_surface_converter,
341                                               &res);
342         if (!ret) {
343                 *out_surf = vmw_res_to_srf(res);
344                 return 0;
345         }
346
347         *out_surf = NULL;
348         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
349         return ret;
350 }
351
352 /**
353  * Buffer management.
354  */
355
356 /**
357  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
358  *
359  * @dev_priv: Pointer to a struct vmw_private identifying the device.
360  * @size: The requested buffer size.
361  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
362  */
363 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
364                                   bool user)
365 {
366         static size_t struct_size, user_struct_size;
367         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
368         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
369
370         if (unlikely(struct_size == 0)) {
371                 size_t backend_size = ttm_round_pot(vmw_tt_size);
372
373                 struct_size = backend_size +
374                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
375                 user_struct_size = backend_size +
376                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
377         }
378
379         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
380                 page_array_size +=
381                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
382
383         return ((user) ? user_struct_size : struct_size) +
384                 page_array_size;
385 }
386
387 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
388 {
389         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
390
391         kfree(vmw_bo);
392 }
393
394 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
395 {
396         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
397
398         ttm_prime_object_kfree(vmw_user_bo, prime);
399 }
400
401 int vmw_dmabuf_init(struct vmw_private *dev_priv,
402                     struct vmw_dma_buffer *vmw_bo,
403                     size_t size, struct ttm_placement *placement,
404                     bool interruptible,
405                     void (*bo_free) (struct ttm_buffer_object *bo))
406 {
407         struct ttm_bo_device *bdev = &dev_priv->bdev;
408         size_t acc_size;
409         int ret;
410         bool user = (bo_free == &vmw_user_dmabuf_destroy);
411
412         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
413
414         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
415         memset(vmw_bo, 0, sizeof(*vmw_bo));
416
417         INIT_LIST_HEAD(&vmw_bo->res_list);
418
419         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
420                           (user) ? ttm_bo_type_device :
421                           ttm_bo_type_kernel, placement,
422                           0, interruptible,
423                           NULL, acc_size, NULL, bo_free);
424         return ret;
425 }
426
427 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
428 {
429         struct vmw_user_dma_buffer *vmw_user_bo;
430         struct ttm_base_object *base = *p_base;
431         struct ttm_buffer_object *bo;
432
433         *p_base = NULL;
434
435         if (unlikely(base == NULL))
436                 return;
437
438         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
439                                    prime.base);
440         bo = &vmw_user_bo->dma.base;
441         ttm_bo_unref(&bo);
442 }
443
444 /**
445  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
446  *
447  * @dev_priv: Pointer to a struct device private.
448  * @tfile: Pointer to a struct ttm_object_file on which to register the user
449  * object.
450  * @size: Size of the dma buffer.
451  * @shareable: Boolean whether the buffer is shareable with other open files.
452  * @handle: Pointer to where the handle value should be assigned.
453  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
454  * should be assigned.
455  */
456 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
457                           struct ttm_object_file *tfile,
458                           uint32_t size,
459                           bool shareable,
460                           uint32_t *handle,
461                           struct vmw_dma_buffer **p_dma_buf)
462 {
463         struct vmw_user_dma_buffer *user_bo;
464         struct ttm_buffer_object *tmp;
465         int ret;
466
467         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
468         if (unlikely(user_bo == NULL)) {
469                 DRM_ERROR("Failed to allocate a buffer.\n");
470                 return -ENOMEM;
471         }
472
473         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
474                               &vmw_vram_sys_placement, true,
475                               &vmw_user_dmabuf_destroy);
476         if (unlikely(ret != 0))
477                 return ret;
478
479         tmp = ttm_bo_reference(&user_bo->dma.base);
480         ret = ttm_prime_object_init(tfile,
481                                     size,
482                                     &user_bo->prime,
483                                     shareable,
484                                     ttm_buffer_type,
485                                     &vmw_user_dmabuf_release, NULL);
486         if (unlikely(ret != 0)) {
487                 ttm_bo_unref(&tmp);
488                 goto out_no_base_object;
489         }
490
491         *p_dma_buf = &user_bo->dma;
492         *handle = user_bo->prime.base.hash.key;
493
494 out_no_base_object:
495         return ret;
496 }
497
498 /**
499  * vmw_user_dmabuf_verify_access - verify access permissions on this
500  * buffer object.
501  *
502  * @bo: Pointer to the buffer object being accessed
503  * @tfile: Identifying the caller.
504  */
505 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
506                                   struct ttm_object_file *tfile)
507 {
508         struct vmw_user_dma_buffer *vmw_user_bo;
509
510         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
511                 return -EPERM;
512
513         vmw_user_bo = vmw_user_dma_buffer(bo);
514         return (vmw_user_bo->prime.base.tfile == tfile ||
515                 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
516 }
517
518 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
519                            struct drm_file *file_priv)
520 {
521         struct vmw_private *dev_priv = vmw_priv(dev);
522         union drm_vmw_alloc_dmabuf_arg *arg =
523             (union drm_vmw_alloc_dmabuf_arg *)data;
524         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
525         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
526         struct vmw_dma_buffer *dma_buf;
527         uint32_t handle;
528         struct vmw_master *vmaster = vmw_master(file_priv->master);
529         int ret;
530
531         ret = ttm_read_lock(&vmaster->lock, true);
532         if (unlikely(ret != 0))
533                 return ret;
534
535         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
536                                     req->size, false, &handle, &dma_buf);
537         if (unlikely(ret != 0))
538                 goto out_no_dmabuf;
539
540         rep->handle = handle;
541         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
542         rep->cur_gmr_id = handle;
543         rep->cur_gmr_offset = 0;
544
545         vmw_dmabuf_unreference(&dma_buf);
546
547 out_no_dmabuf:
548         ttm_read_unlock(&vmaster->lock);
549
550         return ret;
551 }
552
553 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
554                            struct drm_file *file_priv)
555 {
556         struct drm_vmw_unref_dmabuf_arg *arg =
557             (struct drm_vmw_unref_dmabuf_arg *)data;
558
559         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
560                                          arg->handle,
561                                          TTM_REF_USAGE);
562 }
563
564 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
565                            uint32_t handle, struct vmw_dma_buffer **out)
566 {
567         struct vmw_user_dma_buffer *vmw_user_bo;
568         struct ttm_base_object *base;
569
570         base = ttm_base_object_lookup(tfile, handle);
571         if (unlikely(base == NULL)) {
572                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
573                        (unsigned long)handle);
574                 return -ESRCH;
575         }
576
577         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
578                 ttm_base_object_unref(&base);
579                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
580                        (unsigned long)handle);
581                 return -EINVAL;
582         }
583
584         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
585                                    prime.base);
586         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
587         ttm_base_object_unref(&base);
588         *out = &vmw_user_bo->dma;
589
590         return 0;
591 }
592
593 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
594                               struct vmw_dma_buffer *dma_buf)
595 {
596         struct vmw_user_dma_buffer *user_bo;
597
598         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
599                 return -EINVAL;
600
601         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
602         return ttm_ref_object_add(tfile, &user_bo->prime.base,
603                                   TTM_REF_USAGE, NULL);
604 }
605
606 /*
607  * Stream management
608  */
609
610 static void vmw_stream_destroy(struct vmw_resource *res)
611 {
612         struct vmw_private *dev_priv = res->dev_priv;
613         struct vmw_stream *stream;
614         int ret;
615
616         DRM_INFO("%s: unref\n", __func__);
617         stream = container_of(res, struct vmw_stream, res);
618
619         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
620         WARN_ON(ret != 0);
621 }
622
623 static int vmw_stream_init(struct vmw_private *dev_priv,
624                            struct vmw_stream *stream,
625                            void (*res_free) (struct vmw_resource *res))
626 {
627         struct vmw_resource *res = &stream->res;
628         int ret;
629
630         ret = vmw_resource_init(dev_priv, res, false, res_free,
631                                 &vmw_stream_func);
632
633         if (unlikely(ret != 0)) {
634                 if (res_free == NULL)
635                         kfree(stream);
636                 else
637                         res_free(&stream->res);
638                 return ret;
639         }
640
641         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
642         if (ret) {
643                 vmw_resource_unreference(&res);
644                 return ret;
645         }
646
647         DRM_INFO("%s: claimed\n", __func__);
648
649         vmw_resource_activate(&stream->res, vmw_stream_destroy);
650         return 0;
651 }
652
653 static void vmw_user_stream_free(struct vmw_resource *res)
654 {
655         struct vmw_user_stream *stream =
656             container_of(res, struct vmw_user_stream, stream.res);
657         struct vmw_private *dev_priv = res->dev_priv;
658
659         ttm_base_object_kfree(stream, base);
660         ttm_mem_global_free(vmw_mem_glob(dev_priv),
661                             vmw_user_stream_size);
662 }
663
664 /**
665  * This function is called when user space has no more references on the
666  * base object. It releases the base-object's reference on the resource object.
667  */
668
669 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
670 {
671         struct ttm_base_object *base = *p_base;
672         struct vmw_user_stream *stream =
673             container_of(base, struct vmw_user_stream, base);
674         struct vmw_resource *res = &stream->stream.res;
675
676         *p_base = NULL;
677         vmw_resource_unreference(&res);
678 }
679
680 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
681                            struct drm_file *file_priv)
682 {
683         struct vmw_private *dev_priv = vmw_priv(dev);
684         struct vmw_resource *res;
685         struct vmw_user_stream *stream;
686         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
687         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
688         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
689         int ret = 0;
690
691
692         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
693         if (unlikely(res == NULL))
694                 return -EINVAL;
695
696         if (res->res_free != &vmw_user_stream_free) {
697                 ret = -EINVAL;
698                 goto out;
699         }
700
701         stream = container_of(res, struct vmw_user_stream, stream.res);
702         if (stream->base.tfile != tfile) {
703                 ret = -EINVAL;
704                 goto out;
705         }
706
707         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
708 out:
709         vmw_resource_unreference(&res);
710         return ret;
711 }
712
713 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
714                            struct drm_file *file_priv)
715 {
716         struct vmw_private *dev_priv = vmw_priv(dev);
717         struct vmw_user_stream *stream;
718         struct vmw_resource *res;
719         struct vmw_resource *tmp;
720         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
721         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
722         struct vmw_master *vmaster = vmw_master(file_priv->master);
723         int ret;
724
725         /*
726          * Approximate idr memory usage with 128 bytes. It will be limited
727          * by maximum number_of streams anyway?
728          */
729
730         if (unlikely(vmw_user_stream_size == 0))
731                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
732
733         ret = ttm_read_lock(&vmaster->lock, true);
734         if (unlikely(ret != 0))
735                 return ret;
736
737         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
738                                    vmw_user_stream_size,
739                                    false, true);
740         if (unlikely(ret != 0)) {
741                 if (ret != -ERESTARTSYS)
742                         DRM_ERROR("Out of graphics memory for stream"
743                                   " creation.\n");
744                 goto out_unlock;
745         }
746
747
748         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
749         if (unlikely(stream == NULL)) {
750                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
751                                     vmw_user_stream_size);
752                 ret = -ENOMEM;
753                 goto out_unlock;
754         }
755
756         res = &stream->stream.res;
757         stream->base.shareable = false;
758         stream->base.tfile = NULL;
759
760         /*
761          * From here on, the destructor takes over resource freeing.
762          */
763
764         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
765         if (unlikely(ret != 0))
766                 goto out_unlock;
767
768         tmp = vmw_resource_reference(res);
769         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
770                                    &vmw_user_stream_base_release, NULL);
771
772         if (unlikely(ret != 0)) {
773                 vmw_resource_unreference(&tmp);
774                 goto out_err;
775         }
776
777         arg->stream_id = res->id;
778 out_err:
779         vmw_resource_unreference(&res);
780 out_unlock:
781         ttm_read_unlock(&vmaster->lock);
782         return ret;
783 }
784
785 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
786                            struct ttm_object_file *tfile,
787                            uint32_t *inout_id, struct vmw_resource **out)
788 {
789         struct vmw_user_stream *stream;
790         struct vmw_resource *res;
791         int ret;
792
793         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
794                                   *inout_id);
795         if (unlikely(res == NULL))
796                 return -EINVAL;
797
798         if (res->res_free != &vmw_user_stream_free) {
799                 ret = -EINVAL;
800                 goto err_ref;
801         }
802
803         stream = container_of(res, struct vmw_user_stream, stream.res);
804         if (stream->base.tfile != tfile) {
805                 ret = -EPERM;
806                 goto err_ref;
807         }
808
809         *inout_id = stream->stream.stream_id;
810         *out = res;
811         return 0;
812 err_ref:
813         vmw_resource_unreference(&res);
814         return ret;
815 }
816
817
818 /**
819  * vmw_dumb_create - Create a dumb kms buffer
820  *
821  * @file_priv: Pointer to a struct drm_file identifying the caller.
822  * @dev: Pointer to the drm device.
823  * @args: Pointer to a struct drm_mode_create_dumb structure
824  *
825  * This is a driver callback for the core drm create_dumb functionality.
826  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
827  * that the arguments have a different format.
828  */
829 int vmw_dumb_create(struct drm_file *file_priv,
830                     struct drm_device *dev,
831                     struct drm_mode_create_dumb *args)
832 {
833         struct vmw_private *dev_priv = vmw_priv(dev);
834         struct vmw_master *vmaster = vmw_master(file_priv->master);
835         struct vmw_dma_buffer *dma_buf;
836         int ret;
837
838         args->pitch = args->width * ((args->bpp + 7) / 8);
839         args->size = args->pitch * args->height;
840
841         ret = ttm_read_lock(&vmaster->lock, true);
842         if (unlikely(ret != 0))
843                 return ret;
844
845         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
846                                     args->size, false, &args->handle,
847                                     &dma_buf);
848         if (unlikely(ret != 0))
849                 goto out_no_dmabuf;
850
851         vmw_dmabuf_unreference(&dma_buf);
852 out_no_dmabuf:
853         ttm_read_unlock(&vmaster->lock);
854         return ret;
855 }
856
857 /**
858  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
859  *
860  * @file_priv: Pointer to a struct drm_file identifying the caller.
861  * @dev: Pointer to the drm device.
862  * @handle: Handle identifying the dumb buffer.
863  * @offset: The address space offset returned.
864  *
865  * This is a driver callback for the core drm dumb_map_offset functionality.
866  */
867 int vmw_dumb_map_offset(struct drm_file *file_priv,
868                         struct drm_device *dev, uint32_t handle,
869                         uint64_t *offset)
870 {
871         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
872         struct vmw_dma_buffer *out_buf;
873         int ret;
874
875         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
876         if (ret != 0)
877                 return -EINVAL;
878
879         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
880         vmw_dmabuf_unreference(&out_buf);
881         return 0;
882 }
883
884 /**
885  * vmw_dumb_destroy - Destroy a dumb boffer
886  *
887  * @file_priv: Pointer to a struct drm_file identifying the caller.
888  * @dev: Pointer to the drm device.
889  * @handle: Handle identifying the dumb buffer.
890  *
891  * This is a driver callback for the core drm dumb_destroy functionality.
892  */
893 int vmw_dumb_destroy(struct drm_file *file_priv,
894                      struct drm_device *dev,
895                      uint32_t handle)
896 {
897         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
898                                          handle, TTM_REF_USAGE);
899 }
900
901 /**
902  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
903  *
904  * @res:            The resource for which to allocate a backup buffer.
905  * @interruptible:  Whether any sleeps during allocation should be
906  *                  performed while interruptible.
907  */
908 static int vmw_resource_buf_alloc(struct vmw_resource *res,
909                                   bool interruptible)
910 {
911         unsigned long size =
912                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
913         struct vmw_dma_buffer *backup;
914         int ret;
915
916         if (likely(res->backup)) {
917                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
918                 return 0;
919         }
920
921         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
922         if (unlikely(backup == NULL))
923                 return -ENOMEM;
924
925         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
926                               res->func->backup_placement,
927                               interruptible,
928                               &vmw_dmabuf_bo_free);
929         if (unlikely(ret != 0))
930                 goto out_no_dmabuf;
931
932         res->backup = backup;
933
934 out_no_dmabuf:
935         return ret;
936 }
937
938 /**
939  * vmw_resource_do_validate - Make a resource up-to-date and visible
940  *                            to the device.
941  *
942  * @res:            The resource to make visible to the device.
943  * @val_buf:        Information about a buffer possibly
944  *                  containing backup data if a bind operation is needed.
945  *
946  * On hardware resource shortage, this function returns -EBUSY and
947  * should be retried once resources have been freed up.
948  */
949 static int vmw_resource_do_validate(struct vmw_resource *res,
950                                     struct ttm_validate_buffer *val_buf)
951 {
952         int ret = 0;
953         const struct vmw_res_func *func = res->func;
954
955         if (unlikely(res->id == -1)) {
956                 ret = func->create(res);
957                 if (unlikely(ret != 0))
958                         return ret;
959         }
960
961         if (func->bind &&
962             ((func->needs_backup && list_empty(&res->mob_head) &&
963               val_buf->bo != NULL) ||
964              (!func->needs_backup && val_buf->bo != NULL))) {
965                 ret = func->bind(res, val_buf);
966                 if (unlikely(ret != 0))
967                         goto out_bind_failed;
968                 if (func->needs_backup)
969                         list_add_tail(&res->mob_head, &res->backup->res_list);
970         }
971
972         /*
973          * Only do this on write operations, and move to
974          * vmw_resource_unreserve if it can be called after
975          * backup buffers have been unreserved. Otherwise
976          * sort out locking.
977          */
978         res->res_dirty = true;
979
980         return 0;
981
982 out_bind_failed:
983         func->destroy(res);
984
985         return ret;
986 }
987
988 /**
989  * vmw_resource_unreserve - Unreserve a resource previously reserved for
990  * command submission.
991  *
992  * @res:               Pointer to the struct vmw_resource to unreserve.
993  * @new_backup:        Pointer to new backup buffer if command submission
994  *                     switched.
995  * @new_backup_offset: New backup offset if @new_backup is !NULL.
996  *
997  * Currently unreserving a resource means putting it back on the device's
998  * resource lru list, so that it can be evicted if necessary.
999  */
1000 void vmw_resource_unreserve(struct vmw_resource *res,
1001                             struct vmw_dma_buffer *new_backup,
1002                             unsigned long new_backup_offset)
1003 {
1004         struct vmw_private *dev_priv = res->dev_priv;
1005
1006         if (!list_empty(&res->lru_head))
1007                 return;
1008
1009         if (new_backup && new_backup != res->backup) {
1010
1011                 if (res->backup) {
1012                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1013                         list_del_init(&res->mob_head);
1014                         vmw_dmabuf_unreference(&res->backup);
1015                 }
1016
1017                 res->backup = vmw_dmabuf_reference(new_backup);
1018                 lockdep_assert_held(&new_backup->base.resv->lock.base);
1019                 list_add_tail(&res->mob_head, &new_backup->res_list);
1020         }
1021         if (new_backup)
1022                 res->backup_offset = new_backup_offset;
1023
1024         if (!res->func->may_evict || res->id == -1)
1025                 return;
1026
1027         write_lock(&dev_priv->resource_lock);
1028         list_add_tail(&res->lru_head,
1029                       &res->dev_priv->res_lru[res->func->res_type]);
1030         write_unlock(&dev_priv->resource_lock);
1031 }
1032
1033 /**
1034  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1035  *                             for a resource and in that case, allocate
1036  *                             one, reserve and validate it.
1037  *
1038  * @res:            The resource for which to allocate a backup buffer.
1039  * @interruptible:  Whether any sleeps during allocation should be
1040  *                  performed while interruptible.
1041  * @val_buf:        On successful return contains data about the
1042  *                  reserved and validated backup buffer.
1043  */
1044 static int
1045 vmw_resource_check_buffer(struct vmw_resource *res,
1046                           bool interruptible,
1047                           struct ttm_validate_buffer *val_buf)
1048 {
1049         struct list_head val_list;
1050         bool backup_dirty = false;
1051         int ret;
1052
1053         if (unlikely(res->backup == NULL)) {
1054                 ret = vmw_resource_buf_alloc(res, interruptible);
1055                 if (unlikely(ret != 0))
1056                         return ret;
1057         }
1058
1059         INIT_LIST_HEAD(&val_list);
1060         val_buf->bo = ttm_bo_reference(&res->backup->base);
1061         list_add_tail(&val_buf->head, &val_list);
1062         ret = ttm_eu_reserve_buffers(NULL, &val_list);
1063         if (unlikely(ret != 0))
1064                 goto out_no_reserve;
1065
1066         if (res->func->needs_backup && list_empty(&res->mob_head))
1067                 return 0;
1068
1069         backup_dirty = res->backup_dirty;
1070         ret = ttm_bo_validate(&res->backup->base,
1071                               res->func->backup_placement,
1072                               true, false);
1073
1074         if (unlikely(ret != 0))
1075                 goto out_no_validate;
1076
1077         return 0;
1078
1079 out_no_validate:
1080         ttm_eu_backoff_reservation(NULL, &val_list);
1081 out_no_reserve:
1082         ttm_bo_unref(&val_buf->bo);
1083         if (backup_dirty)
1084                 vmw_dmabuf_unreference(&res->backup);
1085
1086         return ret;
1087 }
1088
1089 /**
1090  * vmw_resource_reserve - Reserve a resource for command submission
1091  *
1092  * @res:            The resource to reserve.
1093  *
1094  * This function takes the resource off the LRU list and make sure
1095  * a backup buffer is present for guest-backed resources. However,
1096  * the buffer may not be bound to the resource at this point.
1097  *
1098  */
1099 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1100 {
1101         struct vmw_private *dev_priv = res->dev_priv;
1102         int ret;
1103
1104         write_lock(&dev_priv->resource_lock);
1105         list_del_init(&res->lru_head);
1106         write_unlock(&dev_priv->resource_lock);
1107
1108         if (res->func->needs_backup && res->backup == NULL &&
1109             !no_backup) {
1110                 ret = vmw_resource_buf_alloc(res, true);
1111                 if (unlikely(ret != 0))
1112                         return ret;
1113         }
1114
1115         return 0;
1116 }
1117
1118 /**
1119  * vmw_resource_backoff_reservation - Unreserve and unreference a
1120  *                                    backup buffer
1121  *.
1122  * @val_buf:        Backup buffer information.
1123  */
1124 static void
1125 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1126 {
1127         struct list_head val_list;
1128
1129         if (likely(val_buf->bo == NULL))
1130                 return;
1131
1132         INIT_LIST_HEAD(&val_list);
1133         list_add_tail(&val_buf->head, &val_list);
1134         ttm_eu_backoff_reservation(NULL, &val_list);
1135         ttm_bo_unref(&val_buf->bo);
1136 }
1137
1138 /**
1139  * vmw_resource_do_evict - Evict a resource, and transfer its data
1140  *                         to a backup buffer.
1141  *
1142  * @res:            The resource to evict.
1143  * @interruptible:  Whether to wait interruptible.
1144  */
1145 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1146 {
1147         struct ttm_validate_buffer val_buf;
1148         const struct vmw_res_func *func = res->func;
1149         int ret;
1150
1151         BUG_ON(!func->may_evict);
1152
1153         val_buf.bo = NULL;
1154         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1155         if (unlikely(ret != 0))
1156                 return ret;
1157
1158         if (unlikely(func->unbind != NULL &&
1159                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1160                 ret = func->unbind(res, res->res_dirty, &val_buf);
1161                 if (unlikely(ret != 0))
1162                         goto out_no_unbind;
1163                 list_del_init(&res->mob_head);
1164         }
1165         ret = func->destroy(res);
1166         res->backup_dirty = true;
1167         res->res_dirty = false;
1168 out_no_unbind:
1169         vmw_resource_backoff_reservation(&val_buf);
1170
1171         return ret;
1172 }
1173
1174
1175 /**
1176  * vmw_resource_validate - Make a resource up-to-date and visible
1177  *                         to the device.
1178  *
1179  * @res:            The resource to make visible to the device.
1180  *
1181  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1182  * be reserved and validated.
1183  * On hardware resource shortage, this function will repeatedly evict
1184  * resources of the same type until the validation succeeds.
1185  */
1186 int vmw_resource_validate(struct vmw_resource *res)
1187 {
1188         int ret;
1189         struct vmw_resource *evict_res;
1190         struct vmw_private *dev_priv = res->dev_priv;
1191         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1192         struct ttm_validate_buffer val_buf;
1193         unsigned err_count = 0;
1194
1195         if (likely(!res->func->may_evict))
1196                 return 0;
1197
1198         val_buf.bo = NULL;
1199         if (res->backup)
1200                 val_buf.bo = &res->backup->base;
1201         do {
1202                 ret = vmw_resource_do_validate(res, &val_buf);
1203                 if (likely(ret != -EBUSY))
1204                         break;
1205
1206                 write_lock(&dev_priv->resource_lock);
1207                 if (list_empty(lru_list) || !res->func->may_evict) {
1208                         DRM_ERROR("Out of device device resources "
1209                                   "for %s.\n", res->func->type_name);
1210                         ret = -EBUSY;
1211                         write_unlock(&dev_priv->resource_lock);
1212                         break;
1213                 }
1214
1215                 evict_res = vmw_resource_reference
1216                         (list_first_entry(lru_list, struct vmw_resource,
1217                                           lru_head));
1218                 list_del_init(&evict_res->lru_head);
1219
1220                 write_unlock(&dev_priv->resource_lock);
1221
1222                 ret = vmw_resource_do_evict(evict_res, true);
1223                 if (unlikely(ret != 0)) {
1224                         write_lock(&dev_priv->resource_lock);
1225                         list_add_tail(&evict_res->lru_head, lru_list);
1226                         write_unlock(&dev_priv->resource_lock);
1227                         if (ret == -ERESTARTSYS ||
1228                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1229                                 vmw_resource_unreference(&evict_res);
1230                                 goto out_no_validate;
1231                         }
1232                 }
1233
1234                 vmw_resource_unreference(&evict_res);
1235         } while (1);
1236
1237         if (unlikely(ret != 0))
1238                 goto out_no_validate;
1239         else if (!res->func->needs_backup && res->backup) {
1240                 list_del_init(&res->mob_head);
1241                 vmw_dmabuf_unreference(&res->backup);
1242         }
1243
1244         return 0;
1245
1246 out_no_validate:
1247         return ret;
1248 }
1249
1250 /**
1251  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1252  *                       object without unreserving it.
1253  *
1254  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1255  * @fence:          Pointer to the fence. If NULL, this function will
1256  *                  insert a fence into the command stream..
1257  *
1258  * Contrary to the ttm_eu version of this function, it takes only
1259  * a single buffer object instead of a list, and it also doesn't
1260  * unreserve the buffer object, which needs to be done separately.
1261  */
1262 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1263                          struct vmw_fence_obj *fence)
1264 {
1265         struct ttm_bo_device *bdev = bo->bdev;
1266         struct ttm_bo_driver *driver = bdev->driver;
1267         struct vmw_fence_obj *old_fence_obj;
1268         struct vmw_private *dev_priv =
1269                 container_of(bdev, struct vmw_private, bdev);
1270
1271         if (fence == NULL)
1272                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1273         else
1274                 driver->sync_obj_ref(fence);
1275
1276         spin_lock(&bdev->fence_lock);
1277
1278         old_fence_obj = bo->sync_obj;
1279         bo->sync_obj = fence;
1280
1281         spin_unlock(&bdev->fence_lock);
1282
1283         if (old_fence_obj)
1284                 vmw_fence_obj_unreference(&old_fence_obj);
1285 }
1286
1287 /**
1288  * vmw_resource_move_notify - TTM move_notify_callback
1289  *
1290  * @bo:             The TTM buffer object about to move.
1291  * @mem:            The truct ttm_mem_reg indicating to what memory
1292  *                  region the move is taking place.
1293  *
1294  * For now does nothing.
1295  */
1296 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1297                               struct ttm_mem_reg *mem)
1298 {
1299 }
1300
1301 /**
1302  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1303  *
1304  * @res:            The resource being queried.
1305  */
1306 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1307 {
1308         return res->func->needs_backup;
1309 }
1310
1311 /**
1312  * vmw_resource_evict_type - Evict all resources of a specific type
1313  *
1314  * @dev_priv:       Pointer to a device private struct
1315  * @type:           The resource type to evict
1316  *
1317  * To avoid thrashing starvation or as part of the hibernation sequence,
1318  * try to evict all evictable resources of a specific type.
1319  */
1320 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1321                                     enum vmw_res_type type)
1322 {
1323         struct list_head *lru_list = &dev_priv->res_lru[type];
1324         struct vmw_resource *evict_res;
1325         unsigned err_count = 0;
1326         int ret;
1327
1328         do {
1329                 write_lock(&dev_priv->resource_lock);
1330
1331                 if (list_empty(lru_list))
1332                         goto out_unlock;
1333
1334                 evict_res = vmw_resource_reference(
1335                         list_first_entry(lru_list, struct vmw_resource,
1336                                          lru_head));
1337                 list_del_init(&evict_res->lru_head);
1338                 write_unlock(&dev_priv->resource_lock);
1339
1340                 ret = vmw_resource_do_evict(evict_res, false);
1341                 if (unlikely(ret != 0)) {
1342                         write_lock(&dev_priv->resource_lock);
1343                         list_add_tail(&evict_res->lru_head, lru_list);
1344                         write_unlock(&dev_priv->resource_lock);
1345                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1346                                 vmw_resource_unreference(&evict_res);
1347                                 return;
1348                         }
1349                 }
1350
1351                 vmw_resource_unreference(&evict_res);
1352         } while (1);
1353
1354 out_unlock:
1355         write_unlock(&dev_priv->resource_lock);
1356 }
1357
1358 /**
1359  * vmw_resource_evict_all - Evict all evictable resources
1360  *
1361  * @dev_priv:       Pointer to a device private struct
1362  *
1363  * To avoid thrashing starvation or as part of the hibernation sequence,
1364  * evict all evictable resources. In particular this means that all
1365  * guest-backed resources that are registered with the device are
1366  * evicted and the OTable becomes clean.
1367  */
1368 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1369 {
1370         enum vmw_res_type type;
1371
1372         mutex_lock(&dev_priv->cmdbuf_mutex);
1373
1374         for (type = 0; type < vmw_res_max; ++type)
1375                 vmw_resource_evict_type(dev_priv, type);
1376
1377         mutex_unlock(&dev_priv->cmdbuf_mutex);
1378 }