Merge tag 'drm-intel-fixes-2015-07-15' into drm-intel-next-queued
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 enum {
200         ADVANCED_CONTEXT = 0,
201         LEGACY_CONTEXT,
202         ADVANCED_AD_CONTEXT,
203         LEGACY_64B_CONTEXT
204 };
205 #define GEN8_CTX_MODE_SHIFT 3
206 enum {
207         FAULT_AND_HANG = 0,
208         FAULT_AND_HALT, /* Debug only */
209         FAULT_AND_STREAM,
210         FAULT_AND_CONTINUE /* Unsupported */
211 };
212 #define GEN8_CTX_ID_SHIFT 32
213 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
214
215 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
216
217 /**
218  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
219  * @dev: DRM device.
220  * @enable_execlists: value of i915.enable_execlists module parameter.
221  *
222  * Only certain platforms support Execlists (the prerequisites being
223  * support for Logical Ring Contexts and Aliasing PPGTT or better).
224  *
225  * Return: 1 if Execlists is supported and has to be enabled.
226  */
227 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
228 {
229         WARN_ON(i915.enable_ppgtt == -1);
230
231         if (INTEL_INFO(dev)->gen >= 9)
232                 return 1;
233
234         if (enable_execlists == 0)
235                 return 0;
236
237         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
238             i915.use_mmio_flip >= 0)
239                 return 1;
240
241         return 0;
242 }
243
244 /**
245  * intel_execlists_ctx_id() - get the Execlists Context ID
246  * @ctx_obj: Logical Ring Context backing object.
247  *
248  * Do not confuse with ctx->id! Unfortunately we have a name overload
249  * here: the old context ID we pass to userspace as a handler so that
250  * they can refer to a context, and the new context ID we pass to the
251  * ELSP so that the GPU can inform us of the context status via
252  * interrupts.
253  *
254  * Return: 20-bits globally unique context ID.
255  */
256 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
257 {
258         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
259
260         /* LRCA is required to be 4K aligned so the more significant 20 bits
261          * are globally unique */
262         return lrca >> 12;
263 }
264
265 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_request *rq)
266 {
267         struct intel_engine_cs *ring = rq->ring;
268         struct drm_device *dev = ring->dev;
269         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
270         uint64_t desc;
271         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275         desc = GEN8_CTX_VALID;
276         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277         if (IS_GEN8(ctx_obj->base.dev))
278                 desc |= GEN8_CTX_L3LLC_COHERENT;
279         desc |= GEN8_CTX_PRIVILEGE;
280         desc |= lrca;
281         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283         /* TODO: WaDisableLiteRestore when we start using semaphore
284          * signalling between Command Streamers */
285         /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288         if (IS_GEN9(dev) &&
289             INTEL_REVID(dev) <= SKL_REVID_B0 &&
290             (ring->id == BCS || ring->id == VCS ||
291             ring->id == VECS || ring->id == VCS2))
292                 desc |= GEN8_CTX_FORCE_RESTORE;
293
294         return desc;
295 }
296
297 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
298                                  struct drm_i915_gem_request *rq1)
299 {
300
301         struct intel_engine_cs *ring = rq0->ring;
302         struct drm_device *dev = ring->dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         uint64_t desc[2];
305
306         if (rq1) {
307                 desc[1] = execlists_ctx_descriptor(rq1);
308                 rq1->elsp_submitted++;
309         } else {
310                 desc[1] = 0;
311         }
312
313         desc[0] = execlists_ctx_descriptor(rq0);
314         rq0->elsp_submitted++;
315
316         /* You must always write both descriptors in the order below. */
317         spin_lock(&dev_priv->uncore.lock);
318         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
319         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
320         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
321
322         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
323         /* The context is automatically loaded after the following */
324         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
325
326         /* ELSP is a wo register, use another nearby reg for posting */
327         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
328         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
329         spin_unlock(&dev_priv->uncore.lock);
330 }
331
332 static int execlists_update_context(struct drm_i915_gem_request *rq)
333 {
334         struct intel_engine_cs *ring = rq->ring;
335         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
336         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
337         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
338         struct page *page;
339         uint32_t *reg_state;
340
341         BUG_ON(!ctx_obj);
342         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
343         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
344
345         page = i915_gem_object_get_page(ctx_obj, 1);
346         reg_state = kmap_atomic(page);
347
348         reg_state[CTX_RING_TAIL+1] = rq->tail;
349         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
350
351         /* True PPGTT with dynamic page allocation: update PDP registers and
352          * point the unallocated PDPs to the scratch page
353          */
354         if (ppgtt) {
355                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
356                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
357                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
358                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
359         }
360
361         kunmap_atomic(reg_state);
362
363         return 0;
364 }
365
366 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
367                                       struct drm_i915_gem_request *rq1)
368 {
369         execlists_update_context(rq0);
370
371         if (rq1)
372                 execlists_update_context(rq1);
373
374         execlists_elsp_write(rq0, rq1);
375 }
376
377 static void execlists_context_unqueue(struct intel_engine_cs *ring)
378 {
379         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
380         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
381
382         assert_spin_locked(&ring->execlist_lock);
383
384         /*
385          * If irqs are not active generate a warning as batches that finish
386          * without the irqs may get lost and a GPU Hang may occur.
387          */
388         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
389
390         if (list_empty(&ring->execlist_queue))
391                 return;
392
393         /* Try to read in pairs */
394         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
395                                  execlist_link) {
396                 if (!req0) {
397                         req0 = cursor;
398                 } else if (req0->ctx == cursor->ctx) {
399                         /* Same ctx: ignore first request, as second request
400                          * will update tail past first request's workload */
401                         cursor->elsp_submitted = req0->elsp_submitted;
402                         list_del(&req0->execlist_link);
403                         list_add_tail(&req0->execlist_link,
404                                 &ring->execlist_retired_req_list);
405                         req0 = cursor;
406                 } else {
407                         req1 = cursor;
408                         break;
409                 }
410         }
411
412         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
413                 /*
414                  * WaIdleLiteRestore: make sure we never cause a lite
415                  * restore with HEAD==TAIL
416                  */
417                 if (req0->elsp_submitted) {
418                         /*
419                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
420                          * as we resubmit the request. See gen8_emit_request()
421                          * for where we prepare the padding after the end of the
422                          * request.
423                          */
424                         struct intel_ringbuffer *ringbuf;
425
426                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
427                         req0->tail += 8;
428                         req0->tail &= ringbuf->size - 1;
429                 }
430         }
431
432         WARN_ON(req1 && req1->elsp_submitted);
433
434         execlists_submit_requests(req0, req1);
435 }
436
437 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
438                                            u32 request_id)
439 {
440         struct drm_i915_gem_request *head_req;
441
442         assert_spin_locked(&ring->execlist_lock);
443
444         head_req = list_first_entry_or_null(&ring->execlist_queue,
445                                             struct drm_i915_gem_request,
446                                             execlist_link);
447
448         if (head_req != NULL) {
449                 struct drm_i915_gem_object *ctx_obj =
450                                 head_req->ctx->engine[ring->id].state;
451                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
452                         WARN(head_req->elsp_submitted == 0,
453                              "Never submitted head request\n");
454
455                         if (--head_req->elsp_submitted <= 0) {
456                                 list_del(&head_req->execlist_link);
457                                 list_add_tail(&head_req->execlist_link,
458                                         &ring->execlist_retired_req_list);
459                                 return true;
460                         }
461                 }
462         }
463
464         return false;
465 }
466
467 /**
468  * intel_lrc_irq_handler() - handle Context Switch interrupts
469  * @ring: Engine Command Streamer to handle.
470  *
471  * Check the unread Context Status Buffers and manage the submission of new
472  * contexts to the ELSP accordingly.
473  */
474 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
475 {
476         struct drm_i915_private *dev_priv = ring->dev->dev_private;
477         u32 status_pointer;
478         u8 read_pointer;
479         u8 write_pointer;
480         u32 status;
481         u32 status_id;
482         u32 submit_contexts = 0;
483
484         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
485
486         read_pointer = ring->next_context_status_buffer;
487         write_pointer = status_pointer & 0x07;
488         if (read_pointer > write_pointer)
489                 write_pointer += 6;
490
491         spin_lock(&ring->execlist_lock);
492
493         while (read_pointer < write_pointer) {
494                 read_pointer++;
495                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
496                                 (read_pointer % 6) * 8);
497                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
498                                 (read_pointer % 6) * 8 + 4);
499
500                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
501                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
502                                 if (execlists_check_remove_request(ring, status_id))
503                                         WARN(1, "Lite Restored request removed from queue\n");
504                         } else
505                                 WARN(1, "Preemption without Lite Restore\n");
506                 }
507
508                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
509                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
510                         if (execlists_check_remove_request(ring, status_id))
511                                 submit_contexts++;
512                 }
513         }
514
515         if (submit_contexts != 0)
516                 execlists_context_unqueue(ring);
517
518         spin_unlock(&ring->execlist_lock);
519
520         WARN(submit_contexts > 2, "More than two context complete events?\n");
521         ring->next_context_status_buffer = write_pointer % 6;
522
523         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
524                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
525 }
526
527 static int execlists_context_queue(struct drm_i915_gem_request *request)
528 {
529         struct intel_engine_cs *ring = request->ring;
530         struct drm_i915_gem_request *cursor;
531         int num_elements = 0;
532
533         if (request->ctx != ring->default_context)
534                 intel_lr_context_pin(request);
535
536         i915_gem_request_reference(request);
537
538         request->tail = request->ringbuf->tail;
539
540         spin_lock_irq(&ring->execlist_lock);
541
542         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
543                 if (++num_elements > 2)
544                         break;
545
546         if (num_elements > 2) {
547                 struct drm_i915_gem_request *tail_req;
548
549                 tail_req = list_last_entry(&ring->execlist_queue,
550                                            struct drm_i915_gem_request,
551                                            execlist_link);
552
553                 if (request->ctx == tail_req->ctx) {
554                         WARN(tail_req->elsp_submitted != 0,
555                                 "More than 2 already-submitted reqs queued\n");
556                         list_del(&tail_req->execlist_link);
557                         list_add_tail(&tail_req->execlist_link,
558                                 &ring->execlist_retired_req_list);
559                 }
560         }
561
562         list_add_tail(&request->execlist_link, &ring->execlist_queue);
563         if (num_elements == 0)
564                 execlists_context_unqueue(ring);
565
566         spin_unlock_irq(&ring->execlist_lock);
567
568         return 0;
569 }
570
571 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
572 {
573         struct intel_engine_cs *ring = req->ring;
574         uint32_t flush_domains;
575         int ret;
576
577         flush_domains = 0;
578         if (ring->gpu_caches_dirty)
579                 flush_domains = I915_GEM_GPU_DOMAINS;
580
581         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
582         if (ret)
583                 return ret;
584
585         ring->gpu_caches_dirty = false;
586         return 0;
587 }
588
589 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
590                                  struct list_head *vmas)
591 {
592         const unsigned other_rings = ~intel_ring_flag(req->ring);
593         struct i915_vma *vma;
594         uint32_t flush_domains = 0;
595         bool flush_chipset = false;
596         int ret;
597
598         list_for_each_entry(vma, vmas, exec_list) {
599                 struct drm_i915_gem_object *obj = vma->obj;
600
601                 if (obj->active & other_rings) {
602                         ret = i915_gem_object_sync(obj, req->ring, &req);
603                         if (ret)
604                                 return ret;
605                 }
606
607                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
608                         flush_chipset |= i915_gem_clflush_object(obj, false);
609
610                 flush_domains |= obj->base.write_domain;
611         }
612
613         if (flush_domains & I915_GEM_DOMAIN_GTT)
614                 wmb();
615
616         /* Unconditionally invalidate gpu caches and ensure that we do flush
617          * any residual writes from the previous batch.
618          */
619         return logical_ring_invalidate_all_caches(req);
620 }
621
622 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
623 {
624         int ret;
625
626         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
627
628         if (request->ctx != request->ring->default_context) {
629                 ret = intel_lr_context_pin(request);
630                 if (ret)
631                         return ret;
632         }
633
634         return 0;
635 }
636
637 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
638                                        int bytes)
639 {
640         struct intel_ringbuffer *ringbuf = req->ringbuf;
641         struct intel_engine_cs *ring = req->ring;
642         struct drm_i915_gem_request *target;
643         unsigned space;
644         int ret;
645
646         if (intel_ring_space(ringbuf) >= bytes)
647                 return 0;
648
649         /* The whole point of reserving space is to not wait! */
650         WARN_ON(ringbuf->reserved_in_use);
651
652         list_for_each_entry(target, &ring->request_list, list) {
653                 /*
654                  * The request queue is per-engine, so can contain requests
655                  * from multiple ringbuffers. Here, we must ignore any that
656                  * aren't from the ringbuffer we're considering.
657                  */
658                 if (target->ringbuf != ringbuf)
659                         continue;
660
661                 /* Would completion of this request free enough space? */
662                 space = __intel_ring_space(target->postfix, ringbuf->tail,
663                                            ringbuf->size);
664                 if (space >= bytes)
665                         break;
666         }
667
668         if (WARN_ON(&target->list == &ring->request_list))
669                 return -ENOSPC;
670
671         ret = i915_wait_request(target);
672         if (ret)
673                 return ret;
674
675         ringbuf->space = space;
676         return 0;
677 }
678
679 /*
680  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
681  * @request: Request to advance the logical ringbuffer of.
682  *
683  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
684  * really happens during submission is that the context and current tail will be placed
685  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
686  * point, the tail *inside* the context is updated and the ELSP written to.
687  */
688 static void
689 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
690 {
691         struct intel_engine_cs *ring = request->ring;
692
693         intel_logical_ring_advance(request->ringbuf);
694
695         if (intel_ring_stopped(ring))
696                 return;
697
698         execlists_context_queue(request);
699 }
700
701 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
702 {
703         uint32_t __iomem *virt;
704         int rem = ringbuf->size - ringbuf->tail;
705
706         virt = ringbuf->virtual_start + ringbuf->tail;
707         rem /= 4;
708         while (rem--)
709                 iowrite32(MI_NOOP, virt++);
710
711         ringbuf->tail = 0;
712         intel_ring_update_space(ringbuf);
713 }
714
715 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
716 {
717         struct intel_ringbuffer *ringbuf = req->ringbuf;
718         int remain_usable = ringbuf->effective_size - ringbuf->tail;
719         int remain_actual = ringbuf->size - ringbuf->tail;
720         int ret, total_bytes, wait_bytes = 0;
721         bool need_wrap = false;
722
723         if (ringbuf->reserved_in_use)
724                 total_bytes = bytes;
725         else
726                 total_bytes = bytes + ringbuf->reserved_size;
727
728         if (unlikely(bytes > remain_usable)) {
729                 /*
730                  * Not enough space for the basic request. So need to flush
731                  * out the remainder and then wait for base + reserved.
732                  */
733                 wait_bytes = remain_actual + total_bytes;
734                 need_wrap = true;
735         } else {
736                 if (unlikely(total_bytes > remain_usable)) {
737                         /*
738                          * The base request will fit but the reserved space
739                          * falls off the end. So only need to to wait for the
740                          * reserved size after flushing out the remainder.
741                          */
742                         wait_bytes = remain_actual + ringbuf->reserved_size;
743                         need_wrap = true;
744                 } else if (total_bytes > ringbuf->space) {
745                         /* No wrapping required, just waiting. */
746                         wait_bytes = total_bytes;
747                 }
748         }
749
750         if (wait_bytes) {
751                 ret = logical_ring_wait_for_space(req, wait_bytes);
752                 if (unlikely(ret))
753                         return ret;
754
755                 if (need_wrap)
756                         __wrap_ring_buffer(ringbuf);
757         }
758
759         return 0;
760 }
761
762 /**
763  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
764  *
765  * @request: The request to start some new work for
766  * @ctx: Logical ring context whose ringbuffer is being prepared.
767  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
768  *
769  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
770  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
771  * and also preallocates a request (every workload submission is still mediated through
772  * requests, same as it did with legacy ringbuffer submission).
773  *
774  * Return: non-zero if the ringbuffer is not ready to be written to.
775  */
776 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
777 {
778         struct drm_i915_private *dev_priv;
779         int ret;
780
781         WARN_ON(req == NULL);
782         dev_priv = req->ring->dev->dev_private;
783
784         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
785                                    dev_priv->mm.interruptible);
786         if (ret)
787                 return ret;
788
789         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
790         if (ret)
791                 return ret;
792
793         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
794         return 0;
795 }
796
797 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
798 {
799         /*
800          * The first call merely notes the reserve request and is common for
801          * all back ends. The subsequent localised _begin() call actually
802          * ensures that the reservation is available. Without the begin, if
803          * the request creator immediately submitted the request without
804          * adding any commands to it then there might not actually be
805          * sufficient room for the submission commands.
806          */
807         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
808
809         return intel_logical_ring_begin(request, 0);
810 }
811
812 /**
813  * execlists_submission() - submit a batchbuffer for execution, Execlists style
814  * @dev: DRM device.
815  * @file: DRM file.
816  * @ring: Engine Command Streamer to submit to.
817  * @ctx: Context to employ for this submission.
818  * @args: execbuffer call arguments.
819  * @vmas: list of vmas.
820  * @batch_obj: the batchbuffer to submit.
821  * @exec_start: batchbuffer start virtual address pointer.
822  * @dispatch_flags: translated execbuffer call flags.
823  *
824  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
825  * away the submission details of the execbuffer ioctl call.
826  *
827  * Return: non-zero if the submission fails.
828  */
829 int intel_execlists_submission(struct i915_execbuffer_params *params,
830                                struct drm_i915_gem_execbuffer2 *args,
831                                struct list_head *vmas)
832 {
833         struct drm_device       *dev = params->dev;
834         struct intel_engine_cs  *ring = params->ring;
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
837         u64 exec_start;
838         int instp_mode;
839         u32 instp_mask;
840         int ret;
841
842         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
843         instp_mask = I915_EXEC_CONSTANTS_MASK;
844         switch (instp_mode) {
845         case I915_EXEC_CONSTANTS_REL_GENERAL:
846         case I915_EXEC_CONSTANTS_ABSOLUTE:
847         case I915_EXEC_CONSTANTS_REL_SURFACE:
848                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
849                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
850                         return -EINVAL;
851                 }
852
853                 if (instp_mode != dev_priv->relative_constants_mode) {
854                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
855                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
856                                 return -EINVAL;
857                         }
858
859                         /* The HW changed the meaning on this bit on gen6 */
860                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
861                 }
862                 break;
863         default:
864                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
865                 return -EINVAL;
866         }
867
868         if (args->num_cliprects != 0) {
869                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
870                 return -EINVAL;
871         } else {
872                 if (args->DR4 == 0xffffffff) {
873                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
874                         args->DR4 = 0;
875                 }
876
877                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
878                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
879                         return -EINVAL;
880                 }
881         }
882
883         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
884                 DRM_DEBUG("sol reset is gen7 only\n");
885                 return -EINVAL;
886         }
887
888         ret = execlists_move_to_gpu(params->request, vmas);
889         if (ret)
890                 return ret;
891
892         if (ring == &dev_priv->ring[RCS] &&
893             instp_mode != dev_priv->relative_constants_mode) {
894                 ret = intel_logical_ring_begin(params->request, 4);
895                 if (ret)
896                         return ret;
897
898                 intel_logical_ring_emit(ringbuf, MI_NOOP);
899                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
900                 intel_logical_ring_emit(ringbuf, INSTPM);
901                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
902                 intel_logical_ring_advance(ringbuf);
903
904                 dev_priv->relative_constants_mode = instp_mode;
905         }
906
907         exec_start = params->batch_obj_vm_offset +
908                      args->batch_start_offset;
909
910         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
911         if (ret)
912                 return ret;
913
914         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
915
916         i915_gem_execbuffer_move_to_active(vmas, params->request);
917         i915_gem_execbuffer_retire_commands(params);
918
919         return 0;
920 }
921
922 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
923 {
924         struct drm_i915_gem_request *req, *tmp;
925         struct list_head retired_list;
926
927         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
928         if (list_empty(&ring->execlist_retired_req_list))
929                 return;
930
931         INIT_LIST_HEAD(&retired_list);
932         spin_lock_irq(&ring->execlist_lock);
933         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
934         spin_unlock_irq(&ring->execlist_lock);
935
936         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
937                 struct intel_context *ctx = req->ctx;
938                 struct drm_i915_gem_object *ctx_obj =
939                                 ctx->engine[ring->id].state;
940
941                 if (ctx_obj && (ctx != ring->default_context))
942                         intel_lr_context_unpin(req);
943                 list_del(&req->execlist_link);
944                 i915_gem_request_unreference(req);
945         }
946 }
947
948 void intel_logical_ring_stop(struct intel_engine_cs *ring)
949 {
950         struct drm_i915_private *dev_priv = ring->dev->dev_private;
951         int ret;
952
953         if (!intel_ring_initialized(ring))
954                 return;
955
956         ret = intel_ring_idle(ring);
957         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
958                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
959                           ring->name, ret);
960
961         /* TODO: Is this correct with Execlists enabled? */
962         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
963         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
964                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
965                 return;
966         }
967         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
968 }
969
970 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
971 {
972         struct intel_engine_cs *ring = req->ring;
973         int ret;
974
975         if (!ring->gpu_caches_dirty)
976                 return 0;
977
978         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
979         if (ret)
980                 return ret;
981
982         ring->gpu_caches_dirty = false;
983         return 0;
984 }
985
986 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
987 {
988         struct intel_engine_cs *ring = rq->ring;
989         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
990         struct intel_ringbuffer *ringbuf = rq->ringbuf;
991         int ret = 0;
992
993         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
994         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
995                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
996                                 GEN8_LR_CONTEXT_ALIGN, 0);
997                 if (ret)
998                         goto reset_pin_count;
999
1000                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1001                 if (ret)
1002                         goto unpin_ctx_obj;
1003         }
1004
1005         return ret;
1006
1007 unpin_ctx_obj:
1008         i915_gem_object_ggtt_unpin(ctx_obj);
1009 reset_pin_count:
1010         rq->ctx->engine[ring->id].pin_count = 0;
1011
1012         return ret;
1013 }
1014
1015 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1016 {
1017         struct intel_engine_cs *ring = rq->ring;
1018         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1019         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1020
1021         if (ctx_obj) {
1022                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1023                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1024                         intel_unpin_ringbuffer_obj(ringbuf);
1025                         i915_gem_object_ggtt_unpin(ctx_obj);
1026                 }
1027         }
1028 }
1029
1030 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1031 {
1032         int ret, i;
1033         struct intel_engine_cs *ring = req->ring;
1034         struct intel_ringbuffer *ringbuf = req->ringbuf;
1035         struct drm_device *dev = ring->dev;
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037         struct i915_workarounds *w = &dev_priv->workarounds;
1038
1039         if (WARN_ON_ONCE(w->count == 0))
1040                 return 0;
1041
1042         ring->gpu_caches_dirty = true;
1043         ret = logical_ring_flush_all_caches(req);
1044         if (ret)
1045                 return ret;
1046
1047         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1048         if (ret)
1049                 return ret;
1050
1051         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052         for (i = 0; i < w->count; i++) {
1053                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1054                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055         }
1056         intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058         intel_logical_ring_advance(ringbuf);
1059
1060         ring->gpu_caches_dirty = true;
1061         ret = logical_ring_flush_all_caches(req);
1062         if (ret)
1063                 return ret;
1064
1065         return 0;
1066 }
1067
1068 #define wa_ctx_emit(batch, index, cmd)                                  \
1069         do {                                                            \
1070                 int __index = (index)++;                                \
1071                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072                         return -ENOSPC;                                 \
1073                 }                                                       \
1074                 batch[__index] = (cmd);                                 \
1075         } while (0)
1076
1077
1078 /*
1079  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1080  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1081  * but there is a slight complication as this is applied in WA batch where the
1082  * values are only initialized once so we cannot take register value at the
1083  * beginning and reuse it further; hence we save its value to memory, upload a
1084  * constant value with bit21 set and then we restore it back with the saved value.
1085  * To simplify the WA, a constant value is formed by using the default value
1086  * of this register. This shouldn't be a problem because we are only modifying
1087  * it for a short period and this batch in non-premptible. We can ofcourse
1088  * use additional instructions that read the actual value of the register
1089  * at that time and set our bit of interest but it makes the WA complicated.
1090  *
1091  * This WA is also required for Gen9 so extracting as a function avoids
1092  * code duplication.
1093  */
1094 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1095                                                 uint32_t *const batch,
1096                                                 uint32_t index)
1097 {
1098         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1099
1100         /*
1101          * WaDisableLSQCROPERFforOCL:skl
1102          * This WA is implemented in skl_init_clock_gating() but since
1103          * this batch updates GEN8_L3SQCREG4 with default value we need to
1104          * set this bit here to retain the WA during flush.
1105          */
1106         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1107                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1108
1109         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1110                                    MI_SRM_LRM_GLOBAL_GTT));
1111         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1112         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1113         wa_ctx_emit(batch, index, 0);
1114
1115         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1116         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1117         wa_ctx_emit(batch, index, l3sqc4_flush);
1118
1119         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1120         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1121                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1122         wa_ctx_emit(batch, index, 0);
1123         wa_ctx_emit(batch, index, 0);
1124         wa_ctx_emit(batch, index, 0);
1125         wa_ctx_emit(batch, index, 0);
1126
1127         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1128                                    MI_SRM_LRM_GLOBAL_GTT));
1129         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1130         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1131         wa_ctx_emit(batch, index, 0);
1132
1133         return index;
1134 }
1135
1136 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1137                                     uint32_t offset,
1138                                     uint32_t start_alignment)
1139 {
1140         return wa_ctx->offset = ALIGN(offset, start_alignment);
1141 }
1142
1143 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1144                              uint32_t offset,
1145                              uint32_t size_alignment)
1146 {
1147         wa_ctx->size = offset - wa_ctx->offset;
1148
1149         WARN(wa_ctx->size % size_alignment,
1150              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1151              wa_ctx->size, size_alignment);
1152         return 0;
1153 }
1154
1155 /**
1156  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1157  *
1158  * @ring: only applicable for RCS
1159  * @wa_ctx: structure representing wa_ctx
1160  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1161  *    with the offset value received as input.
1162  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1163  * @batch: page in which WA are loaded
1164  * @offset: This field specifies the start of the batch, it should be
1165  *  cache-aligned otherwise it is adjusted accordingly.
1166  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1167  *  initialized at the beginning and shared across all contexts but this field
1168  *  helps us to have multiple batches at different offsets and select them based
1169  *  on a criteria. At the moment this batch always start at the beginning of the page
1170  *  and at this point we don't have multiple wa_ctx batch buffers.
1171  *
1172  *  The number of WA applied are not known at the beginning; we use this field
1173  *  to return the no of DWORDS written.
1174  *
1175  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1176  *  so it adds NOOPs as padding to make it cacheline aligned.
1177  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1178  *  makes a complete batch buffer.
1179  *
1180  * Return: non-zero if we exceed the PAGE_SIZE limit.
1181  */
1182
1183 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1184                                     struct i915_wa_ctx_bb *wa_ctx,
1185                                     uint32_t *const batch,
1186                                     uint32_t *offset)
1187 {
1188         uint32_t scratch_addr;
1189         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1190
1191         /* WaDisableCtxRestoreArbitration:bdw,chv */
1192         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1193
1194         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1195         if (IS_BROADWELL(ring->dev)) {
1196                 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1197                 if (index < 0)
1198                         return index;
1199         }
1200
1201         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1202         /* Actual scratch location is at 128 bytes offset */
1203         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1204
1205         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1206         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1207                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1208                                    PIPE_CONTROL_CS_STALL |
1209                                    PIPE_CONTROL_QW_WRITE));
1210         wa_ctx_emit(batch, index, scratch_addr);
1211         wa_ctx_emit(batch, index, 0);
1212         wa_ctx_emit(batch, index, 0);
1213         wa_ctx_emit(batch, index, 0);
1214
1215         /* Pad to end of cacheline */
1216         while (index % CACHELINE_DWORDS)
1217                 wa_ctx_emit(batch, index, MI_NOOP);
1218
1219         /*
1220          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1221          * execution depends on the length specified in terms of cache lines
1222          * in the register CTX_RCS_INDIRECT_CTX
1223          */
1224
1225         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1226 }
1227
1228 /**
1229  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1230  *
1231  * @ring: only applicable for RCS
1232  * @wa_ctx: structure representing wa_ctx
1233  *  offset: specifies start of the batch, should be cache-aligned.
1234  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1235  * @batch: page in which WA are loaded
1236  * @offset: This field specifies the start of this batch.
1237  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1238  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1239  *
1240  *   The number of DWORDS written are returned using this field.
1241  *
1242  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1243  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1244  */
1245 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1246                                struct i915_wa_ctx_bb *wa_ctx,
1247                                uint32_t *const batch,
1248                                uint32_t *offset)
1249 {
1250         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1251
1252         /* WaDisableCtxRestoreArbitration:bdw,chv */
1253         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1254
1255         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1256
1257         return wa_ctx_end(wa_ctx, *offset = index, 1);
1258 }
1259
1260 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1261                                     struct i915_wa_ctx_bb *wa_ctx,
1262                                     uint32_t *const batch,
1263                                     uint32_t *offset)
1264 {
1265         int ret;
1266         struct drm_device *dev = ring->dev;
1267         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1268
1269         /* WaDisableCtxRestoreArbitration:skl,bxt */
1270         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1271             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1272                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1273
1274         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1275         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1276         if (ret < 0)
1277                 return ret;
1278         index = ret;
1279
1280         /* Pad to end of cacheline */
1281         while (index % CACHELINE_DWORDS)
1282                 wa_ctx_emit(batch, index, MI_NOOP);
1283
1284         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1285 }
1286
1287 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1288                                struct i915_wa_ctx_bb *wa_ctx,
1289                                uint32_t *const batch,
1290                                uint32_t *offset)
1291 {
1292         struct drm_device *dev = ring->dev;
1293         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1294
1295         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1296         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1297             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1298                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1299                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1300                 wa_ctx_emit(batch, index,
1301                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1302                 wa_ctx_emit(batch, index, MI_NOOP);
1303         }
1304
1305         /* WaDisableCtxRestoreArbitration:skl,bxt */
1306         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1307             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1308                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1309
1310         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1311
1312         return wa_ctx_end(wa_ctx, *offset = index, 1);
1313 }
1314
1315 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1316 {
1317         int ret;
1318
1319         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1320         if (!ring->wa_ctx.obj) {
1321                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1322                 return -ENOMEM;
1323         }
1324
1325         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1326         if (ret) {
1327                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1328                                  ret);
1329                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1330                 return ret;
1331         }
1332
1333         return 0;
1334 }
1335
1336 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1337 {
1338         if (ring->wa_ctx.obj) {
1339                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1340                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1341                 ring->wa_ctx.obj = NULL;
1342         }
1343 }
1344
1345 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1346 {
1347         int ret;
1348         uint32_t *batch;
1349         uint32_t offset;
1350         struct page *page;
1351         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1352
1353         WARN_ON(ring->id != RCS);
1354
1355         /* update this when WA for higher Gen are added */
1356         if (INTEL_INFO(ring->dev)->gen > 9) {
1357                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1358                           INTEL_INFO(ring->dev)->gen);
1359                 return 0;
1360         }
1361
1362         /* some WA perform writes to scratch page, ensure it is valid */
1363         if (ring->scratch.obj == NULL) {
1364                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1365                 return -EINVAL;
1366         }
1367
1368         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1369         if (ret) {
1370                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1371                 return ret;
1372         }
1373
1374         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1375         batch = kmap_atomic(page);
1376         offset = 0;
1377
1378         if (INTEL_INFO(ring->dev)->gen == 8) {
1379                 ret = gen8_init_indirectctx_bb(ring,
1380                                                &wa_ctx->indirect_ctx,
1381                                                batch,
1382                                                &offset);
1383                 if (ret)
1384                         goto out;
1385
1386                 ret = gen8_init_perctx_bb(ring,
1387                                           &wa_ctx->per_ctx,
1388                                           batch,
1389                                           &offset);
1390                 if (ret)
1391                         goto out;
1392         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1393                 ret = gen9_init_indirectctx_bb(ring,
1394                                                &wa_ctx->indirect_ctx,
1395                                                batch,
1396                                                &offset);
1397                 if (ret)
1398                         goto out;
1399
1400                 ret = gen9_init_perctx_bb(ring,
1401                                           &wa_ctx->per_ctx,
1402                                           batch,
1403                                           &offset);
1404                 if (ret)
1405                         goto out;
1406         }
1407
1408 out:
1409         kunmap_atomic(batch);
1410         if (ret)
1411                 lrc_destroy_wa_ctx_obj(ring);
1412
1413         return ret;
1414 }
1415
1416 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1417 {
1418         struct drm_device *dev = ring->dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420
1421         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1422         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1423
1424         if (ring->status_page.obj) {
1425                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1426                            (u32)ring->status_page.gfx_addr);
1427                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1428         }
1429
1430         I915_WRITE(RING_MODE_GEN7(ring),
1431                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1432                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1433         POSTING_READ(RING_MODE_GEN7(ring));
1434         ring->next_context_status_buffer = 0;
1435         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1436
1437         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1438
1439         return 0;
1440 }
1441
1442 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1443 {
1444         struct drm_device *dev = ring->dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         int ret;
1447
1448         ret = gen8_init_common_ring(ring);
1449         if (ret)
1450                 return ret;
1451
1452         /* We need to disable the AsyncFlip performance optimisations in order
1453          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1454          * programmed to '1' on all products.
1455          *
1456          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1457          */
1458         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1459
1460         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1461
1462         return init_workarounds_ring(ring);
1463 }
1464
1465 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1466 {
1467         int ret;
1468
1469         ret = gen8_init_common_ring(ring);
1470         if (ret)
1471                 return ret;
1472
1473         return init_workarounds_ring(ring);
1474 }
1475
1476 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1477 {
1478         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1479         struct intel_engine_cs *ring = req->ring;
1480         struct intel_ringbuffer *ringbuf = req->ringbuf;
1481         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1482         int i, ret;
1483
1484         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1485         if (ret)
1486                 return ret;
1487
1488         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1489         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1490                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1491
1492                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1493                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1494                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1495                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1496         }
1497
1498         intel_logical_ring_emit(ringbuf, MI_NOOP);
1499         intel_logical_ring_advance(ringbuf);
1500
1501         return 0;
1502 }
1503
1504 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1505                               u64 offset, unsigned dispatch_flags)
1506 {
1507         struct intel_ringbuffer *ringbuf = req->ringbuf;
1508         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1509         int ret;
1510
1511         /* Don't rely in hw updating PDPs, specially in lite-restore.
1512          * Ideally, we should set Force PD Restore in ctx descriptor,
1513          * but we can't. Force Restore would be a second option, but
1514          * it is unsafe in case of lite-restore (because the ctx is
1515          * not idle). */
1516         if (req->ctx->ppgtt &&
1517             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1518                 ret = intel_logical_ring_emit_pdps(req);
1519                 if (ret)
1520                         return ret;
1521
1522                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1523         }
1524
1525         ret = intel_logical_ring_begin(req, 4);
1526         if (ret)
1527                 return ret;
1528
1529         /* FIXME(BDW): Address space and security selectors. */
1530         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1531                                 (ppgtt<<8) |
1532                                 (dispatch_flags & I915_DISPATCH_RS ?
1533                                  MI_BATCH_RESOURCE_STREAMER : 0));
1534         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1535         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1536         intel_logical_ring_emit(ringbuf, MI_NOOP);
1537         intel_logical_ring_advance(ringbuf);
1538
1539         return 0;
1540 }
1541
1542 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1543 {
1544         struct drm_device *dev = ring->dev;
1545         struct drm_i915_private *dev_priv = dev->dev_private;
1546         unsigned long flags;
1547
1548         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1549                 return false;
1550
1551         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1552         if (ring->irq_refcount++ == 0) {
1553                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1554                 POSTING_READ(RING_IMR(ring->mmio_base));
1555         }
1556         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557
1558         return true;
1559 }
1560
1561 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1562 {
1563         struct drm_device *dev = ring->dev;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         unsigned long flags;
1566
1567         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1568         if (--ring->irq_refcount == 0) {
1569                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1570                 POSTING_READ(RING_IMR(ring->mmio_base));
1571         }
1572         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1573 }
1574
1575 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1576                            u32 invalidate_domains,
1577                            u32 unused)
1578 {
1579         struct intel_ringbuffer *ringbuf = request->ringbuf;
1580         struct intel_engine_cs *ring = ringbuf->ring;
1581         struct drm_device *dev = ring->dev;
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         uint32_t cmd;
1584         int ret;
1585
1586         ret = intel_logical_ring_begin(request, 4);
1587         if (ret)
1588                 return ret;
1589
1590         cmd = MI_FLUSH_DW + 1;
1591
1592         /* We always require a command barrier so that subsequent
1593          * commands, such as breadcrumb interrupts, are strictly ordered
1594          * wrt the contents of the write cache being flushed to memory
1595          * (and thus being coherent from the CPU).
1596          */
1597         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1598
1599         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1600                 cmd |= MI_INVALIDATE_TLB;
1601                 if (ring == &dev_priv->ring[VCS])
1602                         cmd |= MI_INVALIDATE_BSD;
1603         }
1604
1605         intel_logical_ring_emit(ringbuf, cmd);
1606         intel_logical_ring_emit(ringbuf,
1607                                 I915_GEM_HWS_SCRATCH_ADDR |
1608                                 MI_FLUSH_DW_USE_GTT);
1609         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1610         intel_logical_ring_emit(ringbuf, 0); /* value */
1611         intel_logical_ring_advance(ringbuf);
1612
1613         return 0;
1614 }
1615
1616 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1617                                   u32 invalidate_domains,
1618                                   u32 flush_domains)
1619 {
1620         struct intel_ringbuffer *ringbuf = request->ringbuf;
1621         struct intel_engine_cs *ring = ringbuf->ring;
1622         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1623         bool vf_flush_wa;
1624         u32 flags = 0;
1625         int ret;
1626
1627         flags |= PIPE_CONTROL_CS_STALL;
1628
1629         if (flush_domains) {
1630                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1631                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1632         }
1633
1634         if (invalidate_domains) {
1635                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1636                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1637                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1638                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1639                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1640                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1641                 flags |= PIPE_CONTROL_QW_WRITE;
1642                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1643         }
1644
1645         /*
1646          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1647          * control.
1648          */
1649         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1650                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1651
1652         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1653         if (ret)
1654                 return ret;
1655
1656         if (vf_flush_wa) {
1657                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1658                 intel_logical_ring_emit(ringbuf, 0);
1659                 intel_logical_ring_emit(ringbuf, 0);
1660                 intel_logical_ring_emit(ringbuf, 0);
1661                 intel_logical_ring_emit(ringbuf, 0);
1662                 intel_logical_ring_emit(ringbuf, 0);
1663         }
1664
1665         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1666         intel_logical_ring_emit(ringbuf, flags);
1667         intel_logical_ring_emit(ringbuf, scratch_addr);
1668         intel_logical_ring_emit(ringbuf, 0);
1669         intel_logical_ring_emit(ringbuf, 0);
1670         intel_logical_ring_emit(ringbuf, 0);
1671         intel_logical_ring_advance(ringbuf);
1672
1673         return 0;
1674 }
1675
1676 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1677 {
1678         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1679 }
1680
1681 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1682 {
1683         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1684 }
1685
1686 static int gen8_emit_request(struct drm_i915_gem_request *request)
1687 {
1688         struct intel_ringbuffer *ringbuf = request->ringbuf;
1689         struct intel_engine_cs *ring = ringbuf->ring;
1690         u32 cmd;
1691         int ret;
1692
1693         /*
1694          * Reserve space for 2 NOOPs at the end of each request to be
1695          * used as a workaround for not being allowed to do lite
1696          * restore with HEAD==TAIL (WaIdleLiteRestore).
1697          */
1698         ret = intel_logical_ring_begin(request, 8);
1699         if (ret)
1700                 return ret;
1701
1702         cmd = MI_STORE_DWORD_IMM_GEN4;
1703         cmd |= MI_GLOBAL_GTT;
1704
1705         intel_logical_ring_emit(ringbuf, cmd);
1706         intel_logical_ring_emit(ringbuf,
1707                                 (ring->status_page.gfx_addr +
1708                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1709         intel_logical_ring_emit(ringbuf, 0);
1710         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1711         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1712         intel_logical_ring_emit(ringbuf, MI_NOOP);
1713         intel_logical_ring_advance_and_submit(request);
1714
1715         /*
1716          * Here we add two extra NOOPs as padding to avoid
1717          * lite restore of a context with HEAD==TAIL.
1718          */
1719         intel_logical_ring_emit(ringbuf, MI_NOOP);
1720         intel_logical_ring_emit(ringbuf, MI_NOOP);
1721         intel_logical_ring_advance(ringbuf);
1722
1723         return 0;
1724 }
1725
1726 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1727 {
1728         struct render_state so;
1729         int ret;
1730
1731         ret = i915_gem_render_state_prepare(req->ring, &so);
1732         if (ret)
1733                 return ret;
1734
1735         if (so.rodata == NULL)
1736                 return 0;
1737
1738         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1739                                        I915_DISPATCH_SECURE);
1740         if (ret)
1741                 goto out;
1742
1743         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1744
1745 out:
1746         i915_gem_render_state_fini(&so);
1747         return ret;
1748 }
1749
1750 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1751 {
1752         int ret;
1753
1754         ret = intel_logical_ring_workarounds_emit(req);
1755         if (ret)
1756                 return ret;
1757
1758         ret = intel_rcs_context_init_mocs(req);
1759         /*
1760          * Failing to program the MOCS is non-fatal.The system will not
1761          * run at peak performance. So generate an error and carry on.
1762          */
1763         if (ret)
1764                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1765
1766         return intel_lr_context_render_state_init(req);
1767 }
1768
1769 /**
1770  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1771  *
1772  * @ring: Engine Command Streamer.
1773  *
1774  */
1775 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1776 {
1777         struct drm_i915_private *dev_priv;
1778
1779         if (!intel_ring_initialized(ring))
1780                 return;
1781
1782         dev_priv = ring->dev->dev_private;
1783
1784         intel_logical_ring_stop(ring);
1785         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1786
1787         if (ring->cleanup)
1788                 ring->cleanup(ring);
1789
1790         i915_cmd_parser_fini_ring(ring);
1791         i915_gem_batch_pool_fini(&ring->batch_pool);
1792
1793         if (ring->status_page.obj) {
1794                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1795                 ring->status_page.obj = NULL;
1796         }
1797
1798         lrc_destroy_wa_ctx_obj(ring);
1799 }
1800
1801 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1802 {
1803         int ret;
1804
1805         /* Intentionally left blank. */
1806         ring->buffer = NULL;
1807
1808         ring->dev = dev;
1809         INIT_LIST_HEAD(&ring->active_list);
1810         INIT_LIST_HEAD(&ring->request_list);
1811         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1812         init_waitqueue_head(&ring->irq_queue);
1813
1814         INIT_LIST_HEAD(&ring->execlist_queue);
1815         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1816         spin_lock_init(&ring->execlist_lock);
1817
1818         ret = i915_cmd_parser_init_ring(ring);
1819         if (ret)
1820                 return ret;
1821
1822         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1823
1824         return ret;
1825 }
1826
1827 static int logical_render_ring_init(struct drm_device *dev)
1828 {
1829         struct drm_i915_private *dev_priv = dev->dev_private;
1830         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1831         int ret;
1832
1833         ring->name = "render ring";
1834         ring->id = RCS;
1835         ring->mmio_base = RENDER_RING_BASE;
1836         ring->irq_enable_mask =
1837                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1838         ring->irq_keep_mask =
1839                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1840         if (HAS_L3_DPF(dev))
1841                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1842
1843         if (INTEL_INFO(dev)->gen >= 9)
1844                 ring->init_hw = gen9_init_render_ring;
1845         else
1846                 ring->init_hw = gen8_init_render_ring;
1847         ring->init_context = gen8_init_rcs_context;
1848         ring->cleanup = intel_fini_pipe_control;
1849         ring->get_seqno = gen8_get_seqno;
1850         ring->set_seqno = gen8_set_seqno;
1851         ring->emit_request = gen8_emit_request;
1852         ring->emit_flush = gen8_emit_flush_render;
1853         ring->irq_get = gen8_logical_ring_get_irq;
1854         ring->irq_put = gen8_logical_ring_put_irq;
1855         ring->emit_bb_start = gen8_emit_bb_start;
1856
1857         ring->dev = dev;
1858
1859         ret = intel_init_pipe_control(ring);
1860         if (ret)
1861                 return ret;
1862
1863         ret = intel_init_workaround_bb(ring);
1864         if (ret) {
1865                 /*
1866                  * We continue even if we fail to initialize WA batch
1867                  * because we only expect rare glitches but nothing
1868                  * critical to prevent us from using GPU
1869                  */
1870                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1871                           ret);
1872         }
1873
1874         ret = logical_ring_init(dev, ring);
1875         if (ret) {
1876                 lrc_destroy_wa_ctx_obj(ring);
1877         }
1878
1879         return ret;
1880 }
1881
1882 static int logical_bsd_ring_init(struct drm_device *dev)
1883 {
1884         struct drm_i915_private *dev_priv = dev->dev_private;
1885         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1886
1887         ring->name = "bsd ring";
1888         ring->id = VCS;
1889         ring->mmio_base = GEN6_BSD_RING_BASE;
1890         ring->irq_enable_mask =
1891                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1892         ring->irq_keep_mask =
1893                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1894
1895         ring->init_hw = gen8_init_common_ring;
1896         ring->get_seqno = gen8_get_seqno;
1897         ring->set_seqno = gen8_set_seqno;
1898         ring->emit_request = gen8_emit_request;
1899         ring->emit_flush = gen8_emit_flush;
1900         ring->irq_get = gen8_logical_ring_get_irq;
1901         ring->irq_put = gen8_logical_ring_put_irq;
1902         ring->emit_bb_start = gen8_emit_bb_start;
1903
1904         return logical_ring_init(dev, ring);
1905 }
1906
1907 static int logical_bsd2_ring_init(struct drm_device *dev)
1908 {
1909         struct drm_i915_private *dev_priv = dev->dev_private;
1910         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1911
1912         ring->name = "bds2 ring";
1913         ring->id = VCS2;
1914         ring->mmio_base = GEN8_BSD2_RING_BASE;
1915         ring->irq_enable_mask =
1916                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1917         ring->irq_keep_mask =
1918                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1919
1920         ring->init_hw = gen8_init_common_ring;
1921         ring->get_seqno = gen8_get_seqno;
1922         ring->set_seqno = gen8_set_seqno;
1923         ring->emit_request = gen8_emit_request;
1924         ring->emit_flush = gen8_emit_flush;
1925         ring->irq_get = gen8_logical_ring_get_irq;
1926         ring->irq_put = gen8_logical_ring_put_irq;
1927         ring->emit_bb_start = gen8_emit_bb_start;
1928
1929         return logical_ring_init(dev, ring);
1930 }
1931
1932 static int logical_blt_ring_init(struct drm_device *dev)
1933 {
1934         struct drm_i915_private *dev_priv = dev->dev_private;
1935         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1936
1937         ring->name = "blitter ring";
1938         ring->id = BCS;
1939         ring->mmio_base = BLT_RING_BASE;
1940         ring->irq_enable_mask =
1941                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1942         ring->irq_keep_mask =
1943                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1944
1945         ring->init_hw = gen8_init_common_ring;
1946         ring->get_seqno = gen8_get_seqno;
1947         ring->set_seqno = gen8_set_seqno;
1948         ring->emit_request = gen8_emit_request;
1949         ring->emit_flush = gen8_emit_flush;
1950         ring->irq_get = gen8_logical_ring_get_irq;
1951         ring->irq_put = gen8_logical_ring_put_irq;
1952         ring->emit_bb_start = gen8_emit_bb_start;
1953
1954         return logical_ring_init(dev, ring);
1955 }
1956
1957 static int logical_vebox_ring_init(struct drm_device *dev)
1958 {
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1961
1962         ring->name = "video enhancement ring";
1963         ring->id = VECS;
1964         ring->mmio_base = VEBOX_RING_BASE;
1965         ring->irq_enable_mask =
1966                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1967         ring->irq_keep_mask =
1968                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1969
1970         ring->init_hw = gen8_init_common_ring;
1971         ring->get_seqno = gen8_get_seqno;
1972         ring->set_seqno = gen8_set_seqno;
1973         ring->emit_request = gen8_emit_request;
1974         ring->emit_flush = gen8_emit_flush;
1975         ring->irq_get = gen8_logical_ring_get_irq;
1976         ring->irq_put = gen8_logical_ring_put_irq;
1977         ring->emit_bb_start = gen8_emit_bb_start;
1978
1979         return logical_ring_init(dev, ring);
1980 }
1981
1982 /**
1983  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1984  * @dev: DRM device.
1985  *
1986  * This function inits the engines for an Execlists submission style (the equivalent in the
1987  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1988  * those engines that are present in the hardware.
1989  *
1990  * Return: non-zero if the initialization failed.
1991  */
1992 int intel_logical_rings_init(struct drm_device *dev)
1993 {
1994         struct drm_i915_private *dev_priv = dev->dev_private;
1995         int ret;
1996
1997         ret = logical_render_ring_init(dev);
1998         if (ret)
1999                 return ret;
2000
2001         if (HAS_BSD(dev)) {
2002                 ret = logical_bsd_ring_init(dev);
2003                 if (ret)
2004                         goto cleanup_render_ring;
2005         }
2006
2007         if (HAS_BLT(dev)) {
2008                 ret = logical_blt_ring_init(dev);
2009                 if (ret)
2010                         goto cleanup_bsd_ring;
2011         }
2012
2013         if (HAS_VEBOX(dev)) {
2014                 ret = logical_vebox_ring_init(dev);
2015                 if (ret)
2016                         goto cleanup_blt_ring;
2017         }
2018
2019         if (HAS_BSD2(dev)) {
2020                 ret = logical_bsd2_ring_init(dev);
2021                 if (ret)
2022                         goto cleanup_vebox_ring;
2023         }
2024
2025         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2026         if (ret)
2027                 goto cleanup_bsd2_ring;
2028
2029         return 0;
2030
2031 cleanup_bsd2_ring:
2032         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2033 cleanup_vebox_ring:
2034         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2035 cleanup_blt_ring:
2036         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2037 cleanup_bsd_ring:
2038         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2039 cleanup_render_ring:
2040         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2041
2042         return ret;
2043 }
2044
2045 static u32
2046 make_rpcs(struct drm_device *dev)
2047 {
2048         u32 rpcs = 0;
2049
2050         /*
2051          * No explicit RPCS request is needed to ensure full
2052          * slice/subslice/EU enablement prior to Gen9.
2053         */
2054         if (INTEL_INFO(dev)->gen < 9)
2055                 return 0;
2056
2057         /*
2058          * Starting in Gen9, render power gating can leave
2059          * slice/subslice/EU in a partially enabled state. We
2060          * must make an explicit request through RPCS for full
2061          * enablement.
2062         */
2063         if (INTEL_INFO(dev)->has_slice_pg) {
2064                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2065                 rpcs |= INTEL_INFO(dev)->slice_total <<
2066                         GEN8_RPCS_S_CNT_SHIFT;
2067                 rpcs |= GEN8_RPCS_ENABLE;
2068         }
2069
2070         if (INTEL_INFO(dev)->has_subslice_pg) {
2071                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2072                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2073                         GEN8_RPCS_SS_CNT_SHIFT;
2074                 rpcs |= GEN8_RPCS_ENABLE;
2075         }
2076
2077         if (INTEL_INFO(dev)->has_eu_pg) {
2078                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2079                         GEN8_RPCS_EU_MIN_SHIFT;
2080                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2081                         GEN8_RPCS_EU_MAX_SHIFT;
2082                 rpcs |= GEN8_RPCS_ENABLE;
2083         }
2084
2085         return rpcs;
2086 }
2087
2088 static int
2089 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2090                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2091 {
2092         struct drm_device *dev = ring->dev;
2093         struct drm_i915_private *dev_priv = dev->dev_private;
2094         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2095         struct page *page;
2096         uint32_t *reg_state;
2097         int ret;
2098
2099         if (!ppgtt)
2100                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2101
2102         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2103         if (ret) {
2104                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2105                 return ret;
2106         }
2107
2108         ret = i915_gem_object_get_pages(ctx_obj);
2109         if (ret) {
2110                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2111                 return ret;
2112         }
2113
2114         i915_gem_object_pin_pages(ctx_obj);
2115
2116         /* The second page of the context object contains some fields which must
2117          * be set up prior to the first execution. */
2118         page = i915_gem_object_get_page(ctx_obj, 1);
2119         reg_state = kmap_atomic(page);
2120
2121         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2122          * commands followed by (reg, value) pairs. The values we are setting here are
2123          * only for the first context restore: on a subsequent save, the GPU will
2124          * recreate this batchbuffer with new values (including all the missing
2125          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2126         if (ring->id == RCS)
2127                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2128         else
2129                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2130         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2131         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2132         reg_state[CTX_CONTEXT_CONTROL+1] =
2133                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2134                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2135                                    CTX_CTRL_RS_CTX_ENABLE);
2136         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2137         reg_state[CTX_RING_HEAD+1] = 0;
2138         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2139         reg_state[CTX_RING_TAIL+1] = 0;
2140         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2141         /* Ring buffer start address is not known until the buffer is pinned.
2142          * It is written to the context image in execlists_update_context()
2143          */
2144         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2145         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2146                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2147         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2148         reg_state[CTX_BB_HEAD_U+1] = 0;
2149         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2150         reg_state[CTX_BB_HEAD_L+1] = 0;
2151         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2152         reg_state[CTX_BB_STATE+1] = (1<<5);
2153         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2154         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2155         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2156         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2157         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2158         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2159         if (ring->id == RCS) {
2160                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2161                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2162                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2163                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2164                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2165                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2166                 if (ring->wa_ctx.obj) {
2167                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2168                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2169
2170                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2171                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2172                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2173
2174                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2175                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2176
2177                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2178                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2179                                 0x01;
2180                 }
2181         }
2182         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2183         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2184         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2185         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2186         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2187         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2188         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2189         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2190         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2191         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2192         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2193         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2194
2195         /* With dynamic page allocation, PDPs may not be allocated at this point,
2196          * Point the unallocated PDPs to the scratch page
2197          */
2198         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2199         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2200         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2201         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2202         if (ring->id == RCS) {
2203                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2204                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2205                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2206         }
2207
2208         kunmap_atomic(reg_state);
2209
2210         ctx_obj->dirty = 1;
2211         set_page_dirty(page);
2212         i915_gem_object_unpin_pages(ctx_obj);
2213
2214         return 0;
2215 }
2216
2217 /**
2218  * intel_lr_context_free() - free the LRC specific bits of a context
2219  * @ctx: the LR context to free.
2220  *
2221  * The real context freeing is done in i915_gem_context_free: this only
2222  * takes care of the bits that are LRC related: the per-engine backing
2223  * objects and the logical ringbuffer.
2224  */
2225 void intel_lr_context_free(struct intel_context *ctx)
2226 {
2227         int i;
2228
2229         for (i = 0; i < I915_NUM_RINGS; i++) {
2230                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2231
2232                 if (ctx_obj) {
2233                         struct intel_ringbuffer *ringbuf =
2234                                         ctx->engine[i].ringbuf;
2235                         struct intel_engine_cs *ring = ringbuf->ring;
2236
2237                         if (ctx == ring->default_context) {
2238                                 intel_unpin_ringbuffer_obj(ringbuf);
2239                                 i915_gem_object_ggtt_unpin(ctx_obj);
2240                         }
2241                         WARN_ON(ctx->engine[ring->id].pin_count);
2242                         intel_destroy_ringbuffer_obj(ringbuf);
2243                         kfree(ringbuf);
2244                         drm_gem_object_unreference(&ctx_obj->base);
2245                 }
2246         }
2247 }
2248
2249 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2250 {
2251         int ret = 0;
2252
2253         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2254
2255         switch (ring->id) {
2256         case RCS:
2257                 if (INTEL_INFO(ring->dev)->gen >= 9)
2258                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2259                 else
2260                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2261                 break;
2262         case VCS:
2263         case BCS:
2264         case VECS:
2265         case VCS2:
2266                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2267                 break;
2268         }
2269
2270         return ret;
2271 }
2272
2273 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2274                 struct drm_i915_gem_object *default_ctx_obj)
2275 {
2276         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2277
2278         /* The status page is offset 0 from the default context object
2279          * in LRC mode. */
2280         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2281         ring->status_page.page_addr =
2282                         kmap(sg_page(default_ctx_obj->pages->sgl));
2283         ring->status_page.obj = default_ctx_obj;
2284
2285         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2286                         (u32)ring->status_page.gfx_addr);
2287         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2288 }
2289
2290 /**
2291  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2292  * @ctx: LR context to create.
2293  * @ring: engine to be used with the context.
2294  *
2295  * This function can be called more than once, with different engines, if we plan
2296  * to use the context with them. The context backing objects and the ringbuffers
2297  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2298  * the creation is a deferred call: it's better to make sure first that we need to use
2299  * a given ring with the context.
2300  *
2301  * Return: non-zero on error.
2302  */
2303 int intel_lr_context_deferred_create(struct intel_context *ctx,
2304                                      struct intel_engine_cs *ring)
2305 {
2306         const bool is_global_default_ctx = (ctx == ring->default_context);
2307         struct drm_device *dev = ring->dev;
2308         struct drm_i915_gem_object *ctx_obj;
2309         uint32_t context_size;
2310         struct intel_ringbuffer *ringbuf;
2311         int ret;
2312
2313         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2314         WARN_ON(ctx->engine[ring->id].state);
2315
2316         context_size = round_up(get_lr_context_size(ring), 4096);
2317
2318         ctx_obj = i915_gem_alloc_object(dev, context_size);
2319         if (!ctx_obj) {
2320                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2321                 return -ENOMEM;
2322         }
2323
2324         if (is_global_default_ctx) {
2325                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2326                 if (ret) {
2327                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2328                                         ret);
2329                         drm_gem_object_unreference(&ctx_obj->base);
2330                         return ret;
2331                 }
2332         }
2333
2334         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2335         if (!ringbuf) {
2336                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2337                                 ring->name);
2338                 ret = -ENOMEM;
2339                 goto error_unpin_ctx;
2340         }
2341
2342         ringbuf->ring = ring;
2343
2344         ringbuf->size = 32 * PAGE_SIZE;
2345         ringbuf->effective_size = ringbuf->size;
2346         ringbuf->head = 0;
2347         ringbuf->tail = 0;
2348         ringbuf->last_retired_head = -1;
2349         intel_ring_update_space(ringbuf);
2350
2351         if (ringbuf->obj == NULL) {
2352                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2353                 if (ret) {
2354                         DRM_DEBUG_DRIVER(
2355                                 "Failed to allocate ringbuffer obj %s: %d\n",
2356                                 ring->name, ret);
2357                         goto error_free_rbuf;
2358                 }
2359
2360                 if (is_global_default_ctx) {
2361                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2362                         if (ret) {
2363                                 DRM_ERROR(
2364                                         "Failed to pin and map ringbuffer %s: %d\n",
2365                                         ring->name, ret);
2366                                 goto error_destroy_rbuf;
2367                         }
2368                 }
2369
2370         }
2371
2372         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2373         if (ret) {
2374                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2375                 goto error;
2376         }
2377
2378         ctx->engine[ring->id].ringbuf = ringbuf;
2379         ctx->engine[ring->id].state = ctx_obj;
2380
2381         if (ctx == ring->default_context)
2382                 lrc_setup_hardware_status_page(ring, ctx_obj);
2383         else if (ring->id == RCS && !ctx->rcs_initialized) {
2384                 if (ring->init_context) {
2385                         struct drm_i915_gem_request *req;
2386
2387                         ret = i915_gem_request_alloc(ring, ctx, &req);
2388                         if (ret)
2389                                 return ret;
2390
2391                         ret = ring->init_context(req);
2392                         if (ret) {
2393                                 DRM_ERROR("ring init context: %d\n", ret);
2394                                 i915_gem_request_cancel(req);
2395                                 ctx->engine[ring->id].ringbuf = NULL;
2396                                 ctx->engine[ring->id].state = NULL;
2397                                 goto error;
2398                         }
2399
2400                         i915_add_request_no_flush(req);
2401                 }
2402
2403                 ctx->rcs_initialized = true;
2404         }
2405
2406         return 0;
2407
2408 error:
2409         if (is_global_default_ctx)
2410                 intel_unpin_ringbuffer_obj(ringbuf);
2411 error_destroy_rbuf:
2412         intel_destroy_ringbuffer_obj(ringbuf);
2413 error_free_rbuf:
2414         kfree(ringbuf);
2415 error_unpin_ctx:
2416         if (is_global_default_ctx)
2417                 i915_gem_object_ggtt_unpin(ctx_obj);
2418         drm_gem_object_unreference(&ctx_obj->base);
2419         return ret;
2420 }
2421
2422 void intel_lr_context_reset(struct drm_device *dev,
2423                         struct intel_context *ctx)
2424 {
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426         struct intel_engine_cs *ring;
2427         int i;
2428
2429         for_each_ring(ring, dev_priv, i) {
2430                 struct drm_i915_gem_object *ctx_obj =
2431                                 ctx->engine[ring->id].state;
2432                 struct intel_ringbuffer *ringbuf =
2433                                 ctx->engine[ring->id].ringbuf;
2434                 uint32_t *reg_state;
2435                 struct page *page;
2436
2437                 if (!ctx_obj)
2438                         continue;
2439
2440                 if (i915_gem_object_get_pages(ctx_obj)) {
2441                         WARN(1, "Failed get_pages for context obj\n");
2442                         continue;
2443                 }
2444                 page = i915_gem_object_get_page(ctx_obj, 1);
2445                 reg_state = kmap_atomic(page);
2446
2447                 reg_state[CTX_RING_HEAD+1] = 0;
2448                 reg_state[CTX_RING_TAIL+1] = 0;
2449
2450                 kunmap_atomic(reg_state);
2451
2452                 ringbuf->head = 0;
2453                 ringbuf->tail = 0;
2454         }
2455 }