Merge tag 'drm-intel-fixes-2015-07-15' into drm-intel-next-queued
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(req, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(req, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223         ret = intel_ring_begin(req, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
230         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231         intel_ring_emit(ring, 0); /* low dword */
232         intel_ring_emit(ring, 0); /* high dword */
233         intel_ring_emit(ring, MI_NOOP);
234         intel_ring_advance(ring);
235
236         ret = intel_ring_begin(req, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243         intel_ring_emit(ring, 0);
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253                        u32 invalidate_domains, u32 flush_domains)
254 {
255         struct intel_engine_cs *ring = req->ring;
256         u32 flags = 0;
257         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258         int ret;
259
260         /* Force SNB workarounds for PIPE_CONTROL flushes */
261         ret = intel_emit_post_sync_nonzero_flush(req);
262         if (ret)
263                 return ret;
264
265         /* Just flush everything.  Experiments have shown that reducing the
266          * number of bits based on the write domains has little performance
267          * impact.
268          */
269         if (flush_domains) {
270                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272                 /*
273                  * Ensure that any following seqno writes only happen
274                  * when the render cache is indeed flushed.
275                  */
276                 flags |= PIPE_CONTROL_CS_STALL;
277         }
278         if (invalidate_domains) {
279                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285                 /*
286                  * TLB invalidate requires a post-sync write.
287                  */
288                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289         }
290
291         ret = intel_ring_begin(req, 4);
292         if (ret)
293                 return ret;
294
295         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296         intel_ring_emit(ring, flags);
297         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298         intel_ring_emit(ring, 0);
299         intel_ring_advance(ring);
300
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307         struct intel_engine_cs *ring = req->ring;
308         int ret;
309
310         ret = intel_ring_begin(req, 4);
311         if (ret)
312                 return ret;
313
314         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
317         intel_ring_emit(ring, 0);
318         intel_ring_emit(ring, 0);
319         intel_ring_advance(ring);
320
321         return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326                        u32 invalidate_domains, u32 flush_domains)
327 {
328         struct intel_engine_cs *ring = req->ring;
329         u32 flags = 0;
330         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331         int ret;
332
333         /*
334          * Ensure that any following seqno writes only happen when the render
335          * cache is indeed flushed.
336          *
337          * Workaround: 4th PIPE_CONTROL command (except the ones with only
338          * read-cache invalidate bits set) must have the CS_STALL bit set. We
339          * don't try to be clever and just set it unconditionally.
340          */
341         flags |= PIPE_CONTROL_CS_STALL;
342
343         /* Just flush everything.  Experiments have shown that reducing the
344          * number of bits based on the write domains has little performance
345          * impact.
346          */
347         if (flush_domains) {
348                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350         }
351         if (invalidate_domains) {
352                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359                 /*
360                  * TLB invalidate requires a post-sync write.
361                  */
362                 flags |= PIPE_CONTROL_QW_WRITE;
363                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367                 /* Workaround: we must issue a pipe_control with CS-stall bit
368                  * set before a pipe_control command that has the state cache
369                  * invalidate bit set. */
370                 gen7_render_ring_cs_stall_wa(req);
371         }
372
373         ret = intel_ring_begin(req, 4);
374         if (ret)
375                 return ret;
376
377         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378         intel_ring_emit(ring, flags);
379         intel_ring_emit(ring, scratch_addr);
380         intel_ring_emit(ring, 0);
381         intel_ring_advance(ring);
382
383         return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388                        u32 flags, u32 scratch_addr)
389 {
390         struct intel_engine_cs *ring = req->ring;
391         int ret;
392
393         ret = intel_ring_begin(req, 6);
394         if (ret)
395                 return ret;
396
397         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398         intel_ring_emit(ring, flags);
399         intel_ring_emit(ring, scratch_addr);
400         intel_ring_emit(ring, 0);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_advance(ring);
404
405         return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410                        u32 invalidate_domains, u32 flush_domains)
411 {
412         u32 flags = 0;
413         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414         int ret;
415
416         flags |= PIPE_CONTROL_CS_STALL;
417
418         if (flush_domains) {
419                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421         }
422         if (invalidate_domains) {
423                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_QW_WRITE;
430                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433                 ret = gen8_emit_pipe_control(req,
434                                              PIPE_CONTROL_CS_STALL |
435                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
436                                              0);
437                 if (ret)
438                         return ret;
439         }
440
441         return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445                             u32 value)
446 {
447         struct drm_i915_private *dev_priv = ring->dev->dev_private;
448         I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453         struct drm_i915_private *dev_priv = ring->dev->dev_private;
454         u64 acthd;
455
456         if (INTEL_INFO(ring->dev)->gen >= 8)
457                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458                                          RING_ACTHD_UDW(ring->mmio_base));
459         else if (INTEL_INFO(ring->dev)->gen >= 4)
460                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461         else
462                 acthd = I915_READ(ACTHD);
463
464         return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469         struct drm_i915_private *dev_priv = ring->dev->dev_private;
470         u32 addr;
471
472         addr = dev_priv->status_page_dmah->busaddr;
473         if (INTEL_INFO(ring->dev)->gen >= 4)
474                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475         I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480         struct drm_device *dev = ring->dev;
481         struct drm_i915_private *dev_priv = ring->dev->dev_private;
482         u32 mmio = 0;
483
484         /* The ring status page addresses are no longer next to the rest of
485          * the ring registers as of gen7.
486          */
487         if (IS_GEN7(dev)) {
488                 switch (ring->id) {
489                 case RCS:
490                         mmio = RENDER_HWS_PGA_GEN7;
491                         break;
492                 case BCS:
493                         mmio = BLT_HWS_PGA_GEN7;
494                         break;
495                 /*
496                  * VCS2 actually doesn't exist on Gen7. Only shut up
497                  * gcc switch check warning
498                  */
499                 case VCS2:
500                 case VCS:
501                         mmio = BSD_HWS_PGA_GEN7;
502                         break;
503                 case VECS:
504                         mmio = VEBOX_HWS_PGA_GEN7;
505                         break;
506                 }
507         } else if (IS_GEN6(ring->dev)) {
508                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509         } else {
510                 /* XXX: gen8 returns to sanity */
511                 mmio = RING_HWS_PGA(ring->mmio_base);
512         }
513
514         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515         POSTING_READ(mmio);
516
517         /*
518          * Flush the TLB for this page
519          *
520          * FIXME: These two bits have disappeared on gen8, so a question
521          * arises: do we still need this and if so how should we go about
522          * invalidating the TLB?
523          */
524         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525                 u32 reg = RING_INSTPM(ring->mmio_base);
526
527                 /* ring should be idle before issuing a sync flush*/
528                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530                 I915_WRITE(reg,
531                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532                                               INSTPM_SYNC_FLUSH));
533                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534                              1000))
535                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536                                   ring->name);
537         }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542         struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544         if (!IS_GEN2(ring->dev)) {
545                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548                         /* Sometimes we observe that the idle flag is not
549                          * set even though the ring is empty. So double
550                          * check before giving up.
551                          */
552                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553                                 return false;
554                 }
555         }
556
557         I915_WRITE_CTL(ring, 0);
558         I915_WRITE_HEAD(ring, 0);
559         ring->write_tail(ring, 0);
560
561         if (!IS_GEN2(ring->dev)) {
562                 (void)I915_READ_CTL(ring);
563                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564         }
565
566         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571         struct drm_device *dev = ring->dev;
572         struct drm_i915_private *dev_priv = dev->dev_private;
573         struct intel_ringbuffer *ringbuf = ring->buffer;
574         struct drm_i915_gem_object *obj = ringbuf->obj;
575         int ret = 0;
576
577         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579         if (!stop_ring(ring)) {
580                 /* G45 ring initialization often fails to reset head to zero */
581                 DRM_DEBUG_KMS("%s head not reset to zero "
582                               "ctl %08x head %08x tail %08x start %08x\n",
583                               ring->name,
584                               I915_READ_CTL(ring),
585                               I915_READ_HEAD(ring),
586                               I915_READ_TAIL(ring),
587                               I915_READ_START(ring));
588
589                 if (!stop_ring(ring)) {
590                         DRM_ERROR("failed to set %s head to zero "
591                                   "ctl %08x head %08x tail %08x start %08x\n",
592                                   ring->name,
593                                   I915_READ_CTL(ring),
594                                   I915_READ_HEAD(ring),
595                                   I915_READ_TAIL(ring),
596                                   I915_READ_START(ring));
597                         ret = -EIO;
598                         goto out;
599                 }
600         }
601
602         if (I915_NEED_GFX_HWS(dev))
603                 intel_ring_setup_status_page(ring);
604         else
605                 ring_setup_phys_status_page(ring);
606
607         /* Enforce ordering by reading HEAD register back */
608         I915_READ_HEAD(ring);
609
610         /* Initialize the ring. This must happen _after_ we've cleared the ring
611          * registers with the above sequence (the readback of the HEAD registers
612          * also enforces ordering), otherwise the hw might lose the new ring
613          * register values. */
614         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616         /* WaClearRingBufHeadRegAtInit:ctg,elk */
617         if (I915_READ_HEAD(ring))
618                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619                           ring->name, I915_READ_HEAD(ring));
620         I915_WRITE_HEAD(ring, 0);
621         (void)I915_READ_HEAD(ring);
622
623         I915_WRITE_CTL(ring,
624                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625                         | RING_VALID);
626
627         /* If the head is still not zero, the ring is dead */
628         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631                 DRM_ERROR("%s initialization failed "
632                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633                           ring->name,
634                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637                 ret = -EIO;
638                 goto out;
639         }
640
641         ringbuf->last_retired_head = -1;
642         ringbuf->head = I915_READ_HEAD(ring);
643         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644         intel_ring_update_space(ringbuf);
645
646         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651         return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657         struct drm_device *dev = ring->dev;
658
659         if (ring->scratch.obj == NULL)
660                 return;
661
662         if (INTEL_INFO(dev)->gen >= 5) {
663                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665         }
666
667         drm_gem_object_unreference(&ring->scratch.obj->base);
668         ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674         int ret;
675
676         WARN_ON(ring->scratch.obj);
677
678         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679         if (ring->scratch.obj == NULL) {
680                 DRM_ERROR("Failed to allocate seqno page\n");
681                 ret = -ENOMEM;
682                 goto err;
683         }
684
685         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686         if (ret)
687                 goto err_unref;
688
689         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690         if (ret)
691                 goto err_unref;
692
693         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695         if (ring->scratch.cpu_page == NULL) {
696                 ret = -ENOMEM;
697                 goto err_unpin;
698         }
699
700         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701                          ring->name, ring->scratch.gtt_offset);
702         return 0;
703
704 err_unpin:
705         i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707         drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709         return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714         int ret, i;
715         struct intel_engine_cs *ring = req->ring;
716         struct drm_device *dev = ring->dev;
717         struct drm_i915_private *dev_priv = dev->dev_private;
718         struct i915_workarounds *w = &dev_priv->workarounds;
719
720         if (WARN_ON_ONCE(w->count == 0))
721                 return 0;
722
723         ring->gpu_caches_dirty = true;
724         ret = intel_ring_flush_all_caches(req);
725         if (ret)
726                 return ret;
727
728         ret = intel_ring_begin(req, (w->count * 2 + 2));
729         if (ret)
730                 return ret;
731
732         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733         for (i = 0; i < w->count; i++) {
734                 intel_ring_emit(ring, w->reg[i].addr);
735                 intel_ring_emit(ring, w->reg[i].value);
736         }
737         intel_ring_emit(ring, MI_NOOP);
738
739         intel_ring_advance(ring);
740
741         ring->gpu_caches_dirty = true;
742         ret = intel_ring_flush_all_caches(req);
743         if (ret)
744                 return ret;
745
746         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748         return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753         int ret;
754
755         ret = intel_ring_workarounds_emit(req);
756         if (ret != 0)
757                 return ret;
758
759         ret = i915_gem_render_state_init(req);
760         if (ret)
761                 DRM_ERROR("init render state: %d\n", ret);
762
763         return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767                   const u32 addr, const u32 mask, const u32 val)
768 {
769         const u32 idx = dev_priv->workarounds.count;
770
771         if (WARN_ON(idx >= I915_MAX_WA_REGS))
772                 return -ENOSPC;
773
774         dev_priv->workarounds.reg[idx].addr = addr;
775         dev_priv->workarounds.reg[idx].value = val;
776         dev_priv->workarounds.reg[idx].mask = mask;
777
778         dev_priv->workarounds.count++;
779
780         return 0;
781 }
782
783 #define WA_REG(addr, mask, val) { \
784                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785                 if (r) \
786                         return r; \
787         }
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int bdw_init_workarounds(struct intel_engine_cs *ring)
804 {
805         struct drm_device *dev = ring->dev;
806         struct drm_i915_private *dev_priv = dev->dev_private;
807
808         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810         /* WaDisableAsyncFlipPerfMode:bdw */
811         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813         /* WaDisablePartialInstShootdown:bdw */
814         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
815         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
816                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
817                           STALL_DOP_GATING_DISABLE);
818
819         /* WaDisableDopClockGating:bdw */
820         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
821                           DOP_CLOCK_GATING_DISABLE);
822
823         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
824                           GEN8_SAMPLER_POWER_BYPASS_DIS);
825
826         /* Use Force Non-Coherent whenever executing a 3D context. This is a
827          * workaround for for a possible hang in the unlikely event a TLB
828          * invalidation occurs during a PSD flush.
829          */
830         WA_SET_BIT_MASKED(HDC_CHICKEN0,
831                           /* WaForceEnableNonCoherent:bdw */
832                           HDC_FORCE_NON_COHERENT |
833                           /* WaForceContextSaveRestoreNonCoherent:bdw */
834                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
835                           /* WaHdcDisableFetchWhenMasked:bdw */
836                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
838                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
839
840         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
841          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
842          *  polygons in the same 8x4 pixel/sample area to be processed without
843          *  stalling waiting for the earlier ones to write to Hierarchical Z
844          *  buffer."
845          *
846          * This optimization is off by default for Broadwell; turn it on.
847          */
848         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
849
850         /* Wa4x4STCOptimizationDisable:bdw */
851         WA_SET_BIT_MASKED(CACHE_MODE_1,
852                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
853
854         /*
855          * BSpec recommends 8x4 when MSAA is used,
856          * however in practice 16x4 seems fastest.
857          *
858          * Note that PS/WM thread counts depend on the WIZ hashing
859          * disable bit, which we don't touch here, but it's good
860          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
861          */
862         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
863                             GEN6_WIZ_HASHING_MASK,
864                             GEN6_WIZ_HASHING_16x4);
865
866         return 0;
867 }
868
869 static int chv_init_workarounds(struct intel_engine_cs *ring)
870 {
871         struct drm_device *dev = ring->dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873
874         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
875
876         /* WaDisableAsyncFlipPerfMode:chv */
877         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
878
879         /* WaDisablePartialInstShootdown:chv */
880         /* WaDisableThreadStallDopClockGating:chv */
881         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
882                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
883                           STALL_DOP_GATING_DISABLE);
884
885         /* Use Force Non-Coherent whenever executing a 3D context. This is a
886          * workaround for a possible hang in the unlikely event a TLB
887          * invalidation occurs during a PSD flush.
888          */
889         /* WaForceEnableNonCoherent:chv */
890         /* WaHdcDisableFetchWhenMasked:chv */
891         WA_SET_BIT_MASKED(HDC_CHICKEN0,
892                           HDC_FORCE_NON_COHERENT |
893                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
894
895         /* According to the CACHE_MODE_0 default value documentation, some
896          * CHV platforms disable this optimization by default.  Turn it on.
897          */
898         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
899
900         /* Wa4x4STCOptimizationDisable:chv */
901         WA_SET_BIT_MASKED(CACHE_MODE_1,
902                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
903
904         /* Improve HiZ throughput on CHV. */
905         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
906
907         /*
908          * BSpec recommends 8x4 when MSAA is used,
909          * however in practice 16x4 seems fastest.
910          *
911          * Note that PS/WM thread counts depend on the WIZ hashing
912          * disable bit, which we don't touch here, but it's good
913          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
914          */
915         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
916                             GEN6_WIZ_HASHING_MASK,
917                             GEN6_WIZ_HASHING_16x4);
918
919         return 0;
920 }
921
922 static int gen9_init_workarounds(struct intel_engine_cs *ring)
923 {
924         struct drm_device *dev = ring->dev;
925         struct drm_i915_private *dev_priv = dev->dev_private;
926         uint32_t tmp;
927
928         /* WaDisablePartialInstShootdown:skl,bxt */
929         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
930                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
931
932         /* Syncing dependencies between camera and graphics:skl,bxt */
933         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
934                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
935
936         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
937             INTEL_REVID(dev) == SKL_REVID_B0)) ||
938             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941                                   GEN9_DG_MIRROR_FIX_ENABLE);
942         }
943
944         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
945             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
946                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
947                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
948                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
949                 /*
950                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
951                  * but we do that in per ctx batchbuffer as there is an issue
952                  * with this register not getting restored on ctx restore
953                  */
954         }
955
956         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
957             IS_BROXTON(dev)) {
958                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
959                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960                                   GEN9_ENABLE_YV12_BUGFIX);
961         }
962
963         /* Wa4x4STCOptimizationDisable:skl,bxt */
964         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
965
966         /* WaDisablePartialResolveInVc:skl,bxt */
967         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
968
969         /* WaCcsTlbPrefetchDisable:skl,bxt */
970         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
971                           GEN9_CCS_TLB_PREFETCH_ENABLE);
972
973         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
974         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
975             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
976                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
977                                   PIXEL_MASK_CAMMING_DISABLE);
978
979         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
980         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
981         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
982             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
983                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
984         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
985
986         return 0;
987 }
988
989 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
990 {
991         struct drm_device *dev = ring->dev;
992         struct drm_i915_private *dev_priv = dev->dev_private;
993         u8 vals[3] = { 0, 0, 0 };
994         unsigned int i;
995
996         for (i = 0; i < 3; i++) {
997                 u8 ss;
998
999                 /*
1000                  * Only consider slices where one, and only one, subslice has 7
1001                  * EUs
1002                  */
1003                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1004                         continue;
1005
1006                 /*
1007                  * subslice_7eu[i] != 0 (because of the check above) and
1008                  * ss_max == 4 (maximum number of subslices possible per slice)
1009                  *
1010                  * ->    0 <= ss <= 3;
1011                  */
1012                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1013                 vals[i] = 3 - ss;
1014         }
1015
1016         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1017                 return 0;
1018
1019         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1020         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1021                             GEN9_IZ_HASHING_MASK(2) |
1022                             GEN9_IZ_HASHING_MASK(1) |
1023                             GEN9_IZ_HASHING_MASK(0),
1024                             GEN9_IZ_HASHING(2, vals[2]) |
1025                             GEN9_IZ_HASHING(1, vals[1]) |
1026                             GEN9_IZ_HASHING(0, vals[0]));
1027
1028         return 0;
1029 }
1030
1031
1032 static int skl_init_workarounds(struct intel_engine_cs *ring)
1033 {
1034         struct drm_device *dev = ring->dev;
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036
1037         gen9_init_workarounds(ring);
1038
1039         /* WaDisablePowerCompilerClockGating:skl */
1040         if (INTEL_REVID(dev) == SKL_REVID_B0)
1041                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1042                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1043
1044         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1045             INTEL_REVID(dev) == SKL_REVID_D0)
1046                 /* WaBarrierPerformanceFixDisable:skl */
1047                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1048                                   HDC_FENCE_DEST_SLM_DISABLE |
1049                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1050
1051         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1052                 /*
1053                  *Use Force Non-Coherent whenever executing a 3D context. This
1054                  * is a workaround for a possible hang in the unlikely event
1055                  * a TLB invalidation occurs during a PSD flush.
1056                  */
1057                 /* WaForceEnableNonCoherent:skl */
1058                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1059                                   HDC_FORCE_NON_COHERENT);
1060         }
1061
1062         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1063             INTEL_REVID(dev) == SKL_REVID_D0)
1064                 /* WaBarrierPerformanceFixDisable:skl */
1065                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1066                                   HDC_FENCE_DEST_SLM_DISABLE |
1067                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1068
1069         return skl_tune_iz_hashing(ring);
1070 }
1071
1072 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1073 {
1074         struct drm_device *dev = ring->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076
1077         gen9_init_workarounds(ring);
1078
1079         /* WaDisableThreadStallDopClockGating:bxt */
1080         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1081                           STALL_DOP_GATING_DISABLE);
1082
1083         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1084         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1085                 WA_SET_BIT_MASKED(
1086                         GEN7_HALF_SLICE_CHICKEN1,
1087                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1088         }
1089
1090         return 0;
1091 }
1092
1093 int init_workarounds_ring(struct intel_engine_cs *ring)
1094 {
1095         struct drm_device *dev = ring->dev;
1096         struct drm_i915_private *dev_priv = dev->dev_private;
1097
1098         WARN_ON(ring->id != RCS);
1099
1100         dev_priv->workarounds.count = 0;
1101
1102         if (IS_BROADWELL(dev))
1103                 return bdw_init_workarounds(ring);
1104
1105         if (IS_CHERRYVIEW(dev))
1106                 return chv_init_workarounds(ring);
1107
1108         if (IS_SKYLAKE(dev))
1109                 return skl_init_workarounds(ring);
1110
1111         if (IS_BROXTON(dev))
1112                 return bxt_init_workarounds(ring);
1113
1114         return 0;
1115 }
1116
1117 static int init_render_ring(struct intel_engine_cs *ring)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         int ret = init_ring_common(ring);
1122         if (ret)
1123                 return ret;
1124
1125         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1126         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1127                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1128
1129         /* We need to disable the AsyncFlip performance optimisations in order
1130          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1131          * programmed to '1' on all products.
1132          *
1133          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1134          */
1135         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1136                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1137
1138         /* Required for the hardware to program scanline values for waiting */
1139         /* WaEnableFlushTlbInvalidationMode:snb */
1140         if (INTEL_INFO(dev)->gen == 6)
1141                 I915_WRITE(GFX_MODE,
1142                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1143
1144         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1145         if (IS_GEN7(dev))
1146                 I915_WRITE(GFX_MODE_GEN7,
1147                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1148                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1149
1150         if (IS_GEN6(dev)) {
1151                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1152                  * "If this bit is set, STCunit will have LRA as replacement
1153                  *  policy. [...] This bit must be reset.  LRA replacement
1154                  *  policy is not supported."
1155                  */
1156                 I915_WRITE(CACHE_MODE_0,
1157                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1158         }
1159
1160         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1161                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1162
1163         if (HAS_L3_DPF(dev))
1164                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1165
1166         return init_workarounds_ring(ring);
1167 }
1168
1169 static void render_ring_cleanup(struct intel_engine_cs *ring)
1170 {
1171         struct drm_device *dev = ring->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173
1174         if (dev_priv->semaphore_obj) {
1175                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1176                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1177                 dev_priv->semaphore_obj = NULL;
1178         }
1179
1180         intel_fini_pipe_control(ring);
1181 }
1182
1183 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1184                            unsigned int num_dwords)
1185 {
1186 #define MBOX_UPDATE_DWORDS 8
1187         struct intel_engine_cs *signaller = signaller_req->ring;
1188         struct drm_device *dev = signaller->dev;
1189         struct drm_i915_private *dev_priv = dev->dev_private;
1190         struct intel_engine_cs *waiter;
1191         int i, ret, num_rings;
1192
1193         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1194         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1195 #undef MBOX_UPDATE_DWORDS
1196
1197         ret = intel_ring_begin(signaller_req, num_dwords);
1198         if (ret)
1199                 return ret;
1200
1201         for_each_ring(waiter, dev_priv, i) {
1202                 u32 seqno;
1203                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1204                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1205                         continue;
1206
1207                 seqno = i915_gem_request_get_seqno(signaller_req);
1208                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1209                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1210                                            PIPE_CONTROL_QW_WRITE |
1211                                            PIPE_CONTROL_FLUSH_ENABLE);
1212                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1213                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1214                 intel_ring_emit(signaller, seqno);
1215                 intel_ring_emit(signaller, 0);
1216                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1217                                            MI_SEMAPHORE_TARGET(waiter->id));
1218                 intel_ring_emit(signaller, 0);
1219         }
1220
1221         return 0;
1222 }
1223
1224 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1225                            unsigned int num_dwords)
1226 {
1227 #define MBOX_UPDATE_DWORDS 6
1228         struct intel_engine_cs *signaller = signaller_req->ring;
1229         struct drm_device *dev = signaller->dev;
1230         struct drm_i915_private *dev_priv = dev->dev_private;
1231         struct intel_engine_cs *waiter;
1232         int i, ret, num_rings;
1233
1234         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1235         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1236 #undef MBOX_UPDATE_DWORDS
1237
1238         ret = intel_ring_begin(signaller_req, num_dwords);
1239         if (ret)
1240                 return ret;
1241
1242         for_each_ring(waiter, dev_priv, i) {
1243                 u32 seqno;
1244                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1245                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1246                         continue;
1247
1248                 seqno = i915_gem_request_get_seqno(signaller_req);
1249                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1250                                            MI_FLUSH_DW_OP_STOREDW);
1251                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1252                                            MI_FLUSH_DW_USE_GTT);
1253                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1254                 intel_ring_emit(signaller, seqno);
1255                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1256                                            MI_SEMAPHORE_TARGET(waiter->id));
1257                 intel_ring_emit(signaller, 0);
1258         }
1259
1260         return 0;
1261 }
1262
1263 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1264                        unsigned int num_dwords)
1265 {
1266         struct intel_engine_cs *signaller = signaller_req->ring;
1267         struct drm_device *dev = signaller->dev;
1268         struct drm_i915_private *dev_priv = dev->dev_private;
1269         struct intel_engine_cs *useless;
1270         int i, ret, num_rings;
1271
1272 #define MBOX_UPDATE_DWORDS 3
1273         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1274         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1275 #undef MBOX_UPDATE_DWORDS
1276
1277         ret = intel_ring_begin(signaller_req, num_dwords);
1278         if (ret)
1279                 return ret;
1280
1281         for_each_ring(useless, dev_priv, i) {
1282                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1283                 if (mbox_reg != GEN6_NOSYNC) {
1284                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1285                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1286                         intel_ring_emit(signaller, mbox_reg);
1287                         intel_ring_emit(signaller, seqno);
1288                 }
1289         }
1290
1291         /* If num_dwords was rounded, make sure the tail pointer is correct */
1292         if (num_rings % 2 == 0)
1293                 intel_ring_emit(signaller, MI_NOOP);
1294
1295         return 0;
1296 }
1297
1298 /**
1299  * gen6_add_request - Update the semaphore mailbox registers
1300  *
1301  * @request - request to write to the ring
1302  *
1303  * Update the mailbox registers in the *other* rings with the current seqno.
1304  * This acts like a signal in the canonical semaphore.
1305  */
1306 static int
1307 gen6_add_request(struct drm_i915_gem_request *req)
1308 {
1309         struct intel_engine_cs *ring = req->ring;
1310         int ret;
1311
1312         if (ring->semaphore.signal)
1313                 ret = ring->semaphore.signal(req, 4);
1314         else
1315                 ret = intel_ring_begin(req, 4);
1316
1317         if (ret)
1318                 return ret;
1319
1320         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1321         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1322         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1323         intel_ring_emit(ring, MI_USER_INTERRUPT);
1324         __intel_ring_advance(ring);
1325
1326         return 0;
1327 }
1328
1329 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1330                                               u32 seqno)
1331 {
1332         struct drm_i915_private *dev_priv = dev->dev_private;
1333         return dev_priv->last_seqno < seqno;
1334 }
1335
1336 /**
1337  * intel_ring_sync - sync the waiter to the signaller on seqno
1338  *
1339  * @waiter - ring that is waiting
1340  * @signaller - ring which has, or will signal
1341  * @seqno - seqno which the waiter will block on
1342  */
1343
1344 static int
1345 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1346                struct intel_engine_cs *signaller,
1347                u32 seqno)
1348 {
1349         struct intel_engine_cs *waiter = waiter_req->ring;
1350         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1351         int ret;
1352
1353         ret = intel_ring_begin(waiter_req, 4);
1354         if (ret)
1355                 return ret;
1356
1357         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1358                                 MI_SEMAPHORE_GLOBAL_GTT |
1359                                 MI_SEMAPHORE_POLL |
1360                                 MI_SEMAPHORE_SAD_GTE_SDD);
1361         intel_ring_emit(waiter, seqno);
1362         intel_ring_emit(waiter,
1363                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1364         intel_ring_emit(waiter,
1365                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1366         intel_ring_advance(waiter);
1367         return 0;
1368 }
1369
1370 static int
1371 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1372                struct intel_engine_cs *signaller,
1373                u32 seqno)
1374 {
1375         struct intel_engine_cs *waiter = waiter_req->ring;
1376         u32 dw1 = MI_SEMAPHORE_MBOX |
1377                   MI_SEMAPHORE_COMPARE |
1378                   MI_SEMAPHORE_REGISTER;
1379         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1380         int ret;
1381
1382         /* Throughout all of the GEM code, seqno passed implies our current
1383          * seqno is >= the last seqno executed. However for hardware the
1384          * comparison is strictly greater than.
1385          */
1386         seqno -= 1;
1387
1388         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1389
1390         ret = intel_ring_begin(waiter_req, 4);
1391         if (ret)
1392                 return ret;
1393
1394         /* If seqno wrap happened, omit the wait with no-ops */
1395         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1396                 intel_ring_emit(waiter, dw1 | wait_mbox);
1397                 intel_ring_emit(waiter, seqno);
1398                 intel_ring_emit(waiter, 0);
1399                 intel_ring_emit(waiter, MI_NOOP);
1400         } else {
1401                 intel_ring_emit(waiter, MI_NOOP);
1402                 intel_ring_emit(waiter, MI_NOOP);
1403                 intel_ring_emit(waiter, MI_NOOP);
1404                 intel_ring_emit(waiter, MI_NOOP);
1405         }
1406         intel_ring_advance(waiter);
1407
1408         return 0;
1409 }
1410
1411 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1412 do {                                                                    \
1413         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1414                  PIPE_CONTROL_DEPTH_STALL);                             \
1415         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1416         intel_ring_emit(ring__, 0);                                                     \
1417         intel_ring_emit(ring__, 0);                                                     \
1418 } while (0)
1419
1420 static int
1421 pc_render_add_request(struct drm_i915_gem_request *req)
1422 {
1423         struct intel_engine_cs *ring = req->ring;
1424         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1425         int ret;
1426
1427         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1428          * incoherent with writes to memory, i.e. completely fubar,
1429          * so we need to use PIPE_NOTIFY instead.
1430          *
1431          * However, we also need to workaround the qword write
1432          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1433          * memory before requesting an interrupt.
1434          */
1435         ret = intel_ring_begin(req, 32);
1436         if (ret)
1437                 return ret;
1438
1439         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1440                         PIPE_CONTROL_WRITE_FLUSH |
1441                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1442         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1443         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1444         intel_ring_emit(ring, 0);
1445         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1446         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1447         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1448         scratch_addr += 2 * CACHELINE_BYTES;
1449         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450         scratch_addr += 2 * CACHELINE_BYTES;
1451         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452         scratch_addr += 2 * CACHELINE_BYTES;
1453         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454         scratch_addr += 2 * CACHELINE_BYTES;
1455         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456
1457         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1458                         PIPE_CONTROL_WRITE_FLUSH |
1459                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1460                         PIPE_CONTROL_NOTIFY);
1461         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1462         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1463         intel_ring_emit(ring, 0);
1464         __intel_ring_advance(ring);
1465
1466         return 0;
1467 }
1468
1469 static u32
1470 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1471 {
1472         /* Workaround to force correct ordering between irq and seqno writes on
1473          * ivb (and maybe also on snb) by reading from a CS register (like
1474          * ACTHD) before reading the status page. */
1475         if (!lazy_coherency) {
1476                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1477                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1478         }
1479
1480         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1481 }
1482
1483 static u32
1484 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1485 {
1486         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1487 }
1488
1489 static void
1490 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1491 {
1492         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1493 }
1494
1495 static u32
1496 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1497 {
1498         return ring->scratch.cpu_page[0];
1499 }
1500
1501 static void
1502 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1503 {
1504         ring->scratch.cpu_page[0] = seqno;
1505 }
1506
1507 static bool
1508 gen5_ring_get_irq(struct intel_engine_cs *ring)
1509 {
1510         struct drm_device *dev = ring->dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         unsigned long flags;
1513
1514         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1515                 return false;
1516
1517         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1518         if (ring->irq_refcount++ == 0)
1519                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1520         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1521
1522         return true;
1523 }
1524
1525 static void
1526 gen5_ring_put_irq(struct intel_engine_cs *ring)
1527 {
1528         struct drm_device *dev = ring->dev;
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         unsigned long flags;
1531
1532         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1533         if (--ring->irq_refcount == 0)
1534                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1535         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1536 }
1537
1538 static bool
1539 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1540 {
1541         struct drm_device *dev = ring->dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         unsigned long flags;
1544
1545         if (!intel_irqs_enabled(dev_priv))
1546                 return false;
1547
1548         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1549         if (ring->irq_refcount++ == 0) {
1550                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1551                 I915_WRITE(IMR, dev_priv->irq_mask);
1552                 POSTING_READ(IMR);
1553         }
1554         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1555
1556         return true;
1557 }
1558
1559 static void
1560 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1561 {
1562         struct drm_device *dev = ring->dev;
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         unsigned long flags;
1565
1566         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1567         if (--ring->irq_refcount == 0) {
1568                 dev_priv->irq_mask |= ring->irq_enable_mask;
1569                 I915_WRITE(IMR, dev_priv->irq_mask);
1570                 POSTING_READ(IMR);
1571         }
1572         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1573 }
1574
1575 static bool
1576 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1577 {
1578         struct drm_device *dev = ring->dev;
1579         struct drm_i915_private *dev_priv = dev->dev_private;
1580         unsigned long flags;
1581
1582         if (!intel_irqs_enabled(dev_priv))
1583                 return false;
1584
1585         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1586         if (ring->irq_refcount++ == 0) {
1587                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1588                 I915_WRITE16(IMR, dev_priv->irq_mask);
1589                 POSTING_READ16(IMR);
1590         }
1591         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1592
1593         return true;
1594 }
1595
1596 static void
1597 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1598 {
1599         struct drm_device *dev = ring->dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         unsigned long flags;
1602
1603         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604         if (--ring->irq_refcount == 0) {
1605                 dev_priv->irq_mask |= ring->irq_enable_mask;
1606                 I915_WRITE16(IMR, dev_priv->irq_mask);
1607                 POSTING_READ16(IMR);
1608         }
1609         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1610 }
1611
1612 static int
1613 bsd_ring_flush(struct drm_i915_gem_request *req,
1614                u32     invalidate_domains,
1615                u32     flush_domains)
1616 {
1617         struct intel_engine_cs *ring = req->ring;
1618         int ret;
1619
1620         ret = intel_ring_begin(req, 2);
1621         if (ret)
1622                 return ret;
1623
1624         intel_ring_emit(ring, MI_FLUSH);
1625         intel_ring_emit(ring, MI_NOOP);
1626         intel_ring_advance(ring);
1627         return 0;
1628 }
1629
1630 static int
1631 i9xx_add_request(struct drm_i915_gem_request *req)
1632 {
1633         struct intel_engine_cs *ring = req->ring;
1634         int ret;
1635
1636         ret = intel_ring_begin(req, 4);
1637         if (ret)
1638                 return ret;
1639
1640         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1641         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1642         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1643         intel_ring_emit(ring, MI_USER_INTERRUPT);
1644         __intel_ring_advance(ring);
1645
1646         return 0;
1647 }
1648
1649 static bool
1650 gen6_ring_get_irq(struct intel_engine_cs *ring)
1651 {
1652         struct drm_device *dev = ring->dev;
1653         struct drm_i915_private *dev_priv = dev->dev_private;
1654         unsigned long flags;
1655
1656         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1657                 return false;
1658
1659         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1660         if (ring->irq_refcount++ == 0) {
1661                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1662                         I915_WRITE_IMR(ring,
1663                                        ~(ring->irq_enable_mask |
1664                                          GT_PARITY_ERROR(dev)));
1665                 else
1666                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1667                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1668         }
1669         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1670
1671         return true;
1672 }
1673
1674 static void
1675 gen6_ring_put_irq(struct intel_engine_cs *ring)
1676 {
1677         struct drm_device *dev = ring->dev;
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         unsigned long flags;
1680
1681         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1682         if (--ring->irq_refcount == 0) {
1683                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1684                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1685                 else
1686                         I915_WRITE_IMR(ring, ~0);
1687                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1688         }
1689         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1690 }
1691
1692 static bool
1693 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1694 {
1695         struct drm_device *dev = ring->dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697         unsigned long flags;
1698
1699         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1700                 return false;
1701
1702         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703         if (ring->irq_refcount++ == 0) {
1704                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1705                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1706         }
1707         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708
1709         return true;
1710 }
1711
1712 static void
1713 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1714 {
1715         struct drm_device *dev = ring->dev;
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717         unsigned long flags;
1718
1719         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1720         if (--ring->irq_refcount == 0) {
1721                 I915_WRITE_IMR(ring, ~0);
1722                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1723         }
1724         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1725 }
1726
1727 static bool
1728 gen8_ring_get_irq(struct intel_engine_cs *ring)
1729 {
1730         struct drm_device *dev = ring->dev;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         unsigned long flags;
1733
1734         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1735                 return false;
1736
1737         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1738         if (ring->irq_refcount++ == 0) {
1739                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1740                         I915_WRITE_IMR(ring,
1741                                        ~(ring->irq_enable_mask |
1742                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1743                 } else {
1744                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1745                 }
1746                 POSTING_READ(RING_IMR(ring->mmio_base));
1747         }
1748         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1749
1750         return true;
1751 }
1752
1753 static void
1754 gen8_ring_put_irq(struct intel_engine_cs *ring)
1755 {
1756         struct drm_device *dev = ring->dev;
1757         struct drm_i915_private *dev_priv = dev->dev_private;
1758         unsigned long flags;
1759
1760         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1761         if (--ring->irq_refcount == 0) {
1762                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1763                         I915_WRITE_IMR(ring,
1764                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1765                 } else {
1766                         I915_WRITE_IMR(ring, ~0);
1767                 }
1768                 POSTING_READ(RING_IMR(ring->mmio_base));
1769         }
1770         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771 }
1772
1773 static int
1774 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1775                          u64 offset, u32 length,
1776                          unsigned dispatch_flags)
1777 {
1778         struct intel_engine_cs *ring = req->ring;
1779         int ret;
1780
1781         ret = intel_ring_begin(req, 2);
1782         if (ret)
1783                 return ret;
1784
1785         intel_ring_emit(ring,
1786                         MI_BATCH_BUFFER_START |
1787                         MI_BATCH_GTT |
1788                         (dispatch_flags & I915_DISPATCH_SECURE ?
1789                          0 : MI_BATCH_NON_SECURE_I965));
1790         intel_ring_emit(ring, offset);
1791         intel_ring_advance(ring);
1792
1793         return 0;
1794 }
1795
1796 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1797 #define I830_BATCH_LIMIT (256*1024)
1798 #define I830_TLB_ENTRIES (2)
1799 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1800 static int
1801 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1802                          u64 offset, u32 len,
1803                          unsigned dispatch_flags)
1804 {
1805         struct intel_engine_cs *ring = req->ring;
1806         u32 cs_offset = ring->scratch.gtt_offset;
1807         int ret;
1808
1809         ret = intel_ring_begin(req, 6);
1810         if (ret)
1811                 return ret;
1812
1813         /* Evict the invalid PTE TLBs */
1814         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1815         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1816         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1817         intel_ring_emit(ring, cs_offset);
1818         intel_ring_emit(ring, 0xdeadbeef);
1819         intel_ring_emit(ring, MI_NOOP);
1820         intel_ring_advance(ring);
1821
1822         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1823                 if (len > I830_BATCH_LIMIT)
1824                         return -ENOSPC;
1825
1826                 ret = intel_ring_begin(req, 6 + 2);
1827                 if (ret)
1828                         return ret;
1829
1830                 /* Blit the batch (which has now all relocs applied) to the
1831                  * stable batch scratch bo area (so that the CS never
1832                  * stumbles over its tlb invalidation bug) ...
1833                  */
1834                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1835                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1836                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1837                 intel_ring_emit(ring, cs_offset);
1838                 intel_ring_emit(ring, 4096);
1839                 intel_ring_emit(ring, offset);
1840
1841                 intel_ring_emit(ring, MI_FLUSH);
1842                 intel_ring_emit(ring, MI_NOOP);
1843                 intel_ring_advance(ring);
1844
1845                 /* ... and execute it. */
1846                 offset = cs_offset;
1847         }
1848
1849         ret = intel_ring_begin(req, 4);
1850         if (ret)
1851                 return ret;
1852
1853         intel_ring_emit(ring, MI_BATCH_BUFFER);
1854         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1855                                         0 : MI_BATCH_NON_SECURE));
1856         intel_ring_emit(ring, offset + len - 8);
1857         intel_ring_emit(ring, MI_NOOP);
1858         intel_ring_advance(ring);
1859
1860         return 0;
1861 }
1862
1863 static int
1864 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1865                          u64 offset, u32 len,
1866                          unsigned dispatch_flags)
1867 {
1868         struct intel_engine_cs *ring = req->ring;
1869         int ret;
1870
1871         ret = intel_ring_begin(req, 2);
1872         if (ret)
1873                 return ret;
1874
1875         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1876         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1877                                         0 : MI_BATCH_NON_SECURE));
1878         intel_ring_advance(ring);
1879
1880         return 0;
1881 }
1882
1883 static void cleanup_status_page(struct intel_engine_cs *ring)
1884 {
1885         struct drm_i915_gem_object *obj;
1886
1887         obj = ring->status_page.obj;
1888         if (obj == NULL)
1889                 return;
1890
1891         kunmap(sg_page(obj->pages->sgl));
1892         i915_gem_object_ggtt_unpin(obj);
1893         drm_gem_object_unreference(&obj->base);
1894         ring->status_page.obj = NULL;
1895 }
1896
1897 static int init_status_page(struct intel_engine_cs *ring)
1898 {
1899         struct drm_i915_gem_object *obj;
1900
1901         if ((obj = ring->status_page.obj) == NULL) {
1902                 unsigned flags;
1903                 int ret;
1904
1905                 obj = i915_gem_alloc_object(ring->dev, 4096);
1906                 if (obj == NULL) {
1907                         DRM_ERROR("Failed to allocate status page\n");
1908                         return -ENOMEM;
1909                 }
1910
1911                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1912                 if (ret)
1913                         goto err_unref;
1914
1915                 flags = 0;
1916                 if (!HAS_LLC(ring->dev))
1917                         /* On g33, we cannot place HWS above 256MiB, so
1918                          * restrict its pinning to the low mappable arena.
1919                          * Though this restriction is not documented for
1920                          * gen4, gen5, or byt, they also behave similarly
1921                          * and hang if the HWS is placed at the top of the
1922                          * GTT. To generalise, it appears that all !llc
1923                          * platforms have issues with us placing the HWS
1924                          * above the mappable region (even though we never
1925                          * actualy map it).
1926                          */
1927                         flags |= PIN_MAPPABLE;
1928                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1929                 if (ret) {
1930 err_unref:
1931                         drm_gem_object_unreference(&obj->base);
1932                         return ret;
1933                 }
1934
1935                 ring->status_page.obj = obj;
1936         }
1937
1938         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1939         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1940         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1941
1942         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1943                         ring->name, ring->status_page.gfx_addr);
1944
1945         return 0;
1946 }
1947
1948 static int init_phys_status_page(struct intel_engine_cs *ring)
1949 {
1950         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1951
1952         if (!dev_priv->status_page_dmah) {
1953                 dev_priv->status_page_dmah =
1954                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1955                 if (!dev_priv->status_page_dmah)
1956                         return -ENOMEM;
1957         }
1958
1959         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1960         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1961
1962         return 0;
1963 }
1964
1965 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1966 {
1967         iounmap(ringbuf->virtual_start);
1968         ringbuf->virtual_start = NULL;
1969         i915_gem_object_ggtt_unpin(ringbuf->obj);
1970 }
1971
1972 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1973                                      struct intel_ringbuffer *ringbuf)
1974 {
1975         struct drm_i915_private *dev_priv = to_i915(dev);
1976         struct drm_i915_gem_object *obj = ringbuf->obj;
1977         int ret;
1978
1979         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1980         if (ret)
1981                 return ret;
1982
1983         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1984         if (ret) {
1985                 i915_gem_object_ggtt_unpin(obj);
1986                 return ret;
1987         }
1988
1989         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1990                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1991         if (ringbuf->virtual_start == NULL) {
1992                 i915_gem_object_ggtt_unpin(obj);
1993                 return -EINVAL;
1994         }
1995
1996         return 0;
1997 }
1998
1999 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2000 {
2001         drm_gem_object_unreference(&ringbuf->obj->base);
2002         ringbuf->obj = NULL;
2003 }
2004
2005 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2006                                struct intel_ringbuffer *ringbuf)
2007 {
2008         struct drm_i915_gem_object *obj;
2009
2010         obj = NULL;
2011         if (!HAS_LLC(dev))
2012                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2013         if (obj == NULL)
2014                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2015         if (obj == NULL)
2016                 return -ENOMEM;
2017
2018         /* mark ring buffers as read-only from GPU side by default */
2019         obj->gt_ro = 1;
2020
2021         ringbuf->obj = obj;
2022
2023         return 0;
2024 }
2025
2026 static int intel_init_ring_buffer(struct drm_device *dev,
2027                                   struct intel_engine_cs *ring)
2028 {
2029         struct intel_ringbuffer *ringbuf;
2030         int ret;
2031
2032         WARN_ON(ring->buffer);
2033
2034         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2035         if (!ringbuf)
2036                 return -ENOMEM;
2037         ring->buffer = ringbuf;
2038
2039         ring->dev = dev;
2040         INIT_LIST_HEAD(&ring->active_list);
2041         INIT_LIST_HEAD(&ring->request_list);
2042         INIT_LIST_HEAD(&ring->execlist_queue);
2043         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2044         ringbuf->size = 32 * PAGE_SIZE;
2045         ringbuf->ring = ring;
2046         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2047
2048         init_waitqueue_head(&ring->irq_queue);
2049
2050         if (I915_NEED_GFX_HWS(dev)) {
2051                 ret = init_status_page(ring);
2052                 if (ret)
2053                         goto error;
2054         } else {
2055                 BUG_ON(ring->id != RCS);
2056                 ret = init_phys_status_page(ring);
2057                 if (ret)
2058                         goto error;
2059         }
2060
2061         WARN_ON(ringbuf->obj);
2062
2063         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2064         if (ret) {
2065                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2066                                 ring->name, ret);
2067                 goto error;
2068         }
2069
2070         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2071         if (ret) {
2072                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2073                                 ring->name, ret);
2074                 intel_destroy_ringbuffer_obj(ringbuf);
2075                 goto error;
2076         }
2077
2078         /* Workaround an erratum on the i830 which causes a hang if
2079          * the TAIL pointer points to within the last 2 cachelines
2080          * of the buffer.
2081          */
2082         ringbuf->effective_size = ringbuf->size;
2083         if (IS_I830(dev) || IS_845G(dev))
2084                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2085
2086         ret = i915_cmd_parser_init_ring(ring);
2087         if (ret)
2088                 goto error;
2089
2090         return 0;
2091
2092 error:
2093         kfree(ringbuf);
2094         ring->buffer = NULL;
2095         return ret;
2096 }
2097
2098 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2099 {
2100         struct drm_i915_private *dev_priv;
2101         struct intel_ringbuffer *ringbuf;
2102
2103         if (!intel_ring_initialized(ring))
2104                 return;
2105
2106         dev_priv = to_i915(ring->dev);
2107         ringbuf = ring->buffer;
2108
2109         intel_stop_ring_buffer(ring);
2110         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2111
2112         intel_unpin_ringbuffer_obj(ringbuf);
2113         intel_destroy_ringbuffer_obj(ringbuf);
2114
2115         if (ring->cleanup)
2116                 ring->cleanup(ring);
2117
2118         cleanup_status_page(ring);
2119
2120         i915_cmd_parser_fini_ring(ring);
2121         i915_gem_batch_pool_fini(&ring->batch_pool);
2122
2123         kfree(ringbuf);
2124         ring->buffer = NULL;
2125 }
2126
2127 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2128 {
2129         struct intel_ringbuffer *ringbuf = ring->buffer;
2130         struct drm_i915_gem_request *request;
2131         unsigned space;
2132         int ret;
2133
2134         if (intel_ring_space(ringbuf) >= n)
2135                 return 0;
2136
2137         /* The whole point of reserving space is to not wait! */
2138         WARN_ON(ringbuf->reserved_in_use);
2139
2140         list_for_each_entry(request, &ring->request_list, list) {
2141                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2142                                            ringbuf->size);
2143                 if (space >= n)
2144                         break;
2145         }
2146
2147         if (WARN_ON(&request->list == &ring->request_list))
2148                 return -ENOSPC;
2149
2150         ret = i915_wait_request(request);
2151         if (ret)
2152                 return ret;
2153
2154         ringbuf->space = space;
2155         return 0;
2156 }
2157
2158 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2159 {
2160         uint32_t __iomem *virt;
2161         int rem = ringbuf->size - ringbuf->tail;
2162
2163         virt = ringbuf->virtual_start + ringbuf->tail;
2164         rem /= 4;
2165         while (rem--)
2166                 iowrite32(MI_NOOP, virt++);
2167
2168         ringbuf->tail = 0;
2169         intel_ring_update_space(ringbuf);
2170 }
2171
2172 int intel_ring_idle(struct intel_engine_cs *ring)
2173 {
2174         struct drm_i915_gem_request *req;
2175
2176         /* Wait upon the last request to be completed */
2177         if (list_empty(&ring->request_list))
2178                 return 0;
2179
2180         req = list_entry(ring->request_list.prev,
2181                         struct drm_i915_gem_request,
2182                         list);
2183
2184         /* Make sure we do not trigger any retires */
2185         return __i915_wait_request(req,
2186                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2187                                    to_i915(ring->dev)->mm.interruptible,
2188                                    NULL, NULL);
2189 }
2190
2191 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2192 {
2193         request->ringbuf = request->ring->buffer;
2194         return 0;
2195 }
2196
2197 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2198 {
2199         /*
2200          * The first call merely notes the reserve request and is common for
2201          * all back ends. The subsequent localised _begin() call actually
2202          * ensures that the reservation is available. Without the begin, if
2203          * the request creator immediately submitted the request without
2204          * adding any commands to it then there might not actually be
2205          * sufficient room for the submission commands.
2206          */
2207         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2208
2209         return intel_ring_begin(request, 0);
2210 }
2211
2212 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2213 {
2214         WARN_ON(ringbuf->reserved_size);
2215         WARN_ON(ringbuf->reserved_in_use);
2216
2217         ringbuf->reserved_size = size;
2218 }
2219
2220 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2221 {
2222         WARN_ON(ringbuf->reserved_in_use);
2223
2224         ringbuf->reserved_size   = 0;
2225         ringbuf->reserved_in_use = false;
2226 }
2227
2228 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2229 {
2230         WARN_ON(ringbuf->reserved_in_use);
2231
2232         ringbuf->reserved_in_use = true;
2233         ringbuf->reserved_tail   = ringbuf->tail;
2234 }
2235
2236 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2237 {
2238         WARN_ON(!ringbuf->reserved_in_use);
2239         if (ringbuf->tail > ringbuf->reserved_tail) {
2240                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2241                      "request reserved size too small: %d vs %d!\n",
2242                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2243         } else {
2244                 /*
2245                  * The ring was wrapped while the reserved space was in use.
2246                  * That means that some unknown amount of the ring tail was
2247                  * no-op filled and skipped. Thus simply adding the ring size
2248                  * to the tail and doing the above space check will not work.
2249                  * Rather than attempt to track how much tail was skipped,
2250                  * it is much simpler to say that also skipping the sanity
2251                  * check every once in a while is not a big issue.
2252                  */
2253         }
2254
2255         ringbuf->reserved_size   = 0;
2256         ringbuf->reserved_in_use = false;
2257 }
2258
2259 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2260 {
2261         struct intel_ringbuffer *ringbuf = ring->buffer;
2262         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2263         int remain_actual = ringbuf->size - ringbuf->tail;
2264         int ret, total_bytes, wait_bytes = 0;
2265         bool need_wrap = false;
2266
2267         if (ringbuf->reserved_in_use)
2268                 total_bytes = bytes;
2269         else
2270                 total_bytes = bytes + ringbuf->reserved_size;
2271
2272         if (unlikely(bytes > remain_usable)) {
2273                 /*
2274                  * Not enough space for the basic request. So need to flush
2275                  * out the remainder and then wait for base + reserved.
2276                  */
2277                 wait_bytes = remain_actual + total_bytes;
2278                 need_wrap = true;
2279         } else {
2280                 if (unlikely(total_bytes > remain_usable)) {
2281                         /*
2282                          * The base request will fit but the reserved space
2283                          * falls off the end. So only need to to wait for the
2284                          * reserved size after flushing out the remainder.
2285                          */
2286                         wait_bytes = remain_actual + ringbuf->reserved_size;
2287                         need_wrap = true;
2288                 } else if (total_bytes > ringbuf->space) {
2289                         /* No wrapping required, just waiting. */
2290                         wait_bytes = total_bytes;
2291                 }
2292         }
2293
2294         if (wait_bytes) {
2295                 ret = ring_wait_for_space(ring, wait_bytes);
2296                 if (unlikely(ret))
2297                         return ret;
2298
2299                 if (need_wrap)
2300                         __wrap_ring_buffer(ringbuf);
2301         }
2302
2303         return 0;
2304 }
2305
2306 int intel_ring_begin(struct drm_i915_gem_request *req,
2307                      int num_dwords)
2308 {
2309         struct intel_engine_cs *ring;
2310         struct drm_i915_private *dev_priv;
2311         int ret;
2312
2313         WARN_ON(req == NULL);
2314         ring = req->ring;
2315         dev_priv = ring->dev->dev_private;
2316
2317         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2318                                    dev_priv->mm.interruptible);
2319         if (ret)
2320                 return ret;
2321
2322         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2323         if (ret)
2324                 return ret;
2325
2326         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2327         return 0;
2328 }
2329
2330 /* Align the ring tail to a cacheline boundary */
2331 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2332 {
2333         struct intel_engine_cs *ring = req->ring;
2334         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2335         int ret;
2336
2337         if (num_dwords == 0)
2338                 return 0;
2339
2340         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2341         ret = intel_ring_begin(req, num_dwords);
2342         if (ret)
2343                 return ret;
2344
2345         while (num_dwords--)
2346                 intel_ring_emit(ring, MI_NOOP);
2347
2348         intel_ring_advance(ring);
2349
2350         return 0;
2351 }
2352
2353 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2354 {
2355         struct drm_device *dev = ring->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2359                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2360                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2361                 if (HAS_VEBOX(dev))
2362                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2363         }
2364
2365         ring->set_seqno(ring, seqno);
2366         ring->hangcheck.seqno = seqno;
2367 }
2368
2369 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2370                                      u32 value)
2371 {
2372         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2373
2374        /* Every tail move must follow the sequence below */
2375
2376         /* Disable notification that the ring is IDLE. The GT
2377          * will then assume that it is busy and bring it out of rc6.
2378          */
2379         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2380                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2381
2382         /* Clear the context id. Here be magic! */
2383         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2384
2385         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2386         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2387                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2388                      50))
2389                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2390
2391         /* Now that the ring is fully powered up, update the tail */
2392         I915_WRITE_TAIL(ring, value);
2393         POSTING_READ(RING_TAIL(ring->mmio_base));
2394
2395         /* Let the ring send IDLE messages to the GT again,
2396          * and so let it sleep to conserve power when idle.
2397          */
2398         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2399                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2400 }
2401
2402 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2403                                u32 invalidate, u32 flush)
2404 {
2405         struct intel_engine_cs *ring = req->ring;
2406         uint32_t cmd;
2407         int ret;
2408
2409         ret = intel_ring_begin(req, 4);
2410         if (ret)
2411                 return ret;
2412
2413         cmd = MI_FLUSH_DW;
2414         if (INTEL_INFO(ring->dev)->gen >= 8)
2415                 cmd += 1;
2416
2417         /* We always require a command barrier so that subsequent
2418          * commands, such as breadcrumb interrupts, are strictly ordered
2419          * wrt the contents of the write cache being flushed to memory
2420          * (and thus being coherent from the CPU).
2421          */
2422         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2423
2424         /*
2425          * Bspec vol 1c.5 - video engine command streamer:
2426          * "If ENABLED, all TLBs will be invalidated once the flush
2427          * operation is complete. This bit is only valid when the
2428          * Post-Sync Operation field is a value of 1h or 3h."
2429          */
2430         if (invalidate & I915_GEM_GPU_DOMAINS)
2431                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2432
2433         intel_ring_emit(ring, cmd);
2434         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2435         if (INTEL_INFO(ring->dev)->gen >= 8) {
2436                 intel_ring_emit(ring, 0); /* upper addr */
2437                 intel_ring_emit(ring, 0); /* value */
2438         } else  {
2439                 intel_ring_emit(ring, 0);
2440                 intel_ring_emit(ring, MI_NOOP);
2441         }
2442         intel_ring_advance(ring);
2443         return 0;
2444 }
2445
2446 static int
2447 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2448                               u64 offset, u32 len,
2449                               unsigned dispatch_flags)
2450 {
2451         struct intel_engine_cs *ring = req->ring;
2452         bool ppgtt = USES_PPGTT(ring->dev) &&
2453                         !(dispatch_flags & I915_DISPATCH_SECURE);
2454         int ret;
2455
2456         ret = intel_ring_begin(req, 4);
2457         if (ret)
2458                 return ret;
2459
2460         /* FIXME(BDW): Address space and security selectors. */
2461         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2462                         (dispatch_flags & I915_DISPATCH_RS ?
2463                          MI_BATCH_RESOURCE_STREAMER : 0));
2464         intel_ring_emit(ring, lower_32_bits(offset));
2465         intel_ring_emit(ring, upper_32_bits(offset));
2466         intel_ring_emit(ring, MI_NOOP);
2467         intel_ring_advance(ring);
2468
2469         return 0;
2470 }
2471
2472 static int
2473 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2474                              u64 offset, u32 len,
2475                              unsigned dispatch_flags)
2476 {
2477         struct intel_engine_cs *ring = req->ring;
2478         int ret;
2479
2480         ret = intel_ring_begin(req, 2);
2481         if (ret)
2482                 return ret;
2483
2484         intel_ring_emit(ring,
2485                         MI_BATCH_BUFFER_START |
2486                         (dispatch_flags & I915_DISPATCH_SECURE ?
2487                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2488                         (dispatch_flags & I915_DISPATCH_RS ?
2489                          MI_BATCH_RESOURCE_STREAMER : 0));
2490         /* bit0-7 is the length on GEN6+ */
2491         intel_ring_emit(ring, offset);
2492         intel_ring_advance(ring);
2493
2494         return 0;
2495 }
2496
2497 static int
2498 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2499                               u64 offset, u32 len,
2500                               unsigned dispatch_flags)
2501 {
2502         struct intel_engine_cs *ring = req->ring;
2503         int ret;
2504
2505         ret = intel_ring_begin(req, 2);
2506         if (ret)
2507                 return ret;
2508
2509         intel_ring_emit(ring,
2510                         MI_BATCH_BUFFER_START |
2511                         (dispatch_flags & I915_DISPATCH_SECURE ?
2512                          0 : MI_BATCH_NON_SECURE_I965));
2513         /* bit0-7 is the length on GEN6+ */
2514         intel_ring_emit(ring, offset);
2515         intel_ring_advance(ring);
2516
2517         return 0;
2518 }
2519
2520 /* Blitter support (SandyBridge+) */
2521
2522 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2523                            u32 invalidate, u32 flush)
2524 {
2525         struct intel_engine_cs *ring = req->ring;
2526         struct drm_device *dev = ring->dev;
2527         uint32_t cmd;
2528         int ret;
2529
2530         ret = intel_ring_begin(req, 4);
2531         if (ret)
2532                 return ret;
2533
2534         cmd = MI_FLUSH_DW;
2535         if (INTEL_INFO(dev)->gen >= 8)
2536                 cmd += 1;
2537
2538         /* We always require a command barrier so that subsequent
2539          * commands, such as breadcrumb interrupts, are strictly ordered
2540          * wrt the contents of the write cache being flushed to memory
2541          * (and thus being coherent from the CPU).
2542          */
2543         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2544
2545         /*
2546          * Bspec vol 1c.3 - blitter engine command streamer:
2547          * "If ENABLED, all TLBs will be invalidated once the flush
2548          * operation is complete. This bit is only valid when the
2549          * Post-Sync Operation field is a value of 1h or 3h."
2550          */
2551         if (invalidate & I915_GEM_DOMAIN_RENDER)
2552                 cmd |= MI_INVALIDATE_TLB;
2553         intel_ring_emit(ring, cmd);
2554         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2555         if (INTEL_INFO(dev)->gen >= 8) {
2556                 intel_ring_emit(ring, 0); /* upper addr */
2557                 intel_ring_emit(ring, 0); /* value */
2558         } else  {
2559                 intel_ring_emit(ring, 0);
2560                 intel_ring_emit(ring, MI_NOOP);
2561         }
2562         intel_ring_advance(ring);
2563
2564         return 0;
2565 }
2566
2567 int intel_init_render_ring_buffer(struct drm_device *dev)
2568 {
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2571         struct drm_i915_gem_object *obj;
2572         int ret;
2573
2574         ring->name = "render ring";
2575         ring->id = RCS;
2576         ring->mmio_base = RENDER_RING_BASE;
2577
2578         if (INTEL_INFO(dev)->gen >= 8) {
2579                 if (i915_semaphore_is_enabled(dev)) {
2580                         obj = i915_gem_alloc_object(dev, 4096);
2581                         if (obj == NULL) {
2582                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2583                                 i915.semaphores = 0;
2584                         } else {
2585                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2586                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2587                                 if (ret != 0) {
2588                                         drm_gem_object_unreference(&obj->base);
2589                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2590                                         i915.semaphores = 0;
2591                                 } else
2592                                         dev_priv->semaphore_obj = obj;
2593                         }
2594                 }
2595
2596                 ring->init_context = intel_rcs_ctx_init;
2597                 ring->add_request = gen6_add_request;
2598                 ring->flush = gen8_render_ring_flush;
2599                 ring->irq_get = gen8_ring_get_irq;
2600                 ring->irq_put = gen8_ring_put_irq;
2601                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2602                 ring->get_seqno = gen6_ring_get_seqno;
2603                 ring->set_seqno = ring_set_seqno;
2604                 if (i915_semaphore_is_enabled(dev)) {
2605                         WARN_ON(!dev_priv->semaphore_obj);
2606                         ring->semaphore.sync_to = gen8_ring_sync;
2607                         ring->semaphore.signal = gen8_rcs_signal;
2608                         GEN8_RING_SEMAPHORE_INIT;
2609                 }
2610         } else if (INTEL_INFO(dev)->gen >= 6) {
2611                 ring->add_request = gen6_add_request;
2612                 ring->flush = gen7_render_ring_flush;
2613                 if (INTEL_INFO(dev)->gen == 6)
2614                         ring->flush = gen6_render_ring_flush;
2615                 ring->irq_get = gen6_ring_get_irq;
2616                 ring->irq_put = gen6_ring_put_irq;
2617                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2618                 ring->get_seqno = gen6_ring_get_seqno;
2619                 ring->set_seqno = ring_set_seqno;
2620                 if (i915_semaphore_is_enabled(dev)) {
2621                         ring->semaphore.sync_to = gen6_ring_sync;
2622                         ring->semaphore.signal = gen6_signal;
2623                         /*
2624                          * The current semaphore is only applied on pre-gen8
2625                          * platform.  And there is no VCS2 ring on the pre-gen8
2626                          * platform. So the semaphore between RCS and VCS2 is
2627                          * initialized as INVALID.  Gen8 will initialize the
2628                          * sema between VCS2 and RCS later.
2629                          */
2630                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2631                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2632                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2633                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2634                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2635                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2636                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2637                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2638                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2639                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2640                 }
2641         } else if (IS_GEN5(dev)) {
2642                 ring->add_request = pc_render_add_request;
2643                 ring->flush = gen4_render_ring_flush;
2644                 ring->get_seqno = pc_render_get_seqno;
2645                 ring->set_seqno = pc_render_set_seqno;
2646                 ring->irq_get = gen5_ring_get_irq;
2647                 ring->irq_put = gen5_ring_put_irq;
2648                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2649                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2650         } else {
2651                 ring->add_request = i9xx_add_request;
2652                 if (INTEL_INFO(dev)->gen < 4)
2653                         ring->flush = gen2_render_ring_flush;
2654                 else
2655                         ring->flush = gen4_render_ring_flush;
2656                 ring->get_seqno = ring_get_seqno;
2657                 ring->set_seqno = ring_set_seqno;
2658                 if (IS_GEN2(dev)) {
2659                         ring->irq_get = i8xx_ring_get_irq;
2660                         ring->irq_put = i8xx_ring_put_irq;
2661                 } else {
2662                         ring->irq_get = i9xx_ring_get_irq;
2663                         ring->irq_put = i9xx_ring_put_irq;
2664                 }
2665                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2666         }
2667         ring->write_tail = ring_write_tail;
2668
2669         if (IS_HASWELL(dev))
2670                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2671         else if (IS_GEN8(dev))
2672                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2673         else if (INTEL_INFO(dev)->gen >= 6)
2674                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2675         else if (INTEL_INFO(dev)->gen >= 4)
2676                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2677         else if (IS_I830(dev) || IS_845G(dev))
2678                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2679         else
2680                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2681         ring->init_hw = init_render_ring;
2682         ring->cleanup = render_ring_cleanup;
2683
2684         /* Workaround batchbuffer to combat CS tlb bug. */
2685         if (HAS_BROKEN_CS_TLB(dev)) {
2686                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2687                 if (obj == NULL) {
2688                         DRM_ERROR("Failed to allocate batch bo\n");
2689                         return -ENOMEM;
2690                 }
2691
2692                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2693                 if (ret != 0) {
2694                         drm_gem_object_unreference(&obj->base);
2695                         DRM_ERROR("Failed to ping batch bo\n");
2696                         return ret;
2697                 }
2698
2699                 ring->scratch.obj = obj;
2700                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2701         }
2702
2703         ret = intel_init_ring_buffer(dev, ring);
2704         if (ret)
2705                 return ret;
2706
2707         if (INTEL_INFO(dev)->gen >= 5) {
2708                 ret = intel_init_pipe_control(ring);
2709                 if (ret)
2710                         return ret;
2711         }
2712
2713         return 0;
2714 }
2715
2716 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2717 {
2718         struct drm_i915_private *dev_priv = dev->dev_private;
2719         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2720
2721         ring->name = "bsd ring";
2722         ring->id = VCS;
2723
2724         ring->write_tail = ring_write_tail;
2725         if (INTEL_INFO(dev)->gen >= 6) {
2726                 ring->mmio_base = GEN6_BSD_RING_BASE;
2727                 /* gen6 bsd needs a special wa for tail updates */
2728                 if (IS_GEN6(dev))
2729                         ring->write_tail = gen6_bsd_ring_write_tail;
2730                 ring->flush = gen6_bsd_ring_flush;
2731                 ring->add_request = gen6_add_request;
2732                 ring->get_seqno = gen6_ring_get_seqno;
2733                 ring->set_seqno = ring_set_seqno;
2734                 if (INTEL_INFO(dev)->gen >= 8) {
2735                         ring->irq_enable_mask =
2736                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2737                         ring->irq_get = gen8_ring_get_irq;
2738                         ring->irq_put = gen8_ring_put_irq;
2739                         ring->dispatch_execbuffer =
2740                                 gen8_ring_dispatch_execbuffer;
2741                         if (i915_semaphore_is_enabled(dev)) {
2742                                 ring->semaphore.sync_to = gen8_ring_sync;
2743                                 ring->semaphore.signal = gen8_xcs_signal;
2744                                 GEN8_RING_SEMAPHORE_INIT;
2745                         }
2746                 } else {
2747                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2748                         ring->irq_get = gen6_ring_get_irq;
2749                         ring->irq_put = gen6_ring_put_irq;
2750                         ring->dispatch_execbuffer =
2751                                 gen6_ring_dispatch_execbuffer;
2752                         if (i915_semaphore_is_enabled(dev)) {
2753                                 ring->semaphore.sync_to = gen6_ring_sync;
2754                                 ring->semaphore.signal = gen6_signal;
2755                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2756                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2757                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2758                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2759                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2760                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2761                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2762                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2763                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2764                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2765                         }
2766                 }
2767         } else {
2768                 ring->mmio_base = BSD_RING_BASE;
2769                 ring->flush = bsd_ring_flush;
2770                 ring->add_request = i9xx_add_request;
2771                 ring->get_seqno = ring_get_seqno;
2772                 ring->set_seqno = ring_set_seqno;
2773                 if (IS_GEN5(dev)) {
2774                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2775                         ring->irq_get = gen5_ring_get_irq;
2776                         ring->irq_put = gen5_ring_put_irq;
2777                 } else {
2778                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2779                         ring->irq_get = i9xx_ring_get_irq;
2780                         ring->irq_put = i9xx_ring_put_irq;
2781                 }
2782                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2783         }
2784         ring->init_hw = init_ring_common;
2785
2786         return intel_init_ring_buffer(dev, ring);
2787 }
2788
2789 /**
2790  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2791  */
2792 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2793 {
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2796
2797         ring->name = "bsd2 ring";
2798         ring->id = VCS2;
2799
2800         ring->write_tail = ring_write_tail;
2801         ring->mmio_base = GEN8_BSD2_RING_BASE;
2802         ring->flush = gen6_bsd_ring_flush;
2803         ring->add_request = gen6_add_request;
2804         ring->get_seqno = gen6_ring_get_seqno;
2805         ring->set_seqno = ring_set_seqno;
2806         ring->irq_enable_mask =
2807                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2808         ring->irq_get = gen8_ring_get_irq;
2809         ring->irq_put = gen8_ring_put_irq;
2810         ring->dispatch_execbuffer =
2811                         gen8_ring_dispatch_execbuffer;
2812         if (i915_semaphore_is_enabled(dev)) {
2813                 ring->semaphore.sync_to = gen8_ring_sync;
2814                 ring->semaphore.signal = gen8_xcs_signal;
2815                 GEN8_RING_SEMAPHORE_INIT;
2816         }
2817         ring->init_hw = init_ring_common;
2818
2819         return intel_init_ring_buffer(dev, ring);
2820 }
2821
2822 int intel_init_blt_ring_buffer(struct drm_device *dev)
2823 {
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2826
2827         ring->name = "blitter ring";
2828         ring->id = BCS;
2829
2830         ring->mmio_base = BLT_RING_BASE;
2831         ring->write_tail = ring_write_tail;
2832         ring->flush = gen6_ring_flush;
2833         ring->add_request = gen6_add_request;
2834         ring->get_seqno = gen6_ring_get_seqno;
2835         ring->set_seqno = ring_set_seqno;
2836         if (INTEL_INFO(dev)->gen >= 8) {
2837                 ring->irq_enable_mask =
2838                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2839                 ring->irq_get = gen8_ring_get_irq;
2840                 ring->irq_put = gen8_ring_put_irq;
2841                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2842                 if (i915_semaphore_is_enabled(dev)) {
2843                         ring->semaphore.sync_to = gen8_ring_sync;
2844                         ring->semaphore.signal = gen8_xcs_signal;
2845                         GEN8_RING_SEMAPHORE_INIT;
2846                 }
2847         } else {
2848                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2849                 ring->irq_get = gen6_ring_get_irq;
2850                 ring->irq_put = gen6_ring_put_irq;
2851                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2852                 if (i915_semaphore_is_enabled(dev)) {
2853                         ring->semaphore.signal = gen6_signal;
2854                         ring->semaphore.sync_to = gen6_ring_sync;
2855                         /*
2856                          * The current semaphore is only applied on pre-gen8
2857                          * platform.  And there is no VCS2 ring on the pre-gen8
2858                          * platform. So the semaphore between BCS and VCS2 is
2859                          * initialized as INVALID.  Gen8 will initialize the
2860                          * sema between BCS and VCS2 later.
2861                          */
2862                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2863                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2864                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2865                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2866                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2867                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2868                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2869                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2870                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2871                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2872                 }
2873         }
2874         ring->init_hw = init_ring_common;
2875
2876         return intel_init_ring_buffer(dev, ring);
2877 }
2878
2879 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2880 {
2881         struct drm_i915_private *dev_priv = dev->dev_private;
2882         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2883
2884         ring->name = "video enhancement ring";
2885         ring->id = VECS;
2886
2887         ring->mmio_base = VEBOX_RING_BASE;
2888         ring->write_tail = ring_write_tail;
2889         ring->flush = gen6_ring_flush;
2890         ring->add_request = gen6_add_request;
2891         ring->get_seqno = gen6_ring_get_seqno;
2892         ring->set_seqno = ring_set_seqno;
2893
2894         if (INTEL_INFO(dev)->gen >= 8) {
2895                 ring->irq_enable_mask =
2896                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2897                 ring->irq_get = gen8_ring_get_irq;
2898                 ring->irq_put = gen8_ring_put_irq;
2899                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2900                 if (i915_semaphore_is_enabled(dev)) {
2901                         ring->semaphore.sync_to = gen8_ring_sync;
2902                         ring->semaphore.signal = gen8_xcs_signal;
2903                         GEN8_RING_SEMAPHORE_INIT;
2904                 }
2905         } else {
2906                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2907                 ring->irq_get = hsw_vebox_get_irq;
2908                 ring->irq_put = hsw_vebox_put_irq;
2909                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2910                 if (i915_semaphore_is_enabled(dev)) {
2911                         ring->semaphore.sync_to = gen6_ring_sync;
2912                         ring->semaphore.signal = gen6_signal;
2913                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2914                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2915                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2916                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2917                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2918                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2919                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2920                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2921                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2922                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2923                 }
2924         }
2925         ring->init_hw = init_ring_common;
2926
2927         return intel_init_ring_buffer(dev, ring);
2928 }
2929
2930 int
2931 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2932 {
2933         struct intel_engine_cs *ring = req->ring;
2934         int ret;
2935
2936         if (!ring->gpu_caches_dirty)
2937                 return 0;
2938
2939         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2940         if (ret)
2941                 return ret;
2942
2943         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2944
2945         ring->gpu_caches_dirty = false;
2946         return 0;
2947 }
2948
2949 int
2950 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2951 {
2952         struct intel_engine_cs *ring = req->ring;
2953         uint32_t flush_domains;
2954         int ret;
2955
2956         flush_domains = 0;
2957         if (ring->gpu_caches_dirty)
2958                 flush_domains = I915_GEM_GPU_DOMAINS;
2959
2960         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2961         if (ret)
2962                 return ret;
2963
2964         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2965
2966         ring->gpu_caches_dirty = false;
2967         return 0;
2968 }
2969
2970 void
2971 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2972 {
2973         int ret;
2974
2975         if (!intel_ring_initialized(ring))
2976                 return;
2977
2978         ret = intel_ring_idle(ring);
2979         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2980                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2981                           ring->name, ret);
2982
2983         stop_ring(ring);
2984 }