Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #ifdef TTM_HAS_AGP
54 #include <asm/agp.h>
55 #endif
56
57 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
58 #define SMALL_ALLOCATION                4
59 #define FREE_ALL_PAGES                  (~0U)
60 /* times are in msecs */
61 #define IS_UNDEFINED                    (0)
62 #define IS_WC                           (1<<1)
63 #define IS_UC                           (1<<2)
64 #define IS_CACHED                       (1<<3)
65 #define IS_DMA32                        (1<<4)
66
67 enum pool_type {
68         POOL_IS_UNDEFINED,
69         POOL_IS_WC = IS_WC,
70         POOL_IS_UC = IS_UC,
71         POOL_IS_CACHED = IS_CACHED,
72         POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
73         POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
74         POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
75 };
76 /*
77  * The pool structure. There are usually six pools:
78  *  - generic (not restricted to DMA32):
79  *      - write combined, uncached, cached.
80  *  - dma32 (up to 2^32 - so up 4GB):
81  *      - write combined, uncached, cached.
82  * for each 'struct device'. The 'cached' is for pages that are actively used.
83  * The other ones can be shrunk by the shrinker API if neccessary.
84  * @pools: The 'struct device->dma_pools' link.
85  * @type: Type of the pool
86  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87  * used with irqsave/irqrestore variants because pool allocator maybe called
88  * from delayed work.
89  * @inuse_list: Pool of pages that are in use. The order is very important and
90  *   it is in the order that the TTM pages that are put back are in.
91  * @free_list: Pool of pages that are free to be used. No order requirements.
92  * @dev: The device that is associated with these pools.
93  * @size: Size used during DMA allocation.
94  * @npages_free: Count of available pages for re-use.
95  * @npages_in_use: Count of pages that are in use.
96  * @nfrees: Stats when pool is shrinking.
97  * @nrefills: Stats when the pool is grown.
98  * @gfp_flags: Flags to pass for alloc_page.
99  * @name: Name of the pool.
100  * @dev_name: Name derieved from dev - similar to how dev_info works.
101  *   Used during shutdown as the dev_info during release is unavailable.
102  */
103 struct dma_pool {
104         struct list_head pools; /* The 'struct device->dma_pools link */
105         enum pool_type type;
106         spinlock_t lock;
107         struct list_head inuse_list;
108         struct list_head free_list;
109         struct device *dev;
110         unsigned size;
111         unsigned npages_free;
112         unsigned npages_in_use;
113         unsigned long nfrees; /* Stats when shrunk. */
114         unsigned long nrefills; /* Stats when grown. */
115         gfp_t gfp_flags;
116         char name[13]; /* "cached dma32" */
117         char dev_name[64]; /* Constructed from dev */
118 };
119
120 /*
121  * The accounting page keeping track of the allocated page along with
122  * the DMA address.
123  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124  * @vaddr: The virtual address of the page
125  * @dma: The bus address of the page. If the page is not allocated
126  *   via the DMA API, it will be -1.
127  */
128 struct dma_page {
129         struct list_head page_list;
130         void *vaddr;
131         struct page *p;
132         dma_addr_t dma;
133 };
134
135 /*
136  * Limits for the pool. They are handled without locks because only place where
137  * they may change is in sysfs store. They won't have immediate effect anyway
138  * so forcing serialization to access them is pointless.
139  */
140
141 struct ttm_pool_opts {
142         unsigned        alloc_size;
143         unsigned        max_size;
144         unsigned        small;
145 };
146
147 /*
148  * Contains the list of all of the 'struct device' and their corresponding
149  * DMA pools. Guarded by _mutex->lock.
150  * @pools: The link to 'struct ttm_pool_manager->pools'
151  * @dev: The 'struct device' associated with the 'pool'
152  * @pool: The 'struct dma_pool' associated with the 'dev'
153  */
154 struct device_pools {
155         struct list_head pools;
156         struct device *dev;
157         struct dma_pool *pool;
158 };
159
160 /*
161  * struct ttm_pool_manager - Holds memory pools for fast allocation
162  *
163  * @lock: Lock used when adding/removing from pools
164  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165  * @options: Limits for the pool.
166  * @npools: Total amount of pools in existence.
167  * @shrinker: The structure used by [un|]register_shrinker
168  */
169 struct ttm_pool_manager {
170         struct mutex            lock;
171         struct list_head        pools;
172         struct ttm_pool_opts    options;
173         unsigned                npools;
174         struct shrinker         mm_shrink;
175         struct kobject          kobj;
176 };
177
178 static struct ttm_pool_manager *_manager;
179
180 static struct attribute ttm_page_pool_max = {
181         .name = "pool_max_size",
182         .mode = S_IRUGO | S_IWUSR
183 };
184 static struct attribute ttm_page_pool_small = {
185         .name = "pool_small_allocation",
186         .mode = S_IRUGO | S_IWUSR
187 };
188 static struct attribute ttm_page_pool_alloc_size = {
189         .name = "pool_allocation_size",
190         .mode = S_IRUGO | S_IWUSR
191 };
192
193 static struct attribute *ttm_pool_attrs[] = {
194         &ttm_page_pool_max,
195         &ttm_page_pool_small,
196         &ttm_page_pool_alloc_size,
197         NULL
198 };
199
200 static void ttm_pool_kobj_release(struct kobject *kobj)
201 {
202         struct ttm_pool_manager *m =
203                 container_of(kobj, struct ttm_pool_manager, kobj);
204         kfree(m);
205 }
206
207 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
208                               const char *buffer, size_t size)
209 {
210         struct ttm_pool_manager *m =
211                 container_of(kobj, struct ttm_pool_manager, kobj);
212         int chars;
213         unsigned val;
214         chars = sscanf(buffer, "%u", &val);
215         if (chars == 0)
216                 return size;
217
218         /* Convert kb to number of pages */
219         val = val / (PAGE_SIZE >> 10);
220
221         if (attr == &ttm_page_pool_max)
222                 m->options.max_size = val;
223         else if (attr == &ttm_page_pool_small)
224                 m->options.small = val;
225         else if (attr == &ttm_page_pool_alloc_size) {
226                 if (val > NUM_PAGES_TO_ALLOC*8) {
227                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230                         return size;
231                 } else if (val > NUM_PAGES_TO_ALLOC) {
232                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234                 }
235                 m->options.alloc_size = val;
236         }
237
238         return size;
239 }
240
241 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242                              char *buffer)
243 {
244         struct ttm_pool_manager *m =
245                 container_of(kobj, struct ttm_pool_manager, kobj);
246         unsigned val = 0;
247
248         if (attr == &ttm_page_pool_max)
249                 val = m->options.max_size;
250         else if (attr == &ttm_page_pool_small)
251                 val = m->options.small;
252         else if (attr == &ttm_page_pool_alloc_size)
253                 val = m->options.alloc_size;
254
255         val = val * (PAGE_SIZE >> 10);
256
257         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258 }
259
260 static const struct sysfs_ops ttm_pool_sysfs_ops = {
261         .show = &ttm_pool_show,
262         .store = &ttm_pool_store,
263 };
264
265 static struct kobj_type ttm_pool_kobj_type = {
266         .release = &ttm_pool_kobj_release,
267         .sysfs_ops = &ttm_pool_sysfs_ops,
268         .default_attrs = ttm_pool_attrs,
269 };
270
271 #ifndef CONFIG_X86
272 static int set_pages_array_wb(struct page **pages, int addrinarray)
273 {
274 #ifdef TTM_HAS_AGP
275         int i;
276
277         for (i = 0; i < addrinarray; i++)
278                 unmap_page_from_agp(pages[i]);
279 #endif
280         return 0;
281 }
282
283 static int set_pages_array_wc(struct page **pages, int addrinarray)
284 {
285 #ifdef TTM_HAS_AGP
286         int i;
287
288         for (i = 0; i < addrinarray; i++)
289                 map_page_into_agp(pages[i]);
290 #endif
291         return 0;
292 }
293
294 static int set_pages_array_uc(struct page **pages, int addrinarray)
295 {
296 #ifdef TTM_HAS_AGP
297         int i;
298
299         for (i = 0; i < addrinarray; i++)
300                 map_page_into_agp(pages[i]);
301 #endif
302         return 0;
303 }
304 #endif /* for !CONFIG_X86 */
305
306 static int ttm_set_pages_caching(struct dma_pool *pool,
307                                  struct page **pages, unsigned cpages)
308 {
309         int r = 0;
310         /* Set page caching */
311         if (pool->type & IS_UC) {
312                 r = set_pages_array_uc(pages, cpages);
313                 if (r)
314                         pr_err("%s: Failed to set %d pages to uc!\n",
315                                pool->dev_name, cpages);
316         }
317         if (pool->type & IS_WC) {
318                 r = set_pages_array_wc(pages, cpages);
319                 if (r)
320                         pr_err("%s: Failed to set %d pages to wc!\n",
321                                pool->dev_name, cpages);
322         }
323         return r;
324 }
325
326 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327 {
328         dma_addr_t dma = d_page->dma;
329         dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
330
331         kfree(d_page);
332         d_page = NULL;
333 }
334 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335 {
336         struct dma_page *d_page;
337
338         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
339         if (!d_page)
340                 return NULL;
341
342         d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
343                                            &d_page->dma,
344                                            pool->gfp_flags);
345         if (d_page->vaddr) {
346                 if (is_vmalloc_addr(d_page->vaddr))
347                         d_page->p = vmalloc_to_page(d_page->vaddr);
348                 else
349                         d_page->p = virt_to_page(d_page->vaddr);
350         } else {
351                 kfree(d_page);
352                 d_page = NULL;
353         }
354         return d_page;
355 }
356 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
357 {
358         enum pool_type type = IS_UNDEFINED;
359
360         if (flags & TTM_PAGE_FLAG_DMA32)
361                 type |= IS_DMA32;
362         if (cstate == tt_cached)
363                 type |= IS_CACHED;
364         else if (cstate == tt_uncached)
365                 type |= IS_UC;
366         else
367                 type |= IS_WC;
368
369         return type;
370 }
371
372 static void ttm_pool_update_free_locked(struct dma_pool *pool,
373                                         unsigned freed_pages)
374 {
375         pool->npages_free -= freed_pages;
376         pool->nfrees += freed_pages;
377
378 }
379
380 /* set memory back to wb and free the pages. */
381 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
382                               struct page *pages[], unsigned npages)
383 {
384         struct dma_page *d_page, *tmp;
385
386         /* Don't set WB on WB page pool. */
387         if (npages && !(pool->type & IS_CACHED) &&
388             set_pages_array_wb(pages, npages))
389                 pr_err("%s: Failed to set %d pages to wb!\n",
390                        pool->dev_name, npages);
391
392         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
393                 list_del(&d_page->page_list);
394                 __ttm_dma_free_page(pool, d_page);
395         }
396 }
397
398 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
399 {
400         /* Don't set WB on WB page pool. */
401         if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
402                 pr_err("%s: Failed to set %d pages to wb!\n",
403                        pool->dev_name, 1);
404
405         list_del(&d_page->page_list);
406         __ttm_dma_free_page(pool, d_page);
407 }
408
409 /*
410  * Free pages from pool.
411  *
412  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
413  * number of pages in one go.
414  *
415  * @pool: to free the pages from
416  * @nr_free: If set to true will free all pages in pool
417  * @use_static: Safe to use static buffer
418  **/
419 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
420                                        bool use_static)
421 {
422         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
423         unsigned long irq_flags;
424         struct dma_page *dma_p, *tmp;
425         struct page **pages_to_free;
426         struct list_head d_pages;
427         unsigned freed_pages = 0,
428                  npages_to_free = nr_free;
429
430         if (NUM_PAGES_TO_ALLOC < nr_free)
431                 npages_to_free = NUM_PAGES_TO_ALLOC;
432 #if 0
433         if (nr_free > 1) {
434                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
435                          pool->dev_name, pool->name, current->pid,
436                          npages_to_free, nr_free);
437         }
438 #endif
439         if (use_static)
440                 pages_to_free = static_buf;
441         else
442                 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
443                                         GFP_KERNEL);
444
445         if (!pages_to_free) {
446                 pr_err("%s: Failed to allocate memory for pool free operation\n",
447                        pool->dev_name);
448                 return 0;
449         }
450         INIT_LIST_HEAD(&d_pages);
451 restart:
452         spin_lock_irqsave(&pool->lock, irq_flags);
453
454         /* We picking the oldest ones off the list */
455         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
456                                          page_list) {
457                 if (freed_pages >= npages_to_free)
458                         break;
459
460                 /* Move the dma_page from one list to another. */
461                 list_move(&dma_p->page_list, &d_pages);
462
463                 pages_to_free[freed_pages++] = dma_p->p;
464                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
465                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
466
467                         ttm_pool_update_free_locked(pool, freed_pages);
468                         /**
469                          * Because changing page caching is costly
470                          * we unlock the pool to prevent stalling.
471                          */
472                         spin_unlock_irqrestore(&pool->lock, irq_flags);
473
474                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
475                                           freed_pages);
476
477                         INIT_LIST_HEAD(&d_pages);
478
479                         if (likely(nr_free != FREE_ALL_PAGES))
480                                 nr_free -= freed_pages;
481
482                         if (NUM_PAGES_TO_ALLOC >= nr_free)
483                                 npages_to_free = nr_free;
484                         else
485                                 npages_to_free = NUM_PAGES_TO_ALLOC;
486
487                         freed_pages = 0;
488
489                         /* free all so restart the processing */
490                         if (nr_free)
491                                 goto restart;
492
493                         /* Not allowed to fall through or break because
494                          * following context is inside spinlock while we are
495                          * outside here.
496                          */
497                         goto out;
498
499                 }
500         }
501
502         /* remove range of pages from the pool */
503         if (freed_pages) {
504                 ttm_pool_update_free_locked(pool, freed_pages);
505                 nr_free -= freed_pages;
506         }
507
508         spin_unlock_irqrestore(&pool->lock, irq_flags);
509
510         if (freed_pages)
511                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
512 out:
513         if (pages_to_free != static_buf)
514                 kfree(pages_to_free);
515         return nr_free;
516 }
517
518 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
519 {
520         struct device_pools *p;
521         struct dma_pool *pool;
522
523         if (!dev)
524                 return;
525
526         mutex_lock(&_manager->lock);
527         list_for_each_entry_reverse(p, &_manager->pools, pools) {
528                 if (p->dev != dev)
529                         continue;
530                 pool = p->pool;
531                 if (pool->type != type)
532                         continue;
533
534                 list_del(&p->pools);
535                 kfree(p);
536                 _manager->npools--;
537                 break;
538         }
539         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
540                 if (pool->type != type)
541                         continue;
542                 /* Takes a spinlock.. */
543                 /* OK to use static buffer since global mutex is held. */
544                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
545                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
546                 /* This code path is called after _all_ references to the
547                  * struct device has been dropped - so nobody should be
548                  * touching it. In case somebody is trying to _add_ we are
549                  * guarded by the mutex. */
550                 list_del(&pool->pools);
551                 kfree(pool);
552                 break;
553         }
554         mutex_unlock(&_manager->lock);
555 }
556
557 /*
558  * On free-ing of the 'struct device' this deconstructor is run.
559  * Albeit the pool might have already been freed earlier.
560  */
561 static void ttm_dma_pool_release(struct device *dev, void *res)
562 {
563         struct dma_pool *pool = *(struct dma_pool **)res;
564
565         if (pool)
566                 ttm_dma_free_pool(dev, pool->type);
567 }
568
569 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
570 {
571         return *(struct dma_pool **)res == match_data;
572 }
573
574 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
575                                           enum pool_type type)
576 {
577         char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
578         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
579         struct device_pools *sec_pool = NULL;
580         struct dma_pool *pool = NULL, **ptr;
581         unsigned i;
582         int ret = -ENODEV;
583         char *p;
584
585         if (!dev)
586                 return NULL;
587
588         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
589         if (!ptr)
590                 return NULL;
591
592         ret = -ENOMEM;
593
594         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
595                             dev_to_node(dev));
596         if (!pool)
597                 goto err_mem;
598
599         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
600                                 dev_to_node(dev));
601         if (!sec_pool)
602                 goto err_mem;
603
604         INIT_LIST_HEAD(&sec_pool->pools);
605         sec_pool->dev = dev;
606         sec_pool->pool =  pool;
607
608         INIT_LIST_HEAD(&pool->free_list);
609         INIT_LIST_HEAD(&pool->inuse_list);
610         INIT_LIST_HEAD(&pool->pools);
611         spin_lock_init(&pool->lock);
612         pool->dev = dev;
613         pool->npages_free = pool->npages_in_use = 0;
614         pool->nfrees = 0;
615         pool->gfp_flags = flags;
616         pool->size = PAGE_SIZE;
617         pool->type = type;
618         pool->nrefills = 0;
619         p = pool->name;
620         for (i = 0; i < 5; i++) {
621                 if (type & t[i]) {
622                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
623                                       "%s", n[i]);
624                 }
625         }
626         *p = 0;
627         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
628          * - the kobj->name has already been deallocated.*/
629         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
630                  dev_driver_string(dev), dev_name(dev));
631         mutex_lock(&_manager->lock);
632         /* You can get the dma_pool from either the global: */
633         list_add(&sec_pool->pools, &_manager->pools);
634         _manager->npools++;
635         /* or from 'struct device': */
636         list_add(&pool->pools, &dev->dma_pools);
637         mutex_unlock(&_manager->lock);
638
639         *ptr = pool;
640         devres_add(dev, ptr);
641
642         return pool;
643 err_mem:
644         devres_free(ptr);
645         kfree(sec_pool);
646         kfree(pool);
647         return ERR_PTR(ret);
648 }
649
650 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
651                                           enum pool_type type)
652 {
653         struct dma_pool *pool, *tmp, *found = NULL;
654
655         if (type == IS_UNDEFINED)
656                 return found;
657
658         /* NB: We iterate on the 'struct dev' which has no spinlock, but
659          * it does have a kref which we have taken. The kref is taken during
660          * graphic driver loading - in the drm_pci_init it calls either
661          * pci_dev_get or pci_register_driver which both end up taking a kref
662          * on 'struct device'.
663          *
664          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
665          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
666          * thing is at that point of time there are no pages associated with the
667          * driver so this function will not be called.
668          */
669         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
670                 if (pool->type != type)
671                         continue;
672                 found = pool;
673                 break;
674         }
675         return found;
676 }
677
678 /*
679  * Free pages the pages that failed to change the caching state. If there
680  * are pages that have changed their caching state already put them to the
681  * pool.
682  */
683 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
684                                                  struct list_head *d_pages,
685                                                  struct page **failed_pages,
686                                                  unsigned cpages)
687 {
688         struct dma_page *d_page, *tmp;
689         struct page *p;
690         unsigned i = 0;
691
692         p = failed_pages[0];
693         if (!p)
694                 return;
695         /* Find the failed page. */
696         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
697                 if (d_page->p != p)
698                         continue;
699                 /* .. and then progress over the full list. */
700                 list_del(&d_page->page_list);
701                 __ttm_dma_free_page(pool, d_page);
702                 if (++i < cpages)
703                         p = failed_pages[i];
704                 else
705                         break;
706         }
707
708 }
709
710 /*
711  * Allocate 'count' pages, and put 'need' number of them on the
712  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
713  * The full list of pages should also be on 'd_pages'.
714  * We return zero for success, and negative numbers as errors.
715  */
716 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
717                                         struct list_head *d_pages,
718                                         unsigned count)
719 {
720         struct page **caching_array;
721         struct dma_page *dma_p;
722         struct page *p;
723         int r = 0;
724         unsigned i, cpages;
725         unsigned max_cpages = min(count,
726                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
727
728         /* allocate array for page caching change */
729         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
730
731         if (!caching_array) {
732                 pr_err("%s: Unable to allocate table for new pages\n",
733                        pool->dev_name);
734                 return -ENOMEM;
735         }
736
737         if (count > 1) {
738                 pr_debug("%s: (%s:%d) Getting %d pages\n",
739                          pool->dev_name, pool->name, current->pid, count);
740         }
741
742         for (i = 0, cpages = 0; i < count; ++i) {
743                 dma_p = __ttm_dma_alloc_page(pool);
744                 if (!dma_p) {
745                         pr_err("%s: Unable to get page %u\n",
746                                pool->dev_name, i);
747
748                         /* store already allocated pages in the pool after
749                          * setting the caching state */
750                         if (cpages) {
751                                 r = ttm_set_pages_caching(pool, caching_array,
752                                                           cpages);
753                                 if (r)
754                                         ttm_dma_handle_caching_state_failure(
755                                                 pool, d_pages, caching_array,
756                                                 cpages);
757                         }
758                         r = -ENOMEM;
759                         goto out;
760                 }
761                 p = dma_p->p;
762 #ifdef CONFIG_HIGHMEM
763                 /* gfp flags of highmem page should never be dma32 so we
764                  * we should be fine in such case
765                  */
766                 if (!PageHighMem(p))
767 #endif
768                 {
769                         caching_array[cpages++] = p;
770                         if (cpages == max_cpages) {
771                                 /* Note: Cannot hold the spinlock */
772                                 r = ttm_set_pages_caching(pool, caching_array,
773                                                  cpages);
774                                 if (r) {
775                                         ttm_dma_handle_caching_state_failure(
776                                                 pool, d_pages, caching_array,
777                                                 cpages);
778                                         goto out;
779                                 }
780                                 cpages = 0;
781                         }
782                 }
783                 list_add(&dma_p->page_list, d_pages);
784         }
785
786         if (cpages) {
787                 r = ttm_set_pages_caching(pool, caching_array, cpages);
788                 if (r)
789                         ttm_dma_handle_caching_state_failure(pool, d_pages,
790                                         caching_array, cpages);
791         }
792 out:
793         kfree(caching_array);
794         return r;
795 }
796
797 /*
798  * @return count of pages still required to fulfill the request.
799  */
800 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
801                                          unsigned long *irq_flags)
802 {
803         unsigned count = _manager->options.small;
804         int r = pool->npages_free;
805
806         if (count > pool->npages_free) {
807                 struct list_head d_pages;
808
809                 INIT_LIST_HEAD(&d_pages);
810
811                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
812
813                 /* Returns how many more are neccessary to fulfill the
814                  * request. */
815                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
816
817                 spin_lock_irqsave(&pool->lock, *irq_flags);
818                 if (!r) {
819                         /* Add the fresh to the end.. */
820                         list_splice(&d_pages, &pool->free_list);
821                         ++pool->nrefills;
822                         pool->npages_free += count;
823                         r = count;
824                 } else {
825                         struct dma_page *d_page;
826                         unsigned cpages = 0;
827
828                         pr_err("%s: Failed to fill %s pool (r:%d)!\n",
829                                pool->dev_name, pool->name, r);
830
831                         list_for_each_entry(d_page, &d_pages, page_list) {
832                                 cpages++;
833                         }
834                         list_splice_tail(&d_pages, &pool->free_list);
835                         pool->npages_free += cpages;
836                         r = cpages;
837                 }
838         }
839         return r;
840 }
841
842 /*
843  * @return count of pages still required to fulfill the request.
844  * The populate list is actually a stack (not that is matters as TTM
845  * allocates one page at a time.
846  */
847 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
848                                   struct ttm_dma_tt *ttm_dma,
849                                   unsigned index)
850 {
851         struct dma_page *d_page;
852         struct ttm_tt *ttm = &ttm_dma->ttm;
853         unsigned long irq_flags;
854         int count, r = -ENOMEM;
855
856         spin_lock_irqsave(&pool->lock, irq_flags);
857         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
858         if (count) {
859                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
860                 ttm->pages[index] = d_page->p;
861                 ttm_dma->cpu_address[index] = d_page->vaddr;
862                 ttm_dma->dma_address[index] = d_page->dma;
863                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
864                 r = 0;
865                 pool->npages_in_use += 1;
866                 pool->npages_free -= 1;
867         }
868         spin_unlock_irqrestore(&pool->lock, irq_flags);
869         return r;
870 }
871
872 /*
873  * On success pages list will hold count number of correctly
874  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
875  */
876 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
877 {
878         struct ttm_tt *ttm = &ttm_dma->ttm;
879         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
880         struct dma_pool *pool;
881         enum pool_type type;
882         unsigned i;
883         gfp_t gfp_flags;
884         int ret;
885
886         if (ttm->state != tt_unpopulated)
887                 return 0;
888
889         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
890         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
891                 gfp_flags = GFP_USER | GFP_DMA32;
892         else
893                 gfp_flags = GFP_HIGHUSER;
894         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
895                 gfp_flags |= __GFP_ZERO;
896
897         pool = ttm_dma_find_pool(dev, type);
898         if (!pool) {
899                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
900                 if (IS_ERR_OR_NULL(pool)) {
901                         return -ENOMEM;
902                 }
903         }
904
905         INIT_LIST_HEAD(&ttm_dma->pages_list);
906         for (i = 0; i < ttm->num_pages; ++i) {
907                 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
908                 if (ret != 0) {
909                         ttm_dma_unpopulate(ttm_dma, dev);
910                         return -ENOMEM;
911                 }
912
913                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
914                                                 false, false);
915                 if (unlikely(ret != 0)) {
916                         ttm_dma_unpopulate(ttm_dma, dev);
917                         return -ENOMEM;
918                 }
919         }
920
921         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
922                 ret = ttm_tt_swapin(ttm);
923                 if (unlikely(ret != 0)) {
924                         ttm_dma_unpopulate(ttm_dma, dev);
925                         return ret;
926                 }
927         }
928
929         ttm->state = tt_unbound;
930         return 0;
931 }
932 EXPORT_SYMBOL_GPL(ttm_dma_populate);
933
934 /* Put all pages in pages list to correct pool to wait for reuse */
935 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
936 {
937         struct ttm_tt *ttm = &ttm_dma->ttm;
938         struct dma_pool *pool;
939         struct dma_page *d_page, *next;
940         enum pool_type type;
941         bool is_cached = false;
942         unsigned count = 0, i, npages = 0;
943         unsigned long irq_flags;
944
945         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
946         pool = ttm_dma_find_pool(dev, type);
947         if (!pool)
948                 return;
949
950         is_cached = (ttm_dma_find_pool(pool->dev,
951                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
952
953         /* make sure pages array match list and count number of pages */
954         list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
955                 ttm->pages[count] = d_page->p;
956                 count++;
957         }
958
959         spin_lock_irqsave(&pool->lock, irq_flags);
960         pool->npages_in_use -= count;
961         if (is_cached) {
962                 pool->nfrees += count;
963         } else {
964                 pool->npages_free += count;
965                 list_splice(&ttm_dma->pages_list, &pool->free_list);
966                 /*
967                  * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
968                  * to free in order to minimize calls to set_memory_wb().
969                  */
970                 if (pool->npages_free >= (_manager->options.max_size +
971                                           NUM_PAGES_TO_ALLOC))
972                         npages = pool->npages_free - _manager->options.max_size;
973         }
974         spin_unlock_irqrestore(&pool->lock, irq_flags);
975
976         if (is_cached) {
977                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
978                         ttm_mem_global_free_page(ttm->glob->mem_glob,
979                                                  d_page->p);
980                         ttm_dma_page_put(pool, d_page);
981                 }
982         } else {
983                 for (i = 0; i < count; i++) {
984                         ttm_mem_global_free_page(ttm->glob->mem_glob,
985                                                  ttm->pages[i]);
986                 }
987         }
988
989         INIT_LIST_HEAD(&ttm_dma->pages_list);
990         for (i = 0; i < ttm->num_pages; i++) {
991                 ttm->pages[i] = NULL;
992                 ttm_dma->cpu_address[i] = 0;
993                 ttm_dma->dma_address[i] = 0;
994         }
995
996         /* shrink pool if necessary (only on !is_cached pools)*/
997         if (npages)
998                 ttm_dma_page_pool_free(pool, npages, false);
999         ttm->state = tt_unpopulated;
1000 }
1001 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002
1003 /**
1004  * Callback for mm to request pool to reduce number of page held.
1005  *
1006  * XXX: (dchinner) Deadlock warning!
1007  *
1008  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1009  * shrinkers
1010  */
1011 static unsigned long
1012 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1013 {
1014         static unsigned start_pool;
1015         unsigned idx = 0;
1016         unsigned pool_offset;
1017         unsigned shrink_pages = sc->nr_to_scan;
1018         struct device_pools *p;
1019         unsigned long freed = 0;
1020
1021         if (list_empty(&_manager->pools))
1022                 return SHRINK_STOP;
1023
1024         if (!mutex_trylock(&_manager->lock))
1025                 return SHRINK_STOP;
1026         if (!_manager->npools)
1027                 goto out;
1028         pool_offset = ++start_pool % _manager->npools;
1029         list_for_each_entry(p, &_manager->pools, pools) {
1030                 unsigned nr_free;
1031
1032                 if (!p->dev)
1033                         continue;
1034                 if (shrink_pages == 0)
1035                         break;
1036                 /* Do it in round-robin fashion. */
1037                 if (++idx < pool_offset)
1038                         continue;
1039                 nr_free = shrink_pages;
1040                 /* OK to use static buffer since global mutex is held. */
1041                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1042                 freed += nr_free - shrink_pages;
1043
1044                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1045                          p->pool->dev_name, p->pool->name, current->pid,
1046                          nr_free, shrink_pages);
1047         }
1048 out:
1049         mutex_unlock(&_manager->lock);
1050         return freed;
1051 }
1052
1053 static unsigned long
1054 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1055 {
1056         struct device_pools *p;
1057         unsigned long count = 0;
1058
1059         if (!mutex_trylock(&_manager->lock))
1060                 return 0;
1061         list_for_each_entry(p, &_manager->pools, pools)
1062                 count += p->pool->npages_free;
1063         mutex_unlock(&_manager->lock);
1064         return count;
1065 }
1066
1067 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1068 {
1069         manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1070         manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1071         manager->mm_shrink.seeks = 1;
1072         register_shrinker(&manager->mm_shrink);
1073 }
1074
1075 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1076 {
1077         unregister_shrinker(&manager->mm_shrink);
1078 }
1079
1080 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1081 {
1082         int ret = -ENOMEM;
1083
1084         WARN_ON(_manager);
1085
1086         pr_info("Initializing DMA pool allocator\n");
1087
1088         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1089         if (!_manager)
1090                 goto err;
1091
1092         mutex_init(&_manager->lock);
1093         INIT_LIST_HEAD(&_manager->pools);
1094
1095         _manager->options.max_size = max_pages;
1096         _manager->options.small = SMALL_ALLOCATION;
1097         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1098
1099         /* This takes care of auto-freeing the _manager */
1100         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1101                                    &glob->kobj, "dma_pool");
1102         if (unlikely(ret != 0)) {
1103                 kobject_put(&_manager->kobj);
1104                 goto err;
1105         }
1106         ttm_dma_pool_mm_shrink_init(_manager);
1107         return 0;
1108 err:
1109         return ret;
1110 }
1111
1112 void ttm_dma_page_alloc_fini(void)
1113 {
1114         struct device_pools *p, *t;
1115
1116         pr_info("Finalizing DMA pool allocator\n");
1117         ttm_dma_pool_mm_shrink_fini(_manager);
1118
1119         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1120                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1121                         current->pid);
1122                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1123                         ttm_dma_pool_match, p->pool));
1124                 ttm_dma_free_pool(p->dev, p->pool->type);
1125         }
1126         kobject_put(&_manager->kobj);
1127         _manager = NULL;
1128 }
1129
1130 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1131 {
1132         struct device_pools *p;
1133         struct dma_pool *pool = NULL;
1134         char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1135                      "name", "virt", "busaddr"};
1136
1137         if (!_manager) {
1138                 seq_printf(m, "No pool allocator running.\n");
1139                 return 0;
1140         }
1141         seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1142                    h[0], h[1], h[2], h[3], h[4], h[5]);
1143         mutex_lock(&_manager->lock);
1144         list_for_each_entry(p, &_manager->pools, pools) {
1145                 struct device *dev = p->dev;
1146                 if (!dev)
1147                         continue;
1148                 pool = p->pool;
1149                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1150                                 pool->name, pool->nrefills,
1151                                 pool->nfrees, pool->npages_in_use,
1152                                 pool->npages_free,
1153                                 pool->dev_name);
1154         }
1155         mutex_unlock(&_manager->lock);
1156         return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1159
1160 #endif