Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198                            struct drm_framebuffer *fb,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_device *dev = fb->dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204         u32 alignment;
2205         int ret;
2206
2207         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209         switch (obj->tiling_mode) {
2210         case I915_TILING_NONE:
2211                 if (INTEL_INFO(dev)->gen >= 9)
2212                         alignment = 256 * 1024;
2213                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214                         alignment = 128 * 1024;
2215                 else if (INTEL_INFO(dev)->gen >= 4)
2216                         alignment = 4 * 1024;
2217                 else
2218                         alignment = 64 * 1024;
2219                 break;
2220         case I915_TILING_X:
2221                 if (INTEL_INFO(dev)->gen >= 9)
2222                         alignment = 256 * 1024;
2223                 else {
2224                         /* pin() will align the object as required by fence */
2225                         alignment = 0;
2226                 }
2227                 break;
2228         case I915_TILING_Y:
2229                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230                 return -EINVAL;
2231         default:
2232                 BUG();
2233         }
2234
2235         /* Note that the w/a also requires 64 PTE of padding following the
2236          * bo. We currently fill all unused PTE with the shadow page and so
2237          * we should always have valid PTE following the scanout preventing
2238          * the VT-d warning.
2239          */
2240         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241                 alignment = 256 * 1024;
2242
2243         /*
2244          * Global gtt pte registers are special registers which actually forward
2245          * writes to a chunk of system memory. Which means that there is no risk
2246          * that the register values disappear as soon as we call
2247          * intel_runtime_pm_put(), so it is correct to wrap only the
2248          * pin/unpin/fence and not more.
2249          */
2250         intel_runtime_pm_get(dev_priv);
2251
2252         dev_priv->mm.interruptible = false;
2253         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254         if (ret)
2255                 goto err_interruptible;
2256
2257         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258          * fence, whereas 965+ only requires a fence if using
2259          * framebuffer compression.  For simplicity, we always install
2260          * a fence as the cost is not that onerous.
2261          */
2262         ret = i915_gem_object_get_fence(obj);
2263         if (ret)
2264                 goto err_unpin;
2265
2266         i915_gem_object_pin_fence(obj);
2267
2268         dev_priv->mm.interruptible = true;
2269         intel_runtime_pm_put(dev_priv);
2270         return 0;
2271
2272 err_unpin:
2273         i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275         dev_priv->mm.interruptible = true;
2276         intel_runtime_pm_put(dev_priv);
2277         return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284         i915_gem_object_unpin_fence(obj);
2285         i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289  * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291                                              unsigned int tiling_mode,
2292                                              unsigned int cpp,
2293                                              unsigned int pitch)
2294 {
2295         if (tiling_mode != I915_TILING_NONE) {
2296                 unsigned int tile_rows, tiles;
2297
2298                 tile_rows = *y / 8;
2299                 *y %= 8;
2300
2301                 tiles = *x / (512/cpp);
2302                 *x %= 512/cpp;
2303
2304                 return tile_rows * pitch * 8 + tiles * 4096;
2305         } else {
2306                 unsigned int offset;
2307
2308                 offset = *y * pitch + *x * cpp;
2309                 *y = 0;
2310                 *x = (offset & 4095) / cpp;
2311                 return offset & -4096;
2312         }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317         switch (format) {
2318         case DISPPLANE_8BPP:
2319                 return DRM_FORMAT_C8;
2320         case DISPPLANE_BGRX555:
2321                 return DRM_FORMAT_XRGB1555;
2322         case DISPPLANE_BGRX565:
2323                 return DRM_FORMAT_RGB565;
2324         default:
2325         case DISPPLANE_BGRX888:
2326                 return DRM_FORMAT_XRGB8888;
2327         case DISPPLANE_RGBX888:
2328                 return DRM_FORMAT_XBGR8888;
2329         case DISPPLANE_BGRX101010:
2330                 return DRM_FORMAT_XRGB2101010;
2331         case DISPPLANE_RGBX101010:
2332                 return DRM_FORMAT_XBGR2101010;
2333         }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337                                   struct intel_plane_config *plane_config)
2338 {
2339         struct drm_device *dev = crtc->base.dev;
2340         struct drm_i915_gem_object *obj = NULL;
2341         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342         u32 base = plane_config->base;
2343
2344         if (plane_config->size == 0)
2345                 return false;
2346
2347         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348                                                              plane_config->size);
2349         if (!obj)
2350                 return false;
2351
2352         if (plane_config->tiled) {
2353                 obj->tiling_mode = I915_TILING_X;
2354                 obj->stride = crtc->base.primary->fb->pitches[0];
2355         }
2356
2357         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358         mode_cmd.width = crtc->base.primary->fb->width;
2359         mode_cmd.height = crtc->base.primary->fb->height;
2360         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362         mutex_lock(&dev->struct_mutex);
2363
2364         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365                                    &mode_cmd, obj)) {
2366                 DRM_DEBUG_KMS("intel fb init failed\n");
2367                 goto out_unref_obj;
2368         }
2369
2370         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371         mutex_unlock(&dev->struct_mutex);
2372
2373         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374         return true;
2375
2376 out_unref_obj:
2377         drm_gem_object_unreference(&obj->base);
2378         mutex_unlock(&dev->struct_mutex);
2379         return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383                                  struct intel_plane_config *plane_config)
2384 {
2385         struct drm_device *dev = intel_crtc->base.dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct drm_crtc *c;
2388         struct intel_crtc *i;
2389         struct drm_i915_gem_object *obj;
2390
2391         if (!intel_crtc->base.primary->fb)
2392                 return;
2393
2394         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395                 return;
2396
2397         kfree(intel_crtc->base.primary->fb);
2398         intel_crtc->base.primary->fb = NULL;
2399
2400         /*
2401          * Failed to alloc the obj, check to see if we should share
2402          * an fb with another CRTC instead
2403          */
2404         for_each_crtc(dev, c) {
2405                 i = to_intel_crtc(c);
2406
2407                 if (c == &intel_crtc->base)
2408                         continue;
2409
2410                 if (!i->active)
2411                         continue;
2412
2413                 obj = intel_fb_obj(c->primary->fb);
2414                 if (obj == NULL)
2415                         continue;
2416
2417                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418                         if (obj->tiling_mode != I915_TILING_NONE)
2419                                 dev_priv->preserve_bios_swizzle = true;
2420
2421                         drm_framebuffer_reference(c->primary->fb);
2422                         intel_crtc->base.primary->fb = c->primary->fb;
2423                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424                         break;
2425                 }
2426         }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430                                       struct drm_framebuffer *fb,
2431                                       int x, int y)
2432 {
2433         struct drm_device *dev = crtc->dev;
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436         struct drm_i915_gem_object *obj;
2437         int plane = intel_crtc->plane;
2438         unsigned long linear_offset;
2439         u32 dspcntr;
2440         u32 reg = DSPCNTR(plane);
2441         int pixel_size;
2442
2443         if (!intel_crtc->primary_enabled) {
2444                 I915_WRITE(reg, 0);
2445                 if (INTEL_INFO(dev)->gen >= 4)
2446                         I915_WRITE(DSPSURF(plane), 0);
2447                 else
2448                         I915_WRITE(DSPADDR(plane), 0);
2449                 POSTING_READ(reg);
2450                 return;
2451         }
2452
2453         obj = intel_fb_obj(fb);
2454         if (WARN_ON(obj == NULL))
2455                 return;
2456
2457         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459         dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461         dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463         if (INTEL_INFO(dev)->gen < 4) {
2464                 if (intel_crtc->pipe == PIPE_B)
2465                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467                 /* pipesrc and dspsize control the size that is scaled from,
2468                  * which should always be the user's requested size.
2469                  */
2470                 I915_WRITE(DSPSIZE(plane),
2471                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472                            (intel_crtc->config.pipe_src_w - 1));
2473                 I915_WRITE(DSPPOS(plane), 0);
2474         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475                 I915_WRITE(PRIMSIZE(plane),
2476                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477                            (intel_crtc->config.pipe_src_w - 1));
2478                 I915_WRITE(PRIMPOS(plane), 0);
2479                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480         }
2481
2482         switch (fb->pixel_format) {
2483         case DRM_FORMAT_C8:
2484                 dspcntr |= DISPPLANE_8BPP;
2485                 break;
2486         case DRM_FORMAT_XRGB1555:
2487         case DRM_FORMAT_ARGB1555:
2488                 dspcntr |= DISPPLANE_BGRX555;
2489                 break;
2490         case DRM_FORMAT_RGB565:
2491                 dspcntr |= DISPPLANE_BGRX565;
2492                 break;
2493         case DRM_FORMAT_XRGB8888:
2494         case DRM_FORMAT_ARGB8888:
2495                 dspcntr |= DISPPLANE_BGRX888;
2496                 break;
2497         case DRM_FORMAT_XBGR8888:
2498         case DRM_FORMAT_ABGR8888:
2499                 dspcntr |= DISPPLANE_RGBX888;
2500                 break;
2501         case DRM_FORMAT_XRGB2101010:
2502         case DRM_FORMAT_ARGB2101010:
2503                 dspcntr |= DISPPLANE_BGRX101010;
2504                 break;
2505         case DRM_FORMAT_XBGR2101010:
2506         case DRM_FORMAT_ABGR2101010:
2507                 dspcntr |= DISPPLANE_RGBX101010;
2508                 break;
2509         default:
2510                 BUG();
2511         }
2512
2513         if (INTEL_INFO(dev)->gen >= 4 &&
2514             obj->tiling_mode != I915_TILING_NONE)
2515                 dspcntr |= DISPPLANE_TILED;
2516
2517         if (IS_G4X(dev))
2518                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520         linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522         if (INTEL_INFO(dev)->gen >= 4) {
2523                 intel_crtc->dspaddr_offset =
2524                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525                                                        pixel_size,
2526                                                        fb->pitches[0]);
2527                 linear_offset -= intel_crtc->dspaddr_offset;
2528         } else {
2529                 intel_crtc->dspaddr_offset = linear_offset;
2530         }
2531
2532         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533                 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535                 x += (intel_crtc->config.pipe_src_w - 1);
2536                 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538                 /* Finding the last pixel of the last line of the display
2539                 data and adding to linear_offset*/
2540                 linear_offset +=
2541                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543         }
2544
2545         I915_WRITE(reg, dspcntr);
2546
2547         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549                       fb->pitches[0]);
2550         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551         if (INTEL_INFO(dev)->gen >= 4) {
2552                 I915_WRITE(DSPSURF(plane),
2553                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556         } else
2557                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558         POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562                                           struct drm_framebuffer *fb,
2563                                           int x, int y)
2564 {
2565         struct drm_device *dev = crtc->dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568         struct drm_i915_gem_object *obj;
2569         int plane = intel_crtc->plane;
2570         unsigned long linear_offset;
2571         u32 dspcntr;
2572         u32 reg = DSPCNTR(plane);
2573         int pixel_size;
2574
2575         if (!intel_crtc->primary_enabled) {
2576                 I915_WRITE(reg, 0);
2577                 I915_WRITE(DSPSURF(plane), 0);
2578                 POSTING_READ(reg);
2579                 return;
2580         }
2581
2582         obj = intel_fb_obj(fb);
2583         if (WARN_ON(obj == NULL))
2584                 return;
2585
2586         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588         dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590         dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595         switch (fb->pixel_format) {
2596         case DRM_FORMAT_C8:
2597                 dspcntr |= DISPPLANE_8BPP;
2598                 break;
2599         case DRM_FORMAT_RGB565:
2600                 dspcntr |= DISPPLANE_BGRX565;
2601                 break;
2602         case DRM_FORMAT_XRGB8888:
2603         case DRM_FORMAT_ARGB8888:
2604                 dspcntr |= DISPPLANE_BGRX888;
2605                 break;
2606         case DRM_FORMAT_XBGR8888:
2607         case DRM_FORMAT_ABGR8888:
2608                 dspcntr |= DISPPLANE_RGBX888;
2609                 break;
2610         case DRM_FORMAT_XRGB2101010:
2611         case DRM_FORMAT_ARGB2101010:
2612                 dspcntr |= DISPPLANE_BGRX101010;
2613                 break;
2614         case DRM_FORMAT_XBGR2101010:
2615         case DRM_FORMAT_ABGR2101010:
2616                 dspcntr |= DISPPLANE_RGBX101010;
2617                 break;
2618         default:
2619                 BUG();
2620         }
2621
2622         if (obj->tiling_mode != I915_TILING_NONE)
2623                 dspcntr |= DISPPLANE_TILED;
2624
2625         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628         linear_offset = y * fb->pitches[0] + x * pixel_size;
2629         intel_crtc->dspaddr_offset =
2630                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631                                                pixel_size,
2632                                                fb->pitches[0]);
2633         linear_offset -= intel_crtc->dspaddr_offset;
2634         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635                 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638                         x += (intel_crtc->config.pipe_src_w - 1);
2639                         y += (intel_crtc->config.pipe_src_h - 1);
2640
2641                         /* Finding the last pixel of the last line of the display
2642                         data and adding to linear_offset*/
2643                         linear_offset +=
2644                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646                 }
2647         }
2648
2649         I915_WRITE(reg, dspcntr);
2650
2651         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653                       fb->pitches[0]);
2654         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655         I915_WRITE(DSPSURF(plane),
2656                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659         } else {
2660                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662         }
2663         POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667                                          struct drm_framebuffer *fb,
2668                                          int x, int y)
2669 {
2670         struct drm_device *dev = crtc->dev;
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673         struct intel_framebuffer *intel_fb;
2674         struct drm_i915_gem_object *obj;
2675         int pipe = intel_crtc->pipe;
2676         u32 plane_ctl, stride;
2677
2678         if (!intel_crtc->primary_enabled) {
2679                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681                 POSTING_READ(PLANE_CTL(pipe, 0));
2682                 return;
2683         }
2684
2685         plane_ctl = PLANE_CTL_ENABLE |
2686                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2687                     PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689         switch (fb->pixel_format) {
2690         case DRM_FORMAT_RGB565:
2691                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692                 break;
2693         case DRM_FORMAT_XRGB8888:
2694                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695                 break;
2696         case DRM_FORMAT_XBGR8888:
2697                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699                 break;
2700         case DRM_FORMAT_XRGB2101010:
2701                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702                 break;
2703         case DRM_FORMAT_XBGR2101010:
2704                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706                 break;
2707         default:
2708                 BUG();
2709         }
2710
2711         intel_fb = to_intel_framebuffer(fb);
2712         obj = intel_fb->obj;
2713
2714         /*
2715          * The stride is either expressed as a multiple of 64 bytes chunks for
2716          * linear buffers or in number of tiles for tiled buffers.
2717          */
2718         switch (obj->tiling_mode) {
2719         case I915_TILING_NONE:
2720                 stride = fb->pitches[0] >> 6;
2721                 break;
2722         case I915_TILING_X:
2723                 plane_ctl |= PLANE_CTL_TILED_X;
2724                 stride = fb->pitches[0] >> 9;
2725                 break;
2726         default:
2727                 BUG();
2728         }
2729
2730         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732                 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737                       i915_gem_obj_ggtt_offset(obj),
2738                       x, y, fb->width, fb->height,
2739                       fb->pitches[0]);
2740
2741         I915_WRITE(PLANE_POS(pipe, 0), 0);
2742         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743         I915_WRITE(PLANE_SIZE(pipe, 0),
2744                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2745                    (intel_crtc->config.pipe_src_w - 1));
2746         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749         POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755                            int x, int y, enum mode_set_atomic state)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760         if (dev_priv->display.disable_fbc)
2761                 dev_priv->display.disable_fbc(dev);
2762
2763         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765         return 0;
2766 }
2767
2768 static void intel_complete_page_flips(struct drm_device *dev)
2769 {
2770         struct drm_crtc *crtc;
2771
2772         for_each_crtc(dev, crtc) {
2773                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774                 enum plane plane = intel_crtc->plane;
2775
2776                 intel_prepare_page_flip(dev, plane);
2777                 intel_finish_page_flip_plane(dev, plane);
2778         }
2779 }
2780
2781 static void intel_update_primary_planes(struct drm_device *dev)
2782 {
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct drm_crtc *crtc;
2785
2786         for_each_crtc(dev, crtc) {
2787                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789                 drm_modeset_lock(&crtc->mutex, NULL);
2790                 /*
2791                  * FIXME: Once we have proper support for primary planes (and
2792                  * disabling them without disabling the entire crtc) allow again
2793                  * a NULL crtc->primary->fb.
2794                  */
2795                 if (intel_crtc->active && crtc->primary->fb)
2796                         dev_priv->display.update_primary_plane(crtc,
2797                                                                crtc->primary->fb,
2798                                                                crtc->x,
2799                                                                crtc->y);
2800                 drm_modeset_unlock(&crtc->mutex);
2801         }
2802 }
2803
2804 void intel_prepare_reset(struct drm_device *dev)
2805 {
2806         struct drm_i915_private *dev_priv = to_i915(dev);
2807         struct intel_crtc *crtc;
2808
2809         /* no reset support for gen2 */
2810         if (IS_GEN2(dev))
2811                 return;
2812
2813         /* reset doesn't touch the display */
2814         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815                 return;
2816
2817         drm_modeset_lock_all(dev);
2818
2819         /*
2820          * Disabling the crtcs gracefully seems nicer. Also the
2821          * g33 docs say we should at least disable all the planes.
2822          */
2823         for_each_intel_crtc(dev, crtc) {
2824                 if (crtc->active)
2825                         dev_priv->display.crtc_disable(&crtc->base);
2826         }
2827 }
2828
2829 void intel_finish_reset(struct drm_device *dev)
2830 {
2831         struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833         /*
2834          * Flips in the rings will be nuked by the reset,
2835          * so complete all pending flips so that user space
2836          * will get its events and not get stuck.
2837          */
2838         intel_complete_page_flips(dev);
2839
2840         /* no reset support for gen2 */
2841         if (IS_GEN2(dev))
2842                 return;
2843
2844         /* reset doesn't touch the display */
2845         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846                 /*
2847                  * Flips in the rings have been nuked by the reset,
2848                  * so update the base address of all primary
2849                  * planes to the the last fb to make sure we're
2850                  * showing the correct fb after a reset.
2851                  */
2852                 intel_update_primary_planes(dev);
2853                 return;
2854         }
2855
2856         /*
2857          * The display has been reset as well,
2858          * so need a full re-initialization.
2859          */
2860         intel_runtime_pm_disable_interrupts(dev_priv);
2861         intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863         intel_modeset_init_hw(dev);
2864
2865         spin_lock_irq(&dev_priv->irq_lock);
2866         if (dev_priv->display.hpd_irq_setup)
2867                 dev_priv->display.hpd_irq_setup(dev);
2868         spin_unlock_irq(&dev_priv->irq_lock);
2869
2870         intel_modeset_setup_hw_state(dev, true);
2871
2872         intel_hpd_init(dev_priv);
2873
2874         drm_modeset_unlock_all(dev);
2875 }
2876
2877 static int
2878 intel_finish_fb(struct drm_framebuffer *old_fb)
2879 {
2880         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882         bool was_interruptible = dev_priv->mm.interruptible;
2883         int ret;
2884
2885         /* Big Hammer, we also need to ensure that any pending
2886          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887          * current scanout is retired before unpinning the old
2888          * framebuffer.
2889          *
2890          * This should only fail upon a hung GPU, in which case we
2891          * can safely continue.
2892          */
2893         dev_priv->mm.interruptible = false;
2894         ret = i915_gem_object_finish_gpu(obj);
2895         dev_priv->mm.interruptible = was_interruptible;
2896
2897         return ret;
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902         struct drm_device *dev = crtc->dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905         bool pending;
2906
2907         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909                 return false;
2910
2911         spin_lock_irq(&dev->event_lock);
2912         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913         spin_unlock_irq(&dev->event_lock);
2914
2915         return pending;
2916 }
2917
2918 static void intel_update_pipe_size(struct intel_crtc *crtc)
2919 {
2920         struct drm_device *dev = crtc->base.dev;
2921         struct drm_i915_private *dev_priv = dev->dev_private;
2922         const struct drm_display_mode *adjusted_mode;
2923
2924         if (!i915.fastboot)
2925                 return;
2926
2927         /*
2928          * Update pipe size and adjust fitter if needed: the reason for this is
2929          * that in compute_mode_changes we check the native mode (not the pfit
2930          * mode) to see if we can flip rather than do a full mode set. In the
2931          * fastboot case, we'll flip, but if we don't update the pipesrc and
2932          * pfit state, we'll end up with a big fb scanned out into the wrong
2933          * sized surface.
2934          *
2935          * To fix this properly, we need to hoist the checks up into
2936          * compute_mode_changes (or above), check the actual pfit state and
2937          * whether the platform allows pfit disable with pipe active, and only
2938          * then update the pipesrc and pfit state, even on the flip path.
2939          */
2940
2941         adjusted_mode = &crtc->config.adjusted_mode;
2942
2943         I915_WRITE(PIPESRC(crtc->pipe),
2944                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945                    (adjusted_mode->crtc_vdisplay - 1));
2946         if (!crtc->config.pch_pfit.enabled &&
2947             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952         }
2953         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955 }
2956
2957 static int
2958 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2959                     struct drm_framebuffer *fb)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964         enum pipe pipe = intel_crtc->pipe;
2965         struct drm_framebuffer *old_fb = crtc->primary->fb;
2966         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2967         int ret;
2968
2969         if (intel_crtc_has_pending_flip(crtc)) {
2970                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2971                 return -EBUSY;
2972         }
2973
2974         /* no fb bound */
2975         if (!fb) {
2976                 DRM_ERROR("No FB bound\n");
2977                 return 0;
2978         }
2979
2980         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2981                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2982                           plane_name(intel_crtc->plane),
2983                           INTEL_INFO(dev)->num_pipes);
2984                 return -EINVAL;
2985         }
2986
2987         mutex_lock(&dev->struct_mutex);
2988         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2989         if (ret == 0)
2990                 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2991                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2992         mutex_unlock(&dev->struct_mutex);
2993         if (ret != 0) {
2994                 DRM_ERROR("pin & fence failed\n");
2995                 return ret;
2996         }
2997
2998         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2999
3000         if (intel_crtc->active)
3001                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
3002
3003         crtc->primary->fb = fb;
3004         crtc->x = x;
3005         crtc->y = y;
3006
3007         if (old_fb) {
3008                 if (intel_crtc->active && old_fb != fb)
3009                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3010                 mutex_lock(&dev->struct_mutex);
3011                 intel_unpin_fb_obj(old_obj);
3012                 mutex_unlock(&dev->struct_mutex);
3013         }
3014
3015         mutex_lock(&dev->struct_mutex);
3016         intel_update_fbc(dev);
3017         mutex_unlock(&dev->struct_mutex);
3018
3019         return 0;
3020 }
3021
3022 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023 {
3024         struct drm_device *dev = crtc->dev;
3025         struct drm_i915_private *dev_priv = dev->dev_private;
3026         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027         int pipe = intel_crtc->pipe;
3028         u32 reg, temp;
3029
3030         /* enable normal train */
3031         reg = FDI_TX_CTL(pipe);
3032         temp = I915_READ(reg);
3033         if (IS_IVYBRIDGE(dev)) {
3034                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3036         } else {
3037                 temp &= ~FDI_LINK_TRAIN_NONE;
3038                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3039         }
3040         I915_WRITE(reg, temp);
3041
3042         reg = FDI_RX_CTL(pipe);
3043         temp = I915_READ(reg);
3044         if (HAS_PCH_CPT(dev)) {
3045                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047         } else {
3048                 temp &= ~FDI_LINK_TRAIN_NONE;
3049                 temp |= FDI_LINK_TRAIN_NONE;
3050         }
3051         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053         /* wait one idle pattern time */
3054         POSTING_READ(reg);
3055         udelay(1000);
3056
3057         /* IVB wants error correction enabled */
3058         if (IS_IVYBRIDGE(dev))
3059                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060                            FDI_FE_ERRC_ENABLE);
3061 }
3062
3063 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3064 {
3065         return crtc->base.enabled && crtc->active &&
3066                 crtc->config.has_pch_encoder;
3067 }
3068
3069 static void ivb_modeset_global_resources(struct drm_device *dev)
3070 {
3071         struct drm_i915_private *dev_priv = dev->dev_private;
3072         struct intel_crtc *pipe_B_crtc =
3073                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074         struct intel_crtc *pipe_C_crtc =
3075                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076         uint32_t temp;
3077
3078         /*
3079          * When everything is off disable fdi C so that we could enable fdi B
3080          * with all lanes. Note that we don't care about enabled pipes without
3081          * an enabled pch encoder.
3082          */
3083         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084             !pipe_has_enabled_pch(pipe_C_crtc)) {
3085                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088                 temp = I915_READ(SOUTH_CHICKEN1);
3089                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3090                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3091                 I915_WRITE(SOUTH_CHICKEN1, temp);
3092         }
3093 }
3094
3095 /* The FDI link training functions for ILK/Ibexpeak. */
3096 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097 {
3098         struct drm_device *dev = crtc->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101         int pipe = intel_crtc->pipe;
3102         u32 reg, temp, tries;
3103
3104         /* FDI needs bits from pipe first */
3105         assert_pipe_enabled(dev_priv, pipe);
3106
3107         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108            for train result */
3109         reg = FDI_RX_IMR(pipe);
3110         temp = I915_READ(reg);
3111         temp &= ~FDI_RX_SYMBOL_LOCK;
3112         temp &= ~FDI_RX_BIT_LOCK;
3113         I915_WRITE(reg, temp);
3114         I915_READ(reg);
3115         udelay(150);
3116
3117         /* enable CPU FDI TX and PCH FDI RX */
3118         reg = FDI_TX_CTL(pipe);
3119         temp = I915_READ(reg);
3120         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3121         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3122         temp &= ~FDI_LINK_TRAIN_NONE;
3123         temp |= FDI_LINK_TRAIN_PATTERN_1;
3124         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3125
3126         reg = FDI_RX_CTL(pipe);
3127         temp = I915_READ(reg);
3128         temp &= ~FDI_LINK_TRAIN_NONE;
3129         temp |= FDI_LINK_TRAIN_PATTERN_1;
3130         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132         POSTING_READ(reg);
3133         udelay(150);
3134
3135         /* Ironlake workaround, enable clock pointer after FDI enable*/
3136         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138                    FDI_RX_PHASE_SYNC_POINTER_EN);
3139
3140         reg = FDI_RX_IIR(pipe);
3141         for (tries = 0; tries < 5; tries++) {
3142                 temp = I915_READ(reg);
3143                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145                 if ((temp & FDI_RX_BIT_LOCK)) {
3146                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3147                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3148                         break;
3149                 }
3150         }
3151         if (tries == 5)
3152                 DRM_ERROR("FDI train 1 fail!\n");
3153
3154         /* Train 2 */
3155         reg = FDI_TX_CTL(pipe);
3156         temp = I915_READ(reg);
3157         temp &= ~FDI_LINK_TRAIN_NONE;
3158         temp |= FDI_LINK_TRAIN_PATTERN_2;
3159         I915_WRITE(reg, temp);
3160
3161         reg = FDI_RX_CTL(pipe);
3162         temp = I915_READ(reg);
3163         temp &= ~FDI_LINK_TRAIN_NONE;
3164         temp |= FDI_LINK_TRAIN_PATTERN_2;
3165         I915_WRITE(reg, temp);
3166
3167         POSTING_READ(reg);
3168         udelay(150);
3169
3170         reg = FDI_RX_IIR(pipe);
3171         for (tries = 0; tries < 5; tries++) {
3172                 temp = I915_READ(reg);
3173                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175                 if (temp & FDI_RX_SYMBOL_LOCK) {
3176                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3177                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3178                         break;
3179                 }
3180         }
3181         if (tries == 5)
3182                 DRM_ERROR("FDI train 2 fail!\n");
3183
3184         DRM_DEBUG_KMS("FDI train done\n");
3185
3186 }
3187
3188 static const int snb_b_fdi_train_param[] = {
3189         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193 };
3194
3195 /* The FDI link training functions for SNB/Cougarpoint. */
3196 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197 {
3198         struct drm_device *dev = crtc->dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201         int pipe = intel_crtc->pipe;
3202         u32 reg, temp, i, retry;
3203
3204         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205            for train result */
3206         reg = FDI_RX_IMR(pipe);
3207         temp = I915_READ(reg);
3208         temp &= ~FDI_RX_SYMBOL_LOCK;
3209         temp &= ~FDI_RX_BIT_LOCK;
3210         I915_WRITE(reg, temp);
3211
3212         POSTING_READ(reg);
3213         udelay(150);
3214
3215         /* enable CPU FDI TX and PCH FDI RX */
3216         reg = FDI_TX_CTL(pipe);
3217         temp = I915_READ(reg);
3218         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3219         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3220         temp &= ~FDI_LINK_TRAIN_NONE;
3221         temp |= FDI_LINK_TRAIN_PATTERN_1;
3222         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223         /* SNB-B */
3224         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3225         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3226
3227         I915_WRITE(FDI_RX_MISC(pipe),
3228                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
3230         reg = FDI_RX_CTL(pipe);
3231         temp = I915_READ(reg);
3232         if (HAS_PCH_CPT(dev)) {
3233                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235         } else {
3236                 temp &= ~FDI_LINK_TRAIN_NONE;
3237                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3238         }
3239         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241         POSTING_READ(reg);
3242         udelay(150);
3243
3244         for (i = 0; i < 4; i++) {
3245                 reg = FDI_TX_CTL(pipe);
3246                 temp = I915_READ(reg);
3247                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248                 temp |= snb_b_fdi_train_param[i];
3249                 I915_WRITE(reg, temp);
3250
3251                 POSTING_READ(reg);
3252                 udelay(500);
3253
3254                 for (retry = 0; retry < 5; retry++) {
3255                         reg = FDI_RX_IIR(pipe);
3256                         temp = I915_READ(reg);
3257                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258                         if (temp & FDI_RX_BIT_LOCK) {
3259                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3261                                 break;
3262                         }
3263                         udelay(50);
3264                 }
3265                 if (retry < 5)
3266                         break;
3267         }
3268         if (i == 4)
3269                 DRM_ERROR("FDI train 1 fail!\n");
3270
3271         /* Train 2 */
3272         reg = FDI_TX_CTL(pipe);
3273         temp = I915_READ(reg);
3274         temp &= ~FDI_LINK_TRAIN_NONE;
3275         temp |= FDI_LINK_TRAIN_PATTERN_2;
3276         if (IS_GEN6(dev)) {
3277                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278                 /* SNB-B */
3279                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280         }
3281         I915_WRITE(reg, temp);
3282
3283         reg = FDI_RX_CTL(pipe);
3284         temp = I915_READ(reg);
3285         if (HAS_PCH_CPT(dev)) {
3286                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288         } else {
3289                 temp &= ~FDI_LINK_TRAIN_NONE;
3290                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3291         }
3292         I915_WRITE(reg, temp);
3293
3294         POSTING_READ(reg);
3295         udelay(150);
3296
3297         for (i = 0; i < 4; i++) {
3298                 reg = FDI_TX_CTL(pipe);
3299                 temp = I915_READ(reg);
3300                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301                 temp |= snb_b_fdi_train_param[i];
3302                 I915_WRITE(reg, temp);
3303
3304                 POSTING_READ(reg);
3305                 udelay(500);
3306
3307                 for (retry = 0; retry < 5; retry++) {
3308                         reg = FDI_RX_IIR(pipe);
3309                         temp = I915_READ(reg);
3310                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311                         if (temp & FDI_RX_SYMBOL_LOCK) {
3312                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3314                                 break;
3315                         }
3316                         udelay(50);
3317                 }
3318                 if (retry < 5)
3319                         break;
3320         }
3321         if (i == 4)
3322                 DRM_ERROR("FDI train 2 fail!\n");
3323
3324         DRM_DEBUG_KMS("FDI train done.\n");
3325 }
3326
3327 /* Manual link training for Ivy Bridge A0 parts */
3328 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329 {
3330         struct drm_device *dev = crtc->dev;
3331         struct drm_i915_private *dev_priv = dev->dev_private;
3332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333         int pipe = intel_crtc->pipe;
3334         u32 reg, temp, i, j;
3335
3336         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337            for train result */
3338         reg = FDI_RX_IMR(pipe);
3339         temp = I915_READ(reg);
3340         temp &= ~FDI_RX_SYMBOL_LOCK;
3341         temp &= ~FDI_RX_BIT_LOCK;
3342         I915_WRITE(reg, temp);
3343
3344         POSTING_READ(reg);
3345         udelay(150);
3346
3347         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348                       I915_READ(FDI_RX_IIR(pipe)));
3349
3350         /* Try each vswing and preemphasis setting twice before moving on */
3351         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352                 /* disable first in case we need to retry */
3353                 reg = FDI_TX_CTL(pipe);
3354                 temp = I915_READ(reg);
3355                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356                 temp &= ~FDI_TX_ENABLE;
3357                 I915_WRITE(reg, temp);
3358
3359                 reg = FDI_RX_CTL(pipe);
3360                 temp = I915_READ(reg);
3361                 temp &= ~FDI_LINK_TRAIN_AUTO;
3362                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363                 temp &= ~FDI_RX_ENABLE;
3364                 I915_WRITE(reg, temp);
3365
3366                 /* enable CPU FDI TX and PCH FDI RX */
3367                 reg = FDI_TX_CTL(pipe);
3368                 temp = I915_READ(reg);
3369                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3370                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3371                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3372                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3373                 temp |= snb_b_fdi_train_param[j/2];
3374                 temp |= FDI_COMPOSITE_SYNC;
3375                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3376
3377                 I915_WRITE(FDI_RX_MISC(pipe),
3378                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3379
3380                 reg = FDI_RX_CTL(pipe);
3381                 temp = I915_READ(reg);
3382                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383                 temp |= FDI_COMPOSITE_SYNC;
3384                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3385
3386                 POSTING_READ(reg);
3387                 udelay(1); /* should be 0.5us */
3388
3389                 for (i = 0; i < 4; i++) {
3390                         reg = FDI_RX_IIR(pipe);
3391                         temp = I915_READ(reg);
3392                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394                         if (temp & FDI_RX_BIT_LOCK ||
3395                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398                                               i);
3399                                 break;
3400                         }
3401                         udelay(1); /* should be 0.5us */
3402                 }
3403                 if (i == 4) {
3404                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405                         continue;
3406                 }
3407
3408                 /* Train 2 */
3409                 reg = FDI_TX_CTL(pipe);
3410                 temp = I915_READ(reg);
3411                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413                 I915_WRITE(reg, temp);
3414
3415                 reg = FDI_RX_CTL(pipe);
3416                 temp = I915_READ(reg);
3417                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3419                 I915_WRITE(reg, temp);
3420
3421                 POSTING_READ(reg);
3422                 udelay(2); /* should be 1.5us */
3423
3424                 for (i = 0; i < 4; i++) {
3425                         reg = FDI_RX_IIR(pipe);
3426                         temp = I915_READ(reg);
3427                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429                         if (temp & FDI_RX_SYMBOL_LOCK ||
3430                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433                                               i);
3434                                 goto train_done;
3435                         }
3436                         udelay(2); /* should be 1.5us */
3437                 }
3438                 if (i == 4)
3439                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3440         }
3441
3442 train_done:
3443         DRM_DEBUG_KMS("FDI train done.\n");
3444 }
3445
3446 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3447 {
3448         struct drm_device *dev = intel_crtc->base.dev;
3449         struct drm_i915_private *dev_priv = dev->dev_private;
3450         int pipe = intel_crtc->pipe;
3451         u32 reg, temp;
3452
3453
3454         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3455         reg = FDI_RX_CTL(pipe);
3456         temp = I915_READ(reg);
3457         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3458         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3459         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3460         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462         POSTING_READ(reg);
3463         udelay(200);
3464
3465         /* Switch from Rawclk to PCDclk */
3466         temp = I915_READ(reg);
3467         I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469         POSTING_READ(reg);
3470         udelay(200);
3471
3472         /* Enable CPU FDI TX PLL, always on for Ironlake */
3473         reg = FDI_TX_CTL(pipe);
3474         temp = I915_READ(reg);
3475         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3477
3478                 POSTING_READ(reg);
3479                 udelay(100);
3480         }
3481 }
3482
3483 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484 {
3485         struct drm_device *dev = intel_crtc->base.dev;
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         int pipe = intel_crtc->pipe;
3488         u32 reg, temp;
3489
3490         /* Switch from PCDclk to Rawclk */
3491         reg = FDI_RX_CTL(pipe);
3492         temp = I915_READ(reg);
3493         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495         /* Disable CPU FDI TX PLL */
3496         reg = FDI_TX_CTL(pipe);
3497         temp = I915_READ(reg);
3498         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500         POSTING_READ(reg);
3501         udelay(100);
3502
3503         reg = FDI_RX_CTL(pipe);
3504         temp = I915_READ(reg);
3505         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507         /* Wait for the clocks to turn off. */
3508         POSTING_READ(reg);
3509         udelay(100);
3510 }
3511
3512 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513 {
3514         struct drm_device *dev = crtc->dev;
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517         int pipe = intel_crtc->pipe;
3518         u32 reg, temp;
3519
3520         /* disable CPU FDI tx and PCH FDI rx */
3521         reg = FDI_TX_CTL(pipe);
3522         temp = I915_READ(reg);
3523         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524         POSTING_READ(reg);
3525
3526         reg = FDI_RX_CTL(pipe);
3527         temp = I915_READ(reg);
3528         temp &= ~(0x7 << 16);
3529         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3530         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532         POSTING_READ(reg);
3533         udelay(100);
3534
3535         /* Ironlake workaround, disable clock pointer after downing FDI */
3536         if (HAS_PCH_IBX(dev))
3537                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3538
3539         /* still set train pattern 1 */
3540         reg = FDI_TX_CTL(pipe);
3541         temp = I915_READ(reg);
3542         temp &= ~FDI_LINK_TRAIN_NONE;
3543         temp |= FDI_LINK_TRAIN_PATTERN_1;
3544         I915_WRITE(reg, temp);
3545
3546         reg = FDI_RX_CTL(pipe);
3547         temp = I915_READ(reg);
3548         if (HAS_PCH_CPT(dev)) {
3549                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551         } else {
3552                 temp &= ~FDI_LINK_TRAIN_NONE;
3553                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554         }
3555         /* BPC in FDI rx is consistent with that in PIPECONF */
3556         temp &= ~(0x07 << 16);
3557         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3558         I915_WRITE(reg, temp);
3559
3560         POSTING_READ(reg);
3561         udelay(100);
3562 }
3563
3564 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565 {
3566         struct intel_crtc *crtc;
3567
3568         /* Note that we don't need to be called with mode_config.lock here
3569          * as our list of CRTC objects is static for the lifetime of the
3570          * device and so cannot disappear as we iterate. Similarly, we can
3571          * happily treat the predicates as racy, atomic checks as userspace
3572          * cannot claim and pin a new fb without at least acquring the
3573          * struct_mutex and so serialising with us.
3574          */
3575         for_each_intel_crtc(dev, crtc) {
3576                 if (atomic_read(&crtc->unpin_work_count) == 0)
3577                         continue;
3578
3579                 if (crtc->unpin_work)
3580                         intel_wait_for_vblank(dev, crtc->pipe);
3581
3582                 return true;
3583         }
3584
3585         return false;
3586 }
3587
3588 static void page_flip_completed(struct intel_crtc *intel_crtc)
3589 {
3590         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591         struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593         /* ensure that the unpin work is consistent wrt ->pending. */
3594         smp_rmb();
3595         intel_crtc->unpin_work = NULL;
3596
3597         if (work->event)
3598                 drm_send_vblank_event(intel_crtc->base.dev,
3599                                       intel_crtc->pipe,
3600                                       work->event);
3601
3602         drm_crtc_vblank_put(&intel_crtc->base);
3603
3604         wake_up_all(&dev_priv->pending_flip_queue);
3605         queue_work(dev_priv->wq, &work->work);
3606
3607         trace_i915_flip_complete(intel_crtc->plane,
3608                                  work->pending_flip_obj);
3609 }
3610
3611 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3612 {
3613         struct drm_device *dev = crtc->dev;
3614         struct drm_i915_private *dev_priv = dev->dev_private;
3615
3616         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3617         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618                                        !intel_crtc_has_pending_flip(crtc),
3619                                        60*HZ) == 0)) {
3620                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
3622                 spin_lock_irq(&dev->event_lock);
3623                 if (intel_crtc->unpin_work) {
3624                         WARN_ONCE(1, "Removing stuck page flip\n");
3625                         page_flip_completed(intel_crtc);
3626                 }
3627                 spin_unlock_irq(&dev->event_lock);
3628         }
3629
3630         if (crtc->primary->fb) {
3631                 mutex_lock(&dev->struct_mutex);
3632                 intel_finish_fb(crtc->primary->fb);
3633                 mutex_unlock(&dev->struct_mutex);
3634         }
3635 }
3636
3637 /* Program iCLKIP clock to the desired frequency */
3638 static void lpt_program_iclkip(struct drm_crtc *crtc)
3639 {
3640         struct drm_device *dev = crtc->dev;
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3643         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644         u32 temp;
3645
3646         mutex_lock(&dev_priv->dpio_lock);
3647
3648         /* It is necessary to ungate the pixclk gate prior to programming
3649          * the divisors, and gate it back when it is done.
3650          */
3651         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653         /* Disable SSCCTL */
3654         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3655                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656                                 SBI_SSCCTL_DISABLE,
3657                         SBI_ICLK);
3658
3659         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3660         if (clock == 20000) {
3661                 auxdiv = 1;
3662                 divsel = 0x41;
3663                 phaseinc = 0x20;
3664         } else {
3665                 /* The iCLK virtual clock root frequency is in MHz,
3666                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3667                  * divisors, it is necessary to divide one by another, so we
3668                  * convert the virtual clock precision to KHz here for higher
3669                  * precision.
3670                  */
3671                 u32 iclk_virtual_root_freq = 172800 * 1000;
3672                 u32 iclk_pi_range = 64;
3673                 u32 desired_divisor, msb_divisor_value, pi_value;
3674
3675                 desired_divisor = (iclk_virtual_root_freq / clock);
3676                 msb_divisor_value = desired_divisor / iclk_pi_range;
3677                 pi_value = desired_divisor % iclk_pi_range;
3678
3679                 auxdiv = 0;
3680                 divsel = msb_divisor_value - 2;
3681                 phaseinc = pi_value;
3682         }
3683
3684         /* This should not happen with any sane values */
3685         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3691                         clock,
3692                         auxdiv,
3693                         divsel,
3694                         phasedir,
3695                         phaseinc);
3696
3697         /* Program SSCDIVINTPHASE6 */
3698         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3699         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3705         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3706
3707         /* Program SSCAUXDIV */
3708         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3709         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3711         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3712
3713         /* Enable modulator and associated divider */
3714         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3715         temp &= ~SBI_SSCCTL_DISABLE;
3716         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3717
3718         /* Wait for initialization time */
3719         udelay(24);
3720
3721         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3722
3723         mutex_unlock(&dev_priv->dpio_lock);
3724 }
3725
3726 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727                                                 enum pipe pch_transcoder)
3728 {
3729         struct drm_device *dev = crtc->base.dev;
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3732
3733         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734                    I915_READ(HTOTAL(cpu_transcoder)));
3735         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736                    I915_READ(HBLANK(cpu_transcoder)));
3737         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738                    I915_READ(HSYNC(cpu_transcoder)));
3739
3740         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741                    I915_READ(VTOTAL(cpu_transcoder)));
3742         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743                    I915_READ(VBLANK(cpu_transcoder)));
3744         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745                    I915_READ(VSYNC(cpu_transcoder)));
3746         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748 }
3749
3750 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751 {
3752         struct drm_i915_private *dev_priv = dev->dev_private;
3753         uint32_t temp;
3754
3755         temp = I915_READ(SOUTH_CHICKEN1);
3756         if (temp & FDI_BC_BIFURCATION_SELECT)
3757                 return;
3758
3759         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762         temp |= FDI_BC_BIFURCATION_SELECT;
3763         DRM_DEBUG_KMS("enabling fdi C rx\n");
3764         I915_WRITE(SOUTH_CHICKEN1, temp);
3765         POSTING_READ(SOUTH_CHICKEN1);
3766 }
3767
3768 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769 {
3770         struct drm_device *dev = intel_crtc->base.dev;
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773         switch (intel_crtc->pipe) {
3774         case PIPE_A:
3775                 break;
3776         case PIPE_B:
3777                 if (intel_crtc->config.fdi_lanes > 2)
3778                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779                 else
3780                         cpt_enable_fdi_bc_bifurcation(dev);
3781
3782                 break;
3783         case PIPE_C:
3784                 cpt_enable_fdi_bc_bifurcation(dev);
3785
3786                 break;
3787         default:
3788                 BUG();
3789         }
3790 }
3791
3792 /*
3793  * Enable PCH resources required for PCH ports:
3794  *   - PCH PLLs
3795  *   - FDI training & RX/TX
3796  *   - update transcoder timings
3797  *   - DP transcoding bits
3798  *   - transcoder
3799  */
3800 static void ironlake_pch_enable(struct drm_crtc *crtc)
3801 {
3802         struct drm_device *dev = crtc->dev;
3803         struct drm_i915_private *dev_priv = dev->dev_private;
3804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805         int pipe = intel_crtc->pipe;
3806         u32 reg, temp;
3807
3808         assert_pch_transcoder_disabled(dev_priv, pipe);
3809
3810         if (IS_IVYBRIDGE(dev))
3811                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
3813         /* Write the TU size bits before fdi link training, so that error
3814          * detection works. */
3815         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
3818         /* For PCH output, training FDI link */
3819         dev_priv->display.fdi_link_train(crtc);
3820
3821         /* We need to program the right clock selection before writing the pixel
3822          * mutliplier into the DPLL. */
3823         if (HAS_PCH_CPT(dev)) {
3824                 u32 sel;
3825
3826                 temp = I915_READ(PCH_DPLL_SEL);
3827                 temp |= TRANS_DPLL_ENABLE(pipe);
3828                 sel = TRANS_DPLLB_SEL(pipe);
3829                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3830                         temp |= sel;
3831                 else
3832                         temp &= ~sel;
3833                 I915_WRITE(PCH_DPLL_SEL, temp);
3834         }
3835
3836         /* XXX: pch pll's can be enabled any time before we enable the PCH
3837          * transcoder, and we actually should do this to not upset any PCH
3838          * transcoder that already use the clock when we share it.
3839          *
3840          * Note that enable_shared_dpll tries to do the right thing, but
3841          * get_shared_dpll unconditionally resets the pll - we need that to have
3842          * the right LVDS enable sequence. */
3843         intel_enable_shared_dpll(intel_crtc);
3844
3845         /* set transcoder timing, panel must allow it */
3846         assert_panel_unlocked(dev_priv, pipe);
3847         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3848
3849         intel_fdi_normal_train(crtc);
3850
3851         /* For PCH DP, enable TRANS_DP_CTL */
3852         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3853                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3854                 reg = TRANS_DP_CTL(pipe);
3855                 temp = I915_READ(reg);
3856                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3857                           TRANS_DP_SYNC_MASK |
3858                           TRANS_DP_BPC_MASK);
3859                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3860                          TRANS_DP_ENH_FRAMING);
3861                 temp |= bpc << 9; /* same format but at 11:9 */
3862
3863                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3864                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3865                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3866                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3867
3868                 switch (intel_trans_dp_port_sel(crtc)) {
3869                 case PCH_DP_B:
3870                         temp |= TRANS_DP_PORT_SEL_B;
3871                         break;
3872                 case PCH_DP_C:
3873                         temp |= TRANS_DP_PORT_SEL_C;
3874                         break;
3875                 case PCH_DP_D:
3876                         temp |= TRANS_DP_PORT_SEL_D;
3877                         break;
3878                 default:
3879                         BUG();
3880                 }
3881
3882                 I915_WRITE(reg, temp);
3883         }
3884
3885         ironlake_enable_pch_transcoder(dev_priv, pipe);
3886 }
3887
3888 static void lpt_pch_enable(struct drm_crtc *crtc)
3889 {
3890         struct drm_device *dev = crtc->dev;
3891         struct drm_i915_private *dev_priv = dev->dev_private;
3892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3893         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3894
3895         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3896
3897         lpt_program_iclkip(crtc);
3898
3899         /* Set transcoder timing. */
3900         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3901
3902         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3903 }
3904
3905 void intel_put_shared_dpll(struct intel_crtc *crtc)
3906 {
3907         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3908
3909         if (pll == NULL)
3910                 return;
3911
3912         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3913                 WARN(1, "bad %s crtc mask\n", pll->name);
3914                 return;
3915         }
3916
3917         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918         if (pll->config.crtc_mask == 0) {
3919                 WARN_ON(pll->on);
3920                 WARN_ON(pll->active);
3921         }
3922
3923         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3924 }
3925
3926 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3927 {
3928         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3929         struct intel_shared_dpll *pll;
3930         enum intel_dpll_id i;
3931
3932         if (HAS_PCH_IBX(dev_priv->dev)) {
3933                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3934                 i = (enum intel_dpll_id) crtc->pipe;
3935                 pll = &dev_priv->shared_dplls[i];
3936
3937                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3938                               crtc->base.base.id, pll->name);
3939
3940                 WARN_ON(pll->new_config->crtc_mask);
3941
3942                 goto found;
3943         }
3944
3945         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3946                 pll = &dev_priv->shared_dplls[i];
3947
3948                 /* Only want to check enabled timings first */
3949                 if (pll->new_config->crtc_mask == 0)
3950                         continue;
3951
3952                 if (memcmp(&crtc->new_config->dpll_hw_state,
3953                            &pll->new_config->hw_state,
3954                            sizeof(pll->new_config->hw_state)) == 0) {
3955                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3956                                       crtc->base.base.id, pll->name,
3957                                       pll->new_config->crtc_mask,
3958                                       pll->active);
3959                         goto found;
3960                 }
3961         }
3962
3963         /* Ok no matching timings, maybe there's a free one? */
3964         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3965                 pll = &dev_priv->shared_dplls[i];
3966                 if (pll->new_config->crtc_mask == 0) {
3967                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3968                                       crtc->base.base.id, pll->name);
3969                         goto found;
3970                 }
3971         }
3972
3973         return NULL;
3974
3975 found:
3976         if (pll->new_config->crtc_mask == 0)
3977                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3978
3979         crtc->new_config->shared_dpll = i;
3980         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3981                          pipe_name(crtc->pipe));
3982
3983         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3984
3985         return pll;
3986 }
3987
3988 /**
3989  * intel_shared_dpll_start_config - start a new PLL staged config
3990  * @dev_priv: DRM device
3991  * @clear_pipes: mask of pipes that will have their PLLs freed
3992  *
3993  * Starts a new PLL staged config, copying the current config but
3994  * releasing the references of pipes specified in clear_pipes.
3995  */
3996 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3997                                           unsigned clear_pipes)
3998 {
3999         struct intel_shared_dpll *pll;
4000         enum intel_dpll_id i;
4001
4002         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4003                 pll = &dev_priv->shared_dplls[i];
4004
4005                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4006                                           GFP_KERNEL);
4007                 if (!pll->new_config)
4008                         goto cleanup;
4009
4010                 pll->new_config->crtc_mask &= ~clear_pipes;
4011         }
4012
4013         return 0;
4014
4015 cleanup:
4016         while (--i >= 0) {
4017                 pll = &dev_priv->shared_dplls[i];
4018                 kfree(pll->new_config);
4019                 pll->new_config = NULL;
4020         }
4021
4022         return -ENOMEM;
4023 }
4024
4025 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4026 {
4027         struct intel_shared_dpll *pll;
4028         enum intel_dpll_id i;
4029
4030         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031                 pll = &dev_priv->shared_dplls[i];
4032
4033                 WARN_ON(pll->new_config == &pll->config);
4034
4035                 pll->config = *pll->new_config;
4036                 kfree(pll->new_config);
4037                 pll->new_config = NULL;
4038         }
4039 }
4040
4041 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4042 {
4043         struct intel_shared_dpll *pll;
4044         enum intel_dpll_id i;
4045
4046         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4047                 pll = &dev_priv->shared_dplls[i];
4048
4049                 WARN_ON(pll->new_config == &pll->config);
4050
4051                 kfree(pll->new_config);
4052                 pll->new_config = NULL;
4053         }
4054 }
4055
4056 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4057 {
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059         int dslreg = PIPEDSL(pipe);
4060         u32 temp;
4061
4062         temp = I915_READ(dslreg);
4063         udelay(500);
4064         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4065                 if (wait_for(I915_READ(dslreg) != temp, 5))
4066                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4067         }
4068 }
4069
4070 static void skylake_pfit_enable(struct intel_crtc *crtc)
4071 {
4072         struct drm_device *dev = crtc->base.dev;
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074         int pipe = crtc->pipe;
4075
4076         if (crtc->config.pch_pfit.enabled) {
4077                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4078                 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4079                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4080         }
4081 }
4082
4083 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4084 {
4085         struct drm_device *dev = crtc->base.dev;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         int pipe = crtc->pipe;
4088
4089         if (crtc->config.pch_pfit.enabled) {
4090                 /* Force use of hard-coded filter coefficients
4091                  * as some pre-programmed values are broken,
4092                  * e.g. x201.
4093                  */
4094                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4095                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4096                                                  PF_PIPE_SEL_IVB(pipe));
4097                 else
4098                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4099                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4100                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4101         }
4102 }
4103
4104 static void intel_enable_planes(struct drm_crtc *crtc)
4105 {
4106         struct drm_device *dev = crtc->dev;
4107         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4108         struct drm_plane *plane;
4109         struct intel_plane *intel_plane;
4110
4111         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4112                 intel_plane = to_intel_plane(plane);
4113                 if (intel_plane->pipe == pipe)
4114                         intel_plane_restore(&intel_plane->base);
4115         }
4116 }
4117
4118 static void intel_disable_planes(struct drm_crtc *crtc)
4119 {
4120         struct drm_device *dev = crtc->dev;
4121         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4122         struct drm_plane *plane;
4123         struct intel_plane *intel_plane;
4124
4125         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4126                 intel_plane = to_intel_plane(plane);
4127                 if (intel_plane->pipe == pipe)
4128                         intel_plane_disable(&intel_plane->base);
4129         }
4130 }
4131
4132 void hsw_enable_ips(struct intel_crtc *crtc)
4133 {
4134         struct drm_device *dev = crtc->base.dev;
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136
4137         if (!crtc->config.ips_enabled)
4138                 return;
4139
4140         /* We can only enable IPS after we enable a plane and wait for a vblank */
4141         intel_wait_for_vblank(dev, crtc->pipe);
4142
4143         assert_plane_enabled(dev_priv, crtc->plane);
4144         if (IS_BROADWELL(dev)) {
4145                 mutex_lock(&dev_priv->rps.hw_lock);
4146                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4147                 mutex_unlock(&dev_priv->rps.hw_lock);
4148                 /* Quoting Art Runyan: "its not safe to expect any particular
4149                  * value in IPS_CTL bit 31 after enabling IPS through the
4150                  * mailbox." Moreover, the mailbox may return a bogus state,
4151                  * so we need to just enable it and continue on.
4152                  */
4153         } else {
4154                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4155                 /* The bit only becomes 1 in the next vblank, so this wait here
4156                  * is essentially intel_wait_for_vblank. If we don't have this
4157                  * and don't wait for vblanks until the end of crtc_enable, then
4158                  * the HW state readout code will complain that the expected
4159                  * IPS_CTL value is not the one we read. */
4160                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4161                         DRM_ERROR("Timed out waiting for IPS enable\n");
4162         }
4163 }
4164
4165 void hsw_disable_ips(struct intel_crtc *crtc)
4166 {
4167         struct drm_device *dev = crtc->base.dev;
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170         if (!crtc->config.ips_enabled)
4171                 return;
4172
4173         assert_plane_enabled(dev_priv, crtc->plane);
4174         if (IS_BROADWELL(dev)) {
4175                 mutex_lock(&dev_priv->rps.hw_lock);
4176                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4177                 mutex_unlock(&dev_priv->rps.hw_lock);
4178                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4179                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4180                         DRM_ERROR("Timed out waiting for IPS disable\n");
4181         } else {
4182                 I915_WRITE(IPS_CTL, 0);
4183                 POSTING_READ(IPS_CTL);
4184         }
4185
4186         /* We need to wait for a vblank before we can disable the plane. */
4187         intel_wait_for_vblank(dev, crtc->pipe);
4188 }
4189
4190 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4191 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4192 {
4193         struct drm_device *dev = crtc->dev;
4194         struct drm_i915_private *dev_priv = dev->dev_private;
4195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196         enum pipe pipe = intel_crtc->pipe;
4197         int palreg = PALETTE(pipe);
4198         int i;
4199         bool reenable_ips = false;
4200
4201         /* The clocks have to be on to load the palette. */
4202         if (!crtc->enabled || !intel_crtc->active)
4203                 return;
4204
4205         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4206                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4207                         assert_dsi_pll_enabled(dev_priv);
4208                 else
4209                         assert_pll_enabled(dev_priv, pipe);
4210         }
4211
4212         /* use legacy palette for Ironlake */
4213         if (!HAS_GMCH_DISPLAY(dev))
4214                 palreg = LGC_PALETTE(pipe);
4215
4216         /* Workaround : Do not read or write the pipe palette/gamma data while
4217          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4218          */
4219         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4220             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4221              GAMMA_MODE_MODE_SPLIT)) {
4222                 hsw_disable_ips(intel_crtc);
4223                 reenable_ips = true;
4224         }
4225
4226         for (i = 0; i < 256; i++) {
4227                 I915_WRITE(palreg + 4 * i,
4228                            (intel_crtc->lut_r[i] << 16) |
4229                            (intel_crtc->lut_g[i] << 8) |
4230                            intel_crtc->lut_b[i]);
4231         }
4232
4233         if (reenable_ips)
4234                 hsw_enable_ips(intel_crtc);
4235 }
4236
4237 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4238 {
4239         if (!enable && intel_crtc->overlay) {
4240                 struct drm_device *dev = intel_crtc->base.dev;
4241                 struct drm_i915_private *dev_priv = dev->dev_private;
4242
4243                 mutex_lock(&dev->struct_mutex);
4244                 dev_priv->mm.interruptible = false;
4245                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4246                 dev_priv->mm.interruptible = true;
4247                 mutex_unlock(&dev->struct_mutex);
4248         }
4249
4250         /* Let userspace switch the overlay on again. In most cases userspace
4251          * has to recompute where to put it anyway.
4252          */
4253 }
4254
4255 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4256 {
4257         struct drm_device *dev = crtc->dev;
4258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259         int pipe = intel_crtc->pipe;
4260
4261         intel_enable_primary_hw_plane(crtc->primary, crtc);
4262         intel_enable_planes(crtc);
4263         intel_crtc_update_cursor(crtc, true);
4264         intel_crtc_dpms_overlay(intel_crtc, true);
4265
4266         hsw_enable_ips(intel_crtc);
4267
4268         mutex_lock(&dev->struct_mutex);
4269         intel_update_fbc(dev);
4270         mutex_unlock(&dev->struct_mutex);
4271
4272         /*
4273          * FIXME: Once we grow proper nuclear flip support out of this we need
4274          * to compute the mask of flip planes precisely. For the time being
4275          * consider this a flip from a NULL plane.
4276          */
4277         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4278 }
4279
4280 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4281 {
4282         struct drm_device *dev = crtc->dev;
4283         struct drm_i915_private *dev_priv = dev->dev_private;
4284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285         int pipe = intel_crtc->pipe;
4286         int plane = intel_crtc->plane;
4287
4288         intel_crtc_wait_for_pending_flips(crtc);
4289
4290         if (dev_priv->fbc.plane == plane)
4291                 intel_disable_fbc(dev);
4292
4293         hsw_disable_ips(intel_crtc);
4294
4295         intel_crtc_dpms_overlay(intel_crtc, false);
4296         intel_crtc_update_cursor(crtc, false);
4297         intel_disable_planes(crtc);
4298         intel_disable_primary_hw_plane(crtc->primary, crtc);
4299
4300         /*
4301          * FIXME: Once we grow proper nuclear flip support out of this we need
4302          * to compute the mask of flip planes precisely. For the time being
4303          * consider this a flip to a NULL plane.
4304          */
4305         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4306 }
4307
4308 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309 {
4310         struct drm_device *dev = crtc->dev;
4311         struct drm_i915_private *dev_priv = dev->dev_private;
4312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4313         struct intel_encoder *encoder;
4314         int pipe = intel_crtc->pipe;
4315
4316         WARN_ON(!crtc->enabled);
4317
4318         if (intel_crtc->active)
4319                 return;
4320
4321         if (intel_crtc->config.has_pch_encoder)
4322                 intel_prepare_shared_dpll(intel_crtc);
4323
4324         if (intel_crtc->config.has_dp_encoder)
4325                 intel_dp_set_m_n(intel_crtc);
4326
4327         intel_set_pipe_timings(intel_crtc);
4328
4329         if (intel_crtc->config.has_pch_encoder) {
4330                 intel_cpu_transcoder_set_m_n(intel_crtc,
4331                                      &intel_crtc->config.fdi_m_n, NULL);
4332         }
4333
4334         ironlake_set_pipeconf(crtc);
4335
4336         intel_crtc->active = true;
4337
4338         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4340
4341         for_each_encoder_on_crtc(dev, crtc, encoder)
4342                 if (encoder->pre_enable)
4343                         encoder->pre_enable(encoder);
4344
4345         if (intel_crtc->config.has_pch_encoder) {
4346                 /* Note: FDI PLL enabling _must_ be done before we enable the
4347                  * cpu pipes, hence this is separate from all the other fdi/pch
4348                  * enabling. */
4349                 ironlake_fdi_pll_enable(intel_crtc);
4350         } else {
4351                 assert_fdi_tx_disabled(dev_priv, pipe);
4352                 assert_fdi_rx_disabled(dev_priv, pipe);
4353         }
4354
4355         ironlake_pfit_enable(intel_crtc);
4356
4357         /*
4358          * On ILK+ LUT must be loaded before the pipe is running but with
4359          * clocks enabled
4360          */
4361         intel_crtc_load_lut(crtc);
4362
4363         intel_update_watermarks(crtc);
4364         intel_enable_pipe(intel_crtc);
4365
4366         if (intel_crtc->config.has_pch_encoder)
4367                 ironlake_pch_enable(crtc);
4368
4369         for_each_encoder_on_crtc(dev, crtc, encoder)
4370                 encoder->enable(encoder);
4371
4372         if (HAS_PCH_CPT(dev))
4373                 cpt_verify_modeset(dev, intel_crtc->pipe);
4374
4375         assert_vblank_disabled(crtc);
4376         drm_crtc_vblank_on(crtc);
4377
4378         intel_crtc_enable_planes(crtc);
4379 }
4380
4381 /* IPS only exists on ULT machines and is tied to pipe A. */
4382 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383 {
4384         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4385 }
4386
4387 /*
4388  * This implements the workaround described in the "notes" section of the mode
4389  * set sequence documentation. When going from no pipes or single pipe to
4390  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392  */
4393 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394 {
4395         struct drm_device *dev = crtc->base.dev;
4396         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398         /* We want to get the other_active_crtc only if there's only 1 other
4399          * active crtc. */
4400         for_each_intel_crtc(dev, crtc_it) {
4401                 if (!crtc_it->active || crtc_it == crtc)
4402                         continue;
4403
4404                 if (other_active_crtc)
4405                         return;
4406
4407                 other_active_crtc = crtc_it;
4408         }
4409         if (!other_active_crtc)
4410                 return;
4411
4412         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414 }
4415
4416 static void haswell_crtc_enable(struct drm_crtc *crtc)
4417 {
4418         struct drm_device *dev = crtc->dev;
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421         struct intel_encoder *encoder;
4422         int pipe = intel_crtc->pipe;
4423
4424         WARN_ON(!crtc->enabled);
4425
4426         if (intel_crtc->active)
4427                 return;
4428
4429         if (intel_crtc_to_shared_dpll(intel_crtc))
4430                 intel_enable_shared_dpll(intel_crtc);
4431
4432         if (intel_crtc->config.has_dp_encoder)
4433                 intel_dp_set_m_n(intel_crtc);
4434
4435         intel_set_pipe_timings(intel_crtc);
4436
4437         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4438                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4439                            intel_crtc->config.pixel_multiplier - 1);
4440         }
4441
4442         if (intel_crtc->config.has_pch_encoder) {
4443                 intel_cpu_transcoder_set_m_n(intel_crtc,
4444                                      &intel_crtc->config.fdi_m_n, NULL);
4445         }
4446
4447         haswell_set_pipeconf(crtc);
4448
4449         intel_set_pipe_csc(crtc);
4450
4451         intel_crtc->active = true;
4452
4453         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4454         for_each_encoder_on_crtc(dev, crtc, encoder)
4455                 if (encoder->pre_enable)
4456                         encoder->pre_enable(encoder);
4457
4458         if (intel_crtc->config.has_pch_encoder) {
4459                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460                                                       true);
4461                 dev_priv->display.fdi_link_train(crtc);
4462         }
4463
4464         intel_ddi_enable_pipe_clock(intel_crtc);
4465
4466         if (IS_SKYLAKE(dev))
4467                 skylake_pfit_enable(intel_crtc);
4468         else
4469                 ironlake_pfit_enable(intel_crtc);
4470
4471         /*
4472          * On ILK+ LUT must be loaded before the pipe is running but with
4473          * clocks enabled
4474          */
4475         intel_crtc_load_lut(crtc);
4476
4477         intel_ddi_set_pipe_settings(crtc);
4478         intel_ddi_enable_transcoder_func(crtc);
4479
4480         intel_update_watermarks(crtc);
4481         intel_enable_pipe(intel_crtc);
4482
4483         if (intel_crtc->config.has_pch_encoder)
4484                 lpt_pch_enable(crtc);
4485
4486         if (intel_crtc->config.dp_encoder_is_mst)
4487                 intel_ddi_set_vc_payload_alloc(crtc, true);
4488
4489         for_each_encoder_on_crtc(dev, crtc, encoder) {
4490                 encoder->enable(encoder);
4491                 intel_opregion_notify_encoder(encoder, true);
4492         }
4493
4494         assert_vblank_disabled(crtc);
4495         drm_crtc_vblank_on(crtc);
4496
4497         /* If we change the relative order between pipe/planes enabling, we need
4498          * to change the workaround. */
4499         haswell_mode_set_planes_workaround(intel_crtc);
4500         intel_crtc_enable_planes(crtc);
4501 }
4502
4503 static void skylake_pfit_disable(struct intel_crtc *crtc)
4504 {
4505         struct drm_device *dev = crtc->base.dev;
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         int pipe = crtc->pipe;
4508
4509         /* To avoid upsetting the power well on haswell only disable the pfit if
4510          * it's in use. The hw state code will make sure we get this right. */
4511         if (crtc->config.pch_pfit.enabled) {
4512                 I915_WRITE(PS_CTL(pipe), 0);
4513                 I915_WRITE(PS_WIN_POS(pipe), 0);
4514                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4515         }
4516 }
4517
4518 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519 {
4520         struct drm_device *dev = crtc->base.dev;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522         int pipe = crtc->pipe;
4523
4524         /* To avoid upsetting the power well on haswell only disable the pfit if
4525          * it's in use. The hw state code will make sure we get this right. */
4526         if (crtc->config.pch_pfit.enabled) {
4527                 I915_WRITE(PF_CTL(pipe), 0);
4528                 I915_WRITE(PF_WIN_POS(pipe), 0);
4529                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4530         }
4531 }
4532
4533 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534 {
4535         struct drm_device *dev = crtc->dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538         struct intel_encoder *encoder;
4539         int pipe = intel_crtc->pipe;
4540         u32 reg, temp;
4541
4542         if (!intel_crtc->active)
4543                 return;
4544
4545         intel_crtc_disable_planes(crtc);
4546
4547         drm_crtc_vblank_off(crtc);
4548         assert_vblank_disabled(crtc);
4549
4550         for_each_encoder_on_crtc(dev, crtc, encoder)
4551                 encoder->disable(encoder);
4552
4553         if (intel_crtc->config.has_pch_encoder)
4554                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556         intel_disable_pipe(intel_crtc);
4557
4558         ironlake_pfit_disable(intel_crtc);
4559
4560         for_each_encoder_on_crtc(dev, crtc, encoder)
4561                 if (encoder->post_disable)
4562                         encoder->post_disable(encoder);
4563
4564         if (intel_crtc->config.has_pch_encoder) {
4565                 ironlake_fdi_disable(crtc);
4566
4567                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4568
4569                 if (HAS_PCH_CPT(dev)) {
4570                         /* disable TRANS_DP_CTL */
4571                         reg = TRANS_DP_CTL(pipe);
4572                         temp = I915_READ(reg);
4573                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4574                                   TRANS_DP_PORT_SEL_MASK);
4575                         temp |= TRANS_DP_PORT_SEL_NONE;
4576                         I915_WRITE(reg, temp);
4577
4578                         /* disable DPLL_SEL */
4579                         temp = I915_READ(PCH_DPLL_SEL);
4580                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4581                         I915_WRITE(PCH_DPLL_SEL, temp);
4582                 }
4583
4584                 /* disable PCH DPLL */
4585                 intel_disable_shared_dpll(intel_crtc);
4586
4587                 ironlake_fdi_pll_disable(intel_crtc);
4588         }
4589
4590         intel_crtc->active = false;
4591         intel_update_watermarks(crtc);
4592
4593         mutex_lock(&dev->struct_mutex);
4594         intel_update_fbc(dev);
4595         mutex_unlock(&dev->struct_mutex);
4596 }
4597
4598 static void haswell_crtc_disable(struct drm_crtc *crtc)
4599 {
4600         struct drm_device *dev = crtc->dev;
4601         struct drm_i915_private *dev_priv = dev->dev_private;
4602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603         struct intel_encoder *encoder;
4604         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4605
4606         if (!intel_crtc->active)
4607                 return;
4608
4609         intel_crtc_disable_planes(crtc);
4610
4611         drm_crtc_vblank_off(crtc);
4612         assert_vblank_disabled(crtc);
4613
4614         for_each_encoder_on_crtc(dev, crtc, encoder) {
4615                 intel_opregion_notify_encoder(encoder, false);
4616                 encoder->disable(encoder);
4617         }
4618
4619         if (intel_crtc->config.has_pch_encoder)
4620                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4621                                                       false);
4622         intel_disable_pipe(intel_crtc);
4623
4624         if (intel_crtc->config.dp_encoder_is_mst)
4625                 intel_ddi_set_vc_payload_alloc(crtc, false);
4626
4627         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4628
4629         if (IS_SKYLAKE(dev))
4630                 skylake_pfit_disable(intel_crtc);
4631         else
4632                 ironlake_pfit_disable(intel_crtc);
4633
4634         intel_ddi_disable_pipe_clock(intel_crtc);
4635
4636         if (intel_crtc->config.has_pch_encoder) {
4637                 lpt_disable_pch_transcoder(dev_priv);
4638                 intel_ddi_fdi_disable(crtc);
4639         }
4640
4641         for_each_encoder_on_crtc(dev, crtc, encoder)
4642                 if (encoder->post_disable)
4643                         encoder->post_disable(encoder);
4644
4645         intel_crtc->active = false;
4646         intel_update_watermarks(crtc);
4647
4648         mutex_lock(&dev->struct_mutex);
4649         intel_update_fbc(dev);
4650         mutex_unlock(&dev->struct_mutex);
4651
4652         if (intel_crtc_to_shared_dpll(intel_crtc))
4653                 intel_disable_shared_dpll(intel_crtc);
4654 }
4655
4656 static void ironlake_crtc_off(struct drm_crtc *crtc)
4657 {
4658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4659         intel_put_shared_dpll(intel_crtc);
4660 }
4661
4662
4663 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4664 {
4665         struct drm_device *dev = crtc->base.dev;
4666         struct drm_i915_private *dev_priv = dev->dev_private;
4667         struct intel_crtc_config *pipe_config = &crtc->config;
4668
4669         if (!crtc->config.gmch_pfit.control)
4670                 return;
4671
4672         /*
4673          * The panel fitter should only be adjusted whilst the pipe is disabled,
4674          * according to register description and PRM.
4675          */
4676         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4677         assert_pipe_disabled(dev_priv, crtc->pipe);
4678
4679         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4680         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4681
4682         /* Border color in case we don't scale up to the full screen. Black by
4683          * default, change to something else for debugging. */
4684         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4685 }
4686
4687 static enum intel_display_power_domain port_to_power_domain(enum port port)
4688 {
4689         switch (port) {
4690         case PORT_A:
4691                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4692         case PORT_B:
4693                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4694         case PORT_C:
4695                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4696         case PORT_D:
4697                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4698         default:
4699                 WARN_ON_ONCE(1);
4700                 return POWER_DOMAIN_PORT_OTHER;
4701         }
4702 }
4703
4704 #define for_each_power_domain(domain, mask)                             \
4705         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4706                 if ((1 << (domain)) & (mask))
4707
4708 enum intel_display_power_domain
4709 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4710 {
4711         struct drm_device *dev = intel_encoder->base.dev;
4712         struct intel_digital_port *intel_dig_port;
4713
4714         switch (intel_encoder->type) {
4715         case INTEL_OUTPUT_UNKNOWN:
4716                 /* Only DDI platforms should ever use this output type */
4717                 WARN_ON_ONCE(!HAS_DDI(dev));
4718         case INTEL_OUTPUT_DISPLAYPORT:
4719         case INTEL_OUTPUT_HDMI:
4720         case INTEL_OUTPUT_EDP:
4721                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4722                 return port_to_power_domain(intel_dig_port->port);
4723         case INTEL_OUTPUT_DP_MST:
4724                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4725                 return port_to_power_domain(intel_dig_port->port);
4726         case INTEL_OUTPUT_ANALOG:
4727                 return POWER_DOMAIN_PORT_CRT;
4728         case INTEL_OUTPUT_DSI:
4729                 return POWER_DOMAIN_PORT_DSI;
4730         default:
4731                 return POWER_DOMAIN_PORT_OTHER;
4732         }
4733 }
4734
4735 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4736 {
4737         struct drm_device *dev = crtc->dev;
4738         struct intel_encoder *intel_encoder;
4739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740         enum pipe pipe = intel_crtc->pipe;
4741         unsigned long mask;
4742         enum transcoder transcoder;
4743
4744         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4745
4746         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4747         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4748         if (intel_crtc->config.pch_pfit.enabled ||
4749             intel_crtc->config.pch_pfit.force_thru)
4750                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4751
4752         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4753                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4754
4755         return mask;
4756 }
4757
4758 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4759 {
4760         struct drm_i915_private *dev_priv = dev->dev_private;
4761         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4762         struct intel_crtc *crtc;
4763
4764         /*
4765          * First get all needed power domains, then put all unneeded, to avoid
4766          * any unnecessary toggling of the power wells.
4767          */
4768         for_each_intel_crtc(dev, crtc) {
4769                 enum intel_display_power_domain domain;
4770
4771                 if (!crtc->base.enabled)
4772                         continue;
4773
4774                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4775
4776                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4777                         intel_display_power_get(dev_priv, domain);
4778         }
4779
4780         if (dev_priv->display.modeset_global_resources)
4781                 dev_priv->display.modeset_global_resources(dev);
4782
4783         for_each_intel_crtc(dev, crtc) {
4784                 enum intel_display_power_domain domain;
4785
4786                 for_each_power_domain(domain, crtc->enabled_power_domains)
4787                         intel_display_power_put(dev_priv, domain);
4788
4789                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4790         }
4791
4792         intel_display_set_init_power(dev_priv, false);
4793 }
4794
4795 /* returns HPLL frequency in kHz */
4796 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4797 {
4798         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4799
4800         /* Obtain SKU information */
4801         mutex_lock(&dev_priv->dpio_lock);
4802         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4803                 CCK_FUSE_HPLL_FREQ_MASK;
4804         mutex_unlock(&dev_priv->dpio_lock);
4805
4806         return vco_freq[hpll_freq] * 1000;
4807 }
4808
4809 static void vlv_update_cdclk(struct drm_device *dev)
4810 {
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812
4813         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4814         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4815                          dev_priv->vlv_cdclk_freq);
4816
4817         /*
4818          * Program the gmbus_freq based on the cdclk frequency.
4819          * BSpec erroneously claims we should aim for 4MHz, but
4820          * in fact 1MHz is the correct frequency.
4821          */
4822         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4823 }
4824
4825 /* Adjust CDclk dividers to allow high res or save power if possible */
4826 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4827 {
4828         struct drm_i915_private *dev_priv = dev->dev_private;
4829         u32 val, cmd;
4830
4831         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4832
4833         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4834                 cmd = 2;
4835         else if (cdclk == 266667)
4836                 cmd = 1;
4837         else
4838                 cmd = 0;
4839
4840         mutex_lock(&dev_priv->rps.hw_lock);
4841         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4842         val &= ~DSPFREQGUAR_MASK;
4843         val |= (cmd << DSPFREQGUAR_SHIFT);
4844         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4845         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4846                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4847                      50)) {
4848                 DRM_ERROR("timed out waiting for CDclk change\n");
4849         }
4850         mutex_unlock(&dev_priv->rps.hw_lock);
4851
4852         if (cdclk == 400000) {
4853                 u32 divider;
4854
4855                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4856
4857                 mutex_lock(&dev_priv->dpio_lock);
4858                 /* adjust cdclk divider */
4859                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4860                 val &= ~DISPLAY_FREQUENCY_VALUES;
4861                 val |= divider;
4862                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4863
4864                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4865                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4866                              50))
4867                         DRM_ERROR("timed out waiting for CDclk change\n");
4868                 mutex_unlock(&dev_priv->dpio_lock);
4869         }
4870
4871         mutex_lock(&dev_priv->dpio_lock);
4872         /* adjust self-refresh exit latency value */
4873         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4874         val &= ~0x7f;
4875
4876         /*
4877          * For high bandwidth configs, we set a higher latency in the bunit
4878          * so that the core display fetch happens in time to avoid underruns.
4879          */
4880         if (cdclk == 400000)
4881                 val |= 4500 / 250; /* 4.5 usec */
4882         else
4883                 val |= 3000 / 250; /* 3.0 usec */
4884         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4885         mutex_unlock(&dev_priv->dpio_lock);
4886
4887         vlv_update_cdclk(dev);
4888 }
4889
4890 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4891 {
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893         u32 val, cmd;
4894
4895         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4896
4897         switch (cdclk) {
4898         case 400000:
4899                 cmd = 3;
4900                 break;
4901         case 333333:
4902         case 320000:
4903                 cmd = 2;
4904                 break;
4905         case 266667:
4906                 cmd = 1;
4907                 break;
4908         case 200000:
4909                 cmd = 0;
4910                 break;
4911         default:
4912                 WARN_ON(1);
4913                 return;
4914         }
4915
4916         mutex_lock(&dev_priv->rps.hw_lock);
4917         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4918         val &= ~DSPFREQGUAR_MASK_CHV;
4919         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4920         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4921         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4922                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4923                      50)) {
4924                 DRM_ERROR("timed out waiting for CDclk change\n");
4925         }
4926         mutex_unlock(&dev_priv->rps.hw_lock);
4927
4928         vlv_update_cdclk(dev);
4929 }
4930
4931 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4932                                  int max_pixclk)
4933 {
4934         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4935
4936         /* FIXME: Punit isn't quite ready yet */
4937         if (IS_CHERRYVIEW(dev_priv->dev))
4938                 return 400000;
4939
4940         /*
4941          * Really only a few cases to deal with, as only 4 CDclks are supported:
4942          *   200MHz
4943          *   267MHz
4944          *   320/333MHz (depends on HPLL freq)
4945          *   400MHz
4946          * So we check to see whether we're above 90% of the lower bin and
4947          * adjust if needed.
4948          *
4949          * We seem to get an unstable or solid color picture at 200MHz.
4950          * Not sure what's wrong. For now use 200MHz only when all pipes
4951          * are off.
4952          */
4953         if (max_pixclk > freq_320*9/10)
4954                 return 400000;
4955         else if (max_pixclk > 266667*9/10)
4956                 return freq_320;
4957         else if (max_pixclk > 0)
4958                 return 266667;
4959         else
4960                 return 200000;
4961 }
4962
4963 /* compute the max pixel clock for new configuration */
4964 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4965 {
4966         struct drm_device *dev = dev_priv->dev;
4967         struct intel_crtc *intel_crtc;
4968         int max_pixclk = 0;
4969
4970         for_each_intel_crtc(dev, intel_crtc) {
4971                 if (intel_crtc->new_enabled)
4972                         max_pixclk = max(max_pixclk,
4973                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4974         }
4975
4976         return max_pixclk;
4977 }
4978
4979 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4980                                             unsigned *prepare_pipes)
4981 {
4982         struct drm_i915_private *dev_priv = dev->dev_private;
4983         struct intel_crtc *intel_crtc;
4984         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4985
4986         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4987             dev_priv->vlv_cdclk_freq)
4988                 return;
4989
4990         /* disable/enable all currently active pipes while we change cdclk */
4991         for_each_intel_crtc(dev, intel_crtc)
4992                 if (intel_crtc->base.enabled)
4993                         *prepare_pipes |= (1 << intel_crtc->pipe);
4994 }
4995
4996 static void valleyview_modeset_global_resources(struct drm_device *dev)
4997 {
4998         struct drm_i915_private *dev_priv = dev->dev_private;
4999         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5000         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5001
5002         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5003                 /*
5004                  * FIXME: We can end up here with all power domains off, yet
5005                  * with a CDCLK frequency other than the minimum. To account
5006                  * for this take the PIPE-A power domain, which covers the HW
5007                  * blocks needed for the following programming. This can be
5008                  * removed once it's guaranteed that we get here either with
5009                  * the minimum CDCLK set, or the required power domains
5010                  * enabled.
5011                  */
5012                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5013
5014                 if (IS_CHERRYVIEW(dev))
5015                         cherryview_set_cdclk(dev, req_cdclk);
5016                 else
5017                         valleyview_set_cdclk(dev, req_cdclk);
5018
5019                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5020         }
5021 }
5022
5023 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5024 {
5025         struct drm_device *dev = crtc->dev;
5026         struct drm_i915_private *dev_priv = to_i915(dev);
5027         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5028         struct intel_encoder *encoder;
5029         int pipe = intel_crtc->pipe;
5030         bool is_dsi;
5031
5032         WARN_ON(!crtc->enabled);
5033
5034         if (intel_crtc->active)
5035                 return;
5036
5037         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5038
5039         if (!is_dsi) {
5040                 if (IS_CHERRYVIEW(dev))
5041                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
5042                 else
5043                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
5044         }
5045
5046         if (intel_crtc->config.has_dp_encoder)
5047                 intel_dp_set_m_n(intel_crtc);
5048
5049         intel_set_pipe_timings(intel_crtc);
5050
5051         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5052                 struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5055                 I915_WRITE(CHV_CANVAS(pipe), 0);
5056         }
5057
5058         i9xx_set_pipeconf(intel_crtc);
5059
5060         intel_crtc->active = true;
5061
5062         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5063
5064         for_each_encoder_on_crtc(dev, crtc, encoder)
5065                 if (encoder->pre_pll_enable)
5066                         encoder->pre_pll_enable(encoder);
5067
5068         if (!is_dsi) {
5069                 if (IS_CHERRYVIEW(dev))
5070                         chv_enable_pll(intel_crtc, &intel_crtc->config);
5071                 else
5072                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
5073         }
5074
5075         for_each_encoder_on_crtc(dev, crtc, encoder)
5076                 if (encoder->pre_enable)
5077                         encoder->pre_enable(encoder);
5078
5079         i9xx_pfit_enable(intel_crtc);
5080
5081         intel_crtc_load_lut(crtc);
5082
5083         intel_update_watermarks(crtc);
5084         intel_enable_pipe(intel_crtc);
5085
5086         for_each_encoder_on_crtc(dev, crtc, encoder)
5087                 encoder->enable(encoder);
5088
5089         assert_vblank_disabled(crtc);
5090         drm_crtc_vblank_on(crtc);
5091
5092         intel_crtc_enable_planes(crtc);
5093
5094         /* Underruns don't raise interrupts, so check manually. */
5095         i9xx_check_fifo_underruns(dev_priv);
5096 }
5097
5098 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5099 {
5100         struct drm_device *dev = crtc->base.dev;
5101         struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5104         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5105 }
5106
5107 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5108 {
5109         struct drm_device *dev = crtc->dev;
5110         struct drm_i915_private *dev_priv = to_i915(dev);
5111         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5112         struct intel_encoder *encoder;
5113         int pipe = intel_crtc->pipe;
5114
5115         WARN_ON(!crtc->enabled);
5116
5117         if (intel_crtc->active)
5118                 return;
5119
5120         i9xx_set_pll_dividers(intel_crtc);
5121
5122         if (intel_crtc->config.has_dp_encoder)
5123                 intel_dp_set_m_n(intel_crtc);
5124
5125         intel_set_pipe_timings(intel_crtc);
5126
5127         i9xx_set_pipeconf(intel_crtc);
5128
5129         intel_crtc->active = true;
5130
5131         if (!IS_GEN2(dev))
5132                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5133
5134         for_each_encoder_on_crtc(dev, crtc, encoder)
5135                 if (encoder->pre_enable)
5136                         encoder->pre_enable(encoder);
5137
5138         i9xx_enable_pll(intel_crtc);
5139
5140         i9xx_pfit_enable(intel_crtc);
5141
5142         intel_crtc_load_lut(crtc);
5143
5144         intel_update_watermarks(crtc);
5145         intel_enable_pipe(intel_crtc);
5146
5147         for_each_encoder_on_crtc(dev, crtc, encoder)
5148                 encoder->enable(encoder);
5149
5150         assert_vblank_disabled(crtc);
5151         drm_crtc_vblank_on(crtc);
5152
5153         intel_crtc_enable_planes(crtc);
5154
5155         /*
5156          * Gen2 reports pipe underruns whenever all planes are disabled.
5157          * So don't enable underrun reporting before at least some planes
5158          * are enabled.
5159          * FIXME: Need to fix the logic to work when we turn off all planes
5160          * but leave the pipe running.
5161          */
5162         if (IS_GEN2(dev))
5163                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5164
5165         /* Underruns don't raise interrupts, so check manually. */
5166         i9xx_check_fifo_underruns(dev_priv);
5167 }
5168
5169 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5170 {
5171         struct drm_device *dev = crtc->base.dev;
5172         struct drm_i915_private *dev_priv = dev->dev_private;
5173
5174         if (!crtc->config.gmch_pfit.control)
5175                 return;
5176
5177         assert_pipe_disabled(dev_priv, crtc->pipe);
5178
5179         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5180                          I915_READ(PFIT_CONTROL));
5181         I915_WRITE(PFIT_CONTROL, 0);
5182 }
5183
5184 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5185 {
5186         struct drm_device *dev = crtc->dev;
5187         struct drm_i915_private *dev_priv = dev->dev_private;
5188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5189         struct intel_encoder *encoder;
5190         int pipe = intel_crtc->pipe;
5191
5192         if (!intel_crtc->active)
5193                 return;
5194
5195         /*
5196          * Gen2 reports pipe underruns whenever all planes are disabled.
5197          * So diasble underrun reporting before all the planes get disabled.
5198          * FIXME: Need to fix the logic to work when we turn off all planes
5199          * but leave the pipe running.
5200          */
5201         if (IS_GEN2(dev))
5202                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5203
5204         /*
5205          * Vblank time updates from the shadow to live plane control register
5206          * are blocked if the memory self-refresh mode is active at that
5207          * moment. So to make sure the plane gets truly disabled, disable
5208          * first the self-refresh mode. The self-refresh enable bit in turn
5209          * will be checked/applied by the HW only at the next frame start
5210          * event which is after the vblank start event, so we need to have a
5211          * wait-for-vblank between disabling the plane and the pipe.
5212          */
5213         intel_set_memory_cxsr(dev_priv, false);
5214         intel_crtc_disable_planes(crtc);
5215
5216         /*
5217          * On gen2 planes are double buffered but the pipe isn't, so we must
5218          * wait for planes to fully turn off before disabling the pipe.
5219          * We also need to wait on all gmch platforms because of the
5220          * self-refresh mode constraint explained above.
5221          */
5222         intel_wait_for_vblank(dev, pipe);
5223
5224         drm_crtc_vblank_off(crtc);
5225         assert_vblank_disabled(crtc);
5226
5227         for_each_encoder_on_crtc(dev, crtc, encoder)
5228                 encoder->disable(encoder);
5229
5230         intel_disable_pipe(intel_crtc);
5231
5232         i9xx_pfit_disable(intel_crtc);
5233
5234         for_each_encoder_on_crtc(dev, crtc, encoder)
5235                 if (encoder->post_disable)
5236                         encoder->post_disable(encoder);
5237
5238         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5239                 if (IS_CHERRYVIEW(dev))
5240                         chv_disable_pll(dev_priv, pipe);
5241                 else if (IS_VALLEYVIEW(dev))
5242                         vlv_disable_pll(dev_priv, pipe);
5243                 else
5244                         i9xx_disable_pll(intel_crtc);
5245         }
5246
5247         if (!IS_GEN2(dev))
5248                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5249
5250         intel_crtc->active = false;
5251         intel_update_watermarks(crtc);
5252
5253         mutex_lock(&dev->struct_mutex);
5254         intel_update_fbc(dev);
5255         mutex_unlock(&dev->struct_mutex);
5256 }
5257
5258 static void i9xx_crtc_off(struct drm_crtc *crtc)
5259 {
5260 }
5261
5262 /* Master function to enable/disable CRTC and corresponding power wells */
5263 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5264 {
5265         struct drm_device *dev = crtc->dev;
5266         struct drm_i915_private *dev_priv = dev->dev_private;
5267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5268         enum intel_display_power_domain domain;
5269         unsigned long domains;
5270
5271         if (enable) {
5272                 if (!intel_crtc->active) {
5273                         domains = get_crtc_power_domains(crtc);
5274                         for_each_power_domain(domain, domains)
5275                                 intel_display_power_get(dev_priv, domain);
5276                         intel_crtc->enabled_power_domains = domains;
5277
5278                         dev_priv->display.crtc_enable(crtc);
5279                 }
5280         } else {
5281                 if (intel_crtc->active) {
5282                         dev_priv->display.crtc_disable(crtc);
5283
5284                         domains = intel_crtc->enabled_power_domains;
5285                         for_each_power_domain(domain, domains)
5286                                 intel_display_power_put(dev_priv, domain);
5287                         intel_crtc->enabled_power_domains = 0;
5288                 }
5289         }
5290 }
5291
5292 /**
5293  * Sets the power management mode of the pipe and plane.
5294  */
5295 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5296 {
5297         struct drm_device *dev = crtc->dev;
5298         struct intel_encoder *intel_encoder;
5299         bool enable = false;
5300
5301         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5302                 enable |= intel_encoder->connectors_active;
5303
5304         intel_crtc_control(crtc, enable);
5305 }
5306
5307 static void intel_crtc_disable(struct drm_crtc *crtc)
5308 {
5309         struct drm_device *dev = crtc->dev;
5310         struct drm_connector *connector;
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5313         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5314
5315         /* crtc should still be enabled when we disable it. */
5316         WARN_ON(!crtc->enabled);
5317
5318         dev_priv->display.crtc_disable(crtc);
5319         dev_priv->display.off(crtc);
5320
5321         if (crtc->primary->fb) {
5322                 mutex_lock(&dev->struct_mutex);
5323                 intel_unpin_fb_obj(old_obj);
5324                 i915_gem_track_fb(old_obj, NULL,
5325                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5326                 mutex_unlock(&dev->struct_mutex);
5327                 crtc->primary->fb = NULL;
5328         }
5329
5330         /* Update computed state. */
5331         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5332                 if (!connector->encoder || !connector->encoder->crtc)
5333                         continue;
5334
5335                 if (connector->encoder->crtc != crtc)
5336                         continue;
5337
5338                 connector->dpms = DRM_MODE_DPMS_OFF;
5339                 to_intel_encoder(connector->encoder)->connectors_active = false;
5340         }
5341 }
5342
5343 void intel_encoder_destroy(struct drm_encoder *encoder)
5344 {
5345         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5346
5347         drm_encoder_cleanup(encoder);
5348         kfree(intel_encoder);
5349 }
5350
5351 /* Simple dpms helper for encoders with just one connector, no cloning and only
5352  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5353  * state of the entire output pipe. */
5354 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5355 {
5356         if (mode == DRM_MODE_DPMS_ON) {
5357                 encoder->connectors_active = true;
5358
5359                 intel_crtc_update_dpms(encoder->base.crtc);
5360         } else {
5361                 encoder->connectors_active = false;
5362
5363                 intel_crtc_update_dpms(encoder->base.crtc);
5364         }
5365 }
5366
5367 /* Cross check the actual hw state with our own modeset state tracking (and it's
5368  * internal consistency). */
5369 static void intel_connector_check_state(struct intel_connector *connector)
5370 {
5371         if (connector->get_hw_state(connector)) {
5372                 struct intel_encoder *encoder = connector->encoder;
5373                 struct drm_crtc *crtc;
5374                 bool encoder_enabled;
5375                 enum pipe pipe;
5376
5377                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5378                               connector->base.base.id,
5379                               connector->base.name);
5380
5381                 /* there is no real hw state for MST connectors */
5382                 if (connector->mst_port)
5383                         return;
5384
5385                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5386                      "wrong connector dpms state\n");
5387                 WARN(connector->base.encoder != &encoder->base,
5388                      "active connector not linked to encoder\n");
5389
5390                 if (encoder) {
5391                         WARN(!encoder->connectors_active,
5392                              "encoder->connectors_active not set\n");
5393
5394                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5395                         WARN(!encoder_enabled, "encoder not enabled\n");
5396                         if (WARN_ON(!encoder->base.crtc))
5397                                 return;
5398
5399                         crtc = encoder->base.crtc;
5400
5401                         WARN(!crtc->enabled, "crtc not enabled\n");
5402                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5403                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5404                              "encoder active on the wrong pipe\n");
5405                 }
5406         }
5407 }
5408
5409 /* Even simpler default implementation, if there's really no special case to
5410  * consider. */
5411 void intel_connector_dpms(struct drm_connector *connector, int mode)
5412 {
5413         /* All the simple cases only support two dpms states. */
5414         if (mode != DRM_MODE_DPMS_ON)
5415                 mode = DRM_MODE_DPMS_OFF;
5416
5417         if (mode == connector->dpms)
5418                 return;
5419
5420         connector->dpms = mode;
5421
5422         /* Only need to change hw state when actually enabled */
5423         if (connector->encoder)
5424                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5425
5426         intel_modeset_check_state(connector->dev);
5427 }
5428
5429 /* Simple connector->get_hw_state implementation for encoders that support only
5430  * one connector and no cloning and hence the encoder state determines the state
5431  * of the connector. */
5432 bool intel_connector_get_hw_state(struct intel_connector *connector)
5433 {
5434         enum pipe pipe = 0;
5435         struct intel_encoder *encoder = connector->encoder;
5436
5437         return encoder->get_hw_state(encoder, &pipe);
5438 }
5439
5440 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5441                                      struct intel_crtc_config *pipe_config)
5442 {
5443         struct drm_i915_private *dev_priv = dev->dev_private;
5444         struct intel_crtc *pipe_B_crtc =
5445                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5446
5447         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5448                       pipe_name(pipe), pipe_config->fdi_lanes);
5449         if (pipe_config->fdi_lanes > 4) {
5450                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5451                               pipe_name(pipe), pipe_config->fdi_lanes);
5452                 return false;
5453         }
5454
5455         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5456                 if (pipe_config->fdi_lanes > 2) {
5457                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5458                                       pipe_config->fdi_lanes);
5459                         return false;
5460                 } else {
5461                         return true;
5462                 }
5463         }
5464
5465         if (INTEL_INFO(dev)->num_pipes == 2)
5466                 return true;
5467
5468         /* Ivybridge 3 pipe is really complicated */
5469         switch (pipe) {
5470         case PIPE_A:
5471                 return true;
5472         case PIPE_B:
5473                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5474                     pipe_config->fdi_lanes > 2) {
5475                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5476                                       pipe_name(pipe), pipe_config->fdi_lanes);
5477                         return false;
5478                 }
5479                 return true;
5480         case PIPE_C:
5481                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5482                     pipe_B_crtc->config.fdi_lanes <= 2) {
5483                         if (pipe_config->fdi_lanes > 2) {
5484                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5485                                               pipe_name(pipe), pipe_config->fdi_lanes);
5486                                 return false;
5487                         }
5488                 } else {
5489                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5490                         return false;
5491                 }
5492                 return true;
5493         default:
5494                 BUG();
5495         }
5496 }
5497
5498 #define RETRY 1
5499 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5500                                        struct intel_crtc_config *pipe_config)
5501 {
5502         struct drm_device *dev = intel_crtc->base.dev;
5503         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5504         int lane, link_bw, fdi_dotclock;
5505         bool setup_ok, needs_recompute = false;
5506
5507 retry:
5508         /* FDI is a binary signal running at ~2.7GHz, encoding
5509          * each output octet as 10 bits. The actual frequency
5510          * is stored as a divider into a 100MHz clock, and the
5511          * mode pixel clock is stored in units of 1KHz.
5512          * Hence the bw of each lane in terms of the mode signal
5513          * is:
5514          */
5515         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5516
5517         fdi_dotclock = adjusted_mode->crtc_clock;
5518
5519         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5520                                            pipe_config->pipe_bpp);
5521
5522         pipe_config->fdi_lanes = lane;
5523
5524         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5525                                link_bw, &pipe_config->fdi_m_n);
5526
5527         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5528                                             intel_crtc->pipe, pipe_config);
5529         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5530                 pipe_config->pipe_bpp -= 2*3;
5531                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5532                               pipe_config->pipe_bpp);
5533                 needs_recompute = true;
5534                 pipe_config->bw_constrained = true;
5535
5536                 goto retry;
5537         }
5538
5539         if (needs_recompute)
5540                 return RETRY;
5541
5542         return setup_ok ? 0 : -EINVAL;
5543 }
5544
5545 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5546                                    struct intel_crtc_config *pipe_config)
5547 {
5548         pipe_config->ips_enabled = i915.enable_ips &&
5549                                    hsw_crtc_supports_ips(crtc) &&
5550                                    pipe_config->pipe_bpp <= 24;
5551 }
5552
5553 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5554                                      struct intel_crtc_config *pipe_config)
5555 {
5556         struct drm_device *dev = crtc->base.dev;
5557         struct drm_i915_private *dev_priv = dev->dev_private;
5558         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5559
5560         /* FIXME should check pixel clock limits on all platforms */
5561         if (INTEL_INFO(dev)->gen < 4) {
5562                 int clock_limit =
5563                         dev_priv->display.get_display_clock_speed(dev);
5564
5565                 /*
5566                  * Enable pixel doubling when the dot clock
5567                  * is > 90% of the (display) core speed.
5568                  *
5569                  * GDG double wide on either pipe,
5570                  * otherwise pipe A only.
5571                  */
5572                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5573                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5574                         clock_limit *= 2;
5575                         pipe_config->double_wide = true;
5576                 }
5577
5578                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5579                         return -EINVAL;
5580         }
5581
5582         /*
5583          * Pipe horizontal size must be even in:
5584          * - DVO ganged mode
5585          * - LVDS dual channel mode
5586          * - Double wide pipe
5587          */
5588         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5589              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5590                 pipe_config->pipe_src_w &= ~1;
5591
5592         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5593          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5594          */
5595         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5596                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5597                 return -EINVAL;
5598
5599         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5600                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5601         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5602                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5603                  * for lvds. */
5604                 pipe_config->pipe_bpp = 8*3;
5605         }
5606
5607         if (HAS_IPS(dev))
5608                 hsw_compute_ips_config(crtc, pipe_config);
5609
5610         if (pipe_config->has_pch_encoder)
5611                 return ironlake_fdi_compute_config(crtc, pipe_config);
5612
5613         return 0;
5614 }
5615
5616 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5617 {
5618         struct drm_i915_private *dev_priv = dev->dev_private;
5619         u32 val;
5620         int divider;
5621
5622         /* FIXME: Punit isn't quite ready yet */
5623         if (IS_CHERRYVIEW(dev))
5624                 return 400000;
5625
5626         if (dev_priv->hpll_freq == 0)
5627                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5628
5629         mutex_lock(&dev_priv->dpio_lock);
5630         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5631         mutex_unlock(&dev_priv->dpio_lock);
5632
5633         divider = val & DISPLAY_FREQUENCY_VALUES;
5634
5635         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5636              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5637              "cdclk change in progress\n");
5638
5639         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5640 }
5641
5642 static int i945_get_display_clock_speed(struct drm_device *dev)
5643 {
5644         return 400000;
5645 }
5646
5647 static int i915_get_display_clock_speed(struct drm_device *dev)
5648 {
5649         return 333000;
5650 }
5651
5652 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5653 {
5654         return 200000;
5655 }
5656
5657 static int pnv_get_display_clock_speed(struct drm_device *dev)
5658 {
5659         u16 gcfgc = 0;
5660
5661         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5662
5663         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5664         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5665                 return 267000;
5666         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5667                 return 333000;
5668         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5669                 return 444000;
5670         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5671                 return 200000;
5672         default:
5673                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5674         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5675                 return 133000;
5676         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5677                 return 167000;
5678         }
5679 }
5680
5681 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5682 {
5683         u16 gcfgc = 0;
5684
5685         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5686
5687         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5688                 return 133000;
5689         else {
5690                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5691                 case GC_DISPLAY_CLOCK_333_MHZ:
5692                         return 333000;
5693                 default:
5694                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5695                         return 190000;
5696                 }
5697         }
5698 }
5699
5700 static int i865_get_display_clock_speed(struct drm_device *dev)
5701 {
5702         return 266000;
5703 }
5704
5705 static int i855_get_display_clock_speed(struct drm_device *dev)
5706 {
5707         u16 hpllcc = 0;
5708         /* Assume that the hardware is in the high speed state.  This
5709          * should be the default.
5710          */
5711         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5712         case GC_CLOCK_133_200:
5713         case GC_CLOCK_100_200:
5714                 return 200000;
5715         case GC_CLOCK_166_250:
5716                 return 250000;
5717         case GC_CLOCK_100_133:
5718                 return 133000;
5719         }
5720
5721         /* Shouldn't happen */
5722         return 0;
5723 }
5724
5725 static int i830_get_display_clock_speed(struct drm_device *dev)
5726 {
5727         return 133000;
5728 }
5729
5730 static void
5731 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5732 {
5733         while (*num > DATA_LINK_M_N_MASK ||
5734                *den > DATA_LINK_M_N_MASK) {
5735                 *num >>= 1;
5736                 *den >>= 1;
5737         }
5738 }
5739
5740 static void compute_m_n(unsigned int m, unsigned int n,
5741                         uint32_t *ret_m, uint32_t *ret_n)
5742 {
5743         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5744         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5745         intel_reduce_m_n_ratio(ret_m, ret_n);
5746 }
5747
5748 void
5749 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5750                        int pixel_clock, int link_clock,
5751                        struct intel_link_m_n *m_n)
5752 {
5753         m_n->tu = 64;
5754
5755         compute_m_n(bits_per_pixel * pixel_clock,
5756                     link_clock * nlanes * 8,
5757                     &m_n->gmch_m, &m_n->gmch_n);
5758
5759         compute_m_n(pixel_clock, link_clock,
5760                     &m_n->link_m, &m_n->link_n);
5761 }
5762
5763 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5764 {
5765         if (i915.panel_use_ssc >= 0)
5766                 return i915.panel_use_ssc != 0;
5767         return dev_priv->vbt.lvds_use_ssc
5768                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5769 }
5770
5771 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5772 {
5773         struct drm_device *dev = crtc->base.dev;
5774         struct drm_i915_private *dev_priv = dev->dev_private;
5775         int refclk;
5776
5777         if (IS_VALLEYVIEW(dev)) {
5778                 refclk = 100000;
5779         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5780             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5781                 refclk = dev_priv->vbt.lvds_ssc_freq;
5782                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5783         } else if (!IS_GEN2(dev)) {
5784                 refclk = 96000;
5785         } else {
5786                 refclk = 48000;
5787         }
5788
5789         return refclk;
5790 }
5791
5792 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5793 {
5794         return (1 << dpll->n) << 16 | dpll->m2;
5795 }
5796
5797 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5798 {
5799         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5800 }
5801
5802 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5803                                      intel_clock_t *reduced_clock)
5804 {
5805         struct drm_device *dev = crtc->base.dev;
5806         u32 fp, fp2 = 0;
5807
5808         if (IS_PINEVIEW(dev)) {
5809                 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5810                 if (reduced_clock)
5811                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5812         } else {
5813                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5814                 if (reduced_clock)
5815                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5816         }
5817
5818         crtc->new_config->dpll_hw_state.fp0 = fp;
5819
5820         crtc->lowfreq_avail = false;
5821         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5822             reduced_clock && i915.powersave) {
5823                 crtc->new_config->dpll_hw_state.fp1 = fp2;
5824                 crtc->lowfreq_avail = true;
5825         } else {
5826                 crtc->new_config->dpll_hw_state.fp1 = fp;
5827         }
5828 }
5829
5830 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5831                 pipe)
5832 {
5833         u32 reg_val;
5834
5835         /*
5836          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5837          * and set it to a reasonable value instead.
5838          */
5839         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5840         reg_val &= 0xffffff00;
5841         reg_val |= 0x00000030;
5842         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5843
5844         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5845         reg_val &= 0x8cffffff;
5846         reg_val = 0x8c000000;
5847         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5848
5849         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5850         reg_val &= 0xffffff00;
5851         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5852
5853         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5854         reg_val &= 0x00ffffff;
5855         reg_val |= 0xb0000000;
5856         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5857 }
5858
5859 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5860                                          struct intel_link_m_n *m_n)
5861 {
5862         struct drm_device *dev = crtc->base.dev;
5863         struct drm_i915_private *dev_priv = dev->dev_private;
5864         int pipe = crtc->pipe;
5865
5866         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5867         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5868         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5869         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5870 }
5871
5872 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5873                                          struct intel_link_m_n *m_n,
5874                                          struct intel_link_m_n *m2_n2)
5875 {
5876         struct drm_device *dev = crtc->base.dev;
5877         struct drm_i915_private *dev_priv = dev->dev_private;
5878         int pipe = crtc->pipe;
5879         enum transcoder transcoder = crtc->config.cpu_transcoder;
5880
5881         if (INTEL_INFO(dev)->gen >= 5) {
5882                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5883                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5884                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5885                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5886                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5887                  * for gen < 8) and if DRRS is supported (to make sure the
5888                  * registers are not unnecessarily accessed).
5889                  */
5890                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5891                         crtc->config.has_drrs) {
5892                         I915_WRITE(PIPE_DATA_M2(transcoder),
5893                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5894                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5895                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5896                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5897                 }
5898         } else {
5899                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5900                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5901                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5902                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5903         }
5904 }
5905
5906 void intel_dp_set_m_n(struct intel_crtc *crtc)
5907 {
5908         if (crtc->config.has_pch_encoder)
5909                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5910         else
5911                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5912                                                    &crtc->config.dp_m2_n2);
5913 }
5914
5915 static void vlv_update_pll(struct intel_crtc *crtc,
5916                            struct intel_crtc_config *pipe_config)
5917 {
5918         u32 dpll, dpll_md;
5919
5920         /*
5921          * Enable DPIO clock input. We should never disable the reference
5922          * clock for pipe B, since VGA hotplug / manual detection depends
5923          * on it.
5924          */
5925         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5926                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5927         /* We should never disable this, set it here for state tracking */
5928         if (crtc->pipe == PIPE_B)
5929                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5930         dpll |= DPLL_VCO_ENABLE;
5931         pipe_config->dpll_hw_state.dpll = dpll;
5932
5933         dpll_md = (pipe_config->pixel_multiplier - 1)
5934                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5935         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5936 }
5937
5938 static void vlv_prepare_pll(struct intel_crtc *crtc,
5939                             const struct intel_crtc_config *pipe_config)
5940 {
5941         struct drm_device *dev = crtc->base.dev;
5942         struct drm_i915_private *dev_priv = dev->dev_private;
5943         int pipe = crtc->pipe;
5944         u32 mdiv;
5945         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5946         u32 coreclk, reg_val;
5947
5948         mutex_lock(&dev_priv->dpio_lock);
5949
5950         bestn = pipe_config->dpll.n;
5951         bestm1 = pipe_config->dpll.m1;
5952         bestm2 = pipe_config->dpll.m2;
5953         bestp1 = pipe_config->dpll.p1;
5954         bestp2 = pipe_config->dpll.p2;
5955
5956         /* See eDP HDMI DPIO driver vbios notes doc */
5957
5958         /* PLL B needs special handling */
5959         if (pipe == PIPE_B)
5960                 vlv_pllb_recal_opamp(dev_priv, pipe);
5961
5962         /* Set up Tx target for periodic Rcomp update */
5963         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5964
5965         /* Disable target IRef on PLL */
5966         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5967         reg_val &= 0x00ffffff;
5968         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5969
5970         /* Disable fast lock */
5971         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5972
5973         /* Set idtafcrecal before PLL is enabled */
5974         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5975         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5976         mdiv |= ((bestn << DPIO_N_SHIFT));
5977         mdiv |= (1 << DPIO_K_SHIFT);
5978
5979         /*
5980          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5981          * but we don't support that).
5982          * Note: don't use the DAC post divider as it seems unstable.
5983          */
5984         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5985         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5986
5987         mdiv |= DPIO_ENABLE_CALIBRATION;
5988         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5989
5990         /* Set HBR and RBR LPF coefficients */
5991         if (pipe_config->port_clock == 162000 ||
5992             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5993             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5994                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5995                                  0x009f0003);
5996         else
5997                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5998                                  0x00d0000f);
5999
6000         if (crtc->config.has_dp_encoder) {
6001                 /* Use SSC source */
6002                 if (pipe == PIPE_A)
6003                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6004                                          0x0df40000);
6005                 else
6006                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6007                                          0x0df70000);
6008         } else { /* HDMI or VGA */
6009                 /* Use bend source */
6010                 if (pipe == PIPE_A)
6011                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6012                                          0x0df70000);
6013                 else
6014                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6015                                          0x0df40000);
6016         }
6017
6018         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6019         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6020         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6021             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6022                 coreclk |= 0x01000000;
6023         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6024
6025         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6026         mutex_unlock(&dev_priv->dpio_lock);
6027 }
6028
6029 static void chv_update_pll(struct intel_crtc *crtc,
6030                            struct intel_crtc_config *pipe_config)
6031 {
6032         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6033                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6034                 DPLL_VCO_ENABLE;
6035         if (crtc->pipe != PIPE_A)
6036                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6037
6038         pipe_config->dpll_hw_state.dpll_md =
6039                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6040 }
6041
6042 static void chv_prepare_pll(struct intel_crtc *crtc,
6043                             const struct intel_crtc_config *pipe_config)
6044 {
6045         struct drm_device *dev = crtc->base.dev;
6046         struct drm_i915_private *dev_priv = dev->dev_private;
6047         int pipe = crtc->pipe;
6048         int dpll_reg = DPLL(crtc->pipe);
6049         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6050         u32 loopfilter, intcoeff;
6051         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6052         int refclk;
6053
6054         bestn = pipe_config->dpll.n;
6055         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6056         bestm1 = pipe_config->dpll.m1;
6057         bestm2 = pipe_config->dpll.m2 >> 22;
6058         bestp1 = pipe_config->dpll.p1;
6059         bestp2 = pipe_config->dpll.p2;
6060
6061         /*
6062          * Enable Refclk and SSC
6063          */
6064         I915_WRITE(dpll_reg,
6065                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6066
6067         mutex_lock(&dev_priv->dpio_lock);
6068
6069         /* p1 and p2 divider */
6070         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6071                         5 << DPIO_CHV_S1_DIV_SHIFT |
6072                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6073                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6074                         1 << DPIO_CHV_K_DIV_SHIFT);
6075
6076         /* Feedback post-divider - m2 */
6077         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6078
6079         /* Feedback refclk divider - n and m1 */
6080         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6081                         DPIO_CHV_M1_DIV_BY_2 |
6082                         1 << DPIO_CHV_N_DIV_SHIFT);
6083
6084         /* M2 fraction division */
6085         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6086
6087         /* M2 fraction division enable */
6088         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6089                        DPIO_CHV_FRAC_DIV_EN |
6090                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6091
6092         /* Loop filter */
6093         refclk = i9xx_get_refclk(crtc, 0);
6094         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6095                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6096         if (refclk == 100000)
6097                 intcoeff = 11;
6098         else if (refclk == 38400)
6099                 intcoeff = 10;
6100         else
6101                 intcoeff = 9;
6102         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6103         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6104
6105         /* AFC Recal */
6106         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6107                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6108                         DPIO_AFC_RECAL);
6109
6110         mutex_unlock(&dev_priv->dpio_lock);
6111 }
6112
6113 /**
6114  * vlv_force_pll_on - forcibly enable just the PLL
6115  * @dev_priv: i915 private structure
6116  * @pipe: pipe PLL to enable
6117  * @dpll: PLL configuration
6118  *
6119  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6120  * in cases where we need the PLL enabled even when @pipe is not going to
6121  * be enabled.
6122  */
6123 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6124                       const struct dpll *dpll)
6125 {
6126         struct intel_crtc *crtc =
6127                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6128         struct intel_crtc_config pipe_config = {
6129                 .pixel_multiplier = 1,
6130                 .dpll = *dpll,
6131         };
6132
6133         if (IS_CHERRYVIEW(dev)) {
6134                 chv_update_pll(crtc, &pipe_config);
6135                 chv_prepare_pll(crtc, &pipe_config);
6136                 chv_enable_pll(crtc, &pipe_config);
6137         } else {
6138                 vlv_update_pll(crtc, &pipe_config);
6139                 vlv_prepare_pll(crtc, &pipe_config);
6140                 vlv_enable_pll(crtc, &pipe_config);
6141         }
6142 }
6143
6144 /**
6145  * vlv_force_pll_off - forcibly disable just the PLL
6146  * @dev_priv: i915 private structure
6147  * @pipe: pipe PLL to disable
6148  *
6149  * Disable the PLL for @pipe. To be used in cases where we need
6150  * the PLL enabled even when @pipe is not going to be enabled.
6151  */
6152 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6153 {
6154         if (IS_CHERRYVIEW(dev))
6155                 chv_disable_pll(to_i915(dev), pipe);
6156         else
6157                 vlv_disable_pll(to_i915(dev), pipe);
6158 }
6159
6160 static void i9xx_update_pll(struct intel_crtc *crtc,
6161                             intel_clock_t *reduced_clock,
6162                             int num_connectors)
6163 {
6164         struct drm_device *dev = crtc->base.dev;
6165         struct drm_i915_private *dev_priv = dev->dev_private;
6166         u32 dpll;
6167         bool is_sdvo;
6168         struct dpll *clock = &crtc->new_config->dpll;
6169
6170         i9xx_update_pll_dividers(crtc, reduced_clock);
6171
6172         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6173                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6174
6175         dpll = DPLL_VGA_MODE_DIS;
6176
6177         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6178                 dpll |= DPLLB_MODE_LVDS;
6179         else
6180                 dpll |= DPLLB_MODE_DAC_SERIAL;
6181
6182         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6183                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6184                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6185         }
6186
6187         if (is_sdvo)
6188                 dpll |= DPLL_SDVO_HIGH_SPEED;
6189
6190         if (crtc->new_config->has_dp_encoder)
6191                 dpll |= DPLL_SDVO_HIGH_SPEED;
6192
6193         /* compute bitmask from p1 value */
6194         if (IS_PINEVIEW(dev))
6195                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6196         else {
6197                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6198                 if (IS_G4X(dev) && reduced_clock)
6199                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6200         }
6201         switch (clock->p2) {
6202         case 5:
6203                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6204                 break;
6205         case 7:
6206                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6207                 break;
6208         case 10:
6209                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6210                 break;
6211         case 14:
6212                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6213                 break;
6214         }
6215         if (INTEL_INFO(dev)->gen >= 4)
6216                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6217
6218         if (crtc->new_config->sdvo_tv_clock)
6219                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6220         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6221                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6222                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6223         else
6224                 dpll |= PLL_REF_INPUT_DREFCLK;
6225
6226         dpll |= DPLL_VCO_ENABLE;
6227         crtc->new_config->dpll_hw_state.dpll = dpll;
6228
6229         if (INTEL_INFO(dev)->gen >= 4) {
6230                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6231                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6232                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6233         }
6234 }
6235
6236 static void i8xx_update_pll(struct intel_crtc *crtc,
6237                             intel_clock_t *reduced_clock,
6238                             int num_connectors)
6239 {
6240         struct drm_device *dev = crtc->base.dev;
6241         struct drm_i915_private *dev_priv = dev->dev_private;
6242         u32 dpll;
6243         struct dpll *clock = &crtc->new_config->dpll;
6244
6245         i9xx_update_pll_dividers(crtc, reduced_clock);
6246
6247         dpll = DPLL_VGA_MODE_DIS;
6248
6249         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6250                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6251         } else {
6252                 if (clock->p1 == 2)
6253                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6254                 else
6255                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6256                 if (clock->p2 == 4)
6257                         dpll |= PLL_P2_DIVIDE_BY_4;
6258         }
6259
6260         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6261                 dpll |= DPLL_DVO_2X_MODE;
6262
6263         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6264                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6265                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6266         else
6267                 dpll |= PLL_REF_INPUT_DREFCLK;
6268
6269         dpll |= DPLL_VCO_ENABLE;
6270         crtc->new_config->dpll_hw_state.dpll = dpll;
6271 }
6272
6273 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6274 {
6275         struct drm_device *dev = intel_crtc->base.dev;
6276         struct drm_i915_private *dev_priv = dev->dev_private;
6277         enum pipe pipe = intel_crtc->pipe;
6278         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6279         struct drm_display_mode *adjusted_mode =
6280                 &intel_crtc->config.adjusted_mode;
6281         uint32_t crtc_vtotal, crtc_vblank_end;
6282         int vsyncshift = 0;
6283
6284         /* We need to be careful not to changed the adjusted mode, for otherwise
6285          * the hw state checker will get angry at the mismatch. */
6286         crtc_vtotal = adjusted_mode->crtc_vtotal;
6287         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6288
6289         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6290                 /* the chip adds 2 halflines automatically */
6291                 crtc_vtotal -= 1;
6292                 crtc_vblank_end -= 1;
6293
6294                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6295                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6296                 else
6297                         vsyncshift = adjusted_mode->crtc_hsync_start -
6298                                 adjusted_mode->crtc_htotal / 2;
6299                 if (vsyncshift < 0)
6300                         vsyncshift += adjusted_mode->crtc_htotal;
6301         }
6302
6303         if (INTEL_INFO(dev)->gen > 3)
6304                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6305
6306         I915_WRITE(HTOTAL(cpu_transcoder),
6307                    (adjusted_mode->crtc_hdisplay - 1) |
6308                    ((adjusted_mode->crtc_htotal - 1) << 16));
6309         I915_WRITE(HBLANK(cpu_transcoder),
6310                    (adjusted_mode->crtc_hblank_start - 1) |
6311                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6312         I915_WRITE(HSYNC(cpu_transcoder),
6313                    (adjusted_mode->crtc_hsync_start - 1) |
6314                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6315
6316         I915_WRITE(VTOTAL(cpu_transcoder),
6317                    (adjusted_mode->crtc_vdisplay - 1) |
6318                    ((crtc_vtotal - 1) << 16));
6319         I915_WRITE(VBLANK(cpu_transcoder),
6320                    (adjusted_mode->crtc_vblank_start - 1) |
6321                    ((crtc_vblank_end - 1) << 16));
6322         I915_WRITE(VSYNC(cpu_transcoder),
6323                    (adjusted_mode->crtc_vsync_start - 1) |
6324                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6325
6326         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6327          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6328          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6329          * bits. */
6330         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6331             (pipe == PIPE_B || pipe == PIPE_C))
6332                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6333
6334         /* pipesrc controls the size that is scaled from, which should
6335          * always be the user's requested size.
6336          */
6337         I915_WRITE(PIPESRC(pipe),
6338                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6339                    (intel_crtc->config.pipe_src_h - 1));
6340 }
6341
6342 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6343                                    struct intel_crtc_config *pipe_config)
6344 {
6345         struct drm_device *dev = crtc->base.dev;
6346         struct drm_i915_private *dev_priv = dev->dev_private;
6347         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6348         uint32_t tmp;
6349
6350         tmp = I915_READ(HTOTAL(cpu_transcoder));
6351         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6352         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6353         tmp = I915_READ(HBLANK(cpu_transcoder));
6354         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6355         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6356         tmp = I915_READ(HSYNC(cpu_transcoder));
6357         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6358         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6359
6360         tmp = I915_READ(VTOTAL(cpu_transcoder));
6361         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6362         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6363         tmp = I915_READ(VBLANK(cpu_transcoder));
6364         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6365         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6366         tmp = I915_READ(VSYNC(cpu_transcoder));
6367         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6368         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6369
6370         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6371                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6372                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6373                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6374         }
6375
6376         tmp = I915_READ(PIPESRC(crtc->pipe));
6377         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6378         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6379
6380         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6381         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6382 }
6383
6384 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6385                                  struct intel_crtc_config *pipe_config)
6386 {
6387         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6388         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6389         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6390         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6391
6392         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6393         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6394         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6395         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6396
6397         mode->flags = pipe_config->adjusted_mode.flags;
6398
6399         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6400         mode->flags |= pipe_config->adjusted_mode.flags;
6401 }
6402
6403 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6404 {
6405         struct drm_device *dev = intel_crtc->base.dev;
6406         struct drm_i915_private *dev_priv = dev->dev_private;
6407         uint32_t pipeconf;
6408
6409         pipeconf = 0;
6410
6411         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6412             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6413                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6414
6415         if (intel_crtc->config.double_wide)
6416                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6417
6418         /* only g4x and later have fancy bpc/dither controls */
6419         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6420                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6421                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6422                         pipeconf |= PIPECONF_DITHER_EN |
6423                                     PIPECONF_DITHER_TYPE_SP;
6424
6425                 switch (intel_crtc->config.pipe_bpp) {
6426                 case 18:
6427                         pipeconf |= PIPECONF_6BPC;
6428                         break;
6429                 case 24:
6430                         pipeconf |= PIPECONF_8BPC;
6431                         break;
6432                 case 30:
6433                         pipeconf |= PIPECONF_10BPC;
6434                         break;
6435                 default:
6436                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6437                         BUG();
6438                 }
6439         }
6440
6441         if (HAS_PIPE_CXSR(dev)) {
6442                 if (intel_crtc->lowfreq_avail) {
6443                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6444                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6445                 } else {
6446                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6447                 }
6448         }
6449
6450         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6451                 if (INTEL_INFO(dev)->gen < 4 ||
6452                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6453                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6454                 else
6455                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6456         } else
6457                 pipeconf |= PIPECONF_PROGRESSIVE;
6458
6459         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6460                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6461
6462         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6463         POSTING_READ(PIPECONF(intel_crtc->pipe));
6464 }
6465
6466 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6467 {
6468         struct drm_device *dev = crtc->base.dev;
6469         struct drm_i915_private *dev_priv = dev->dev_private;
6470         int refclk, num_connectors = 0;
6471         intel_clock_t clock, reduced_clock;
6472         bool ok, has_reduced_clock = false;
6473         bool is_lvds = false, is_dsi = false;
6474         struct intel_encoder *encoder;
6475         const intel_limit_t *limit;
6476
6477         for_each_intel_encoder(dev, encoder) {
6478                 if (encoder->new_crtc != crtc)
6479                         continue;
6480
6481                 switch (encoder->type) {
6482                 case INTEL_OUTPUT_LVDS:
6483                         is_lvds = true;
6484                         break;
6485                 case INTEL_OUTPUT_DSI:
6486                         is_dsi = true;
6487                         break;
6488                 default:
6489                         break;
6490                 }
6491
6492                 num_connectors++;
6493         }
6494
6495         if (is_dsi)
6496                 return 0;
6497
6498         if (!crtc->new_config->clock_set) {
6499                 refclk = i9xx_get_refclk(crtc, num_connectors);
6500
6501                 /*
6502                  * Returns a set of divisors for the desired target clock with
6503                  * the given refclk, or FALSE.  The returned values represent
6504                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6505                  * 2) / p1 / p2.
6506                  */
6507                 limit = intel_limit(crtc, refclk);
6508                 ok = dev_priv->display.find_dpll(limit, crtc,
6509                                                  crtc->new_config->port_clock,
6510                                                  refclk, NULL, &clock);
6511                 if (!ok) {
6512                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6513                         return -EINVAL;
6514                 }
6515
6516                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6517                         /*
6518                          * Ensure we match the reduced clock's P to the target
6519                          * clock.  If the clocks don't match, we can't switch
6520                          * the display clock by using the FP0/FP1. In such case
6521                          * we will disable the LVDS downclock feature.
6522                          */
6523                         has_reduced_clock =
6524                                 dev_priv->display.find_dpll(limit, crtc,
6525                                                             dev_priv->lvds_downclock,
6526                                                             refclk, &clock,
6527                                                             &reduced_clock);
6528                 }
6529                 /* Compat-code for transition, will disappear. */
6530                 crtc->new_config->dpll.n = clock.n;
6531                 crtc->new_config->dpll.m1 = clock.m1;
6532                 crtc->new_config->dpll.m2 = clock.m2;
6533                 crtc->new_config->dpll.p1 = clock.p1;
6534                 crtc->new_config->dpll.p2 = clock.p2;
6535         }
6536
6537         if (IS_GEN2(dev)) {
6538                 i8xx_update_pll(crtc,
6539                                 has_reduced_clock ? &reduced_clock : NULL,
6540                                 num_connectors);
6541         } else if (IS_CHERRYVIEW(dev)) {
6542                 chv_update_pll(crtc, crtc->new_config);
6543         } else if (IS_VALLEYVIEW(dev)) {
6544                 vlv_update_pll(crtc, crtc->new_config);
6545         } else {
6546                 i9xx_update_pll(crtc,
6547                                 has_reduced_clock ? &reduced_clock : NULL,
6548                                 num_connectors);
6549         }
6550
6551         return 0;
6552 }
6553
6554 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6555                                  struct intel_crtc_config *pipe_config)
6556 {
6557         struct drm_device *dev = crtc->base.dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         uint32_t tmp;
6560
6561         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6562                 return;
6563
6564         tmp = I915_READ(PFIT_CONTROL);
6565         if (!(tmp & PFIT_ENABLE))
6566                 return;
6567
6568         /* Check whether the pfit is attached to our pipe. */
6569         if (INTEL_INFO(dev)->gen < 4) {
6570                 if (crtc->pipe != PIPE_B)
6571                         return;
6572         } else {
6573                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6574                         return;
6575         }
6576
6577         pipe_config->gmch_pfit.control = tmp;
6578         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6579         if (INTEL_INFO(dev)->gen < 5)
6580                 pipe_config->gmch_pfit.lvds_border_bits =
6581                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6582 }
6583
6584 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6585                                struct intel_crtc_config *pipe_config)
6586 {
6587         struct drm_device *dev = crtc->base.dev;
6588         struct drm_i915_private *dev_priv = dev->dev_private;
6589         int pipe = pipe_config->cpu_transcoder;
6590         intel_clock_t clock;
6591         u32 mdiv;
6592         int refclk = 100000;
6593
6594         /* In case of MIPI DPLL will not even be used */
6595         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6596                 return;
6597
6598         mutex_lock(&dev_priv->dpio_lock);
6599         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6600         mutex_unlock(&dev_priv->dpio_lock);
6601
6602         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6603         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6604         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6605         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6606         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6607
6608         vlv_clock(refclk, &clock);
6609
6610         /* clock.dot is the fast clock */
6611         pipe_config->port_clock = clock.dot / 5;
6612 }
6613
6614 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6615                                   struct intel_plane_config *plane_config)
6616 {
6617         struct drm_device *dev = crtc->base.dev;
6618         struct drm_i915_private *dev_priv = dev->dev_private;
6619         u32 val, base, offset;
6620         int pipe = crtc->pipe, plane = crtc->plane;
6621         int fourcc, pixel_format;
6622         int aligned_height;
6623
6624         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6625         if (!crtc->base.primary->fb) {
6626                 DRM_DEBUG_KMS("failed to alloc fb\n");
6627                 return;
6628         }
6629
6630         val = I915_READ(DSPCNTR(plane));
6631
6632         if (INTEL_INFO(dev)->gen >= 4)
6633                 if (val & DISPPLANE_TILED)
6634                         plane_config->tiled = true;
6635
6636         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6637         fourcc = intel_format_to_fourcc(pixel_format);
6638         crtc->base.primary->fb->pixel_format = fourcc;
6639         crtc->base.primary->fb->bits_per_pixel =
6640                 drm_format_plane_cpp(fourcc, 0) * 8;
6641
6642         if (INTEL_INFO(dev)->gen >= 4) {
6643                 if (plane_config->tiled)
6644                         offset = I915_READ(DSPTILEOFF(plane));
6645                 else
6646                         offset = I915_READ(DSPLINOFF(plane));
6647                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6648         } else {
6649                 base = I915_READ(DSPADDR(plane));
6650         }
6651         plane_config->base = base;
6652
6653         val = I915_READ(PIPESRC(pipe));
6654         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6655         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6656
6657         val = I915_READ(DSPSTRIDE(pipe));
6658         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6659
6660         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6661                                             plane_config->tiled);
6662
6663         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6664                                         aligned_height);
6665
6666         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6667                       pipe, plane, crtc->base.primary->fb->width,
6668                       crtc->base.primary->fb->height,
6669                       crtc->base.primary->fb->bits_per_pixel, base,
6670                       crtc->base.primary->fb->pitches[0],
6671                       plane_config->size);
6672
6673 }
6674
6675 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6676                                struct intel_crtc_config *pipe_config)
6677 {
6678         struct drm_device *dev = crtc->base.dev;
6679         struct drm_i915_private *dev_priv = dev->dev_private;
6680         int pipe = pipe_config->cpu_transcoder;
6681         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6682         intel_clock_t clock;
6683         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6684         int refclk = 100000;
6685
6686         mutex_lock(&dev_priv->dpio_lock);
6687         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6688         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6689         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6690         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6691         mutex_unlock(&dev_priv->dpio_lock);
6692
6693         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6694         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6695         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6696         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6697         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6698
6699         chv_clock(refclk, &clock);
6700
6701         /* clock.dot is the fast clock */
6702         pipe_config->port_clock = clock.dot / 5;
6703 }
6704
6705 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6706                                  struct intel_crtc_config *pipe_config)
6707 {
6708         struct drm_device *dev = crtc->base.dev;
6709         struct drm_i915_private *dev_priv = dev->dev_private;
6710         uint32_t tmp;
6711
6712         if (!intel_display_power_is_enabled(dev_priv,
6713                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6714                 return false;
6715
6716         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6717         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6718
6719         tmp = I915_READ(PIPECONF(crtc->pipe));
6720         if (!(tmp & PIPECONF_ENABLE))
6721                 return false;
6722
6723         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6724                 switch (tmp & PIPECONF_BPC_MASK) {
6725                 case PIPECONF_6BPC:
6726                         pipe_config->pipe_bpp = 18;
6727                         break;
6728                 case PIPECONF_8BPC:
6729                         pipe_config->pipe_bpp = 24;
6730                         break;
6731                 case PIPECONF_10BPC:
6732                         pipe_config->pipe_bpp = 30;
6733                         break;
6734                 default:
6735                         break;
6736                 }
6737         }
6738
6739         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6740                 pipe_config->limited_color_range = true;
6741
6742         if (INTEL_INFO(dev)->gen < 4)
6743                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6744
6745         intel_get_pipe_timings(crtc, pipe_config);
6746
6747         i9xx_get_pfit_config(crtc, pipe_config);
6748
6749         if (INTEL_INFO(dev)->gen >= 4) {
6750                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6751                 pipe_config->pixel_multiplier =
6752                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6753                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6754                 pipe_config->dpll_hw_state.dpll_md = tmp;
6755         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6756                 tmp = I915_READ(DPLL(crtc->pipe));
6757                 pipe_config->pixel_multiplier =
6758                         ((tmp & SDVO_MULTIPLIER_MASK)
6759                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6760         } else {
6761                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6762                  * port and will be fixed up in the encoder->get_config
6763                  * function. */
6764                 pipe_config->pixel_multiplier = 1;
6765         }
6766         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6767         if (!IS_VALLEYVIEW(dev)) {
6768                 /*
6769                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6770                  * on 830. Filter it out here so that we don't
6771                  * report errors due to that.
6772                  */
6773                 if (IS_I830(dev))
6774                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6775
6776                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6777                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6778         } else {
6779                 /* Mask out read-only status bits. */
6780                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6781                                                      DPLL_PORTC_READY_MASK |
6782                                                      DPLL_PORTB_READY_MASK);
6783         }
6784
6785         if (IS_CHERRYVIEW(dev))
6786                 chv_crtc_clock_get(crtc, pipe_config);
6787         else if (IS_VALLEYVIEW(dev))
6788                 vlv_crtc_clock_get(crtc, pipe_config);
6789         else
6790                 i9xx_crtc_clock_get(crtc, pipe_config);
6791
6792         return true;
6793 }
6794
6795 static void ironlake_init_pch_refclk(struct drm_device *dev)
6796 {
6797         struct drm_i915_private *dev_priv = dev->dev_private;
6798         struct intel_encoder *encoder;
6799         u32 val, final;
6800         bool has_lvds = false;
6801         bool has_cpu_edp = false;
6802         bool has_panel = false;
6803         bool has_ck505 = false;
6804         bool can_ssc = false;
6805
6806         /* We need to take the global config into account */
6807         for_each_intel_encoder(dev, encoder) {
6808                 switch (encoder->type) {
6809                 case INTEL_OUTPUT_LVDS:
6810                         has_panel = true;
6811                         has_lvds = true;
6812                         break;
6813                 case INTEL_OUTPUT_EDP:
6814                         has_panel = true;
6815                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6816                                 has_cpu_edp = true;
6817                         break;
6818                 default:
6819                         break;
6820                 }
6821         }
6822
6823         if (HAS_PCH_IBX(dev)) {
6824                 has_ck505 = dev_priv->vbt.display_clock_mode;
6825                 can_ssc = has_ck505;
6826         } else {
6827                 has_ck505 = false;
6828                 can_ssc = true;
6829         }
6830
6831         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6832                       has_panel, has_lvds, has_ck505);
6833
6834         /* Ironlake: try to setup display ref clock before DPLL
6835          * enabling. This is only under driver's control after
6836          * PCH B stepping, previous chipset stepping should be
6837          * ignoring this setting.
6838          */
6839         val = I915_READ(PCH_DREF_CONTROL);
6840
6841         /* As we must carefully and slowly disable/enable each source in turn,
6842          * compute the final state we want first and check if we need to
6843          * make any changes at all.
6844          */
6845         final = val;
6846         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6847         if (has_ck505)
6848                 final |= DREF_NONSPREAD_CK505_ENABLE;
6849         else
6850                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6851
6852         final &= ~DREF_SSC_SOURCE_MASK;
6853         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6854         final &= ~DREF_SSC1_ENABLE;
6855
6856         if (has_panel) {
6857                 final |= DREF_SSC_SOURCE_ENABLE;
6858
6859                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6860                         final |= DREF_SSC1_ENABLE;
6861
6862                 if (has_cpu_edp) {
6863                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6864                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6865                         else
6866                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6867                 } else
6868                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6869         } else {
6870                 final |= DREF_SSC_SOURCE_DISABLE;
6871                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6872         }
6873
6874         if (final == val)
6875                 return;
6876
6877         /* Always enable nonspread source */
6878         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6879
6880         if (has_ck505)
6881                 val |= DREF_NONSPREAD_CK505_ENABLE;
6882         else
6883                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6884
6885         if (has_panel) {
6886                 val &= ~DREF_SSC_SOURCE_MASK;
6887                 val |= DREF_SSC_SOURCE_ENABLE;
6888
6889                 /* SSC must be turned on before enabling the CPU output  */
6890                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6891                         DRM_DEBUG_KMS("Using SSC on panel\n");
6892                         val |= DREF_SSC1_ENABLE;
6893                 } else
6894                         val &= ~DREF_SSC1_ENABLE;
6895
6896                 /* Get SSC going before enabling the outputs */
6897                 I915_WRITE(PCH_DREF_CONTROL, val);
6898                 POSTING_READ(PCH_DREF_CONTROL);
6899                 udelay(200);
6900
6901                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6902
6903                 /* Enable CPU source on CPU attached eDP */
6904                 if (has_cpu_edp) {
6905                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6906                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6907                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6908                         } else
6909                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6910                 } else
6911                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6912
6913                 I915_WRITE(PCH_DREF_CONTROL, val);
6914                 POSTING_READ(PCH_DREF_CONTROL);
6915                 udelay(200);
6916         } else {
6917                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6918
6919                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6920
6921                 /* Turn off CPU output */
6922                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6923
6924                 I915_WRITE(PCH_DREF_CONTROL, val);
6925                 POSTING_READ(PCH_DREF_CONTROL);
6926                 udelay(200);
6927
6928                 /* Turn off the SSC source */
6929                 val &= ~DREF_SSC_SOURCE_MASK;
6930                 val |= DREF_SSC_SOURCE_DISABLE;
6931
6932                 /* Turn off SSC1 */
6933                 val &= ~DREF_SSC1_ENABLE;
6934
6935                 I915_WRITE(PCH_DREF_CONTROL, val);
6936                 POSTING_READ(PCH_DREF_CONTROL);
6937                 udelay(200);
6938         }
6939
6940         BUG_ON(val != final);
6941 }
6942
6943 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6944 {
6945         uint32_t tmp;
6946
6947         tmp = I915_READ(SOUTH_CHICKEN2);
6948         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6949         I915_WRITE(SOUTH_CHICKEN2, tmp);
6950
6951         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6952                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6953                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6954
6955         tmp = I915_READ(SOUTH_CHICKEN2);
6956         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6957         I915_WRITE(SOUTH_CHICKEN2, tmp);
6958
6959         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6960                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6961                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6962 }
6963
6964 /* WaMPhyProgramming:hsw */
6965 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6966 {
6967         uint32_t tmp;
6968
6969         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6970         tmp &= ~(0xFF << 24);
6971         tmp |= (0x12 << 24);
6972         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6973
6974         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6975         tmp |= (1 << 11);
6976         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6977
6978         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6979         tmp |= (1 << 11);
6980         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6981
6982         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6983         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6984         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6985
6986         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6987         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6988         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6989
6990         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6991         tmp &= ~(7 << 13);
6992         tmp |= (5 << 13);
6993         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6994
6995         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6996         tmp &= ~(7 << 13);
6997         tmp |= (5 << 13);
6998         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6999
7000         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7001         tmp &= ~0xFF;
7002         tmp |= 0x1C;
7003         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7004
7005         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7006         tmp &= ~0xFF;
7007         tmp |= 0x1C;
7008         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7009
7010         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7011         tmp &= ~(0xFF << 16);
7012         tmp |= (0x1C << 16);
7013         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7014
7015         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7016         tmp &= ~(0xFF << 16);
7017         tmp |= (0x1C << 16);
7018         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7019
7020         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7021         tmp |= (1 << 27);
7022         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7023
7024         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7025         tmp |= (1 << 27);
7026         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7027
7028         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7029         tmp &= ~(0xF << 28);
7030         tmp |= (4 << 28);
7031         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7032
7033         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7034         tmp &= ~(0xF << 28);
7035         tmp |= (4 << 28);
7036         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7037 }
7038
7039 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7040  * Programming" based on the parameters passed:
7041  * - Sequence to enable CLKOUT_DP
7042  * - Sequence to enable CLKOUT_DP without spread
7043  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7044  */
7045 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7046                                  bool with_fdi)
7047 {
7048         struct drm_i915_private *dev_priv = dev->dev_private;
7049         uint32_t reg, tmp;
7050
7051         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7052                 with_spread = true;
7053         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7054                  with_fdi, "LP PCH doesn't have FDI\n"))
7055                 with_fdi = false;
7056
7057         mutex_lock(&dev_priv->dpio_lock);
7058
7059         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7060         tmp &= ~SBI_SSCCTL_DISABLE;
7061         tmp |= SBI_SSCCTL_PATHALT;
7062         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7063
7064         udelay(24);
7065
7066         if (with_spread) {
7067                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7068                 tmp &= ~SBI_SSCCTL_PATHALT;
7069                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070
7071                 if (with_fdi) {
7072                         lpt_reset_fdi_mphy(dev_priv);
7073                         lpt_program_fdi_mphy(dev_priv);
7074                 }
7075         }
7076
7077         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7078                SBI_GEN0 : SBI_DBUFF0;
7079         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7080         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7081         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7082
7083         mutex_unlock(&dev_priv->dpio_lock);
7084 }
7085
7086 /* Sequence to disable CLKOUT_DP */
7087 static void lpt_disable_clkout_dp(struct drm_device *dev)
7088 {
7089         struct drm_i915_private *dev_priv = dev->dev_private;
7090         uint32_t reg, tmp;
7091
7092         mutex_lock(&dev_priv->dpio_lock);
7093
7094         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7095                SBI_GEN0 : SBI_DBUFF0;
7096         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7097         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7098         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7099
7100         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7101         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7102                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7103                         tmp |= SBI_SSCCTL_PATHALT;
7104                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7105                         udelay(32);
7106                 }
7107                 tmp |= SBI_SSCCTL_DISABLE;
7108                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7109         }
7110
7111         mutex_unlock(&dev_priv->dpio_lock);
7112 }
7113
7114 static void lpt_init_pch_refclk(struct drm_device *dev)
7115 {
7116         struct intel_encoder *encoder;
7117         bool has_vga = false;
7118
7119         for_each_intel_encoder(dev, encoder) {
7120                 switch (encoder->type) {
7121                 case INTEL_OUTPUT_ANALOG:
7122                         has_vga = true;
7123                         break;
7124                 default:
7125                         break;
7126                 }
7127         }
7128
7129         if (has_vga)
7130                 lpt_enable_clkout_dp(dev, true, true);
7131         else
7132                 lpt_disable_clkout_dp(dev);
7133 }
7134
7135 /*
7136  * Initialize reference clocks when the driver loads
7137  */
7138 void intel_init_pch_refclk(struct drm_device *dev)
7139 {
7140         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7141                 ironlake_init_pch_refclk(dev);
7142         else if (HAS_PCH_LPT(dev))
7143                 lpt_init_pch_refclk(dev);
7144 }
7145
7146 static int ironlake_get_refclk(struct drm_crtc *crtc)
7147 {
7148         struct drm_device *dev = crtc->dev;
7149         struct drm_i915_private *dev_priv = dev->dev_private;
7150         struct intel_encoder *encoder;
7151         int num_connectors = 0;
7152         bool is_lvds = false;
7153
7154         for_each_intel_encoder(dev, encoder) {
7155                 if (encoder->new_crtc != to_intel_crtc(crtc))
7156                         continue;
7157
7158                 switch (encoder->type) {
7159                 case INTEL_OUTPUT_LVDS:
7160                         is_lvds = true;
7161                         break;
7162                 default:
7163                         break;
7164                 }
7165                 num_connectors++;
7166         }
7167
7168         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7169                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7170                               dev_priv->vbt.lvds_ssc_freq);
7171                 return dev_priv->vbt.lvds_ssc_freq;
7172         }
7173
7174         return 120000;
7175 }
7176
7177 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7178 {
7179         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7181         int pipe = intel_crtc->pipe;
7182         uint32_t val;
7183
7184         val = 0;
7185
7186         switch (intel_crtc->config.pipe_bpp) {
7187         case 18:
7188                 val |= PIPECONF_6BPC;
7189                 break;
7190         case 24:
7191                 val |= PIPECONF_8BPC;
7192                 break;
7193         case 30:
7194                 val |= PIPECONF_10BPC;
7195                 break;
7196         case 36:
7197                 val |= PIPECONF_12BPC;
7198                 break;
7199         default:
7200                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7201                 BUG();
7202         }
7203
7204         if (intel_crtc->config.dither)
7205                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7206
7207         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7208                 val |= PIPECONF_INTERLACED_ILK;
7209         else
7210                 val |= PIPECONF_PROGRESSIVE;
7211
7212         if (intel_crtc->config.limited_color_range)
7213                 val |= PIPECONF_COLOR_RANGE_SELECT;
7214
7215         I915_WRITE(PIPECONF(pipe), val);
7216         POSTING_READ(PIPECONF(pipe));
7217 }
7218
7219 /*
7220  * Set up the pipe CSC unit.
7221  *
7222  * Currently only full range RGB to limited range RGB conversion
7223  * is supported, but eventually this should handle various
7224  * RGB<->YCbCr scenarios as well.
7225  */
7226 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7227 {
7228         struct drm_device *dev = crtc->dev;
7229         struct drm_i915_private *dev_priv = dev->dev_private;
7230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7231         int pipe = intel_crtc->pipe;
7232         uint16_t coeff = 0x7800; /* 1.0 */
7233
7234         /*
7235          * TODO: Check what kind of values actually come out of the pipe
7236          * with these coeff/postoff values and adjust to get the best
7237          * accuracy. Perhaps we even need to take the bpc value into
7238          * consideration.
7239          */
7240
7241         if (intel_crtc->config.limited_color_range)
7242                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7243
7244         /*
7245          * GY/GU and RY/RU should be the other way around according
7246          * to BSpec, but reality doesn't agree. Just set them up in
7247          * a way that results in the correct picture.
7248          */
7249         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7250         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7251
7252         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7253         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7254
7255         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7256         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7257
7258         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7259         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7260         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7261
7262         if (INTEL_INFO(dev)->gen > 6) {
7263                 uint16_t postoff = 0;
7264
7265                 if (intel_crtc->config.limited_color_range)
7266                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7267
7268                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7269                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7270                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7271
7272                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7273         } else {
7274                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7275
7276                 if (intel_crtc->config.limited_color_range)
7277                         mode |= CSC_BLACK_SCREEN_OFFSET;
7278
7279                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7280         }
7281 }
7282
7283 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7284 {
7285         struct drm_device *dev = crtc->dev;
7286         struct drm_i915_private *dev_priv = dev->dev_private;
7287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7288         enum pipe pipe = intel_crtc->pipe;
7289         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7290         uint32_t val;
7291
7292         val = 0;
7293
7294         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7295                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7296
7297         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7298                 val |= PIPECONF_INTERLACED_ILK;
7299         else
7300                 val |= PIPECONF_PROGRESSIVE;
7301
7302         I915_WRITE(PIPECONF(cpu_transcoder), val);
7303         POSTING_READ(PIPECONF(cpu_transcoder));
7304
7305         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7306         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7307
7308         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7309                 val = 0;
7310
7311                 switch (intel_crtc->config.pipe_bpp) {
7312                 case 18:
7313                         val |= PIPEMISC_DITHER_6_BPC;
7314                         break;
7315                 case 24:
7316                         val |= PIPEMISC_DITHER_8_BPC;
7317                         break;
7318                 case 30:
7319                         val |= PIPEMISC_DITHER_10_BPC;
7320                         break;
7321                 case 36:
7322                         val |= PIPEMISC_DITHER_12_BPC;
7323                         break;
7324                 default:
7325                         /* Case prevented by pipe_config_set_bpp. */
7326                         BUG();
7327                 }
7328
7329                 if (intel_crtc->config.dither)
7330                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7331
7332                 I915_WRITE(PIPEMISC(pipe), val);
7333         }
7334 }
7335
7336 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7337                                     intel_clock_t *clock,
7338                                     bool *has_reduced_clock,
7339                                     intel_clock_t *reduced_clock)
7340 {
7341         struct drm_device *dev = crtc->dev;
7342         struct drm_i915_private *dev_priv = dev->dev_private;
7343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7344         int refclk;
7345         const intel_limit_t *limit;
7346         bool ret, is_lvds = false;
7347
7348         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7349
7350         refclk = ironlake_get_refclk(crtc);
7351
7352         /*
7353          * Returns a set of divisors for the desired target clock with the given
7354          * refclk, or FALSE.  The returned values represent the clock equation:
7355          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7356          */
7357         limit = intel_limit(intel_crtc, refclk);
7358         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7359                                           intel_crtc->new_config->port_clock,
7360                                           refclk, NULL, clock);
7361         if (!ret)
7362                 return false;
7363
7364         if (is_lvds && dev_priv->lvds_downclock_avail) {
7365                 /*
7366                  * Ensure we match the reduced clock's P to the target clock.
7367                  * If the clocks don't match, we can't switch the display clock
7368                  * by using the FP0/FP1. In such case we will disable the LVDS
7369                  * downclock feature.
7370                 */
7371                 *has_reduced_clock =
7372                         dev_priv->display.find_dpll(limit, intel_crtc,
7373                                                     dev_priv->lvds_downclock,
7374                                                     refclk, clock,
7375                                                     reduced_clock);
7376         }
7377
7378         return true;
7379 }
7380
7381 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7382 {
7383         /*
7384          * Account for spread spectrum to avoid
7385          * oversubscribing the link. Max center spread
7386          * is 2.5%; use 5% for safety's sake.
7387          */
7388         u32 bps = target_clock * bpp * 21 / 20;
7389         return DIV_ROUND_UP(bps, link_bw * 8);
7390 }
7391
7392 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7393 {
7394         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7395 }
7396
7397 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7398                                       u32 *fp,
7399                                       intel_clock_t *reduced_clock, u32 *fp2)
7400 {
7401         struct drm_crtc *crtc = &intel_crtc->base;
7402         struct drm_device *dev = crtc->dev;
7403         struct drm_i915_private *dev_priv = dev->dev_private;
7404         struct intel_encoder *intel_encoder;
7405         uint32_t dpll;
7406         int factor, num_connectors = 0;
7407         bool is_lvds = false, is_sdvo = false;
7408
7409         for_each_intel_encoder(dev, intel_encoder) {
7410                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7411                         continue;
7412
7413                 switch (intel_encoder->type) {
7414                 case INTEL_OUTPUT_LVDS:
7415                         is_lvds = true;
7416                         break;
7417                 case INTEL_OUTPUT_SDVO:
7418                 case INTEL_OUTPUT_HDMI:
7419                         is_sdvo = true;
7420                         break;
7421                 default:
7422                         break;
7423                 }
7424
7425                 num_connectors++;
7426         }
7427
7428         /* Enable autotuning of the PLL clock (if permissible) */
7429         factor = 21;
7430         if (is_lvds) {
7431                 if ((intel_panel_use_ssc(dev_priv) &&
7432                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7433                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7434                         factor = 25;
7435         } else if (intel_crtc->new_config->sdvo_tv_clock)
7436                 factor = 20;
7437
7438         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7439                 *fp |= FP_CB_TUNE;
7440
7441         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7442                 *fp2 |= FP_CB_TUNE;
7443
7444         dpll = 0;
7445
7446         if (is_lvds)
7447                 dpll |= DPLLB_MODE_LVDS;
7448         else
7449                 dpll |= DPLLB_MODE_DAC_SERIAL;
7450
7451         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7452                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7453
7454         if (is_sdvo)
7455                 dpll |= DPLL_SDVO_HIGH_SPEED;
7456         if (intel_crtc->new_config->has_dp_encoder)
7457                 dpll |= DPLL_SDVO_HIGH_SPEED;
7458
7459         /* compute bitmask from p1 value */
7460         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7461         /* also FPA1 */
7462         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7463
7464         switch (intel_crtc->new_config->dpll.p2) {
7465         case 5:
7466                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7467                 break;
7468         case 7:
7469                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7470                 break;
7471         case 10:
7472                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7473                 break;
7474         case 14:
7475                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7476                 break;
7477         }
7478
7479         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7480                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7481         else
7482                 dpll |= PLL_REF_INPUT_DREFCLK;
7483
7484         return dpll | DPLL_VCO_ENABLE;
7485 }
7486
7487 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7488 {
7489         struct drm_device *dev = crtc->base.dev;
7490         intel_clock_t clock, reduced_clock;
7491         u32 dpll = 0, fp = 0, fp2 = 0;
7492         bool ok, has_reduced_clock = false;
7493         bool is_lvds = false;
7494         struct intel_shared_dpll *pll;
7495
7496         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7497
7498         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7499              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7500
7501         ok = ironlake_compute_clocks(&crtc->base, &clock,
7502                                      &has_reduced_clock, &reduced_clock);
7503         if (!ok && !crtc->new_config->clock_set) {
7504                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7505                 return -EINVAL;
7506         }
7507         /* Compat-code for transition, will disappear. */
7508         if (!crtc->new_config->clock_set) {
7509                 crtc->new_config->dpll.n = clock.n;
7510                 crtc->new_config->dpll.m1 = clock.m1;
7511                 crtc->new_config->dpll.m2 = clock.m2;
7512                 crtc->new_config->dpll.p1 = clock.p1;
7513                 crtc->new_config->dpll.p2 = clock.p2;
7514         }
7515
7516         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7517         if (crtc->new_config->has_pch_encoder) {
7518                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7519                 if (has_reduced_clock)
7520                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7521
7522                 dpll = ironlake_compute_dpll(crtc,
7523                                              &fp, &reduced_clock,
7524                                              has_reduced_clock ? &fp2 : NULL);
7525
7526                 crtc->new_config->dpll_hw_state.dpll = dpll;
7527                 crtc->new_config->dpll_hw_state.fp0 = fp;
7528                 if (has_reduced_clock)
7529                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7530                 else
7531                         crtc->new_config->dpll_hw_state.fp1 = fp;
7532
7533                 pll = intel_get_shared_dpll(crtc);
7534                 if (pll == NULL) {
7535                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7536                                          pipe_name(crtc->pipe));
7537                         return -EINVAL;
7538                 }
7539         }
7540
7541         if (is_lvds && has_reduced_clock && i915.powersave)
7542                 crtc->lowfreq_avail = true;
7543         else
7544                 crtc->lowfreq_avail = false;
7545
7546         return 0;
7547 }
7548
7549 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7550                                          struct intel_link_m_n *m_n)
7551 {
7552         struct drm_device *dev = crtc->base.dev;
7553         struct drm_i915_private *dev_priv = dev->dev_private;
7554         enum pipe pipe = crtc->pipe;
7555
7556         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7557         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7558         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7559                 & ~TU_SIZE_MASK;
7560         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7561         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7562                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7563 }
7564
7565 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7566                                          enum transcoder transcoder,
7567                                          struct intel_link_m_n *m_n,
7568                                          struct intel_link_m_n *m2_n2)
7569 {
7570         struct drm_device *dev = crtc->base.dev;
7571         struct drm_i915_private *dev_priv = dev->dev_private;
7572         enum pipe pipe = crtc->pipe;
7573
7574         if (INTEL_INFO(dev)->gen >= 5) {
7575                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7576                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7577                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7578                         & ~TU_SIZE_MASK;
7579                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7580                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7581                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7582                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7583                  * gen < 8) and if DRRS is supported (to make sure the
7584                  * registers are not unnecessarily read).
7585                  */
7586                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7587                         crtc->config.has_drrs) {
7588                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7589                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7590                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7591                                         & ~TU_SIZE_MASK;
7592                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7593                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7594                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7595                 }
7596         } else {
7597                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7598                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7599                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7600                         & ~TU_SIZE_MASK;
7601                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7602                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7603                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7604         }
7605 }
7606
7607 void intel_dp_get_m_n(struct intel_crtc *crtc,
7608                       struct intel_crtc_config *pipe_config)
7609 {
7610         if (crtc->config.has_pch_encoder)
7611                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7612         else
7613                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7614                                              &pipe_config->dp_m_n,
7615                                              &pipe_config->dp_m2_n2);
7616 }
7617
7618 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7619                                         struct intel_crtc_config *pipe_config)
7620 {
7621         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7622                                      &pipe_config->fdi_m_n, NULL);
7623 }
7624
7625 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7626                                     struct intel_crtc_config *pipe_config)
7627 {
7628         struct drm_device *dev = crtc->base.dev;
7629         struct drm_i915_private *dev_priv = dev->dev_private;
7630         uint32_t tmp;
7631
7632         tmp = I915_READ(PS_CTL(crtc->pipe));
7633
7634         if (tmp & PS_ENABLE) {
7635                 pipe_config->pch_pfit.enabled = true;
7636                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7637                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7638         }
7639 }
7640
7641 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7642                                      struct intel_crtc_config *pipe_config)
7643 {
7644         struct drm_device *dev = crtc->base.dev;
7645         struct drm_i915_private *dev_priv = dev->dev_private;
7646         uint32_t tmp;
7647
7648         tmp = I915_READ(PF_CTL(crtc->pipe));
7649
7650         if (tmp & PF_ENABLE) {
7651                 pipe_config->pch_pfit.enabled = true;
7652                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7653                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7654
7655                 /* We currently do not free assignements of panel fitters on
7656                  * ivb/hsw (since we don't use the higher upscaling modes which
7657                  * differentiates them) so just WARN about this case for now. */
7658                 if (IS_GEN7(dev)) {
7659                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7660                                 PF_PIPE_SEL_IVB(crtc->pipe));
7661                 }
7662         }
7663 }
7664
7665 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7666                                       struct intel_plane_config *plane_config)
7667 {
7668         struct drm_device *dev = crtc->base.dev;
7669         struct drm_i915_private *dev_priv = dev->dev_private;
7670         u32 val, base, offset;
7671         int pipe = crtc->pipe, plane = crtc->plane;
7672         int fourcc, pixel_format;
7673         int aligned_height;
7674
7675         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7676         if (!crtc->base.primary->fb) {
7677                 DRM_DEBUG_KMS("failed to alloc fb\n");
7678                 return;
7679         }
7680
7681         val = I915_READ(DSPCNTR(plane));
7682
7683         if (INTEL_INFO(dev)->gen >= 4)
7684                 if (val & DISPPLANE_TILED)
7685                         plane_config->tiled = true;
7686
7687         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7688         fourcc = intel_format_to_fourcc(pixel_format);
7689         crtc->base.primary->fb->pixel_format = fourcc;
7690         crtc->base.primary->fb->bits_per_pixel =
7691                 drm_format_plane_cpp(fourcc, 0) * 8;
7692
7693         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7694         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7695                 offset = I915_READ(DSPOFFSET(plane));
7696         } else {
7697                 if (plane_config->tiled)
7698                         offset = I915_READ(DSPTILEOFF(plane));
7699                 else
7700                         offset = I915_READ(DSPLINOFF(plane));
7701         }
7702         plane_config->base = base;
7703
7704         val = I915_READ(PIPESRC(pipe));
7705         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7706         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7707
7708         val = I915_READ(DSPSTRIDE(pipe));
7709         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7710
7711         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7712                                             plane_config->tiled);
7713
7714         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7715                                         aligned_height);
7716
7717         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7718                       pipe, plane, crtc->base.primary->fb->width,
7719                       crtc->base.primary->fb->height,
7720                       crtc->base.primary->fb->bits_per_pixel, base,
7721                       crtc->base.primary->fb->pitches[0],
7722                       plane_config->size);
7723 }
7724
7725 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7726                                      struct intel_crtc_config *pipe_config)
7727 {
7728         struct drm_device *dev = crtc->base.dev;
7729         struct drm_i915_private *dev_priv = dev->dev_private;
7730         uint32_t tmp;
7731
7732         if (!intel_display_power_is_enabled(dev_priv,
7733                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7734                 return false;
7735
7736         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7737         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7738
7739         tmp = I915_READ(PIPECONF(crtc->pipe));
7740         if (!(tmp & PIPECONF_ENABLE))
7741                 return false;
7742
7743         switch (tmp & PIPECONF_BPC_MASK) {
7744         case PIPECONF_6BPC:
7745                 pipe_config->pipe_bpp = 18;
7746                 break;
7747         case PIPECONF_8BPC:
7748                 pipe_config->pipe_bpp = 24;
7749                 break;
7750         case PIPECONF_10BPC:
7751                 pipe_config->pipe_bpp = 30;
7752                 break;
7753         case PIPECONF_12BPC:
7754                 pipe_config->pipe_bpp = 36;
7755                 break;
7756         default:
7757                 break;
7758         }
7759
7760         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7761                 pipe_config->limited_color_range = true;
7762
7763         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7764                 struct intel_shared_dpll *pll;
7765
7766                 pipe_config->has_pch_encoder = true;
7767
7768                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7769                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7770                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7771
7772                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7773
7774                 if (HAS_PCH_IBX(dev_priv->dev)) {
7775                         pipe_config->shared_dpll =
7776                                 (enum intel_dpll_id) crtc->pipe;
7777                 } else {
7778                         tmp = I915_READ(PCH_DPLL_SEL);
7779                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7780                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7781                         else
7782                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7783                 }
7784
7785                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7786
7787                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7788                                            &pipe_config->dpll_hw_state));
7789
7790                 tmp = pipe_config->dpll_hw_state.dpll;
7791                 pipe_config->pixel_multiplier =
7792                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7793                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7794
7795                 ironlake_pch_clock_get(crtc, pipe_config);
7796         } else {
7797                 pipe_config->pixel_multiplier = 1;
7798         }
7799
7800         intel_get_pipe_timings(crtc, pipe_config);
7801
7802         ironlake_get_pfit_config(crtc, pipe_config);
7803
7804         return true;
7805 }
7806
7807 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7808 {
7809         struct drm_device *dev = dev_priv->dev;
7810         struct intel_crtc *crtc;
7811
7812         for_each_intel_crtc(dev, crtc)
7813                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7814                      pipe_name(crtc->pipe));
7815
7816         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7817         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7818         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7819         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7820         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7821         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7822              "CPU PWM1 enabled\n");
7823         if (IS_HASWELL(dev))
7824                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7825                      "CPU PWM2 enabled\n");
7826         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7827              "PCH PWM1 enabled\n");
7828         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7829              "Utility pin enabled\n");
7830         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7831
7832         /*
7833          * In theory we can still leave IRQs enabled, as long as only the HPD
7834          * interrupts remain enabled. We used to check for that, but since it's
7835          * gen-specific and since we only disable LCPLL after we fully disable
7836          * the interrupts, the check below should be enough.
7837          */
7838         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7839 }
7840
7841 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7842 {
7843         struct drm_device *dev = dev_priv->dev;
7844
7845         if (IS_HASWELL(dev))
7846                 return I915_READ(D_COMP_HSW);
7847         else
7848                 return I915_READ(D_COMP_BDW);
7849 }
7850
7851 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7852 {
7853         struct drm_device *dev = dev_priv->dev;
7854
7855         if (IS_HASWELL(dev)) {
7856                 mutex_lock(&dev_priv->rps.hw_lock);
7857                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7858                                             val))
7859                         DRM_ERROR("Failed to write to D_COMP\n");
7860                 mutex_unlock(&dev_priv->rps.hw_lock);
7861         } else {
7862                 I915_WRITE(D_COMP_BDW, val);
7863                 POSTING_READ(D_COMP_BDW);
7864         }
7865 }
7866
7867 /*
7868  * This function implements pieces of two sequences from BSpec:
7869  * - Sequence for display software to disable LCPLL
7870  * - Sequence for display software to allow package C8+
7871  * The steps implemented here are just the steps that actually touch the LCPLL
7872  * register. Callers should take care of disabling all the display engine
7873  * functions, doing the mode unset, fixing interrupts, etc.
7874  */
7875 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7876                               bool switch_to_fclk, bool allow_power_down)
7877 {
7878         uint32_t val;
7879
7880         assert_can_disable_lcpll(dev_priv);
7881
7882         val = I915_READ(LCPLL_CTL);
7883
7884         if (switch_to_fclk) {
7885                 val |= LCPLL_CD_SOURCE_FCLK;
7886                 I915_WRITE(LCPLL_CTL, val);
7887
7888                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7889                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7890                         DRM_ERROR("Switching to FCLK failed\n");
7891
7892                 val = I915_READ(LCPLL_CTL);
7893         }
7894
7895         val |= LCPLL_PLL_DISABLE;
7896         I915_WRITE(LCPLL_CTL, val);
7897         POSTING_READ(LCPLL_CTL);
7898
7899         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7900                 DRM_ERROR("LCPLL still locked\n");
7901
7902         val = hsw_read_dcomp(dev_priv);
7903         val |= D_COMP_COMP_DISABLE;
7904         hsw_write_dcomp(dev_priv, val);
7905         ndelay(100);
7906
7907         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7908                      1))
7909                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7910
7911         if (allow_power_down) {
7912                 val = I915_READ(LCPLL_CTL);
7913                 val |= LCPLL_POWER_DOWN_ALLOW;
7914                 I915_WRITE(LCPLL_CTL, val);
7915                 POSTING_READ(LCPLL_CTL);
7916         }
7917 }
7918
7919 /*
7920  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7921  * source.
7922  */
7923 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7924 {
7925         uint32_t val;
7926
7927         val = I915_READ(LCPLL_CTL);
7928
7929         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7930                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7931                 return;
7932
7933         /*
7934          * Make sure we're not on PC8 state before disabling PC8, otherwise
7935          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7936          *
7937          * The other problem is that hsw_restore_lcpll() is called as part of
7938          * the runtime PM resume sequence, so we can't just call
7939          * gen6_gt_force_wake_get() because that function calls
7940          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7941          * while we are on the resume sequence. So to solve this problem we have
7942          * to call special forcewake code that doesn't touch runtime PM and
7943          * doesn't enable the forcewake delayed work.
7944          */
7945         spin_lock_irq(&dev_priv->uncore.lock);
7946         if (dev_priv->uncore.forcewake_count++ == 0)
7947                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7948         spin_unlock_irq(&dev_priv->uncore.lock);
7949
7950         if (val & LCPLL_POWER_DOWN_ALLOW) {
7951                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7952                 I915_WRITE(LCPLL_CTL, val);
7953                 POSTING_READ(LCPLL_CTL);
7954         }
7955
7956         val = hsw_read_dcomp(dev_priv);
7957         val |= D_COMP_COMP_FORCE;
7958         val &= ~D_COMP_COMP_DISABLE;
7959         hsw_write_dcomp(dev_priv, val);
7960
7961         val = I915_READ(LCPLL_CTL);
7962         val &= ~LCPLL_PLL_DISABLE;
7963         I915_WRITE(LCPLL_CTL, val);
7964
7965         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7966                 DRM_ERROR("LCPLL not locked yet\n");
7967
7968         if (val & LCPLL_CD_SOURCE_FCLK) {
7969                 val = I915_READ(LCPLL_CTL);
7970                 val &= ~LCPLL_CD_SOURCE_FCLK;
7971                 I915_WRITE(LCPLL_CTL, val);
7972
7973                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7974                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7975                         DRM_ERROR("Switching back to LCPLL failed\n");
7976         }
7977
7978         /* See the big comment above. */
7979         spin_lock_irq(&dev_priv->uncore.lock);
7980         if (--dev_priv->uncore.forcewake_count == 0)
7981                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7982         spin_unlock_irq(&dev_priv->uncore.lock);
7983 }
7984
7985 /*
7986  * Package states C8 and deeper are really deep PC states that can only be
7987  * reached when all the devices on the system allow it, so even if the graphics
7988  * device allows PC8+, it doesn't mean the system will actually get to these
7989  * states. Our driver only allows PC8+ when going into runtime PM.
7990  *
7991  * The requirements for PC8+ are that all the outputs are disabled, the power
7992  * well is disabled and most interrupts are disabled, and these are also
7993  * requirements for runtime PM. When these conditions are met, we manually do
7994  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7995  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7996  * hang the machine.
7997  *
7998  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7999  * the state of some registers, so when we come back from PC8+ we need to
8000  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8001  * need to take care of the registers kept by RC6. Notice that this happens even
8002  * if we don't put the device in PCI D3 state (which is what currently happens
8003  * because of the runtime PM support).
8004  *
8005  * For more, read "Display Sequences for Package C8" on the hardware
8006  * documentation.
8007  */
8008 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8009 {
8010         struct drm_device *dev = dev_priv->dev;
8011         uint32_t val;
8012
8013         DRM_DEBUG_KMS("Enabling package C8+\n");
8014
8015         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8016                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8017                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8018                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8019         }
8020
8021         lpt_disable_clkout_dp(dev);
8022         hsw_disable_lcpll(dev_priv, true, true);
8023 }
8024
8025 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8026 {
8027         struct drm_device *dev = dev_priv->dev;
8028         uint32_t val;
8029
8030         DRM_DEBUG_KMS("Disabling package C8+\n");
8031
8032         hsw_restore_lcpll(dev_priv);
8033         lpt_init_pch_refclk(dev);
8034
8035         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8036                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8037                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8038                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8039         }
8040
8041         intel_prepare_ddi(dev);
8042 }
8043
8044 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
8045 {
8046         if (!intel_ddi_pll_select(crtc))
8047                 return -EINVAL;
8048
8049         crtc->lowfreq_avail = false;
8050
8051         return 0;
8052 }
8053
8054 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8055                                 enum port port,
8056                                 struct intel_crtc_config *pipe_config)
8057 {
8058         u32 temp;
8059
8060         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8061         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8062
8063         switch (pipe_config->ddi_pll_sel) {
8064         case SKL_DPLL1:
8065                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8066                 break;
8067         case SKL_DPLL2:
8068                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8069                 break;
8070         case SKL_DPLL3:
8071                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8072                 break;
8073         }
8074 }
8075
8076 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8077                                 enum port port,
8078                                 struct intel_crtc_config *pipe_config)
8079 {
8080         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8081
8082         switch (pipe_config->ddi_pll_sel) {
8083         case PORT_CLK_SEL_WRPLL1:
8084                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8085                 break;
8086         case PORT_CLK_SEL_WRPLL2:
8087                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8088                 break;
8089         }
8090 }
8091
8092 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8093                                        struct intel_crtc_config *pipe_config)
8094 {
8095         struct drm_device *dev = crtc->base.dev;
8096         struct drm_i915_private *dev_priv = dev->dev_private;
8097         struct intel_shared_dpll *pll;
8098         enum port port;
8099         uint32_t tmp;
8100
8101         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8102
8103         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8104
8105         if (IS_SKYLAKE(dev))
8106                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8107         else
8108                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8109
8110         if (pipe_config->shared_dpll >= 0) {
8111                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8112
8113                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8114                                            &pipe_config->dpll_hw_state));
8115         }
8116
8117         /*
8118          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8119          * DDI E. So just check whether this pipe is wired to DDI E and whether
8120          * the PCH transcoder is on.
8121          */
8122         if (INTEL_INFO(dev)->gen < 9 &&
8123             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8124                 pipe_config->has_pch_encoder = true;
8125
8126                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8127                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8128                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8129
8130                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8131         }
8132 }
8133
8134 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8135                                     struct intel_crtc_config *pipe_config)
8136 {
8137         struct drm_device *dev = crtc->base.dev;
8138         struct drm_i915_private *dev_priv = dev->dev_private;
8139         enum intel_display_power_domain pfit_domain;
8140         uint32_t tmp;
8141
8142         if (!intel_display_power_is_enabled(dev_priv,
8143                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8144                 return false;
8145
8146         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8147         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8148
8149         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8150         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8151                 enum pipe trans_edp_pipe;
8152                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8153                 default:
8154                         WARN(1, "unknown pipe linked to edp transcoder\n");
8155                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8156                 case TRANS_DDI_EDP_INPUT_A_ON:
8157                         trans_edp_pipe = PIPE_A;
8158                         break;
8159                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8160                         trans_edp_pipe = PIPE_B;
8161                         break;
8162                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8163                         trans_edp_pipe = PIPE_C;
8164                         break;
8165                 }
8166
8167                 if (trans_edp_pipe == crtc->pipe)
8168                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8169         }
8170
8171         if (!intel_display_power_is_enabled(dev_priv,
8172                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8173                 return false;
8174
8175         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8176         if (!(tmp & PIPECONF_ENABLE))
8177                 return false;
8178
8179         haswell_get_ddi_port_state(crtc, pipe_config);
8180
8181         intel_get_pipe_timings(crtc, pipe_config);
8182
8183         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8184         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8185                 if (IS_SKYLAKE(dev))
8186                         skylake_get_pfit_config(crtc, pipe_config);
8187                 else
8188                         ironlake_get_pfit_config(crtc, pipe_config);
8189         }
8190
8191         if (IS_HASWELL(dev))
8192                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8193                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8194
8195         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8196                 pipe_config->pixel_multiplier =
8197                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8198         } else {
8199                 pipe_config->pixel_multiplier = 1;
8200         }
8201
8202         return true;
8203 }
8204
8205 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8206 {
8207         struct drm_device *dev = crtc->dev;
8208         struct drm_i915_private *dev_priv = dev->dev_private;
8209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210         uint32_t cntl = 0, size = 0;
8211
8212         if (base) {
8213                 unsigned int width = intel_crtc->cursor_width;
8214                 unsigned int height = intel_crtc->cursor_height;
8215                 unsigned int stride = roundup_pow_of_two(width) * 4;
8216
8217                 switch (stride) {
8218                 default:
8219                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8220                                   width, stride);
8221                         stride = 256;
8222                         /* fallthrough */
8223                 case 256:
8224                 case 512:
8225                 case 1024:
8226                 case 2048:
8227                         break;
8228                 }
8229
8230                 cntl |= CURSOR_ENABLE |
8231                         CURSOR_GAMMA_ENABLE |
8232                         CURSOR_FORMAT_ARGB |
8233                         CURSOR_STRIDE(stride);
8234
8235                 size = (height << 12) | width;
8236         }
8237
8238         if (intel_crtc->cursor_cntl != 0 &&
8239             (intel_crtc->cursor_base != base ||
8240              intel_crtc->cursor_size != size ||
8241              intel_crtc->cursor_cntl != cntl)) {
8242                 /* On these chipsets we can only modify the base/size/stride
8243                  * whilst the cursor is disabled.
8244                  */
8245                 I915_WRITE(_CURACNTR, 0);
8246                 POSTING_READ(_CURACNTR);
8247                 intel_crtc->cursor_cntl = 0;
8248         }
8249
8250         if (intel_crtc->cursor_base != base) {
8251                 I915_WRITE(_CURABASE, base);
8252                 intel_crtc->cursor_base = base;
8253         }
8254
8255         if (intel_crtc->cursor_size != size) {
8256                 I915_WRITE(CURSIZE, size);
8257                 intel_crtc->cursor_size = size;
8258         }
8259
8260         if (intel_crtc->cursor_cntl != cntl) {
8261                 I915_WRITE(_CURACNTR, cntl);
8262                 POSTING_READ(_CURACNTR);
8263                 intel_crtc->cursor_cntl = cntl;
8264         }
8265 }
8266
8267 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8268 {
8269         struct drm_device *dev = crtc->dev;
8270         struct drm_i915_private *dev_priv = dev->dev_private;
8271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8272         int pipe = intel_crtc->pipe;
8273         uint32_t cntl;
8274
8275         cntl = 0;
8276         if (base) {
8277                 cntl = MCURSOR_GAMMA_ENABLE;
8278                 switch (intel_crtc->cursor_width) {
8279                         case 64:
8280                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8281                                 break;
8282                         case 128:
8283                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8284                                 break;
8285                         case 256:
8286                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8287                                 break;
8288                         default:
8289                                 WARN_ON(1);
8290                                 return;
8291                 }
8292                 cntl |= pipe << 28; /* Connect to correct pipe */
8293
8294                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8295                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8296         }
8297
8298         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8299                 cntl |= CURSOR_ROTATE_180;
8300
8301         if (intel_crtc->cursor_cntl != cntl) {
8302                 I915_WRITE(CURCNTR(pipe), cntl);
8303                 POSTING_READ(CURCNTR(pipe));
8304                 intel_crtc->cursor_cntl = cntl;
8305         }
8306
8307         /* and commit changes on next vblank */
8308         I915_WRITE(CURBASE(pipe), base);
8309         POSTING_READ(CURBASE(pipe));
8310
8311         intel_crtc->cursor_base = base;
8312 }
8313
8314 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8315 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8316                                      bool on)
8317 {
8318         struct drm_device *dev = crtc->dev;
8319         struct drm_i915_private *dev_priv = dev->dev_private;
8320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8321         int pipe = intel_crtc->pipe;
8322         int x = crtc->cursor_x;
8323         int y = crtc->cursor_y;
8324         u32 base = 0, pos = 0;
8325
8326         if (on)
8327                 base = intel_crtc->cursor_addr;
8328
8329         if (x >= intel_crtc->config.pipe_src_w)
8330                 base = 0;
8331
8332         if (y >= intel_crtc->config.pipe_src_h)
8333                 base = 0;
8334
8335         if (x < 0) {
8336                 if (x + intel_crtc->cursor_width <= 0)
8337                         base = 0;
8338
8339                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8340                 x = -x;
8341         }
8342         pos |= x << CURSOR_X_SHIFT;
8343
8344         if (y < 0) {
8345                 if (y + intel_crtc->cursor_height <= 0)
8346                         base = 0;
8347
8348                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8349                 y = -y;
8350         }
8351         pos |= y << CURSOR_Y_SHIFT;
8352
8353         if (base == 0 && intel_crtc->cursor_base == 0)
8354                 return;
8355
8356         I915_WRITE(CURPOS(pipe), pos);
8357
8358         /* ILK+ do this automagically */
8359         if (HAS_GMCH_DISPLAY(dev) &&
8360                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8361                 base += (intel_crtc->cursor_height *
8362                         intel_crtc->cursor_width - 1) * 4;
8363         }
8364
8365         if (IS_845G(dev) || IS_I865G(dev))
8366                 i845_update_cursor(crtc, base);
8367         else
8368                 i9xx_update_cursor(crtc, base);
8369 }
8370
8371 static bool cursor_size_ok(struct drm_device *dev,
8372                            uint32_t width, uint32_t height)
8373 {
8374         if (width == 0 || height == 0)
8375                 return false;
8376
8377         /*
8378          * 845g/865g are special in that they are only limited by
8379          * the width of their cursors, the height is arbitrary up to
8380          * the precision of the register. Everything else requires
8381          * square cursors, limited to a few power-of-two sizes.
8382          */
8383         if (IS_845G(dev) || IS_I865G(dev)) {
8384                 if ((width & 63) != 0)
8385                         return false;
8386
8387                 if (width > (IS_845G(dev) ? 64 : 512))
8388                         return false;
8389
8390                 if (height > 1023)
8391                         return false;
8392         } else {
8393                 switch (width | height) {
8394                 case 256:
8395                 case 128:
8396                         if (IS_GEN2(dev))
8397                                 return false;
8398                 case 64:
8399                         break;
8400                 default:
8401                         return false;
8402                 }
8403         }
8404
8405         return true;
8406 }
8407
8408 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8409                                      struct drm_i915_gem_object *obj,
8410                                      uint32_t width, uint32_t height)
8411 {
8412         struct drm_device *dev = crtc->dev;
8413         struct drm_i915_private *dev_priv = to_i915(dev);
8414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8415         enum pipe pipe = intel_crtc->pipe;
8416         unsigned old_width;
8417         uint32_t addr;
8418         int ret;
8419
8420         /* if we want to turn off the cursor ignore width and height */
8421         if (!obj) {
8422                 DRM_DEBUG_KMS("cursor off\n");
8423                 addr = 0;
8424                 mutex_lock(&dev->struct_mutex);
8425                 goto finish;
8426         }
8427
8428         /* we only need to pin inside GTT if cursor is non-phy */
8429         mutex_lock(&dev->struct_mutex);
8430         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8431                 unsigned alignment;
8432
8433                 /*
8434                  * Global gtt pte registers are special registers which actually
8435                  * forward writes to a chunk of system memory. Which means that
8436                  * there is no risk that the register values disappear as soon
8437                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8438                  * only the pin/unpin/fence and not more.
8439                  */
8440                 intel_runtime_pm_get(dev_priv);
8441
8442                 /* Note that the w/a also requires 2 PTE of padding following
8443                  * the bo. We currently fill all unused PTE with the shadow
8444                  * page and so we should always have valid PTE following the
8445                  * cursor preventing the VT-d warning.
8446                  */
8447                 alignment = 0;
8448                 if (need_vtd_wa(dev))
8449                         alignment = 64*1024;
8450
8451                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8452                 if (ret) {
8453                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8454                         intel_runtime_pm_put(dev_priv);
8455                         goto fail_locked;
8456                 }
8457
8458                 ret = i915_gem_object_put_fence(obj);
8459                 if (ret) {
8460                         DRM_DEBUG_KMS("failed to release fence for cursor");
8461                         intel_runtime_pm_put(dev_priv);
8462                         goto fail_unpin;
8463                 }
8464
8465                 addr = i915_gem_obj_ggtt_offset(obj);
8466
8467                 intel_runtime_pm_put(dev_priv);
8468         } else {
8469                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8470                 ret = i915_gem_object_attach_phys(obj, align);
8471                 if (ret) {
8472                         DRM_DEBUG_KMS("failed to attach phys object\n");
8473                         goto fail_locked;
8474                 }
8475                 addr = obj->phys_handle->busaddr;
8476         }
8477
8478  finish:
8479         if (intel_crtc->cursor_bo) {
8480                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8481                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8482         }
8483
8484         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8485                           INTEL_FRONTBUFFER_CURSOR(pipe));
8486         mutex_unlock(&dev->struct_mutex);
8487
8488         old_width = intel_crtc->cursor_width;
8489
8490         intel_crtc->cursor_addr = addr;
8491         intel_crtc->cursor_bo = obj;
8492         intel_crtc->cursor_width = width;
8493         intel_crtc->cursor_height = height;
8494
8495         if (intel_crtc->active) {
8496                 if (old_width != width)
8497                         intel_update_watermarks(crtc);
8498                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8499
8500                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8501         }
8502
8503         return 0;
8504 fail_unpin:
8505         i915_gem_object_unpin_from_display_plane(obj);
8506 fail_locked:
8507         mutex_unlock(&dev->struct_mutex);
8508         return ret;
8509 }
8510
8511 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8512                                  u16 *blue, uint32_t start, uint32_t size)
8513 {
8514         int end = (start + size > 256) ? 256 : start + size, i;
8515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8516
8517         for (i = start; i < end; i++) {
8518                 intel_crtc->lut_r[i] = red[i] >> 8;
8519                 intel_crtc->lut_g[i] = green[i] >> 8;
8520                 intel_crtc->lut_b[i] = blue[i] >> 8;
8521         }
8522
8523         intel_crtc_load_lut(crtc);
8524 }
8525
8526 /* VESA 640x480x72Hz mode to set on the pipe */
8527 static struct drm_display_mode load_detect_mode = {
8528         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8529                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8530 };
8531
8532 struct drm_framebuffer *
8533 __intel_framebuffer_create(struct drm_device *dev,
8534                            struct drm_mode_fb_cmd2 *mode_cmd,
8535                            struct drm_i915_gem_object *obj)
8536 {
8537         struct intel_framebuffer *intel_fb;
8538         int ret;
8539
8540         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8541         if (!intel_fb) {
8542                 drm_gem_object_unreference(&obj->base);
8543                 return ERR_PTR(-ENOMEM);
8544         }
8545
8546         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8547         if (ret)
8548                 goto err;
8549
8550         return &intel_fb->base;
8551 err:
8552         drm_gem_object_unreference(&obj->base);
8553         kfree(intel_fb);
8554
8555         return ERR_PTR(ret);
8556 }
8557
8558 static struct drm_framebuffer *
8559 intel_framebuffer_create(struct drm_device *dev,
8560                          struct drm_mode_fb_cmd2 *mode_cmd,
8561                          struct drm_i915_gem_object *obj)
8562 {
8563         struct drm_framebuffer *fb;
8564         int ret;
8565
8566         ret = i915_mutex_lock_interruptible(dev);
8567         if (ret)
8568                 return ERR_PTR(ret);
8569         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8570         mutex_unlock(&dev->struct_mutex);
8571
8572         return fb;
8573 }
8574
8575 static u32
8576 intel_framebuffer_pitch_for_width(int width, int bpp)
8577 {
8578         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8579         return ALIGN(pitch, 64);
8580 }
8581
8582 static u32
8583 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8584 {
8585         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8586         return PAGE_ALIGN(pitch * mode->vdisplay);
8587 }
8588
8589 static struct drm_framebuffer *
8590 intel_framebuffer_create_for_mode(struct drm_device *dev,
8591                                   struct drm_display_mode *mode,
8592                                   int depth, int bpp)
8593 {
8594         struct drm_i915_gem_object *obj;
8595         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8596
8597         obj = i915_gem_alloc_object(dev,
8598                                     intel_framebuffer_size_for_mode(mode, bpp));
8599         if (obj == NULL)
8600                 return ERR_PTR(-ENOMEM);
8601
8602         mode_cmd.width = mode->hdisplay;
8603         mode_cmd.height = mode->vdisplay;
8604         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8605                                                                 bpp);
8606         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8607
8608         return intel_framebuffer_create(dev, &mode_cmd, obj);
8609 }
8610
8611 static struct drm_framebuffer *
8612 mode_fits_in_fbdev(struct drm_device *dev,
8613                    struct drm_display_mode *mode)
8614 {
8615 #ifdef CONFIG_DRM_I915_FBDEV
8616         struct drm_i915_private *dev_priv = dev->dev_private;
8617         struct drm_i915_gem_object *obj;
8618         struct drm_framebuffer *fb;
8619
8620         if (!dev_priv->fbdev)
8621                 return NULL;
8622
8623         if (!dev_priv->fbdev->fb)
8624                 return NULL;
8625
8626         obj = dev_priv->fbdev->fb->obj;
8627         BUG_ON(!obj);
8628
8629         fb = &dev_priv->fbdev->fb->base;
8630         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8631                                                                fb->bits_per_pixel))
8632                 return NULL;
8633
8634         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8635                 return NULL;
8636
8637         return fb;
8638 #else
8639         return NULL;
8640 #endif
8641 }
8642
8643 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8644                                 struct drm_display_mode *mode,
8645                                 struct intel_load_detect_pipe *old,
8646                                 struct drm_modeset_acquire_ctx *ctx)
8647 {
8648         struct intel_crtc *intel_crtc;
8649         struct intel_encoder *intel_encoder =
8650                 intel_attached_encoder(connector);
8651         struct drm_crtc *possible_crtc;
8652         struct drm_encoder *encoder = &intel_encoder->base;
8653         struct drm_crtc *crtc = NULL;
8654         struct drm_device *dev = encoder->dev;
8655         struct drm_framebuffer *fb;
8656         struct drm_mode_config *config = &dev->mode_config;
8657         int ret, i = -1;
8658
8659         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8660                       connector->base.id, connector->name,
8661                       encoder->base.id, encoder->name);
8662
8663 retry:
8664         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8665         if (ret)
8666                 goto fail_unlock;
8667
8668         /*
8669          * Algorithm gets a little messy:
8670          *
8671          *   - if the connector already has an assigned crtc, use it (but make
8672          *     sure it's on first)
8673          *
8674          *   - try to find the first unused crtc that can drive this connector,
8675          *     and use that if we find one
8676          */
8677
8678         /* See if we already have a CRTC for this connector */
8679         if (encoder->crtc) {
8680                 crtc = encoder->crtc;
8681
8682                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8683                 if (ret)
8684                         goto fail_unlock;
8685                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8686                 if (ret)
8687                         goto fail_unlock;
8688
8689                 old->dpms_mode = connector->dpms;
8690                 old->load_detect_temp = false;
8691
8692                 /* Make sure the crtc and connector are running */
8693                 if (connector->dpms != DRM_MODE_DPMS_ON)
8694                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8695
8696                 return true;
8697         }
8698
8699         /* Find an unused one (if possible) */
8700         for_each_crtc(dev, possible_crtc) {
8701                 i++;
8702                 if (!(encoder->possible_crtcs & (1 << i)))
8703                         continue;
8704                 if (possible_crtc->enabled)
8705                         continue;
8706                 /* This can occur when applying the pipe A quirk on resume. */
8707                 if (to_intel_crtc(possible_crtc)->new_enabled)
8708                         continue;
8709
8710                 crtc = possible_crtc;
8711                 break;
8712         }
8713
8714         /*
8715          * If we didn't find an unused CRTC, don't use any.
8716          */
8717         if (!crtc) {
8718                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8719                 goto fail_unlock;
8720         }
8721
8722         ret = drm_modeset_lock(&crtc->mutex, ctx);
8723         if (ret)
8724                 goto fail_unlock;
8725         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8726         if (ret)
8727                 goto fail_unlock;
8728         intel_encoder->new_crtc = to_intel_crtc(crtc);
8729         to_intel_connector(connector)->new_encoder = intel_encoder;
8730
8731         intel_crtc = to_intel_crtc(crtc);
8732         intel_crtc->new_enabled = true;
8733         intel_crtc->new_config = &intel_crtc->config;
8734         old->dpms_mode = connector->dpms;
8735         old->load_detect_temp = true;
8736         old->release_fb = NULL;
8737
8738         if (!mode)
8739                 mode = &load_detect_mode;
8740
8741         /* We need a framebuffer large enough to accommodate all accesses
8742          * that the plane may generate whilst we perform load detection.
8743          * We can not rely on the fbcon either being present (we get called
8744          * during its initialisation to detect all boot displays, or it may
8745          * not even exist) or that it is large enough to satisfy the
8746          * requested mode.
8747          */
8748         fb = mode_fits_in_fbdev(dev, mode);
8749         if (fb == NULL) {
8750                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8751                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8752                 old->release_fb = fb;
8753         } else
8754                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8755         if (IS_ERR(fb)) {
8756                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8757                 goto fail;
8758         }
8759
8760         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8761                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8762                 if (old->release_fb)
8763                         old->release_fb->funcs->destroy(old->release_fb);
8764                 goto fail;
8765         }
8766
8767         /* let the connector get through one full cycle before testing */
8768         intel_wait_for_vblank(dev, intel_crtc->pipe);
8769         return true;
8770
8771  fail:
8772         intel_crtc->new_enabled = crtc->enabled;
8773         if (intel_crtc->new_enabled)
8774                 intel_crtc->new_config = &intel_crtc->config;
8775         else
8776                 intel_crtc->new_config = NULL;
8777 fail_unlock:
8778         if (ret == -EDEADLK) {
8779                 drm_modeset_backoff(ctx);
8780                 goto retry;
8781         }
8782
8783         return false;
8784 }
8785
8786 void intel_release_load_detect_pipe(struct drm_connector *connector,
8787                                     struct intel_load_detect_pipe *old)
8788 {
8789         struct intel_encoder *intel_encoder =
8790                 intel_attached_encoder(connector);
8791         struct drm_encoder *encoder = &intel_encoder->base;
8792         struct drm_crtc *crtc = encoder->crtc;
8793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8794
8795         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8796                       connector->base.id, connector->name,
8797                       encoder->base.id, encoder->name);
8798
8799         if (old->load_detect_temp) {
8800                 to_intel_connector(connector)->new_encoder = NULL;
8801                 intel_encoder->new_crtc = NULL;
8802                 intel_crtc->new_enabled = false;
8803                 intel_crtc->new_config = NULL;
8804                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8805
8806                 if (old->release_fb) {
8807                         drm_framebuffer_unregister_private(old->release_fb);
8808                         drm_framebuffer_unreference(old->release_fb);
8809                 }
8810
8811                 return;
8812         }
8813
8814         /* Switch crtc and encoder back off if necessary */
8815         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8816                 connector->funcs->dpms(connector, old->dpms_mode);
8817 }
8818
8819 static int i9xx_pll_refclk(struct drm_device *dev,
8820                            const struct intel_crtc_config *pipe_config)
8821 {
8822         struct drm_i915_private *dev_priv = dev->dev_private;
8823         u32 dpll = pipe_config->dpll_hw_state.dpll;
8824
8825         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8826                 return dev_priv->vbt.lvds_ssc_freq;
8827         else if (HAS_PCH_SPLIT(dev))
8828                 return 120000;
8829         else if (!IS_GEN2(dev))
8830                 return 96000;
8831         else
8832                 return 48000;
8833 }
8834
8835 /* Returns the clock of the currently programmed mode of the given pipe. */
8836 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8837                                 struct intel_crtc_config *pipe_config)
8838 {
8839         struct drm_device *dev = crtc->base.dev;
8840         struct drm_i915_private *dev_priv = dev->dev_private;
8841         int pipe = pipe_config->cpu_transcoder;
8842         u32 dpll = pipe_config->dpll_hw_state.dpll;
8843         u32 fp;
8844         intel_clock_t clock;
8845         int refclk = i9xx_pll_refclk(dev, pipe_config);
8846
8847         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8848                 fp = pipe_config->dpll_hw_state.fp0;
8849         else
8850                 fp = pipe_config->dpll_hw_state.fp1;
8851
8852         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8853         if (IS_PINEVIEW(dev)) {
8854                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8855                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8856         } else {
8857                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8858                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8859         }
8860
8861         if (!IS_GEN2(dev)) {
8862                 if (IS_PINEVIEW(dev))
8863                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8864                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8865                 else
8866                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8867                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8868
8869                 switch (dpll & DPLL_MODE_MASK) {
8870                 case DPLLB_MODE_DAC_SERIAL:
8871                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8872                                 5 : 10;
8873                         break;
8874                 case DPLLB_MODE_LVDS:
8875                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8876                                 7 : 14;
8877                         break;
8878                 default:
8879                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8880                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8881                         return;
8882                 }
8883
8884                 if (IS_PINEVIEW(dev))
8885                         pineview_clock(refclk, &clock);
8886                 else
8887                         i9xx_clock(refclk, &clock);
8888         } else {
8889                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8890                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8891
8892                 if (is_lvds) {
8893                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8894                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8895
8896                         if (lvds & LVDS_CLKB_POWER_UP)
8897                                 clock.p2 = 7;
8898                         else
8899                                 clock.p2 = 14;
8900                 } else {
8901                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8902                                 clock.p1 = 2;
8903                         else {
8904                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8905                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8906                         }
8907                         if (dpll & PLL_P2_DIVIDE_BY_4)
8908                                 clock.p2 = 4;
8909                         else
8910                                 clock.p2 = 2;
8911                 }
8912
8913                 i9xx_clock(refclk, &clock);
8914         }
8915
8916         /*
8917          * This value includes pixel_multiplier. We will use
8918          * port_clock to compute adjusted_mode.crtc_clock in the
8919          * encoder's get_config() function.
8920          */
8921         pipe_config->port_clock = clock.dot;
8922 }
8923
8924 int intel_dotclock_calculate(int link_freq,
8925                              const struct intel_link_m_n *m_n)
8926 {
8927         /*
8928          * The calculation for the data clock is:
8929          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8930          * But we want to avoid losing precison if possible, so:
8931          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8932          *
8933          * and the link clock is simpler:
8934          * link_clock = (m * link_clock) / n
8935          */
8936
8937         if (!m_n->link_n)
8938                 return 0;
8939
8940         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8941 }
8942
8943 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8944                                    struct intel_crtc_config *pipe_config)
8945 {
8946         struct drm_device *dev = crtc->base.dev;
8947
8948         /* read out port_clock from the DPLL */
8949         i9xx_crtc_clock_get(crtc, pipe_config);
8950
8951         /*
8952          * This value does not include pixel_multiplier.
8953          * We will check that port_clock and adjusted_mode.crtc_clock
8954          * agree once we know their relationship in the encoder's
8955          * get_config() function.
8956          */
8957         pipe_config->adjusted_mode.crtc_clock =
8958                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8959                                          &pipe_config->fdi_m_n);
8960 }
8961
8962 /** Returns the currently programmed mode of the given pipe. */
8963 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8964                                              struct drm_crtc *crtc)
8965 {
8966         struct drm_i915_private *dev_priv = dev->dev_private;
8967         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8968         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8969         struct drm_display_mode *mode;
8970         struct intel_crtc_config pipe_config;
8971         int htot = I915_READ(HTOTAL(cpu_transcoder));
8972         int hsync = I915_READ(HSYNC(cpu_transcoder));
8973         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8974         int vsync = I915_READ(VSYNC(cpu_transcoder));
8975         enum pipe pipe = intel_crtc->pipe;
8976
8977         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8978         if (!mode)
8979                 return NULL;
8980
8981         /*
8982          * Construct a pipe_config sufficient for getting the clock info
8983          * back out of crtc_clock_get.
8984          *
8985          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8986          * to use a real value here instead.
8987          */
8988         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8989         pipe_config.pixel_multiplier = 1;
8990         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8991         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8992         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8993         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8994
8995         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8996         mode->hdisplay = (htot & 0xffff) + 1;
8997         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8998         mode->hsync_start = (hsync & 0xffff) + 1;
8999         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9000         mode->vdisplay = (vtot & 0xffff) + 1;
9001         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9002         mode->vsync_start = (vsync & 0xffff) + 1;
9003         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9004
9005         drm_mode_set_name(mode);
9006
9007         return mode;
9008 }
9009
9010 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9011 {
9012         struct drm_device *dev = crtc->dev;
9013         struct drm_i915_private *dev_priv = dev->dev_private;
9014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9015
9016         if (!HAS_GMCH_DISPLAY(dev))
9017                 return;
9018
9019         if (!dev_priv->lvds_downclock_avail)
9020                 return;
9021
9022         /*
9023          * Since this is called by a timer, we should never get here in
9024          * the manual case.
9025          */
9026         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9027                 int pipe = intel_crtc->pipe;
9028                 int dpll_reg = DPLL(pipe);
9029                 int dpll;
9030
9031                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9032
9033                 assert_panel_unlocked(dev_priv, pipe);
9034
9035                 dpll = I915_READ(dpll_reg);
9036                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9037                 I915_WRITE(dpll_reg, dpll);
9038                 intel_wait_for_vblank(dev, pipe);
9039                 dpll = I915_READ(dpll_reg);
9040                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9041                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9042         }
9043
9044 }
9045
9046 void intel_mark_busy(struct drm_device *dev)
9047 {
9048         struct drm_i915_private *dev_priv = dev->dev_private;
9049
9050         if (dev_priv->mm.busy)
9051                 return;
9052
9053         intel_runtime_pm_get(dev_priv);
9054         i915_update_gfx_val(dev_priv);
9055         dev_priv->mm.busy = true;
9056 }
9057
9058 void intel_mark_idle(struct drm_device *dev)
9059 {
9060         struct drm_i915_private *dev_priv = dev->dev_private;
9061         struct drm_crtc *crtc;
9062
9063         if (!dev_priv->mm.busy)
9064                 return;
9065
9066         dev_priv->mm.busy = false;
9067
9068         if (!i915.powersave)
9069                 goto out;
9070
9071         for_each_crtc(dev, crtc) {
9072                 if (!crtc->primary->fb)
9073                         continue;
9074
9075                 intel_decrease_pllclock(crtc);
9076         }
9077
9078         if (INTEL_INFO(dev)->gen >= 6)
9079                 gen6_rps_idle(dev->dev_private);
9080
9081 out:
9082         intel_runtime_pm_put(dev_priv);
9083 }
9084
9085 static void intel_crtc_destroy(struct drm_crtc *crtc)
9086 {
9087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9088         struct drm_device *dev = crtc->dev;
9089         struct intel_unpin_work *work;
9090
9091         spin_lock_irq(&dev->event_lock);
9092         work = intel_crtc->unpin_work;
9093         intel_crtc->unpin_work = NULL;
9094         spin_unlock_irq(&dev->event_lock);
9095
9096         if (work) {
9097                 cancel_work_sync(&work->work);
9098                 kfree(work);
9099         }
9100
9101         drm_crtc_cleanup(crtc);
9102
9103         kfree(intel_crtc);
9104 }
9105
9106 static void intel_unpin_work_fn(struct work_struct *__work)
9107 {
9108         struct intel_unpin_work *work =
9109                 container_of(__work, struct intel_unpin_work, work);
9110         struct drm_device *dev = work->crtc->dev;
9111         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9112
9113         mutex_lock(&dev->struct_mutex);
9114         intel_unpin_fb_obj(work->old_fb_obj);
9115         drm_gem_object_unreference(&work->pending_flip_obj->base);
9116         drm_gem_object_unreference(&work->old_fb_obj->base);
9117
9118         intel_update_fbc(dev);
9119         mutex_unlock(&dev->struct_mutex);
9120
9121         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9122
9123         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9124         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9125
9126         kfree(work);
9127 }
9128
9129 static void do_intel_finish_page_flip(struct drm_device *dev,
9130                                       struct drm_crtc *crtc)
9131 {
9132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9133         struct intel_unpin_work *work;
9134         unsigned long flags;
9135
9136         /* Ignore early vblank irqs */
9137         if (intel_crtc == NULL)
9138                 return;
9139
9140         /*
9141          * This is called both by irq handlers and the reset code (to complete
9142          * lost pageflips) so needs the full irqsave spinlocks.
9143          */
9144         spin_lock_irqsave(&dev->event_lock, flags);
9145         work = intel_crtc->unpin_work;
9146
9147         /* Ensure we don't miss a work->pending update ... */
9148         smp_rmb();
9149
9150         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9151                 spin_unlock_irqrestore(&dev->event_lock, flags);
9152                 return;
9153         }
9154
9155         page_flip_completed(intel_crtc);
9156
9157         spin_unlock_irqrestore(&dev->event_lock, flags);
9158 }
9159
9160 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9161 {
9162         struct drm_i915_private *dev_priv = dev->dev_private;
9163         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9164
9165         do_intel_finish_page_flip(dev, crtc);
9166 }
9167
9168 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9169 {
9170         struct drm_i915_private *dev_priv = dev->dev_private;
9171         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9172
9173         do_intel_finish_page_flip(dev, crtc);
9174 }
9175
9176 /* Is 'a' after or equal to 'b'? */
9177 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9178 {
9179         return !((a - b) & 0x80000000);
9180 }
9181
9182 static bool page_flip_finished(struct intel_crtc *crtc)
9183 {
9184         struct drm_device *dev = crtc->base.dev;
9185         struct drm_i915_private *dev_priv = dev->dev_private;
9186
9187         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9188             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9189                 return true;
9190
9191         /*
9192          * The relevant registers doen't exist on pre-ctg.
9193          * As the flip done interrupt doesn't trigger for mmio
9194          * flips on gmch platforms, a flip count check isn't
9195          * really needed there. But since ctg has the registers,
9196          * include it in the check anyway.
9197          */
9198         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9199                 return true;
9200
9201         /*
9202          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9203          * used the same base address. In that case the mmio flip might
9204          * have completed, but the CS hasn't even executed the flip yet.
9205          *
9206          * A flip count check isn't enough as the CS might have updated
9207          * the base address just after start of vblank, but before we
9208          * managed to process the interrupt. This means we'd complete the
9209          * CS flip too soon.
9210          *
9211          * Combining both checks should get us a good enough result. It may
9212          * still happen that the CS flip has been executed, but has not
9213          * yet actually completed. But in case the base address is the same
9214          * anyway, we don't really care.
9215          */
9216         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9217                 crtc->unpin_work->gtt_offset &&
9218                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9219                                     crtc->unpin_work->flip_count);
9220 }
9221
9222 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9223 {
9224         struct drm_i915_private *dev_priv = dev->dev_private;
9225         struct intel_crtc *intel_crtc =
9226                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9227         unsigned long flags;
9228
9229
9230         /*
9231          * This is called both by irq handlers and the reset code (to complete
9232          * lost pageflips) so needs the full irqsave spinlocks.
9233          *
9234          * NB: An MMIO update of the plane base pointer will also
9235          * generate a page-flip completion irq, i.e. every modeset
9236          * is also accompanied by a spurious intel_prepare_page_flip().
9237          */
9238         spin_lock_irqsave(&dev->event_lock, flags);
9239         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9240                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9241         spin_unlock_irqrestore(&dev->event_lock, flags);
9242 }
9243
9244 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9245 {
9246         /* Ensure that the work item is consistent when activating it ... */
9247         smp_wmb();
9248         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9249         /* and that it is marked active as soon as the irq could fire. */
9250         smp_wmb();
9251 }
9252
9253 static int intel_gen2_queue_flip(struct drm_device *dev,
9254                                  struct drm_crtc *crtc,
9255                                  struct drm_framebuffer *fb,
9256                                  struct drm_i915_gem_object *obj,
9257                                  struct intel_engine_cs *ring,
9258                                  uint32_t flags)
9259 {
9260         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9261         u32 flip_mask;
9262         int ret;
9263
9264         ret = intel_ring_begin(ring, 6);
9265         if (ret)
9266                 return ret;
9267
9268         /* Can't queue multiple flips, so wait for the previous
9269          * one to finish before executing the next.
9270          */
9271         if (intel_crtc->plane)
9272                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9273         else
9274                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9275         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9276         intel_ring_emit(ring, MI_NOOP);
9277         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9278                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9279         intel_ring_emit(ring, fb->pitches[0]);
9280         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9281         intel_ring_emit(ring, 0); /* aux display base address, unused */
9282
9283         intel_mark_page_flip_active(intel_crtc);
9284         __intel_ring_advance(ring);
9285         return 0;
9286 }
9287
9288 static int intel_gen3_queue_flip(struct drm_device *dev,
9289                                  struct drm_crtc *crtc,
9290                                  struct drm_framebuffer *fb,
9291                                  struct drm_i915_gem_object *obj,
9292                                  struct intel_engine_cs *ring,
9293                                  uint32_t flags)
9294 {
9295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9296         u32 flip_mask;
9297         int ret;
9298
9299         ret = intel_ring_begin(ring, 6);
9300         if (ret)
9301                 return ret;
9302
9303         if (intel_crtc->plane)
9304                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9305         else
9306                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9307         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9308         intel_ring_emit(ring, MI_NOOP);
9309         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9310                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9311         intel_ring_emit(ring, fb->pitches[0]);
9312         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9313         intel_ring_emit(ring, MI_NOOP);
9314
9315         intel_mark_page_flip_active(intel_crtc);
9316         __intel_ring_advance(ring);
9317         return 0;
9318 }
9319
9320 static int intel_gen4_queue_flip(struct drm_device *dev,
9321                                  struct drm_crtc *crtc,
9322                                  struct drm_framebuffer *fb,
9323                                  struct drm_i915_gem_object *obj,
9324                                  struct intel_engine_cs *ring,
9325                                  uint32_t flags)
9326 {
9327         struct drm_i915_private *dev_priv = dev->dev_private;
9328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9329         uint32_t pf, pipesrc;
9330         int ret;
9331
9332         ret = intel_ring_begin(ring, 4);
9333         if (ret)
9334                 return ret;
9335
9336         /* i965+ uses the linear or tiled offsets from the
9337          * Display Registers (which do not change across a page-flip)
9338          * so we need only reprogram the base address.
9339          */
9340         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9341                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9342         intel_ring_emit(ring, fb->pitches[0]);
9343         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9344                         obj->tiling_mode);
9345
9346         /* XXX Enabling the panel-fitter across page-flip is so far
9347          * untested on non-native modes, so ignore it for now.
9348          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9349          */
9350         pf = 0;
9351         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9352         intel_ring_emit(ring, pf | pipesrc);
9353
9354         intel_mark_page_flip_active(intel_crtc);
9355         __intel_ring_advance(ring);
9356         return 0;
9357 }
9358
9359 static int intel_gen6_queue_flip(struct drm_device *dev,
9360                                  struct drm_crtc *crtc,
9361                                  struct drm_framebuffer *fb,
9362                                  struct drm_i915_gem_object *obj,
9363                                  struct intel_engine_cs *ring,
9364                                  uint32_t flags)
9365 {
9366         struct drm_i915_private *dev_priv = dev->dev_private;
9367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9368         uint32_t pf, pipesrc;
9369         int ret;
9370
9371         ret = intel_ring_begin(ring, 4);
9372         if (ret)
9373                 return ret;
9374
9375         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9376                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9377         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9378         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9379
9380         /* Contrary to the suggestions in the documentation,
9381          * "Enable Panel Fitter" does not seem to be required when page
9382          * flipping with a non-native mode, and worse causes a normal
9383          * modeset to fail.
9384          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9385          */
9386         pf = 0;
9387         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9388         intel_ring_emit(ring, pf | pipesrc);
9389
9390         intel_mark_page_flip_active(intel_crtc);
9391         __intel_ring_advance(ring);
9392         return 0;
9393 }
9394
9395 static int intel_gen7_queue_flip(struct drm_device *dev,
9396                                  struct drm_crtc *crtc,
9397                                  struct drm_framebuffer *fb,
9398                                  struct drm_i915_gem_object *obj,
9399                                  struct intel_engine_cs *ring,
9400                                  uint32_t flags)
9401 {
9402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9403         uint32_t plane_bit = 0;
9404         int len, ret;
9405
9406         switch (intel_crtc->plane) {
9407         case PLANE_A:
9408                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9409                 break;
9410         case PLANE_B:
9411                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9412                 break;
9413         case PLANE_C:
9414                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9415                 break;
9416         default:
9417                 WARN_ONCE(1, "unknown plane in flip command\n");
9418                 return -ENODEV;
9419         }
9420
9421         len = 4;
9422         if (ring->id == RCS) {
9423                 len += 6;
9424                 /*
9425                  * On Gen 8, SRM is now taking an extra dword to accommodate
9426                  * 48bits addresses, and we need a NOOP for the batch size to
9427                  * stay even.
9428                  */
9429                 if (IS_GEN8(dev))
9430                         len += 2;
9431         }
9432
9433         /*
9434          * BSpec MI_DISPLAY_FLIP for IVB:
9435          * "The full packet must be contained within the same cache line."
9436          *
9437          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9438          * cacheline, if we ever start emitting more commands before
9439          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9440          * then do the cacheline alignment, and finally emit the
9441          * MI_DISPLAY_FLIP.
9442          */
9443         ret = intel_ring_cacheline_align(ring);
9444         if (ret)
9445                 return ret;
9446
9447         ret = intel_ring_begin(ring, len);
9448         if (ret)
9449                 return ret;
9450
9451         /* Unmask the flip-done completion message. Note that the bspec says that
9452          * we should do this for both the BCS and RCS, and that we must not unmask
9453          * more than one flip event at any time (or ensure that one flip message
9454          * can be sent by waiting for flip-done prior to queueing new flips).
9455          * Experimentation says that BCS works despite DERRMR masking all
9456          * flip-done completion events and that unmasking all planes at once
9457          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9458          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9459          */
9460         if (ring->id == RCS) {
9461                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9462                 intel_ring_emit(ring, DERRMR);
9463                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9464                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9465                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9466                 if (IS_GEN8(dev))
9467                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9468                                               MI_SRM_LRM_GLOBAL_GTT);
9469                 else
9470                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9471                                               MI_SRM_LRM_GLOBAL_GTT);
9472                 intel_ring_emit(ring, DERRMR);
9473                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9474                 if (IS_GEN8(dev)) {
9475                         intel_ring_emit(ring, 0);
9476                         intel_ring_emit(ring, MI_NOOP);
9477                 }
9478         }
9479
9480         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9481         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9482         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9483         intel_ring_emit(ring, (MI_NOOP));
9484
9485         intel_mark_page_flip_active(intel_crtc);
9486         __intel_ring_advance(ring);
9487         return 0;
9488 }
9489
9490 static bool use_mmio_flip(struct intel_engine_cs *ring,
9491                           struct drm_i915_gem_object *obj)
9492 {
9493         /*
9494          * This is not being used for older platforms, because
9495          * non-availability of flip done interrupt forces us to use
9496          * CS flips. Older platforms derive flip done using some clever
9497          * tricks involving the flip_pending status bits and vblank irqs.
9498          * So using MMIO flips there would disrupt this mechanism.
9499          */
9500
9501         if (ring == NULL)
9502                 return true;
9503
9504         if (INTEL_INFO(ring->dev)->gen < 5)
9505                 return false;
9506
9507         if (i915.use_mmio_flip < 0)
9508                 return false;
9509         else if (i915.use_mmio_flip > 0)
9510                 return true;
9511         else if (i915.enable_execlists)
9512                 return true;
9513         else
9514                 return ring != obj->ring;
9515 }
9516
9517 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9518 {
9519         struct drm_device *dev = intel_crtc->base.dev;
9520         struct drm_i915_private *dev_priv = dev->dev_private;
9521         struct intel_framebuffer *intel_fb =
9522                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9523         struct drm_i915_gem_object *obj = intel_fb->obj;
9524         bool atomic_update;
9525         u32 start_vbl_count;
9526         u32 dspcntr;
9527         u32 reg;
9528
9529         intel_mark_page_flip_active(intel_crtc);
9530
9531         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9532
9533         reg = DSPCNTR(intel_crtc->plane);
9534         dspcntr = I915_READ(reg);
9535
9536         if (obj->tiling_mode != I915_TILING_NONE)
9537                 dspcntr |= DISPPLANE_TILED;
9538         else
9539                 dspcntr &= ~DISPPLANE_TILED;
9540
9541         I915_WRITE(reg, dspcntr);
9542
9543         I915_WRITE(DSPSURF(intel_crtc->plane),
9544                    intel_crtc->unpin_work->gtt_offset);
9545         POSTING_READ(DSPSURF(intel_crtc->plane));
9546
9547         if (atomic_update)
9548                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9549 }
9550
9551 static void intel_mmio_flip_work_func(struct work_struct *work)
9552 {
9553         struct intel_crtc *intel_crtc =
9554                 container_of(work, struct intel_crtc, mmio_flip.work);
9555         struct intel_engine_cs *ring;
9556         uint32_t seqno;
9557
9558         seqno = intel_crtc->mmio_flip.seqno;
9559         ring = intel_crtc->mmio_flip.ring;
9560
9561         if (seqno)
9562                 WARN_ON(__i915_wait_seqno(ring, seqno,
9563                                           intel_crtc->reset_counter,
9564                                           false, NULL, NULL) != 0);
9565
9566         intel_do_mmio_flip(intel_crtc);
9567 }
9568
9569 static int intel_queue_mmio_flip(struct drm_device *dev,
9570                                  struct drm_crtc *crtc,
9571                                  struct drm_framebuffer *fb,
9572                                  struct drm_i915_gem_object *obj,
9573                                  struct intel_engine_cs *ring,
9574                                  uint32_t flags)
9575 {
9576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9577
9578         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9579         intel_crtc->mmio_flip.ring = obj->ring;
9580
9581         schedule_work(&intel_crtc->mmio_flip.work);
9582
9583         return 0;
9584 }
9585
9586 static int intel_gen9_queue_flip(struct drm_device *dev,
9587                                  struct drm_crtc *crtc,
9588                                  struct drm_framebuffer *fb,
9589                                  struct drm_i915_gem_object *obj,
9590                                  struct intel_engine_cs *ring,
9591                                  uint32_t flags)
9592 {
9593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594         uint32_t plane = 0, stride;
9595         int ret;
9596
9597         switch(intel_crtc->pipe) {
9598         case PIPE_A:
9599                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9600                 break;
9601         case PIPE_B:
9602                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9603                 break;
9604         case PIPE_C:
9605                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9606                 break;
9607         default:
9608                 WARN_ONCE(1, "unknown plane in flip command\n");
9609                 return -ENODEV;
9610         }
9611
9612         switch (obj->tiling_mode) {
9613         case I915_TILING_NONE:
9614                 stride = fb->pitches[0] >> 6;
9615                 break;
9616         case I915_TILING_X:
9617                 stride = fb->pitches[0] >> 9;
9618                 break;
9619         default:
9620                 WARN_ONCE(1, "unknown tiling in flip command\n");
9621                 return -ENODEV;
9622         }
9623
9624         ret = intel_ring_begin(ring, 10);
9625         if (ret)
9626                 return ret;
9627
9628         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9629         intel_ring_emit(ring, DERRMR);
9630         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9631                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9632                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9633         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9634                               MI_SRM_LRM_GLOBAL_GTT);
9635         intel_ring_emit(ring, DERRMR);
9636         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9637         intel_ring_emit(ring, 0);
9638
9639         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9640         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9641         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9642
9643         intel_mark_page_flip_active(intel_crtc);
9644         __intel_ring_advance(ring);
9645
9646         return 0;
9647 }
9648
9649 static int intel_default_queue_flip(struct drm_device *dev,
9650                                     struct drm_crtc *crtc,
9651                                     struct drm_framebuffer *fb,
9652                                     struct drm_i915_gem_object *obj,
9653                                     struct intel_engine_cs *ring,
9654                                     uint32_t flags)
9655 {
9656         return -ENODEV;
9657 }
9658
9659 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9660                                          struct drm_crtc *crtc)
9661 {
9662         struct drm_i915_private *dev_priv = dev->dev_private;
9663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9664         struct intel_unpin_work *work = intel_crtc->unpin_work;
9665         u32 addr;
9666
9667         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9668                 return true;
9669
9670         if (!work->enable_stall_check)
9671                 return false;
9672
9673         if (work->flip_ready_vblank == 0) {
9674                 if (work->flip_queued_ring &&
9675                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9676                                        work->flip_queued_seqno))
9677                         return false;
9678
9679                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9680         }
9681
9682         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9683                 return false;
9684
9685         /* Potential stall - if we see that the flip has happened,
9686          * assume a missed interrupt. */
9687         if (INTEL_INFO(dev)->gen >= 4)
9688                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9689         else
9690                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9691
9692         /* There is a potential issue here with a false positive after a flip
9693          * to the same address. We could address this by checking for a
9694          * non-incrementing frame counter.
9695          */
9696         return addr == work->gtt_offset;
9697 }
9698
9699 void intel_check_page_flip(struct drm_device *dev, int pipe)
9700 {
9701         struct drm_i915_private *dev_priv = dev->dev_private;
9702         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9704
9705         WARN_ON(!in_irq());
9706
9707         if (crtc == NULL)
9708                 return;
9709
9710         spin_lock(&dev->event_lock);
9711         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9712                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9713                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9714                 page_flip_completed(intel_crtc);
9715         }
9716         spin_unlock(&dev->event_lock);
9717 }
9718
9719 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9720                                 struct drm_framebuffer *fb,
9721                                 struct drm_pending_vblank_event *event,
9722                                 uint32_t page_flip_flags)
9723 {
9724         struct drm_device *dev = crtc->dev;
9725         struct drm_i915_private *dev_priv = dev->dev_private;
9726         struct drm_framebuffer *old_fb = crtc->primary->fb;
9727         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9729         enum pipe pipe = intel_crtc->pipe;
9730         struct intel_unpin_work *work;
9731         struct intel_engine_cs *ring;
9732         int ret;
9733
9734         /*
9735          * drm_mode_page_flip_ioctl() should already catch this, but double
9736          * check to be safe.  In the future we may enable pageflipping from
9737          * a disabled primary plane.
9738          */
9739         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9740                 return -EBUSY;
9741
9742         /* Can't change pixel format via MI display flips. */
9743         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9744                 return -EINVAL;
9745
9746         /*
9747          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9748          * Note that pitch changes could also affect these register.
9749          */
9750         if (INTEL_INFO(dev)->gen > 3 &&
9751             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9752              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9753                 return -EINVAL;
9754
9755         if (i915_terminally_wedged(&dev_priv->gpu_error))
9756                 goto out_hang;
9757
9758         work = kzalloc(sizeof(*work), GFP_KERNEL);
9759         if (work == NULL)
9760                 return -ENOMEM;
9761
9762         work->event = event;
9763         work->crtc = crtc;
9764         work->old_fb_obj = intel_fb_obj(old_fb);
9765         INIT_WORK(&work->work, intel_unpin_work_fn);
9766
9767         ret = drm_crtc_vblank_get(crtc);
9768         if (ret)
9769                 goto free_work;
9770
9771         /* We borrow the event spin lock for protecting unpin_work */
9772         spin_lock_irq(&dev->event_lock);
9773         if (intel_crtc->unpin_work) {
9774                 /* Before declaring the flip queue wedged, check if
9775                  * the hardware completed the operation behind our backs.
9776                  */
9777                 if (__intel_pageflip_stall_check(dev, crtc)) {
9778                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9779                         page_flip_completed(intel_crtc);
9780                 } else {
9781                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9782                         spin_unlock_irq(&dev->event_lock);
9783
9784                         drm_crtc_vblank_put(crtc);
9785                         kfree(work);
9786                         return -EBUSY;
9787                 }
9788         }
9789         intel_crtc->unpin_work = work;
9790         spin_unlock_irq(&dev->event_lock);
9791
9792         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9793                 flush_workqueue(dev_priv->wq);
9794
9795         ret = i915_mutex_lock_interruptible(dev);
9796         if (ret)
9797                 goto cleanup;
9798
9799         /* Reference the objects for the scheduled work. */
9800         drm_gem_object_reference(&work->old_fb_obj->base);
9801         drm_gem_object_reference(&obj->base);
9802
9803         crtc->primary->fb = fb;
9804
9805         work->pending_flip_obj = obj;
9806
9807         atomic_inc(&intel_crtc->unpin_work_count);
9808         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9809
9810         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9811                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9812
9813         if (IS_VALLEYVIEW(dev)) {
9814                 ring = &dev_priv->ring[BCS];
9815                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9816                         /* vlv: DISPLAY_FLIP fails to change tiling */
9817                         ring = NULL;
9818         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9819                 ring = &dev_priv->ring[BCS];
9820         } else if (INTEL_INFO(dev)->gen >= 7) {
9821                 ring = obj->ring;
9822                 if (ring == NULL || ring->id != RCS)
9823                         ring = &dev_priv->ring[BCS];
9824         } else {
9825                 ring = &dev_priv->ring[RCS];
9826         }
9827
9828         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9829         if (ret)
9830                 goto cleanup_pending;
9831
9832         work->gtt_offset =
9833                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9834
9835         if (use_mmio_flip(ring, obj)) {
9836                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9837                                             page_flip_flags);
9838                 if (ret)
9839                         goto cleanup_unpin;
9840
9841                 work->flip_queued_seqno = obj->last_write_seqno;
9842                 work->flip_queued_ring = obj->ring;
9843         } else {
9844                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9845                                                    page_flip_flags);
9846                 if (ret)
9847                         goto cleanup_unpin;
9848
9849                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9850                 work->flip_queued_ring = ring;
9851         }
9852
9853         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9854         work->enable_stall_check = true;
9855
9856         i915_gem_track_fb(work->old_fb_obj, obj,
9857                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9858
9859         intel_disable_fbc(dev);
9860         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9861         mutex_unlock(&dev->struct_mutex);
9862
9863         trace_i915_flip_request(intel_crtc->plane, obj);
9864
9865         return 0;
9866
9867 cleanup_unpin:
9868         intel_unpin_fb_obj(obj);
9869 cleanup_pending:
9870         atomic_dec(&intel_crtc->unpin_work_count);
9871         crtc->primary->fb = old_fb;
9872         drm_gem_object_unreference(&work->old_fb_obj->base);
9873         drm_gem_object_unreference(&obj->base);
9874         mutex_unlock(&dev->struct_mutex);
9875
9876 cleanup:
9877         spin_lock_irq(&dev->event_lock);
9878         intel_crtc->unpin_work = NULL;
9879         spin_unlock_irq(&dev->event_lock);
9880
9881         drm_crtc_vblank_put(crtc);
9882 free_work:
9883         kfree(work);
9884
9885         if (ret == -EIO) {
9886 out_hang:
9887                 intel_crtc_wait_for_pending_flips(crtc);
9888                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9889                 if (ret == 0 && event) {
9890                         spin_lock_irq(&dev->event_lock);
9891                         drm_send_vblank_event(dev, pipe, event);
9892                         spin_unlock_irq(&dev->event_lock);
9893                 }
9894         }
9895         return ret;
9896 }
9897
9898 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9899         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9900         .load_lut = intel_crtc_load_lut,
9901 };
9902
9903 /**
9904  * intel_modeset_update_staged_output_state
9905  *
9906  * Updates the staged output configuration state, e.g. after we've read out the
9907  * current hw state.
9908  */
9909 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9910 {
9911         struct intel_crtc *crtc;
9912         struct intel_encoder *encoder;
9913         struct intel_connector *connector;
9914
9915         list_for_each_entry(connector, &dev->mode_config.connector_list,
9916                             base.head) {
9917                 connector->new_encoder =
9918                         to_intel_encoder(connector->base.encoder);
9919         }
9920
9921         for_each_intel_encoder(dev, encoder) {
9922                 encoder->new_crtc =
9923                         to_intel_crtc(encoder->base.crtc);
9924         }
9925
9926         for_each_intel_crtc(dev, crtc) {
9927                 crtc->new_enabled = crtc->base.enabled;
9928
9929                 if (crtc->new_enabled)
9930                         crtc->new_config = &crtc->config;
9931                 else
9932                         crtc->new_config = NULL;
9933         }
9934 }
9935
9936 /**
9937  * intel_modeset_commit_output_state
9938  *
9939  * This function copies the stage display pipe configuration to the real one.
9940  */
9941 static void intel_modeset_commit_output_state(struct drm_device *dev)
9942 {
9943         struct intel_crtc *crtc;
9944         struct intel_encoder *encoder;
9945         struct intel_connector *connector;
9946
9947         list_for_each_entry(connector, &dev->mode_config.connector_list,
9948                             base.head) {
9949                 connector->base.encoder = &connector->new_encoder->base;
9950         }
9951
9952         for_each_intel_encoder(dev, encoder) {
9953                 encoder->base.crtc = &encoder->new_crtc->base;
9954         }
9955
9956         for_each_intel_crtc(dev, crtc) {
9957                 crtc->base.enabled = crtc->new_enabled;
9958         }
9959 }
9960
9961 static void
9962 connected_sink_compute_bpp(struct intel_connector *connector,
9963                            struct intel_crtc_config *pipe_config)
9964 {
9965         int bpp = pipe_config->pipe_bpp;
9966
9967         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9968                 connector->base.base.id,
9969                 connector->base.name);
9970
9971         /* Don't use an invalid EDID bpc value */
9972         if (connector->base.display_info.bpc &&
9973             connector->base.display_info.bpc * 3 < bpp) {
9974                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9975                               bpp, connector->base.display_info.bpc*3);
9976                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9977         }
9978
9979         /* Clamp bpp to 8 on screens without EDID 1.4 */
9980         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9981                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9982                               bpp);
9983                 pipe_config->pipe_bpp = 24;
9984         }
9985 }
9986
9987 static int
9988 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9989                           struct drm_framebuffer *fb,
9990                           struct intel_crtc_config *pipe_config)
9991 {
9992         struct drm_device *dev = crtc->base.dev;
9993         struct intel_connector *connector;
9994         int bpp;
9995
9996         switch (fb->pixel_format) {
9997         case DRM_FORMAT_C8:
9998                 bpp = 8*3; /* since we go through a colormap */
9999                 break;
10000         case DRM_FORMAT_XRGB1555:
10001         case DRM_FORMAT_ARGB1555:
10002                 /* checked in intel_framebuffer_init already */
10003                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10004                         return -EINVAL;
10005         case DRM_FORMAT_RGB565:
10006                 bpp = 6*3; /* min is 18bpp */
10007                 break;
10008         case DRM_FORMAT_XBGR8888:
10009         case DRM_FORMAT_ABGR8888:
10010                 /* checked in intel_framebuffer_init already */
10011                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10012                         return -EINVAL;
10013         case DRM_FORMAT_XRGB8888:
10014         case DRM_FORMAT_ARGB8888:
10015                 bpp = 8*3;
10016                 break;
10017         case DRM_FORMAT_XRGB2101010:
10018         case DRM_FORMAT_ARGB2101010:
10019         case DRM_FORMAT_XBGR2101010:
10020         case DRM_FORMAT_ABGR2101010:
10021                 /* checked in intel_framebuffer_init already */
10022                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10023                         return -EINVAL;
10024                 bpp = 10*3;
10025                 break;
10026         /* TODO: gen4+ supports 16 bpc floating point, too. */
10027         default:
10028                 DRM_DEBUG_KMS("unsupported depth\n");
10029                 return -EINVAL;
10030         }
10031
10032         pipe_config->pipe_bpp = bpp;
10033
10034         /* Clamp display bpp to EDID value */
10035         list_for_each_entry(connector, &dev->mode_config.connector_list,
10036                             base.head) {
10037                 if (!connector->new_encoder ||
10038                     connector->new_encoder->new_crtc != crtc)
10039                         continue;
10040
10041                 connected_sink_compute_bpp(connector, pipe_config);
10042         }
10043
10044         return bpp;
10045 }
10046
10047 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10048 {
10049         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10050                         "type: 0x%x flags: 0x%x\n",
10051                 mode->crtc_clock,
10052                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10053                 mode->crtc_hsync_end, mode->crtc_htotal,
10054                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10055                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10056 }
10057
10058 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10059                                    struct intel_crtc_config *pipe_config,
10060                                    const char *context)
10061 {
10062         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10063                       context, pipe_name(crtc->pipe));
10064
10065         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10066         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10067                       pipe_config->pipe_bpp, pipe_config->dither);
10068         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10069                       pipe_config->has_pch_encoder,
10070                       pipe_config->fdi_lanes,
10071                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10072                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10073                       pipe_config->fdi_m_n.tu);
10074         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10075                       pipe_config->has_dp_encoder,
10076                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10077                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10078                       pipe_config->dp_m_n.tu);
10079
10080         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10081                       pipe_config->has_dp_encoder,
10082                       pipe_config->dp_m2_n2.gmch_m,
10083                       pipe_config->dp_m2_n2.gmch_n,
10084                       pipe_config->dp_m2_n2.link_m,
10085                       pipe_config->dp_m2_n2.link_n,
10086                       pipe_config->dp_m2_n2.tu);
10087
10088         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10089                       pipe_config->has_audio,
10090                       pipe_config->has_infoframe);
10091
10092         DRM_DEBUG_KMS("requested mode:\n");
10093         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10094         DRM_DEBUG_KMS("adjusted mode:\n");
10095         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10096         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10097         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10098         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10099                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10100         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10101                       pipe_config->gmch_pfit.control,
10102                       pipe_config->gmch_pfit.pgm_ratios,
10103                       pipe_config->gmch_pfit.lvds_border_bits);
10104         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10105                       pipe_config->pch_pfit.pos,
10106                       pipe_config->pch_pfit.size,
10107                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10108         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10109         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10110 }
10111
10112 static bool encoders_cloneable(const struct intel_encoder *a,
10113                                const struct intel_encoder *b)
10114 {
10115         /* masks could be asymmetric, so check both ways */
10116         return a == b || (a->cloneable & (1 << b->type) &&
10117                           b->cloneable & (1 << a->type));
10118 }
10119
10120 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10121                                          struct intel_encoder *encoder)
10122 {
10123         struct drm_device *dev = crtc->base.dev;
10124         struct intel_encoder *source_encoder;
10125
10126         for_each_intel_encoder(dev, source_encoder) {
10127                 if (source_encoder->new_crtc != crtc)
10128                         continue;
10129
10130                 if (!encoders_cloneable(encoder, source_encoder))
10131                         return false;
10132         }
10133
10134         return true;
10135 }
10136
10137 static bool check_encoder_cloning(struct intel_crtc *crtc)
10138 {
10139         struct drm_device *dev = crtc->base.dev;
10140         struct intel_encoder *encoder;
10141
10142         for_each_intel_encoder(dev, encoder) {
10143                 if (encoder->new_crtc != crtc)
10144                         continue;
10145
10146                 if (!check_single_encoder_cloning(crtc, encoder))
10147                         return false;
10148         }
10149
10150         return true;
10151 }
10152
10153 static bool check_digital_port_conflicts(struct drm_device *dev)
10154 {
10155         struct intel_connector *connector;
10156         unsigned int used_ports = 0;
10157
10158         /*
10159          * Walk the connector list instead of the encoder
10160          * list to detect the problem on ddi platforms
10161          * where there's just one encoder per digital port.
10162          */
10163         list_for_each_entry(connector,
10164                             &dev->mode_config.connector_list, base.head) {
10165                 struct intel_encoder *encoder = connector->new_encoder;
10166
10167                 if (!encoder)
10168                         continue;
10169
10170                 WARN_ON(!encoder->new_crtc);
10171
10172                 switch (encoder->type) {
10173                         unsigned int port_mask;
10174                 case INTEL_OUTPUT_UNKNOWN:
10175                         if (WARN_ON(!HAS_DDI(dev)))
10176                                 break;
10177                 case INTEL_OUTPUT_DISPLAYPORT:
10178                 case INTEL_OUTPUT_HDMI:
10179                 case INTEL_OUTPUT_EDP:
10180                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10181
10182                         /* the same port mustn't appear more than once */
10183                         if (used_ports & port_mask)
10184                                 return false;
10185
10186                         used_ports |= port_mask;
10187                 default:
10188                         break;
10189                 }
10190         }
10191
10192         return true;
10193 }
10194
10195 static struct intel_crtc_config *
10196 intel_modeset_pipe_config(struct drm_crtc *crtc,
10197                           struct drm_framebuffer *fb,
10198                           struct drm_display_mode *mode)
10199 {
10200         struct drm_device *dev = crtc->dev;
10201         struct intel_encoder *encoder;
10202         struct intel_crtc_config *pipe_config;
10203         int plane_bpp, ret = -EINVAL;
10204         bool retry = true;
10205
10206         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10207                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10208                 return ERR_PTR(-EINVAL);
10209         }
10210
10211         if (!check_digital_port_conflicts(dev)) {
10212                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10213                 return ERR_PTR(-EINVAL);
10214         }
10215
10216         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10217         if (!pipe_config)
10218                 return ERR_PTR(-ENOMEM);
10219
10220         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10221         drm_mode_copy(&pipe_config->requested_mode, mode);
10222
10223         pipe_config->cpu_transcoder =
10224                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10225         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10226
10227         /*
10228          * Sanitize sync polarity flags based on requested ones. If neither
10229          * positive or negative polarity is requested, treat this as meaning
10230          * negative polarity.
10231          */
10232         if (!(pipe_config->adjusted_mode.flags &
10233               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10234                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10235
10236         if (!(pipe_config->adjusted_mode.flags &
10237               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10238                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10239
10240         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10241          * plane pixel format and any sink constraints into account. Returns the
10242          * source plane bpp so that dithering can be selected on mismatches
10243          * after encoders and crtc also have had their say. */
10244         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10245                                               fb, pipe_config);
10246         if (plane_bpp < 0)
10247                 goto fail;
10248
10249         /*
10250          * Determine the real pipe dimensions. Note that stereo modes can
10251          * increase the actual pipe size due to the frame doubling and
10252          * insertion of additional space for blanks between the frame. This
10253          * is stored in the crtc timings. We use the requested mode to do this
10254          * computation to clearly distinguish it from the adjusted mode, which
10255          * can be changed by the connectors in the below retry loop.
10256          */
10257         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10258         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10259         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10260
10261 encoder_retry:
10262         /* Ensure the port clock defaults are reset when retrying. */
10263         pipe_config->port_clock = 0;
10264         pipe_config->pixel_multiplier = 1;
10265
10266         /* Fill in default crtc timings, allow encoders to overwrite them. */
10267         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10268
10269         /* Pass our mode to the connectors and the CRTC to give them a chance to
10270          * adjust it according to limitations or connector properties, and also
10271          * a chance to reject the mode entirely.
10272          */
10273         for_each_intel_encoder(dev, encoder) {
10274
10275                 if (&encoder->new_crtc->base != crtc)
10276                         continue;
10277
10278                 if (!(encoder->compute_config(encoder, pipe_config))) {
10279                         DRM_DEBUG_KMS("Encoder config failure\n");
10280                         goto fail;
10281                 }
10282         }
10283
10284         /* Set default port clock if not overwritten by the encoder. Needs to be
10285          * done afterwards in case the encoder adjusts the mode. */
10286         if (!pipe_config->port_clock)
10287                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10288                         * pipe_config->pixel_multiplier;
10289
10290         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10291         if (ret < 0) {
10292                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10293                 goto fail;
10294         }
10295
10296         if (ret == RETRY) {
10297                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10298                         ret = -EINVAL;
10299                         goto fail;
10300                 }
10301
10302                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10303                 retry = false;
10304                 goto encoder_retry;
10305         }
10306
10307         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10308         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10309                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10310
10311         return pipe_config;
10312 fail:
10313         kfree(pipe_config);
10314         return ERR_PTR(ret);
10315 }
10316
10317 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10318  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10319 static void
10320 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10321                              unsigned *prepare_pipes, unsigned *disable_pipes)
10322 {
10323         struct intel_crtc *intel_crtc;
10324         struct drm_device *dev = crtc->dev;
10325         struct intel_encoder *encoder;
10326         struct intel_connector *connector;
10327         struct drm_crtc *tmp_crtc;
10328
10329         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10330
10331         /* Check which crtcs have changed outputs connected to them, these need
10332          * to be part of the prepare_pipes mask. We don't (yet) support global
10333          * modeset across multiple crtcs, so modeset_pipes will only have one
10334          * bit set at most. */
10335         list_for_each_entry(connector, &dev->mode_config.connector_list,
10336                             base.head) {
10337                 if (connector->base.encoder == &connector->new_encoder->base)
10338                         continue;
10339
10340                 if (connector->base.encoder) {
10341                         tmp_crtc = connector->base.encoder->crtc;
10342
10343                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10344                 }
10345
10346                 if (connector->new_encoder)
10347                         *prepare_pipes |=
10348                                 1 << connector->new_encoder->new_crtc->pipe;
10349         }
10350
10351         for_each_intel_encoder(dev, encoder) {
10352                 if (encoder->base.crtc == &encoder->new_crtc->base)
10353                         continue;
10354
10355                 if (encoder->base.crtc) {
10356                         tmp_crtc = encoder->base.crtc;
10357
10358                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10359                 }
10360
10361                 if (encoder->new_crtc)
10362                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10363         }
10364
10365         /* Check for pipes that will be enabled/disabled ... */
10366         for_each_intel_crtc(dev, intel_crtc) {
10367                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10368                         continue;
10369
10370                 if (!intel_crtc->new_enabled)
10371                         *disable_pipes |= 1 << intel_crtc->pipe;
10372                 else
10373                         *prepare_pipes |= 1 << intel_crtc->pipe;
10374         }
10375
10376
10377         /* set_mode is also used to update properties on life display pipes. */
10378         intel_crtc = to_intel_crtc(crtc);
10379         if (intel_crtc->new_enabled)
10380                 *prepare_pipes |= 1 << intel_crtc->pipe;
10381
10382         /*
10383          * For simplicity do a full modeset on any pipe where the output routing
10384          * changed. We could be more clever, but that would require us to be
10385          * more careful with calling the relevant encoder->mode_set functions.
10386          */
10387         if (*prepare_pipes)
10388                 *modeset_pipes = *prepare_pipes;
10389
10390         /* ... and mask these out. */
10391         *modeset_pipes &= ~(*disable_pipes);
10392         *prepare_pipes &= ~(*disable_pipes);
10393
10394         /*
10395          * HACK: We don't (yet) fully support global modesets. intel_set_config
10396          * obies this rule, but the modeset restore mode of
10397          * intel_modeset_setup_hw_state does not.
10398          */
10399         *modeset_pipes &= 1 << intel_crtc->pipe;
10400         *prepare_pipes &= 1 << intel_crtc->pipe;
10401
10402         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10403                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10404 }
10405
10406 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10407 {
10408         struct drm_encoder *encoder;
10409         struct drm_device *dev = crtc->dev;
10410
10411         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10412                 if (encoder->crtc == crtc)
10413                         return true;
10414
10415         return false;
10416 }
10417
10418 static void
10419 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10420 {
10421         struct drm_i915_private *dev_priv = dev->dev_private;
10422         struct intel_encoder *intel_encoder;
10423         struct intel_crtc *intel_crtc;
10424         struct drm_connector *connector;
10425
10426         intel_shared_dpll_commit(dev_priv);
10427
10428         for_each_intel_encoder(dev, intel_encoder) {
10429                 if (!intel_encoder->base.crtc)
10430                         continue;
10431
10432                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10433
10434                 if (prepare_pipes & (1 << intel_crtc->pipe))
10435                         intel_encoder->connectors_active = false;
10436         }
10437
10438         intel_modeset_commit_output_state(dev);
10439
10440         /* Double check state. */
10441         for_each_intel_crtc(dev, intel_crtc) {
10442                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10443                 WARN_ON(intel_crtc->new_config &&
10444                         intel_crtc->new_config != &intel_crtc->config);
10445                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10446         }
10447
10448         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10449                 if (!connector->encoder || !connector->encoder->crtc)
10450                         continue;
10451
10452                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10453
10454                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10455                         struct drm_property *dpms_property =
10456                                 dev->mode_config.dpms_property;
10457
10458                         connector->dpms = DRM_MODE_DPMS_ON;
10459                         drm_object_property_set_value(&connector->base,
10460                                                          dpms_property,
10461                                                          DRM_MODE_DPMS_ON);
10462
10463                         intel_encoder = to_intel_encoder(connector->encoder);
10464                         intel_encoder->connectors_active = true;
10465                 }
10466         }
10467
10468 }
10469
10470 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10471 {
10472         int diff;
10473
10474         if (clock1 == clock2)
10475                 return true;
10476
10477         if (!clock1 || !clock2)
10478                 return false;
10479
10480         diff = abs(clock1 - clock2);
10481
10482         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10483                 return true;
10484
10485         return false;
10486 }
10487
10488 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10489         list_for_each_entry((intel_crtc), \
10490                             &(dev)->mode_config.crtc_list, \
10491                             base.head) \
10492                 if (mask & (1 <<(intel_crtc)->pipe))
10493
10494 static bool
10495 intel_pipe_config_compare(struct drm_device *dev,
10496                           struct intel_crtc_config *current_config,
10497                           struct intel_crtc_config *pipe_config)
10498 {
10499 #define PIPE_CONF_CHECK_X(name) \
10500         if (current_config->name != pipe_config->name) { \
10501                 DRM_ERROR("mismatch in " #name " " \
10502                           "(expected 0x%08x, found 0x%08x)\n", \
10503                           current_config->name, \
10504                           pipe_config->name); \
10505                 return false; \
10506         }
10507
10508 #define PIPE_CONF_CHECK_I(name) \
10509         if (current_config->name != pipe_config->name) { \
10510                 DRM_ERROR("mismatch in " #name " " \
10511                           "(expected %i, found %i)\n", \
10512                           current_config->name, \
10513                           pipe_config->name); \
10514                 return false; \
10515         }
10516
10517 /* This is required for BDW+ where there is only one set of registers for
10518  * switching between high and low RR.
10519  * This macro can be used whenever a comparison has to be made between one
10520  * hw state and multiple sw state variables.
10521  */
10522 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10523         if ((current_config->name != pipe_config->name) && \
10524                 (current_config->alt_name != pipe_config->name)) { \
10525                         DRM_ERROR("mismatch in " #name " " \
10526                                   "(expected %i or %i, found %i)\n", \
10527                                   current_config->name, \
10528                                   current_config->alt_name, \
10529                                   pipe_config->name); \
10530                         return false; \
10531         }
10532
10533 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10534         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10535                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10536                           "(expected %i, found %i)\n", \
10537                           current_config->name & (mask), \
10538                           pipe_config->name & (mask)); \
10539                 return false; \
10540         }
10541
10542 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10543         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10544                 DRM_ERROR("mismatch in " #name " " \
10545                           "(expected %i, found %i)\n", \
10546                           current_config->name, \
10547                           pipe_config->name); \
10548                 return false; \
10549         }
10550
10551 #define PIPE_CONF_QUIRK(quirk)  \
10552         ((current_config->quirks | pipe_config->quirks) & (quirk))
10553
10554         PIPE_CONF_CHECK_I(cpu_transcoder);
10555
10556         PIPE_CONF_CHECK_I(has_pch_encoder);
10557         PIPE_CONF_CHECK_I(fdi_lanes);
10558         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10559         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10560         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10561         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10562         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10563
10564         PIPE_CONF_CHECK_I(has_dp_encoder);
10565
10566         if (INTEL_INFO(dev)->gen < 8) {
10567                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10568                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10569                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10570                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10571                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10572
10573                 if (current_config->has_drrs) {
10574                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10575                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10576                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10577                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10578                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10579                 }
10580         } else {
10581                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10582                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10583                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10584                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10585                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10586         }
10587
10588         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10589         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10590         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10591         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10592         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10593         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10594
10595         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10596         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10597         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10598         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10599         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10600         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10601
10602         PIPE_CONF_CHECK_I(pixel_multiplier);
10603         PIPE_CONF_CHECK_I(has_hdmi_sink);
10604         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10605             IS_VALLEYVIEW(dev))
10606                 PIPE_CONF_CHECK_I(limited_color_range);
10607         PIPE_CONF_CHECK_I(has_infoframe);
10608
10609         PIPE_CONF_CHECK_I(has_audio);
10610
10611         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10612                               DRM_MODE_FLAG_INTERLACE);
10613
10614         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10615                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10616                                       DRM_MODE_FLAG_PHSYNC);
10617                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10618                                       DRM_MODE_FLAG_NHSYNC);
10619                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10620                                       DRM_MODE_FLAG_PVSYNC);
10621                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10622                                       DRM_MODE_FLAG_NVSYNC);
10623         }
10624
10625         PIPE_CONF_CHECK_I(pipe_src_w);
10626         PIPE_CONF_CHECK_I(pipe_src_h);
10627
10628         /*
10629          * FIXME: BIOS likes to set up a cloned config with lvds+external
10630          * screen. Since we don't yet re-compute the pipe config when moving
10631          * just the lvds port away to another pipe the sw tracking won't match.
10632          *
10633          * Proper atomic modesets with recomputed global state will fix this.
10634          * Until then just don't check gmch state for inherited modes.
10635          */
10636         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10637                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10638                 /* pfit ratios are autocomputed by the hw on gen4+ */
10639                 if (INTEL_INFO(dev)->gen < 4)
10640                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10641                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10642         }
10643
10644         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10645         if (current_config->pch_pfit.enabled) {
10646                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10647                 PIPE_CONF_CHECK_I(pch_pfit.size);
10648         }
10649
10650         /* BDW+ don't expose a synchronous way to read the state */
10651         if (IS_HASWELL(dev))
10652                 PIPE_CONF_CHECK_I(ips_enabled);
10653
10654         PIPE_CONF_CHECK_I(double_wide);
10655
10656         PIPE_CONF_CHECK_X(ddi_pll_sel);
10657
10658         PIPE_CONF_CHECK_I(shared_dpll);
10659         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10660         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10661         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10662         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10663         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10664         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10665         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10666         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10667
10668         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10669                 PIPE_CONF_CHECK_I(pipe_bpp);
10670
10671         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10672         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10673
10674 #undef PIPE_CONF_CHECK_X
10675 #undef PIPE_CONF_CHECK_I
10676 #undef PIPE_CONF_CHECK_I_ALT
10677 #undef PIPE_CONF_CHECK_FLAGS
10678 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10679 #undef PIPE_CONF_QUIRK
10680
10681         return true;
10682 }
10683
10684 static void check_wm_state(struct drm_device *dev)
10685 {
10686         struct drm_i915_private *dev_priv = dev->dev_private;
10687         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10688         struct intel_crtc *intel_crtc;
10689         int plane;
10690
10691         if (INTEL_INFO(dev)->gen < 9)
10692                 return;
10693
10694         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10695         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10696
10697         for_each_intel_crtc(dev, intel_crtc) {
10698                 struct skl_ddb_entry *hw_entry, *sw_entry;
10699                 const enum pipe pipe = intel_crtc->pipe;
10700
10701                 if (!intel_crtc->active)
10702                         continue;
10703
10704                 /* planes */
10705                 for_each_plane(pipe, plane) {
10706                         hw_entry = &hw_ddb.plane[pipe][plane];
10707                         sw_entry = &sw_ddb->plane[pipe][plane];
10708
10709                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10710                                 continue;
10711
10712                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10713                                   "(expected (%u,%u), found (%u,%u))\n",
10714                                   pipe_name(pipe), plane + 1,
10715                                   sw_entry->start, sw_entry->end,
10716                                   hw_entry->start, hw_entry->end);
10717                 }
10718
10719                 /* cursor */
10720                 hw_entry = &hw_ddb.cursor[pipe];
10721                 sw_entry = &sw_ddb->cursor[pipe];
10722
10723                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10724                         continue;
10725
10726                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10727                           "(expected (%u,%u), found (%u,%u))\n",
10728                           pipe_name(pipe),
10729                           sw_entry->start, sw_entry->end,
10730                           hw_entry->start, hw_entry->end);
10731         }
10732 }
10733
10734 static void
10735 check_connector_state(struct drm_device *dev)
10736 {
10737         struct intel_connector *connector;
10738
10739         list_for_each_entry(connector, &dev->mode_config.connector_list,
10740                             base.head) {
10741                 /* This also checks the encoder/connector hw state with the
10742                  * ->get_hw_state callbacks. */
10743                 intel_connector_check_state(connector);
10744
10745                 WARN(&connector->new_encoder->base != connector->base.encoder,
10746                      "connector's staged encoder doesn't match current encoder\n");
10747         }
10748 }
10749
10750 static void
10751 check_encoder_state(struct drm_device *dev)
10752 {
10753         struct intel_encoder *encoder;
10754         struct intel_connector *connector;
10755
10756         for_each_intel_encoder(dev, encoder) {
10757                 bool enabled = false;
10758                 bool active = false;
10759                 enum pipe pipe, tracked_pipe;
10760
10761                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10762                               encoder->base.base.id,
10763                               encoder->base.name);
10764
10765                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10766                      "encoder's stage crtc doesn't match current crtc\n");
10767                 WARN(encoder->connectors_active && !encoder->base.crtc,
10768                      "encoder's active_connectors set, but no crtc\n");
10769
10770                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10771                                     base.head) {
10772                         if (connector->base.encoder != &encoder->base)
10773                                 continue;
10774                         enabled = true;
10775                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10776                                 active = true;
10777                 }
10778                 /*
10779                  * for MST connectors if we unplug the connector is gone
10780                  * away but the encoder is still connected to a crtc
10781                  * until a modeset happens in response to the hotplug.
10782                  */
10783                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10784                         continue;
10785
10786                 WARN(!!encoder->base.crtc != enabled,
10787                      "encoder's enabled state mismatch "
10788                      "(expected %i, found %i)\n",
10789                      !!encoder->base.crtc, enabled);
10790                 WARN(active && !encoder->base.crtc,
10791                      "active encoder with no crtc\n");
10792
10793                 WARN(encoder->connectors_active != active,
10794                      "encoder's computed active state doesn't match tracked active state "
10795                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10796
10797                 active = encoder->get_hw_state(encoder, &pipe);
10798                 WARN(active != encoder->connectors_active,
10799                      "encoder's hw state doesn't match sw tracking "
10800                      "(expected %i, found %i)\n",
10801                      encoder->connectors_active, active);
10802
10803                 if (!encoder->base.crtc)
10804                         continue;
10805
10806                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10807                 WARN(active && pipe != tracked_pipe,
10808                      "active encoder's pipe doesn't match"
10809                      "(expected %i, found %i)\n",
10810                      tracked_pipe, pipe);
10811
10812         }
10813 }
10814
10815 static void
10816 check_crtc_state(struct drm_device *dev)
10817 {
10818         struct drm_i915_private *dev_priv = dev->dev_private;
10819         struct intel_crtc *crtc;
10820         struct intel_encoder *encoder;
10821         struct intel_crtc_config pipe_config;
10822
10823         for_each_intel_crtc(dev, crtc) {
10824                 bool enabled = false;
10825                 bool active = false;
10826
10827                 memset(&pipe_config, 0, sizeof(pipe_config));
10828
10829                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10830                               crtc->base.base.id);
10831
10832                 WARN(crtc->active && !crtc->base.enabled,
10833                      "active crtc, but not enabled in sw tracking\n");
10834
10835                 for_each_intel_encoder(dev, encoder) {
10836                         if (encoder->base.crtc != &crtc->base)
10837                                 continue;
10838                         enabled = true;
10839                         if (encoder->connectors_active)
10840                                 active = true;
10841                 }
10842
10843                 WARN(active != crtc->active,
10844                      "crtc's computed active state doesn't match tracked active state "
10845                      "(expected %i, found %i)\n", active, crtc->active);
10846                 WARN(enabled != crtc->base.enabled,
10847                      "crtc's computed enabled state doesn't match tracked enabled state "
10848                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10849
10850                 active = dev_priv->display.get_pipe_config(crtc,
10851                                                            &pipe_config);
10852
10853                 /* hw state is inconsistent with the pipe quirk */
10854                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10855                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10856                         active = crtc->active;
10857
10858                 for_each_intel_encoder(dev, encoder) {
10859                         enum pipe pipe;
10860                         if (encoder->base.crtc != &crtc->base)
10861                                 continue;
10862                         if (encoder->get_hw_state(encoder, &pipe))
10863                                 encoder->get_config(encoder, &pipe_config);
10864                 }
10865
10866                 WARN(crtc->active != active,
10867                      "crtc active state doesn't match with hw state "
10868                      "(expected %i, found %i)\n", crtc->active, active);
10869
10870                 if (active &&
10871                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10872                         WARN(1, "pipe state doesn't match!\n");
10873                         intel_dump_pipe_config(crtc, &pipe_config,
10874                                                "[hw state]");
10875                         intel_dump_pipe_config(crtc, &crtc->config,
10876                                                "[sw state]");
10877                 }
10878         }
10879 }
10880
10881 static void
10882 check_shared_dpll_state(struct drm_device *dev)
10883 {
10884         struct drm_i915_private *dev_priv = dev->dev_private;
10885         struct intel_crtc *crtc;
10886         struct intel_dpll_hw_state dpll_hw_state;
10887         int i;
10888
10889         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10890                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10891                 int enabled_crtcs = 0, active_crtcs = 0;
10892                 bool active;
10893
10894                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10895
10896                 DRM_DEBUG_KMS("%s\n", pll->name);
10897
10898                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10899
10900                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10901                      "more active pll users than references: %i vs %i\n",
10902                      pll->active, hweight32(pll->config.crtc_mask));
10903                 WARN(pll->active && !pll->on,
10904                      "pll in active use but not on in sw tracking\n");
10905                 WARN(pll->on && !pll->active,
10906                      "pll in on but not on in use in sw tracking\n");
10907                 WARN(pll->on != active,
10908                      "pll on state mismatch (expected %i, found %i)\n",
10909                      pll->on, active);
10910
10911                 for_each_intel_crtc(dev, crtc) {
10912                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10913                                 enabled_crtcs++;
10914                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10915                                 active_crtcs++;
10916                 }
10917                 WARN(pll->active != active_crtcs,
10918                      "pll active crtcs mismatch (expected %i, found %i)\n",
10919                      pll->active, active_crtcs);
10920                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10921                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10922                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10923
10924                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10925                                        sizeof(dpll_hw_state)),
10926                      "pll hw state mismatch\n");
10927         }
10928 }
10929
10930 void
10931 intel_modeset_check_state(struct drm_device *dev)
10932 {
10933         check_wm_state(dev);
10934         check_connector_state(dev);
10935         check_encoder_state(dev);
10936         check_crtc_state(dev);
10937         check_shared_dpll_state(dev);
10938 }
10939
10940 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10941                                      int dotclock)
10942 {
10943         /*
10944          * FDI already provided one idea for the dotclock.
10945          * Yell if the encoder disagrees.
10946          */
10947         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10948              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10949              pipe_config->adjusted_mode.crtc_clock, dotclock);
10950 }
10951
10952 static void update_scanline_offset(struct intel_crtc *crtc)
10953 {
10954         struct drm_device *dev = crtc->base.dev;
10955
10956         /*
10957          * The scanline counter increments at the leading edge of hsync.
10958          *
10959          * On most platforms it starts counting from vtotal-1 on the
10960          * first active line. That means the scanline counter value is
10961          * always one less than what we would expect. Ie. just after
10962          * start of vblank, which also occurs at start of hsync (on the
10963          * last active line), the scanline counter will read vblank_start-1.
10964          *
10965          * On gen2 the scanline counter starts counting from 1 instead
10966          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10967          * to keep the value positive), instead of adding one.
10968          *
10969          * On HSW+ the behaviour of the scanline counter depends on the output
10970          * type. For DP ports it behaves like most other platforms, but on HDMI
10971          * there's an extra 1 line difference. So we need to add two instead of
10972          * one to the value.
10973          */
10974         if (IS_GEN2(dev)) {
10975                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10976                 int vtotal;
10977
10978                 vtotal = mode->crtc_vtotal;
10979                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10980                         vtotal /= 2;
10981
10982                 crtc->scanline_offset = vtotal - 1;
10983         } else if (HAS_DDI(dev) &&
10984                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10985                 crtc->scanline_offset = 2;
10986         } else
10987                 crtc->scanline_offset = 1;
10988 }
10989
10990 static struct intel_crtc_config *
10991 intel_modeset_compute_config(struct drm_crtc *crtc,
10992                              struct drm_display_mode *mode,
10993                              struct drm_framebuffer *fb,
10994                              unsigned *modeset_pipes,
10995                              unsigned *prepare_pipes,
10996                              unsigned *disable_pipes)
10997 {
10998         struct intel_crtc_config *pipe_config = NULL;
10999
11000         intel_modeset_affected_pipes(crtc, modeset_pipes,
11001                                      prepare_pipes, disable_pipes);
11002
11003         if ((*modeset_pipes) == 0)
11004                 goto out;
11005
11006         /*
11007          * Note this needs changes when we start tracking multiple modes
11008          * and crtcs.  At that point we'll need to compute the whole config
11009          * (i.e. one pipe_config for each crtc) rather than just the one
11010          * for this crtc.
11011          */
11012         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11013         if (IS_ERR(pipe_config)) {
11014                 goto out;
11015         }
11016         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11017                                "[modeset]");
11018
11019 out:
11020         return pipe_config;
11021 }
11022
11023 static int __intel_set_mode(struct drm_crtc *crtc,
11024                             struct drm_display_mode *mode,
11025                             int x, int y, struct drm_framebuffer *fb,
11026                             struct intel_crtc_config *pipe_config,
11027                             unsigned modeset_pipes,
11028                             unsigned prepare_pipes,
11029                             unsigned disable_pipes)
11030 {
11031         struct drm_device *dev = crtc->dev;
11032         struct drm_i915_private *dev_priv = dev->dev_private;
11033         struct drm_display_mode *saved_mode;
11034         struct intel_crtc *intel_crtc;
11035         int ret = 0;
11036
11037         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11038         if (!saved_mode)
11039                 return -ENOMEM;
11040
11041         *saved_mode = crtc->mode;
11042
11043         if (modeset_pipes)
11044                 to_intel_crtc(crtc)->new_config = pipe_config;
11045
11046         /*
11047          * See if the config requires any additional preparation, e.g.
11048          * to adjust global state with pipes off.  We need to do this
11049          * here so we can get the modeset_pipe updated config for the new
11050          * mode set on this crtc.  For other crtcs we need to use the
11051          * adjusted_mode bits in the crtc directly.
11052          */
11053         if (IS_VALLEYVIEW(dev)) {
11054                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11055
11056                 /* may have added more to prepare_pipes than we should */
11057                 prepare_pipes &= ~disable_pipes;
11058         }
11059
11060         if (dev_priv->display.crtc_compute_clock) {
11061                 unsigned clear_pipes = modeset_pipes | disable_pipes;
11062
11063                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11064                 if (ret)
11065                         goto done;
11066
11067                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11068                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
11069                         if (ret) {
11070                                 intel_shared_dpll_abort_config(dev_priv);
11071                                 goto done;
11072                         }
11073                 }
11074         }
11075
11076         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11077                 intel_crtc_disable(&intel_crtc->base);
11078
11079         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11080                 if (intel_crtc->base.enabled)
11081                         dev_priv->display.crtc_disable(&intel_crtc->base);
11082         }
11083
11084         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11085          * to set it here already despite that we pass it down the callchain.
11086          *
11087          * Note we'll need to fix this up when we start tracking multiple
11088          * pipes; here we assume a single modeset_pipe and only track the
11089          * single crtc and mode.
11090          */
11091         if (modeset_pipes) {
11092                 crtc->mode = *mode;
11093                 /* mode_set/enable/disable functions rely on a correct pipe
11094                  * config. */
11095                 to_intel_crtc(crtc)->config = *pipe_config;
11096                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11097
11098                 /*
11099                  * Calculate and store various constants which
11100                  * are later needed by vblank and swap-completion
11101                  * timestamping. They are derived from true hwmode.
11102                  */
11103                 drm_calc_timestamping_constants(crtc,
11104                                                 &pipe_config->adjusted_mode);
11105         }
11106
11107         /* Only after disabling all output pipelines that will be changed can we
11108          * update the the output configuration. */
11109         intel_modeset_update_state(dev, prepare_pipes);
11110
11111         modeset_update_crtc_power_domains(dev);
11112
11113         /* Set up the DPLL and any encoders state that needs to adjust or depend
11114          * on the DPLL.
11115          */
11116         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11117                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11118                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11119                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11120
11121                 mutex_lock(&dev->struct_mutex);
11122                 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
11123                 if (ret != 0) {
11124                         DRM_ERROR("pin & fence failed\n");
11125                         mutex_unlock(&dev->struct_mutex);
11126                         goto done;
11127                 }
11128                 if (old_fb)
11129                         intel_unpin_fb_obj(old_obj);
11130                 i915_gem_track_fb(old_obj, obj,
11131                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11132                 mutex_unlock(&dev->struct_mutex);
11133
11134                 crtc->primary->fb = fb;
11135                 crtc->x = x;
11136                 crtc->y = y;
11137         }
11138
11139         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11140         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11141                 update_scanline_offset(intel_crtc);
11142
11143                 dev_priv->display.crtc_enable(&intel_crtc->base);
11144         }
11145
11146         /* FIXME: add subpixel order */
11147 done:
11148         if (ret && crtc->enabled)
11149                 crtc->mode = *saved_mode;
11150
11151         kfree(pipe_config);
11152         kfree(saved_mode);
11153         return ret;
11154 }
11155
11156 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11157                                 struct drm_display_mode *mode,
11158                                 int x, int y, struct drm_framebuffer *fb,
11159                                 struct intel_crtc_config *pipe_config,
11160                                 unsigned modeset_pipes,
11161                                 unsigned prepare_pipes,
11162                                 unsigned disable_pipes)
11163 {
11164         int ret;
11165
11166         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11167                                prepare_pipes, disable_pipes);
11168
11169         if (ret == 0)
11170                 intel_modeset_check_state(crtc->dev);
11171
11172         return ret;
11173 }
11174
11175 static int intel_set_mode(struct drm_crtc *crtc,
11176                           struct drm_display_mode *mode,
11177                           int x, int y, struct drm_framebuffer *fb)
11178 {
11179         struct intel_crtc_config *pipe_config;
11180         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11181
11182         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11183                                                    &modeset_pipes,
11184                                                    &prepare_pipes,
11185                                                    &disable_pipes);
11186
11187         if (IS_ERR(pipe_config))
11188                 return PTR_ERR(pipe_config);
11189
11190         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11191                                     modeset_pipes, prepare_pipes,
11192                                     disable_pipes);
11193 }
11194
11195 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11196 {
11197         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11198 }
11199
11200 #undef for_each_intel_crtc_masked
11201
11202 static void intel_set_config_free(struct intel_set_config *config)
11203 {
11204         if (!config)
11205                 return;
11206
11207         kfree(config->save_connector_encoders);
11208         kfree(config->save_encoder_crtcs);
11209         kfree(config->save_crtc_enabled);
11210         kfree(config);
11211 }
11212
11213 static int intel_set_config_save_state(struct drm_device *dev,
11214                                        struct intel_set_config *config)
11215 {
11216         struct drm_crtc *crtc;
11217         struct drm_encoder *encoder;
11218         struct drm_connector *connector;
11219         int count;
11220
11221         config->save_crtc_enabled =
11222                 kcalloc(dev->mode_config.num_crtc,
11223                         sizeof(bool), GFP_KERNEL);
11224         if (!config->save_crtc_enabled)
11225                 return -ENOMEM;
11226
11227         config->save_encoder_crtcs =
11228                 kcalloc(dev->mode_config.num_encoder,
11229                         sizeof(struct drm_crtc *), GFP_KERNEL);
11230         if (!config->save_encoder_crtcs)
11231                 return -ENOMEM;
11232
11233         config->save_connector_encoders =
11234                 kcalloc(dev->mode_config.num_connector,
11235                         sizeof(struct drm_encoder *), GFP_KERNEL);
11236         if (!config->save_connector_encoders)
11237                 return -ENOMEM;
11238
11239         /* Copy data. Note that driver private data is not affected.
11240          * Should anything bad happen only the expected state is
11241          * restored, not the drivers personal bookkeeping.
11242          */
11243         count = 0;
11244         for_each_crtc(dev, crtc) {
11245                 config->save_crtc_enabled[count++] = crtc->enabled;
11246         }
11247
11248         count = 0;
11249         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11250                 config->save_encoder_crtcs[count++] = encoder->crtc;
11251         }
11252
11253         count = 0;
11254         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11255                 config->save_connector_encoders[count++] = connector->encoder;
11256         }
11257
11258         return 0;
11259 }
11260
11261 static void intel_set_config_restore_state(struct drm_device *dev,
11262                                            struct intel_set_config *config)
11263 {
11264         struct intel_crtc *crtc;
11265         struct intel_encoder *encoder;
11266         struct intel_connector *connector;
11267         int count;
11268
11269         count = 0;
11270         for_each_intel_crtc(dev, crtc) {
11271                 crtc->new_enabled = config->save_crtc_enabled[count++];
11272
11273                 if (crtc->new_enabled)
11274                         crtc->new_config = &crtc->config;
11275                 else
11276                         crtc->new_config = NULL;
11277         }
11278
11279         count = 0;
11280         for_each_intel_encoder(dev, encoder) {
11281                 encoder->new_crtc =
11282                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11283         }
11284
11285         count = 0;
11286         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11287                 connector->new_encoder =
11288                         to_intel_encoder(config->save_connector_encoders[count++]);
11289         }
11290 }
11291
11292 static bool
11293 is_crtc_connector_off(struct drm_mode_set *set)
11294 {
11295         int i;
11296
11297         if (set->num_connectors == 0)
11298                 return false;
11299
11300         if (WARN_ON(set->connectors == NULL))
11301                 return false;
11302
11303         for (i = 0; i < set->num_connectors; i++)
11304                 if (set->connectors[i]->encoder &&
11305                     set->connectors[i]->encoder->crtc == set->crtc &&
11306                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11307                         return true;
11308
11309         return false;
11310 }
11311
11312 static void
11313 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11314                                       struct intel_set_config *config)
11315 {
11316
11317         /* We should be able to check here if the fb has the same properties
11318          * and then just flip_or_move it */
11319         if (is_crtc_connector_off(set)) {
11320                 config->mode_changed = true;
11321         } else if (set->crtc->primary->fb != set->fb) {
11322                 /*
11323                  * If we have no fb, we can only flip as long as the crtc is
11324                  * active, otherwise we need a full mode set.  The crtc may
11325                  * be active if we've only disabled the primary plane, or
11326                  * in fastboot situations.
11327                  */
11328                 if (set->crtc->primary->fb == NULL) {
11329                         struct intel_crtc *intel_crtc =
11330                                 to_intel_crtc(set->crtc);
11331
11332                         if (intel_crtc->active) {
11333                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11334                                 config->fb_changed = true;
11335                         } else {
11336                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11337                                 config->mode_changed = true;
11338                         }
11339                 } else if (set->fb == NULL) {
11340                         config->mode_changed = true;
11341                 } else if (set->fb->pixel_format !=
11342                            set->crtc->primary->fb->pixel_format) {
11343                         config->mode_changed = true;
11344                 } else {
11345                         config->fb_changed = true;
11346                 }
11347         }
11348
11349         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11350                 config->fb_changed = true;
11351
11352         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11353                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11354                 drm_mode_debug_printmodeline(&set->crtc->mode);
11355                 drm_mode_debug_printmodeline(set->mode);
11356                 config->mode_changed = true;
11357         }
11358
11359         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11360                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11361 }
11362
11363 static int
11364 intel_modeset_stage_output_state(struct drm_device *dev,
11365                                  struct drm_mode_set *set,
11366                                  struct intel_set_config *config)
11367 {
11368         struct intel_connector *connector;
11369         struct intel_encoder *encoder;
11370         struct intel_crtc *crtc;
11371         int ro;
11372
11373         /* The upper layers ensure that we either disable a crtc or have a list
11374          * of connectors. For paranoia, double-check this. */
11375         WARN_ON(!set->fb && (set->num_connectors != 0));
11376         WARN_ON(set->fb && (set->num_connectors == 0));
11377
11378         list_for_each_entry(connector, &dev->mode_config.connector_list,
11379                             base.head) {
11380                 /* Otherwise traverse passed in connector list and get encoders
11381                  * for them. */
11382                 for (ro = 0; ro < set->num_connectors; ro++) {
11383                         if (set->connectors[ro] == &connector->base) {
11384                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11385                                 break;
11386                         }
11387                 }
11388
11389                 /* If we disable the crtc, disable all its connectors. Also, if
11390                  * the connector is on the changing crtc but not on the new
11391                  * connector list, disable it. */
11392                 if ((!set->fb || ro == set->num_connectors) &&
11393                     connector->base.encoder &&
11394                     connector->base.encoder->crtc == set->crtc) {
11395                         connector->new_encoder = NULL;
11396
11397                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11398                                 connector->base.base.id,
11399                                 connector->base.name);
11400                 }
11401
11402
11403                 if (&connector->new_encoder->base != connector->base.encoder) {
11404                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11405                         config->mode_changed = true;
11406                 }
11407         }
11408         /* connector->new_encoder is now updated for all connectors. */
11409
11410         /* Update crtc of enabled connectors. */
11411         list_for_each_entry(connector, &dev->mode_config.connector_list,
11412                             base.head) {
11413                 struct drm_crtc *new_crtc;
11414
11415                 if (!connector->new_encoder)
11416                         continue;
11417
11418                 new_crtc = connector->new_encoder->base.crtc;
11419
11420                 for (ro = 0; ro < set->num_connectors; ro++) {
11421                         if (set->connectors[ro] == &connector->base)
11422                                 new_crtc = set->crtc;
11423                 }
11424
11425                 /* Make sure the new CRTC will work with the encoder */
11426                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11427                                          new_crtc)) {
11428                         return -EINVAL;
11429                 }
11430                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11431
11432                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11433                         connector->base.base.id,
11434                         connector->base.name,
11435                         new_crtc->base.id);
11436         }
11437
11438         /* Check for any encoders that needs to be disabled. */
11439         for_each_intel_encoder(dev, encoder) {
11440                 int num_connectors = 0;
11441                 list_for_each_entry(connector,
11442                                     &dev->mode_config.connector_list,
11443                                     base.head) {
11444                         if (connector->new_encoder == encoder) {
11445                                 WARN_ON(!connector->new_encoder->new_crtc);
11446                                 num_connectors++;
11447                         }
11448                 }
11449
11450                 if (num_connectors == 0)
11451                         encoder->new_crtc = NULL;
11452                 else if (num_connectors > 1)
11453                         return -EINVAL;
11454
11455                 /* Only now check for crtc changes so we don't miss encoders
11456                  * that will be disabled. */
11457                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11458                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11459                         config->mode_changed = true;
11460                 }
11461         }
11462         /* Now we've also updated encoder->new_crtc for all encoders. */
11463         list_for_each_entry(connector, &dev->mode_config.connector_list,
11464                             base.head) {
11465                 if (connector->new_encoder)
11466                         if (connector->new_encoder != connector->encoder)
11467                                 connector->encoder = connector->new_encoder;
11468         }
11469         for_each_intel_crtc(dev, crtc) {
11470                 crtc->new_enabled = false;
11471
11472                 for_each_intel_encoder(dev, encoder) {
11473                         if (encoder->new_crtc == crtc) {
11474                                 crtc->new_enabled = true;
11475                                 break;
11476                         }
11477                 }
11478
11479                 if (crtc->new_enabled != crtc->base.enabled) {
11480                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11481                                       crtc->new_enabled ? "en" : "dis");
11482                         config->mode_changed = true;
11483                 }
11484
11485                 if (crtc->new_enabled)
11486                         crtc->new_config = &crtc->config;
11487                 else
11488                         crtc->new_config = NULL;
11489         }
11490
11491         return 0;
11492 }
11493
11494 static void disable_crtc_nofb(struct intel_crtc *crtc)
11495 {
11496         struct drm_device *dev = crtc->base.dev;
11497         struct intel_encoder *encoder;
11498         struct intel_connector *connector;
11499
11500         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11501                       pipe_name(crtc->pipe));
11502
11503         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11504                 if (connector->new_encoder &&
11505                     connector->new_encoder->new_crtc == crtc)
11506                         connector->new_encoder = NULL;
11507         }
11508
11509         for_each_intel_encoder(dev, encoder) {
11510                 if (encoder->new_crtc == crtc)
11511                         encoder->new_crtc = NULL;
11512         }
11513
11514         crtc->new_enabled = false;
11515         crtc->new_config = NULL;
11516 }
11517
11518 static int intel_crtc_set_config(struct drm_mode_set *set)
11519 {
11520         struct drm_device *dev;
11521         struct drm_mode_set save_set;
11522         struct intel_set_config *config;
11523         struct intel_crtc_config *pipe_config;
11524         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11525         int ret;
11526
11527         BUG_ON(!set);
11528         BUG_ON(!set->crtc);
11529         BUG_ON(!set->crtc->helper_private);
11530
11531         /* Enforce sane interface api - has been abused by the fb helper. */
11532         BUG_ON(!set->mode && set->fb);
11533         BUG_ON(set->fb && set->num_connectors == 0);
11534
11535         if (set->fb) {
11536                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11537                                 set->crtc->base.id, set->fb->base.id,
11538                                 (int)set->num_connectors, set->x, set->y);
11539         } else {
11540                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11541         }
11542
11543         dev = set->crtc->dev;
11544
11545         ret = -ENOMEM;
11546         config = kzalloc(sizeof(*config), GFP_KERNEL);
11547         if (!config)
11548                 goto out_config;
11549
11550         ret = intel_set_config_save_state(dev, config);
11551         if (ret)
11552                 goto out_config;
11553
11554         save_set.crtc = set->crtc;
11555         save_set.mode = &set->crtc->mode;
11556         save_set.x = set->crtc->x;
11557         save_set.y = set->crtc->y;
11558         save_set.fb = set->crtc->primary->fb;
11559
11560         /* Compute whether we need a full modeset, only an fb base update or no
11561          * change at all. In the future we might also check whether only the
11562          * mode changed, e.g. for LVDS where we only change the panel fitter in
11563          * such cases. */
11564         intel_set_config_compute_mode_changes(set, config);
11565
11566         ret = intel_modeset_stage_output_state(dev, set, config);
11567         if (ret)
11568                 goto fail;
11569
11570         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11571                                                    set->fb,
11572                                                    &modeset_pipes,
11573                                                    &prepare_pipes,
11574                                                    &disable_pipes);
11575         if (IS_ERR(pipe_config)) {
11576                 ret = PTR_ERR(pipe_config);
11577                 goto fail;
11578         } else if (pipe_config) {
11579                 if (pipe_config->has_audio !=
11580                     to_intel_crtc(set->crtc)->config.has_audio)
11581                         config->mode_changed = true;
11582
11583                 /*
11584                  * Note we have an issue here with infoframes: current code
11585                  * only updates them on the full mode set path per hw
11586                  * requirements.  So here we should be checking for any
11587                  * required changes and forcing a mode set.
11588                  */
11589         }
11590
11591         /* set_mode will free it in the mode_changed case */
11592         if (!config->mode_changed)
11593                 kfree(pipe_config);
11594
11595         intel_update_pipe_size(to_intel_crtc(set->crtc));
11596
11597         if (config->mode_changed) {
11598                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11599                                            set->x, set->y, set->fb, pipe_config,
11600                                            modeset_pipes, prepare_pipes,
11601                                            disable_pipes);
11602         } else if (config->fb_changed) {
11603                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11604
11605                 intel_crtc_wait_for_pending_flips(set->crtc);
11606
11607                 ret = intel_pipe_set_base(set->crtc,
11608                                           set->x, set->y, set->fb);
11609
11610                 /*
11611                  * We need to make sure the primary plane is re-enabled if it
11612                  * has previously been turned off.
11613                  */
11614                 if (!intel_crtc->primary_enabled && ret == 0) {
11615                         WARN_ON(!intel_crtc->active);
11616                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11617                 }
11618
11619                 /*
11620                  * In the fastboot case this may be our only check of the
11621                  * state after boot.  It would be better to only do it on
11622                  * the first update, but we don't have a nice way of doing that
11623                  * (and really, set_config isn't used much for high freq page
11624                  * flipping, so increasing its cost here shouldn't be a big
11625                  * deal).
11626                  */
11627                 if (i915.fastboot && ret == 0)
11628                         intel_modeset_check_state(set->crtc->dev);
11629         }
11630
11631         if (ret) {
11632                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11633                               set->crtc->base.id, ret);
11634 fail:
11635                 intel_set_config_restore_state(dev, config);
11636
11637                 /*
11638                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11639                  * force the pipe off to avoid oopsing in the modeset code
11640                  * due to fb==NULL. This should only happen during boot since
11641                  * we don't yet reconstruct the FB from the hardware state.
11642                  */
11643                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11644                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11645
11646                 /* Try to restore the config */
11647                 if (config->mode_changed &&
11648                     intel_set_mode(save_set.crtc, save_set.mode,
11649                                    save_set.x, save_set.y, save_set.fb))
11650                         DRM_ERROR("failed to restore config after modeset failure\n");
11651         }
11652
11653 out_config:
11654         intel_set_config_free(config);
11655         return ret;
11656 }
11657
11658 static const struct drm_crtc_funcs intel_crtc_funcs = {
11659         .gamma_set = intel_crtc_gamma_set,
11660         .set_config = intel_crtc_set_config,
11661         .destroy = intel_crtc_destroy,
11662         .page_flip = intel_crtc_page_flip,
11663 };
11664
11665 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11666                                       struct intel_shared_dpll *pll,
11667                                       struct intel_dpll_hw_state *hw_state)
11668 {
11669         uint32_t val;
11670
11671         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11672                 return false;
11673
11674         val = I915_READ(PCH_DPLL(pll->id));
11675         hw_state->dpll = val;
11676         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11677         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11678
11679         return val & DPLL_VCO_ENABLE;
11680 }
11681
11682 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11683                                   struct intel_shared_dpll *pll)
11684 {
11685         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11686         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11687 }
11688
11689 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11690                                 struct intel_shared_dpll *pll)
11691 {
11692         /* PCH refclock must be enabled first */
11693         ibx_assert_pch_refclk_enabled(dev_priv);
11694
11695         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11696
11697         /* Wait for the clocks to stabilize. */
11698         POSTING_READ(PCH_DPLL(pll->id));
11699         udelay(150);
11700
11701         /* The pixel multiplier can only be updated once the
11702          * DPLL is enabled and the clocks are stable.
11703          *
11704          * So write it again.
11705          */
11706         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11707         POSTING_READ(PCH_DPLL(pll->id));
11708         udelay(200);
11709 }
11710
11711 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11712                                  struct intel_shared_dpll *pll)
11713 {
11714         struct drm_device *dev = dev_priv->dev;
11715         struct intel_crtc *crtc;
11716
11717         /* Make sure no transcoder isn't still depending on us. */
11718         for_each_intel_crtc(dev, crtc) {
11719                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11720                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11721         }
11722
11723         I915_WRITE(PCH_DPLL(pll->id), 0);
11724         POSTING_READ(PCH_DPLL(pll->id));
11725         udelay(200);
11726 }
11727
11728 static char *ibx_pch_dpll_names[] = {
11729         "PCH DPLL A",
11730         "PCH DPLL B",
11731 };
11732
11733 static void ibx_pch_dpll_init(struct drm_device *dev)
11734 {
11735         struct drm_i915_private *dev_priv = dev->dev_private;
11736         int i;
11737
11738         dev_priv->num_shared_dpll = 2;
11739
11740         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11741                 dev_priv->shared_dplls[i].id = i;
11742                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11743                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11744                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11745                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11746                 dev_priv->shared_dplls[i].get_hw_state =
11747                         ibx_pch_dpll_get_hw_state;
11748         }
11749 }
11750
11751 static void intel_shared_dpll_init(struct drm_device *dev)
11752 {
11753         struct drm_i915_private *dev_priv = dev->dev_private;
11754
11755         if (HAS_DDI(dev))
11756                 intel_ddi_pll_init(dev);
11757         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11758                 ibx_pch_dpll_init(dev);
11759         else
11760                 dev_priv->num_shared_dpll = 0;
11761
11762         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11763 }
11764
11765 static int
11766 intel_primary_plane_disable(struct drm_plane *plane)
11767 {
11768         struct drm_device *dev = plane->dev;
11769         struct intel_crtc *intel_crtc;
11770
11771         if (!plane->fb)
11772                 return 0;
11773
11774         BUG_ON(!plane->crtc);
11775
11776         intel_crtc = to_intel_crtc(plane->crtc);
11777
11778         /*
11779          * Even though we checked plane->fb above, it's still possible that
11780          * the primary plane has been implicitly disabled because the crtc
11781          * coordinates given weren't visible, or because we detected
11782          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11783          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11784          * In either case, we need to unpin the FB and let the fb pointer get
11785          * updated, but otherwise we don't need to touch the hardware.
11786          */
11787         if (!intel_crtc->primary_enabled)
11788                 goto disable_unpin;
11789
11790         intel_crtc_wait_for_pending_flips(plane->crtc);
11791         intel_disable_primary_hw_plane(plane, plane->crtc);
11792
11793 disable_unpin:
11794         mutex_lock(&dev->struct_mutex);
11795         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11796                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11797         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11798         mutex_unlock(&dev->struct_mutex);
11799         plane->fb = NULL;
11800
11801         return 0;
11802 }
11803
11804 static int
11805 intel_check_primary_plane(struct drm_plane *plane,
11806                           struct intel_plane_state *state)
11807 {
11808         struct drm_crtc *crtc = state->crtc;
11809         struct drm_framebuffer *fb = state->fb;
11810         struct drm_rect *dest = &state->dst;
11811         struct drm_rect *src = &state->src;
11812         const struct drm_rect *clip = &state->clip;
11813
11814         return drm_plane_helper_check_update(plane, crtc, fb,
11815                                              src, dest, clip,
11816                                              DRM_PLANE_HELPER_NO_SCALING,
11817                                              DRM_PLANE_HELPER_NO_SCALING,
11818                                              false, true, &state->visible);
11819 }
11820
11821 static int
11822 intel_prepare_primary_plane(struct drm_plane *plane,
11823                             struct intel_plane_state *state)
11824 {
11825         struct drm_crtc *crtc = state->crtc;
11826         struct drm_framebuffer *fb = state->fb;
11827         struct drm_device *dev = crtc->dev;
11828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11829         enum pipe pipe = intel_crtc->pipe;
11830         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11831         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11832         int ret;
11833
11834         intel_crtc_wait_for_pending_flips(crtc);
11835
11836         if (intel_crtc_has_pending_flip(crtc)) {
11837                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11838                 return -EBUSY;
11839         }
11840
11841         if (old_obj != obj) {
11842                 mutex_lock(&dev->struct_mutex);
11843                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11844                 if (ret == 0)
11845                         i915_gem_track_fb(old_obj, obj,
11846                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11847                 mutex_unlock(&dev->struct_mutex);
11848                 if (ret != 0) {
11849                         DRM_DEBUG_KMS("pin & fence failed\n");
11850                         return ret;
11851                 }
11852         }
11853
11854         return 0;
11855 }
11856
11857 static void
11858 intel_commit_primary_plane(struct drm_plane *plane,
11859                            struct intel_plane_state *state)
11860 {
11861         struct drm_crtc *crtc = state->crtc;
11862         struct drm_framebuffer *fb = state->fb;
11863         struct drm_device *dev = crtc->dev;
11864         struct drm_i915_private *dev_priv = dev->dev_private;
11865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11866         enum pipe pipe = intel_crtc->pipe;
11867         struct drm_framebuffer *old_fb = plane->fb;
11868         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11869         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11870         struct intel_plane *intel_plane = to_intel_plane(plane);
11871         struct drm_rect *src = &state->src;
11872
11873         crtc->primary->fb = fb;
11874         crtc->x = src->x1 >> 16;
11875         crtc->y = src->y1 >> 16;
11876
11877         intel_plane->crtc_x = state->orig_dst.x1;
11878         intel_plane->crtc_y = state->orig_dst.y1;
11879         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11880         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11881         intel_plane->src_x = state->orig_src.x1;
11882         intel_plane->src_y = state->orig_src.y1;
11883         intel_plane->src_w = drm_rect_width(&state->orig_src);
11884         intel_plane->src_h = drm_rect_height(&state->orig_src);
11885         intel_plane->obj = obj;
11886
11887         if (intel_crtc->active) {
11888                 /*
11889                  * FBC does not work on some platforms for rotated
11890                  * planes, so disable it when rotation is not 0 and
11891                  * update it when rotation is set back to 0.
11892                  *
11893                  * FIXME: This is redundant with the fbc update done in
11894                  * the primary plane enable function except that that
11895                  * one is done too late. We eventually need to unify
11896                  * this.
11897                  */
11898                 if (intel_crtc->primary_enabled &&
11899                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11900                     dev_priv->fbc.plane == intel_crtc->plane &&
11901                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11902                         intel_disable_fbc(dev);
11903                 }
11904
11905                 if (state->visible) {
11906                         bool was_enabled = intel_crtc->primary_enabled;
11907
11908                         /* FIXME: kill this fastboot hack */
11909                         intel_update_pipe_size(intel_crtc);
11910
11911                         intel_crtc->primary_enabled = true;
11912
11913                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11914                                         crtc->x, crtc->y);
11915
11916                         /*
11917                          * BDW signals flip done immediately if the plane
11918                          * is disabled, even if the plane enable is already
11919                          * armed to occur at the next vblank :(
11920                          */
11921                         if (IS_BROADWELL(dev) && !was_enabled)
11922                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11923                 } else {
11924                         /*
11925                          * If clipping results in a non-visible primary plane,
11926                          * we'll disable the primary plane.  Note that this is
11927                          * a bit different than what happens if userspace
11928                          * explicitly disables the plane by passing fb=0
11929                          * because plane->fb still gets set and pinned.
11930                          */
11931                         intel_disable_primary_hw_plane(plane, crtc);
11932                 }
11933
11934                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11935
11936                 mutex_lock(&dev->struct_mutex);
11937                 intel_update_fbc(dev);
11938                 mutex_unlock(&dev->struct_mutex);
11939         }
11940
11941         if (old_fb && old_fb != fb) {
11942                 if (intel_crtc->active)
11943                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11944
11945                 mutex_lock(&dev->struct_mutex);
11946                 intel_unpin_fb_obj(old_obj);
11947                 mutex_unlock(&dev->struct_mutex);
11948         }
11949 }
11950
11951 static int
11952 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11953                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11954                              unsigned int crtc_w, unsigned int crtc_h,
11955                              uint32_t src_x, uint32_t src_y,
11956                              uint32_t src_w, uint32_t src_h)
11957 {
11958         struct intel_plane_state state;
11959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11960         int ret;
11961
11962         state.crtc = crtc;
11963         state.fb = fb;
11964
11965         /* sample coordinates in 16.16 fixed point */
11966         state.src.x1 = src_x;
11967         state.src.x2 = src_x + src_w;
11968         state.src.y1 = src_y;
11969         state.src.y2 = src_y + src_h;
11970
11971         /* integer pixels */
11972         state.dst.x1 = crtc_x;
11973         state.dst.x2 = crtc_x + crtc_w;
11974         state.dst.y1 = crtc_y;
11975         state.dst.y2 = crtc_y + crtc_h;
11976
11977         state.clip.x1 = 0;
11978         state.clip.y1 = 0;
11979         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11980         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11981
11982         state.orig_src = state.src;
11983         state.orig_dst = state.dst;
11984
11985         ret = intel_check_primary_plane(plane, &state);
11986         if (ret)
11987                 return ret;
11988
11989         ret = intel_prepare_primary_plane(plane, &state);
11990         if (ret)
11991                 return ret;
11992
11993         intel_commit_primary_plane(plane, &state);
11994
11995         return 0;
11996 }
11997
11998 /* Common destruction function for both primary and cursor planes */
11999 static void intel_plane_destroy(struct drm_plane *plane)
12000 {
12001         struct intel_plane *intel_plane = to_intel_plane(plane);
12002         drm_plane_cleanup(plane);
12003         kfree(intel_plane);
12004 }
12005
12006 static const struct drm_plane_funcs intel_primary_plane_funcs = {
12007         .update_plane = intel_primary_plane_setplane,
12008         .disable_plane = intel_primary_plane_disable,
12009         .destroy = intel_plane_destroy,
12010         .set_property = intel_plane_set_property
12011 };
12012
12013 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12014                                                     int pipe)
12015 {
12016         struct intel_plane *primary;
12017         const uint32_t *intel_primary_formats;
12018         int num_formats;
12019
12020         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12021         if (primary == NULL)
12022                 return NULL;
12023
12024         primary->can_scale = false;
12025         primary->max_downscale = 1;
12026         primary->pipe = pipe;
12027         primary->plane = pipe;
12028         primary->rotation = BIT(DRM_ROTATE_0);
12029         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12030                 primary->plane = !pipe;
12031
12032         if (INTEL_INFO(dev)->gen <= 3) {
12033                 intel_primary_formats = intel_primary_formats_gen2;
12034                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12035         } else {
12036                 intel_primary_formats = intel_primary_formats_gen4;
12037                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12038         }
12039
12040         drm_universal_plane_init(dev, &primary->base, 0,
12041                                  &intel_primary_plane_funcs,
12042                                  intel_primary_formats, num_formats,
12043                                  DRM_PLANE_TYPE_PRIMARY);
12044
12045         if (INTEL_INFO(dev)->gen >= 4) {
12046                 if (!dev->mode_config.rotation_property)
12047                         dev->mode_config.rotation_property =
12048                                 drm_mode_create_rotation_property(dev,
12049                                                         BIT(DRM_ROTATE_0) |
12050                                                         BIT(DRM_ROTATE_180));
12051                 if (dev->mode_config.rotation_property)
12052                         drm_object_attach_property(&primary->base.base,
12053                                 dev->mode_config.rotation_property,
12054                                 primary->rotation);
12055         }
12056
12057         return &primary->base;
12058 }
12059
12060 static int
12061 intel_cursor_plane_disable(struct drm_plane *plane)
12062 {
12063         if (!plane->fb)
12064                 return 0;
12065
12066         BUG_ON(!plane->crtc);
12067
12068         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12069 }
12070
12071 static int
12072 intel_check_cursor_plane(struct drm_plane *plane,
12073                          struct intel_plane_state *state)
12074 {
12075         struct drm_crtc *crtc = state->crtc;
12076         struct drm_device *dev = crtc->dev;
12077         struct drm_framebuffer *fb = state->fb;
12078         struct drm_rect *dest = &state->dst;
12079         struct drm_rect *src = &state->src;
12080         const struct drm_rect *clip = &state->clip;
12081         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12082         int crtc_w, crtc_h;
12083         unsigned stride;
12084         int ret;
12085
12086         ret = drm_plane_helper_check_update(plane, crtc, fb,
12087                                             src, dest, clip,
12088                                             DRM_PLANE_HELPER_NO_SCALING,
12089                                             DRM_PLANE_HELPER_NO_SCALING,
12090                                             true, true, &state->visible);
12091         if (ret)
12092                 return ret;
12093
12094
12095         /* if we want to turn off the cursor ignore width and height */
12096         if (!obj)
12097                 return 0;
12098
12099         /* Check for which cursor types we support */
12100         crtc_w = drm_rect_width(&state->orig_dst);
12101         crtc_h = drm_rect_height(&state->orig_dst);
12102         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12103                 DRM_DEBUG("Cursor dimension not supported\n");
12104                 return -EINVAL;
12105         }
12106
12107         stride = roundup_pow_of_two(crtc_w) * 4;
12108         if (obj->base.size < stride * crtc_h) {
12109                 DRM_DEBUG_KMS("buffer is too small\n");
12110                 return -ENOMEM;
12111         }
12112
12113         if (fb == crtc->cursor->fb)
12114                 return 0;
12115
12116         /* we only need to pin inside GTT if cursor is non-phy */
12117         mutex_lock(&dev->struct_mutex);
12118         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12119                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12120                 ret = -EINVAL;
12121         }
12122         mutex_unlock(&dev->struct_mutex);
12123
12124         return ret;
12125 }
12126
12127 static int
12128 intel_commit_cursor_plane(struct drm_plane *plane,
12129                           struct intel_plane_state *state)
12130 {
12131         struct drm_crtc *crtc = state->crtc;
12132         struct drm_framebuffer *fb = state->fb;
12133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12134         struct intel_plane *intel_plane = to_intel_plane(plane);
12135         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12136         struct drm_i915_gem_object *obj = intel_fb->obj;
12137         int crtc_w, crtc_h;
12138
12139         crtc->cursor_x = state->orig_dst.x1;
12140         crtc->cursor_y = state->orig_dst.y1;
12141
12142         intel_plane->crtc_x = state->orig_dst.x1;
12143         intel_plane->crtc_y = state->orig_dst.y1;
12144         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12145         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12146         intel_plane->src_x = state->orig_src.x1;
12147         intel_plane->src_y = state->orig_src.y1;
12148         intel_plane->src_w = drm_rect_width(&state->orig_src);
12149         intel_plane->src_h = drm_rect_height(&state->orig_src);
12150         intel_plane->obj = obj;
12151
12152         if (fb != crtc->cursor->fb) {
12153                 crtc_w = drm_rect_width(&state->orig_dst);
12154                 crtc_h = drm_rect_height(&state->orig_dst);
12155                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12156         } else {
12157                 intel_crtc_update_cursor(crtc, state->visible);
12158
12159                 intel_frontbuffer_flip(crtc->dev,
12160                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12161
12162                 return 0;
12163         }
12164 }
12165
12166 static int
12167 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12168                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12169                           unsigned int crtc_w, unsigned int crtc_h,
12170                           uint32_t src_x, uint32_t src_y,
12171                           uint32_t src_w, uint32_t src_h)
12172 {
12173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12174         struct intel_plane_state state;
12175         int ret;
12176
12177         state.crtc = crtc;
12178         state.fb = fb;
12179
12180         /* sample coordinates in 16.16 fixed point */
12181         state.src.x1 = src_x;
12182         state.src.x2 = src_x + src_w;
12183         state.src.y1 = src_y;
12184         state.src.y2 = src_y + src_h;
12185
12186         /* integer pixels */
12187         state.dst.x1 = crtc_x;
12188         state.dst.x2 = crtc_x + crtc_w;
12189         state.dst.y1 = crtc_y;
12190         state.dst.y2 = crtc_y + crtc_h;
12191
12192         state.clip.x1 = 0;
12193         state.clip.y1 = 0;
12194         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12195         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12196
12197         state.orig_src = state.src;
12198         state.orig_dst = state.dst;
12199
12200         ret = intel_check_cursor_plane(plane, &state);
12201         if (ret)
12202                 return ret;
12203
12204         return intel_commit_cursor_plane(plane, &state);
12205 }
12206
12207 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12208         .update_plane = intel_cursor_plane_update,
12209         .disable_plane = intel_cursor_plane_disable,
12210         .destroy = intel_plane_destroy,
12211         .set_property = intel_plane_set_property,
12212 };
12213
12214 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12215                                                    int pipe)
12216 {
12217         struct intel_plane *cursor;
12218
12219         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12220         if (cursor == NULL)
12221                 return NULL;
12222
12223         cursor->can_scale = false;
12224         cursor->max_downscale = 1;
12225         cursor->pipe = pipe;
12226         cursor->plane = pipe;
12227         cursor->rotation = BIT(DRM_ROTATE_0);
12228
12229         drm_universal_plane_init(dev, &cursor->base, 0,
12230                                  &intel_cursor_plane_funcs,
12231                                  intel_cursor_formats,
12232                                  ARRAY_SIZE(intel_cursor_formats),
12233                                  DRM_PLANE_TYPE_CURSOR);
12234
12235         if (INTEL_INFO(dev)->gen >= 4) {
12236                 if (!dev->mode_config.rotation_property)
12237                         dev->mode_config.rotation_property =
12238                                 drm_mode_create_rotation_property(dev,
12239                                                         BIT(DRM_ROTATE_0) |
12240                                                         BIT(DRM_ROTATE_180));
12241                 if (dev->mode_config.rotation_property)
12242                         drm_object_attach_property(&cursor->base.base,
12243                                 dev->mode_config.rotation_property,
12244                                 cursor->rotation);
12245         }
12246
12247         return &cursor->base;
12248 }
12249
12250 static void intel_crtc_init(struct drm_device *dev, int pipe)
12251 {
12252         struct drm_i915_private *dev_priv = dev->dev_private;
12253         struct intel_crtc *intel_crtc;
12254         struct drm_plane *primary = NULL;
12255         struct drm_plane *cursor = NULL;
12256         int i, ret;
12257
12258         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12259         if (intel_crtc == NULL)
12260                 return;
12261
12262         primary = intel_primary_plane_create(dev, pipe);
12263         if (!primary)
12264                 goto fail;
12265
12266         cursor = intel_cursor_plane_create(dev, pipe);
12267         if (!cursor)
12268                 goto fail;
12269
12270         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12271                                         cursor, &intel_crtc_funcs);
12272         if (ret)
12273                 goto fail;
12274
12275         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12276         for (i = 0; i < 256; i++) {
12277                 intel_crtc->lut_r[i] = i;
12278                 intel_crtc->lut_g[i] = i;
12279                 intel_crtc->lut_b[i] = i;
12280         }
12281
12282         /*
12283          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12284          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12285          */
12286         intel_crtc->pipe = pipe;
12287         intel_crtc->plane = pipe;
12288         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12289                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12290                 intel_crtc->plane = !pipe;
12291         }
12292
12293         intel_crtc->cursor_base = ~0;
12294         intel_crtc->cursor_cntl = ~0;
12295         intel_crtc->cursor_size = ~0;
12296
12297         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12298                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12299         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12300         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12301
12302         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12303
12304         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12305
12306         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12307         return;
12308
12309 fail:
12310         if (primary)
12311                 drm_plane_cleanup(primary);
12312         if (cursor)
12313                 drm_plane_cleanup(cursor);
12314         kfree(intel_crtc);
12315 }
12316
12317 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12318 {
12319         struct drm_encoder *encoder = connector->base.encoder;
12320         struct drm_device *dev = connector->base.dev;
12321
12322         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12323
12324         if (!encoder || WARN_ON(!encoder->crtc))
12325                 return INVALID_PIPE;
12326
12327         return to_intel_crtc(encoder->crtc)->pipe;
12328 }
12329
12330 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12331                                 struct drm_file *file)
12332 {
12333         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12334         struct drm_crtc *drmmode_crtc;
12335         struct intel_crtc *crtc;
12336
12337         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12338                 return -ENODEV;
12339
12340         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12341
12342         if (!drmmode_crtc) {
12343                 DRM_ERROR("no such CRTC id\n");
12344                 return -ENOENT;
12345         }
12346
12347         crtc = to_intel_crtc(drmmode_crtc);
12348         pipe_from_crtc_id->pipe = crtc->pipe;
12349
12350         return 0;
12351 }
12352
12353 static int intel_encoder_clones(struct intel_encoder *encoder)
12354 {
12355         struct drm_device *dev = encoder->base.dev;
12356         struct intel_encoder *source_encoder;
12357         int index_mask = 0;
12358         int entry = 0;
12359
12360         for_each_intel_encoder(dev, source_encoder) {
12361                 if (encoders_cloneable(encoder, source_encoder))
12362                         index_mask |= (1 << entry);
12363
12364                 entry++;
12365         }
12366
12367         return index_mask;
12368 }
12369
12370 static bool has_edp_a(struct drm_device *dev)
12371 {
12372         struct drm_i915_private *dev_priv = dev->dev_private;
12373
12374         if (!IS_MOBILE(dev))
12375                 return false;
12376
12377         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12378                 return false;
12379
12380         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12381                 return false;
12382
12383         return true;
12384 }
12385
12386 const char *intel_output_name(int output)
12387 {
12388         static const char *names[] = {
12389                 [INTEL_OUTPUT_UNUSED] = "Unused",
12390                 [INTEL_OUTPUT_ANALOG] = "Analog",
12391                 [INTEL_OUTPUT_DVO] = "DVO",
12392                 [INTEL_OUTPUT_SDVO] = "SDVO",
12393                 [INTEL_OUTPUT_LVDS] = "LVDS",
12394                 [INTEL_OUTPUT_TVOUT] = "TV",
12395                 [INTEL_OUTPUT_HDMI] = "HDMI",
12396                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12397                 [INTEL_OUTPUT_EDP] = "eDP",
12398                 [INTEL_OUTPUT_DSI] = "DSI",
12399                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12400         };
12401
12402         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12403                 return "Invalid";
12404
12405         return names[output];
12406 }
12407
12408 static bool intel_crt_present(struct drm_device *dev)
12409 {
12410         struct drm_i915_private *dev_priv = dev->dev_private;
12411
12412         if (INTEL_INFO(dev)->gen >= 9)
12413                 return false;
12414
12415         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12416                 return false;
12417
12418         if (IS_CHERRYVIEW(dev))
12419                 return false;
12420
12421         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12422                 return false;
12423
12424         return true;
12425 }
12426
12427 static void intel_setup_outputs(struct drm_device *dev)
12428 {
12429         struct drm_i915_private *dev_priv = dev->dev_private;
12430         struct intel_encoder *encoder;
12431         bool dpd_is_edp = false;
12432
12433         intel_lvds_init(dev);
12434
12435         if (intel_crt_present(dev))
12436                 intel_crt_init(dev);
12437
12438         if (HAS_DDI(dev)) {
12439                 int found;
12440
12441                 /* Haswell uses DDI functions to detect digital outputs */
12442                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12443                 /* DDI A only supports eDP */
12444                 if (found)
12445                         intel_ddi_init(dev, PORT_A);
12446
12447                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12448                  * register */
12449                 found = I915_READ(SFUSE_STRAP);
12450
12451                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12452                         intel_ddi_init(dev, PORT_B);
12453                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12454                         intel_ddi_init(dev, PORT_C);
12455                 if (found & SFUSE_STRAP_DDID_DETECTED)
12456                         intel_ddi_init(dev, PORT_D);
12457         } else if (HAS_PCH_SPLIT(dev)) {
12458                 int found;
12459                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12460
12461                 if (has_edp_a(dev))
12462                         intel_dp_init(dev, DP_A, PORT_A);
12463
12464                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12465                         /* PCH SDVOB multiplex with HDMIB */
12466                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12467                         if (!found)
12468                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12469                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12470                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12471                 }
12472
12473                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12474                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12475
12476                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12477                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12478
12479                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12480                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12481
12482                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12483                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12484         } else if (IS_VALLEYVIEW(dev)) {
12485                 /*
12486                  * The DP_DETECTED bit is the latched state of the DDC
12487                  * SDA pin at boot. However since eDP doesn't require DDC
12488                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12489                  * eDP ports may have been muxed to an alternate function.
12490                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12491                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12492                  * detect eDP ports.
12493                  */
12494                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12495                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12496                                         PORT_B);
12497                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12498                     intel_dp_is_edp(dev, PORT_B))
12499                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12500
12501                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12502                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12503                                         PORT_C);
12504                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12505                     intel_dp_is_edp(dev, PORT_C))
12506                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12507
12508                 if (IS_CHERRYVIEW(dev)) {
12509                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12510                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12511                                                 PORT_D);
12512                         /* eDP not supported on port D, so don't check VBT */
12513                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12514                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12515                 }
12516
12517                 intel_dsi_init(dev);
12518         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12519                 bool found = false;
12520
12521                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12522                         DRM_DEBUG_KMS("probing SDVOB\n");
12523                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12524                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12525                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12526                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12527                         }
12528
12529                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12530                                 intel_dp_init(dev, DP_B, PORT_B);
12531                 }
12532
12533                 /* Before G4X SDVOC doesn't have its own detect register */
12534
12535                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12536                         DRM_DEBUG_KMS("probing SDVOC\n");
12537                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12538                 }
12539
12540                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12541
12542                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12543                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12544                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12545                         }
12546                         if (SUPPORTS_INTEGRATED_DP(dev))
12547                                 intel_dp_init(dev, DP_C, PORT_C);
12548                 }
12549
12550                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12551                     (I915_READ(DP_D) & DP_DETECTED))
12552                         intel_dp_init(dev, DP_D, PORT_D);
12553         } else if (IS_GEN2(dev))
12554                 intel_dvo_init(dev);
12555
12556         if (SUPPORTS_TV(dev))
12557                 intel_tv_init(dev);
12558
12559         intel_psr_init(dev);
12560
12561         for_each_intel_encoder(dev, encoder) {
12562                 encoder->base.possible_crtcs = encoder->crtc_mask;
12563                 encoder->base.possible_clones =
12564                         intel_encoder_clones(encoder);
12565         }
12566
12567         intel_init_pch_refclk(dev);
12568
12569         drm_helper_move_panel_connectors_to_head(dev);
12570 }
12571
12572 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12573 {
12574         struct drm_device *dev = fb->dev;
12575         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12576
12577         drm_framebuffer_cleanup(fb);
12578         mutex_lock(&dev->struct_mutex);
12579         WARN_ON(!intel_fb->obj->framebuffer_references--);
12580         drm_gem_object_unreference(&intel_fb->obj->base);
12581         mutex_unlock(&dev->struct_mutex);
12582         kfree(intel_fb);
12583 }
12584
12585 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12586                                                 struct drm_file *file,
12587                                                 unsigned int *handle)
12588 {
12589         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12590         struct drm_i915_gem_object *obj = intel_fb->obj;
12591
12592         return drm_gem_handle_create(file, &obj->base, handle);
12593 }
12594
12595 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12596         .destroy = intel_user_framebuffer_destroy,
12597         .create_handle = intel_user_framebuffer_create_handle,
12598 };
12599
12600 static int intel_framebuffer_init(struct drm_device *dev,
12601                                   struct intel_framebuffer *intel_fb,
12602                                   struct drm_mode_fb_cmd2 *mode_cmd,
12603                                   struct drm_i915_gem_object *obj)
12604 {
12605         int aligned_height;
12606         int pitch_limit;
12607         int ret;
12608
12609         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12610
12611         if (obj->tiling_mode == I915_TILING_Y) {
12612                 DRM_DEBUG("hardware does not support tiling Y\n");
12613                 return -EINVAL;
12614         }
12615
12616         if (mode_cmd->pitches[0] & 63) {
12617                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12618                           mode_cmd->pitches[0]);
12619                 return -EINVAL;
12620         }
12621
12622         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12623                 pitch_limit = 32*1024;
12624         } else if (INTEL_INFO(dev)->gen >= 4) {
12625                 if (obj->tiling_mode)
12626                         pitch_limit = 16*1024;
12627                 else
12628                         pitch_limit = 32*1024;
12629         } else if (INTEL_INFO(dev)->gen >= 3) {
12630                 if (obj->tiling_mode)
12631                         pitch_limit = 8*1024;
12632                 else
12633                         pitch_limit = 16*1024;
12634         } else
12635                 /* XXX DSPC is limited to 4k tiled */
12636                 pitch_limit = 8*1024;
12637
12638         if (mode_cmd->pitches[0] > pitch_limit) {
12639                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12640                           obj->tiling_mode ? "tiled" : "linear",
12641                           mode_cmd->pitches[0], pitch_limit);
12642                 return -EINVAL;
12643         }
12644
12645         if (obj->tiling_mode != I915_TILING_NONE &&
12646             mode_cmd->pitches[0] != obj->stride) {
12647                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12648                           mode_cmd->pitches[0], obj->stride);
12649                 return -EINVAL;
12650         }
12651
12652         /* Reject formats not supported by any plane early. */
12653         switch (mode_cmd->pixel_format) {
12654         case DRM_FORMAT_C8:
12655         case DRM_FORMAT_RGB565:
12656         case DRM_FORMAT_XRGB8888:
12657         case DRM_FORMAT_ARGB8888:
12658                 break;
12659         case DRM_FORMAT_XRGB1555:
12660         case DRM_FORMAT_ARGB1555:
12661                 if (INTEL_INFO(dev)->gen > 3) {
12662                         DRM_DEBUG("unsupported pixel format: %s\n",
12663                                   drm_get_format_name(mode_cmd->pixel_format));
12664                         return -EINVAL;
12665                 }
12666                 break;
12667         case DRM_FORMAT_XBGR8888:
12668         case DRM_FORMAT_ABGR8888:
12669         case DRM_FORMAT_XRGB2101010:
12670         case DRM_FORMAT_ARGB2101010:
12671         case DRM_FORMAT_XBGR2101010:
12672         case DRM_FORMAT_ABGR2101010:
12673                 if (INTEL_INFO(dev)->gen < 4) {
12674                         DRM_DEBUG("unsupported pixel format: %s\n",
12675                                   drm_get_format_name(mode_cmd->pixel_format));
12676                         return -EINVAL;
12677                 }
12678                 break;
12679         case DRM_FORMAT_YUYV:
12680         case DRM_FORMAT_UYVY:
12681         case DRM_FORMAT_YVYU:
12682         case DRM_FORMAT_VYUY:
12683                 if (INTEL_INFO(dev)->gen < 5) {
12684                         DRM_DEBUG("unsupported pixel format: %s\n",
12685                                   drm_get_format_name(mode_cmd->pixel_format));
12686                         return -EINVAL;
12687                 }
12688                 break;
12689         default:
12690                 DRM_DEBUG("unsupported pixel format: %s\n",
12691                           drm_get_format_name(mode_cmd->pixel_format));
12692                 return -EINVAL;
12693         }
12694
12695         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12696         if (mode_cmd->offsets[0] != 0)
12697                 return -EINVAL;
12698
12699         aligned_height = intel_align_height(dev, mode_cmd->height,
12700                                             obj->tiling_mode);
12701         /* FIXME drm helper for size checks (especially planar formats)? */
12702         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12703                 return -EINVAL;
12704
12705         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12706         intel_fb->obj = obj;
12707         intel_fb->obj->framebuffer_references++;
12708
12709         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12710         if (ret) {
12711                 DRM_ERROR("framebuffer init failed %d\n", ret);
12712                 return ret;
12713         }
12714
12715         return 0;
12716 }
12717
12718 static struct drm_framebuffer *
12719 intel_user_framebuffer_create(struct drm_device *dev,
12720                               struct drm_file *filp,
12721                               struct drm_mode_fb_cmd2 *mode_cmd)
12722 {
12723         struct drm_i915_gem_object *obj;
12724
12725         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12726                                                 mode_cmd->handles[0]));
12727         if (&obj->base == NULL)
12728                 return ERR_PTR(-ENOENT);
12729
12730         return intel_framebuffer_create(dev, mode_cmd, obj);
12731 }
12732
12733 #ifndef CONFIG_DRM_I915_FBDEV
12734 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12735 {
12736 }
12737 #endif
12738
12739 static const struct drm_mode_config_funcs intel_mode_funcs = {
12740         .fb_create = intel_user_framebuffer_create,
12741         .output_poll_changed = intel_fbdev_output_poll_changed,
12742 };
12743
12744 /* Set up chip specific display functions */
12745 static void intel_init_display(struct drm_device *dev)
12746 {
12747         struct drm_i915_private *dev_priv = dev->dev_private;
12748
12749         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12750                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12751         else if (IS_CHERRYVIEW(dev))
12752                 dev_priv->display.find_dpll = chv_find_best_dpll;
12753         else if (IS_VALLEYVIEW(dev))
12754                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12755         else if (IS_PINEVIEW(dev))
12756                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12757         else
12758                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12759
12760         if (HAS_DDI(dev)) {
12761                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12762                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12763                 dev_priv->display.crtc_compute_clock =
12764                         haswell_crtc_compute_clock;
12765                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12766                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12767                 dev_priv->display.off = ironlake_crtc_off;
12768                 if (INTEL_INFO(dev)->gen >= 9)
12769                         dev_priv->display.update_primary_plane =
12770                                 skylake_update_primary_plane;
12771                 else
12772                         dev_priv->display.update_primary_plane =
12773                                 ironlake_update_primary_plane;
12774         } else if (HAS_PCH_SPLIT(dev)) {
12775                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12776                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12777                 dev_priv->display.crtc_compute_clock =
12778                         ironlake_crtc_compute_clock;
12779                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12780                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12781                 dev_priv->display.off = ironlake_crtc_off;
12782                 dev_priv->display.update_primary_plane =
12783                         ironlake_update_primary_plane;
12784         } else if (IS_VALLEYVIEW(dev)) {
12785                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12786                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12787                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12788                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12789                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12790                 dev_priv->display.off = i9xx_crtc_off;
12791                 dev_priv->display.update_primary_plane =
12792                         i9xx_update_primary_plane;
12793         } else {
12794                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12795                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12796                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12797                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12798                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12799                 dev_priv->display.off = i9xx_crtc_off;
12800                 dev_priv->display.update_primary_plane =
12801                         i9xx_update_primary_plane;
12802         }
12803
12804         /* Returns the core display clock speed */
12805         if (IS_VALLEYVIEW(dev))
12806                 dev_priv->display.get_display_clock_speed =
12807                         valleyview_get_display_clock_speed;
12808         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12809                 dev_priv->display.get_display_clock_speed =
12810                         i945_get_display_clock_speed;
12811         else if (IS_I915G(dev))
12812                 dev_priv->display.get_display_clock_speed =
12813                         i915_get_display_clock_speed;
12814         else if (IS_I945GM(dev) || IS_845G(dev))
12815                 dev_priv->display.get_display_clock_speed =
12816                         i9xx_misc_get_display_clock_speed;
12817         else if (IS_PINEVIEW(dev))
12818                 dev_priv->display.get_display_clock_speed =
12819                         pnv_get_display_clock_speed;
12820         else if (IS_I915GM(dev))
12821                 dev_priv->display.get_display_clock_speed =
12822                         i915gm_get_display_clock_speed;
12823         else if (IS_I865G(dev))
12824                 dev_priv->display.get_display_clock_speed =
12825                         i865_get_display_clock_speed;
12826         else if (IS_I85X(dev))
12827                 dev_priv->display.get_display_clock_speed =
12828                         i855_get_display_clock_speed;
12829         else /* 852, 830 */
12830                 dev_priv->display.get_display_clock_speed =
12831                         i830_get_display_clock_speed;
12832
12833         if (IS_GEN5(dev)) {
12834                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12835         } else if (IS_GEN6(dev)) {
12836                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12837         } else if (IS_IVYBRIDGE(dev)) {
12838                 /* FIXME: detect B0+ stepping and use auto training */
12839                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12840                 dev_priv->display.modeset_global_resources =
12841                         ivb_modeset_global_resources;
12842         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12843                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12844         } else if (IS_VALLEYVIEW(dev)) {
12845                 dev_priv->display.modeset_global_resources =
12846                         valleyview_modeset_global_resources;
12847         }
12848
12849         /* Default just returns -ENODEV to indicate unsupported */
12850         dev_priv->display.queue_flip = intel_default_queue_flip;
12851
12852         switch (INTEL_INFO(dev)->gen) {
12853         case 2:
12854                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12855                 break;
12856
12857         case 3:
12858                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12859                 break;
12860
12861         case 4:
12862         case 5:
12863                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12864                 break;
12865
12866         case 6:
12867                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12868                 break;
12869         case 7:
12870         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12871                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12872                 break;
12873         case 9:
12874                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12875                 break;
12876         }
12877
12878         intel_panel_init_backlight_funcs(dev);
12879
12880         mutex_init(&dev_priv->pps_mutex);
12881 }
12882
12883 /*
12884  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12885  * resume, or other times.  This quirk makes sure that's the case for
12886  * affected systems.
12887  */
12888 static void quirk_pipea_force(struct drm_device *dev)
12889 {
12890         struct drm_i915_private *dev_priv = dev->dev_private;
12891
12892         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12893         DRM_INFO("applying pipe a force quirk\n");
12894 }
12895
12896 static void quirk_pipeb_force(struct drm_device *dev)
12897 {
12898         struct drm_i915_private *dev_priv = dev->dev_private;
12899
12900         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12901         DRM_INFO("applying pipe b force quirk\n");
12902 }
12903
12904 /*
12905  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12906  */
12907 static void quirk_ssc_force_disable(struct drm_device *dev)
12908 {
12909         struct drm_i915_private *dev_priv = dev->dev_private;
12910         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12911         DRM_INFO("applying lvds SSC disable quirk\n");
12912 }
12913
12914 /*
12915  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12916  * brightness value
12917  */
12918 static void quirk_invert_brightness(struct drm_device *dev)
12919 {
12920         struct drm_i915_private *dev_priv = dev->dev_private;
12921         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12922         DRM_INFO("applying inverted panel brightness quirk\n");
12923 }
12924
12925 /* Some VBT's incorrectly indicate no backlight is present */
12926 static void quirk_backlight_present(struct drm_device *dev)
12927 {
12928         struct drm_i915_private *dev_priv = dev->dev_private;
12929         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12930         DRM_INFO("applying backlight present quirk\n");
12931 }
12932
12933 struct intel_quirk {
12934         int device;
12935         int subsystem_vendor;
12936         int subsystem_device;
12937         void (*hook)(struct drm_device *dev);
12938 };
12939
12940 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12941 struct intel_dmi_quirk {
12942         void (*hook)(struct drm_device *dev);
12943         const struct dmi_system_id (*dmi_id_list)[];
12944 };
12945
12946 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12947 {
12948         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12949         return 1;
12950 }
12951
12952 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12953         {
12954                 .dmi_id_list = &(const struct dmi_system_id[]) {
12955                         {
12956                                 .callback = intel_dmi_reverse_brightness,
12957                                 .ident = "NCR Corporation",
12958                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12959                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12960                                 },
12961                         },
12962                         { }  /* terminating entry */
12963                 },
12964                 .hook = quirk_invert_brightness,
12965         },
12966 };
12967
12968 static struct intel_quirk intel_quirks[] = {
12969         /* HP Mini needs pipe A force quirk (LP: #322104) */
12970         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12971
12972         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12973         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12974
12975         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12976         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12977
12978         /* 830 needs to leave pipe A & dpll A up */
12979         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12980
12981         /* 830 needs to leave pipe B & dpll B up */
12982         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12983
12984         /* Lenovo U160 cannot use SSC on LVDS */
12985         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12986
12987         /* Sony Vaio Y cannot use SSC on LVDS */
12988         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12989
12990         /* Acer Aspire 5734Z must invert backlight brightness */
12991         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12992
12993         /* Acer/eMachines G725 */
12994         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12995
12996         /* Acer/eMachines e725 */
12997         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12998
12999         /* Acer/Packard Bell NCL20 */
13000         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13001
13002         /* Acer Aspire 4736Z */
13003         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13004
13005         /* Acer Aspire 5336 */
13006         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13007
13008         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13009         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13010
13011         /* Acer C720 Chromebook (Core i3 4005U) */
13012         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13013
13014         /* Apple Macbook 2,1 (Core 2 T7400) */
13015         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13016
13017         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13018         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13019
13020         /* HP Chromebook 14 (Celeron 2955U) */
13021         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13022 };
13023
13024 static void intel_init_quirks(struct drm_device *dev)
13025 {
13026         struct pci_dev *d = dev->pdev;
13027         int i;
13028
13029         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13030                 struct intel_quirk *q = &intel_quirks[i];
13031
13032                 if (d->device == q->device &&
13033                     (d->subsystem_vendor == q->subsystem_vendor ||
13034                      q->subsystem_vendor == PCI_ANY_ID) &&
13035                     (d->subsystem_device == q->subsystem_device ||
13036                      q->subsystem_device == PCI_ANY_ID))
13037                         q->hook(dev);
13038         }
13039         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13040                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13041                         intel_dmi_quirks[i].hook(dev);
13042         }
13043 }
13044
13045 /* Disable the VGA plane that we never use */
13046 static void i915_disable_vga(struct drm_device *dev)
13047 {
13048         struct drm_i915_private *dev_priv = dev->dev_private;
13049         u8 sr1;
13050         u32 vga_reg = i915_vgacntrl_reg(dev);
13051
13052         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13053         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13054         outb(SR01, VGA_SR_INDEX);
13055         sr1 = inb(VGA_SR_DATA);
13056         outb(sr1 | 1<<5, VGA_SR_DATA);
13057         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13058         udelay(300);
13059
13060         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13061         POSTING_READ(vga_reg);
13062 }
13063
13064 void intel_modeset_init_hw(struct drm_device *dev)
13065 {
13066         intel_prepare_ddi(dev);
13067
13068         if (IS_VALLEYVIEW(dev))
13069                 vlv_update_cdclk(dev);
13070
13071         intel_init_clock_gating(dev);
13072
13073         intel_enable_gt_powersave(dev);
13074 }
13075
13076 void intel_modeset_init(struct drm_device *dev)
13077 {
13078         struct drm_i915_private *dev_priv = dev->dev_private;
13079         int sprite, ret;
13080         enum pipe pipe;
13081         struct intel_crtc *crtc;
13082
13083         drm_mode_config_init(dev);
13084
13085         dev->mode_config.min_width = 0;
13086         dev->mode_config.min_height = 0;
13087
13088         dev->mode_config.preferred_depth = 24;
13089         dev->mode_config.prefer_shadow = 1;
13090
13091         dev->mode_config.funcs = &intel_mode_funcs;
13092
13093         intel_init_quirks(dev);
13094
13095         intel_init_pm(dev);
13096
13097         if (INTEL_INFO(dev)->num_pipes == 0)
13098                 return;
13099
13100         intel_init_display(dev);
13101         intel_init_audio(dev);
13102
13103         if (IS_GEN2(dev)) {
13104                 dev->mode_config.max_width = 2048;
13105                 dev->mode_config.max_height = 2048;
13106         } else if (IS_GEN3(dev)) {
13107                 dev->mode_config.max_width = 4096;
13108                 dev->mode_config.max_height = 4096;
13109         } else {
13110                 dev->mode_config.max_width = 8192;
13111                 dev->mode_config.max_height = 8192;
13112         }
13113
13114         if (IS_845G(dev) || IS_I865G(dev)) {
13115                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13116                 dev->mode_config.cursor_height = 1023;
13117         } else if (IS_GEN2(dev)) {
13118                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13119                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13120         } else {
13121                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13122                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13123         }
13124
13125         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13126
13127         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13128                       INTEL_INFO(dev)->num_pipes,
13129                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13130
13131         for_each_pipe(dev_priv, pipe) {
13132                 intel_crtc_init(dev, pipe);
13133                 for_each_sprite(pipe, sprite) {
13134                         ret = intel_plane_init(dev, pipe, sprite);
13135                         if (ret)
13136                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13137                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13138                 }
13139         }
13140
13141         intel_init_dpio(dev);
13142
13143         intel_shared_dpll_init(dev);
13144
13145         /* Just disable it once at startup */
13146         i915_disable_vga(dev);
13147         intel_setup_outputs(dev);
13148
13149         /* Just in case the BIOS is doing something questionable. */
13150         intel_disable_fbc(dev);
13151
13152         drm_modeset_lock_all(dev);
13153         intel_modeset_setup_hw_state(dev, false);
13154         drm_modeset_unlock_all(dev);
13155
13156         for_each_intel_crtc(dev, crtc) {
13157                 if (!crtc->active)
13158                         continue;
13159
13160                 /*
13161                  * Note that reserving the BIOS fb up front prevents us
13162                  * from stuffing other stolen allocations like the ring
13163                  * on top.  This prevents some ugliness at boot time, and
13164                  * can even allow for smooth boot transitions if the BIOS
13165                  * fb is large enough for the active pipe configuration.
13166                  */
13167                 if (dev_priv->display.get_plane_config) {
13168                         dev_priv->display.get_plane_config(crtc,
13169                                                            &crtc->plane_config);
13170                         /*
13171                          * If the fb is shared between multiple heads, we'll
13172                          * just get the first one.
13173                          */
13174                         intel_find_plane_obj(crtc, &crtc->plane_config);
13175                 }
13176         }
13177 }
13178
13179 static void intel_enable_pipe_a(struct drm_device *dev)
13180 {
13181         struct intel_connector *connector;
13182         struct drm_connector *crt = NULL;
13183         struct intel_load_detect_pipe load_detect_temp;
13184         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13185
13186         /* We can't just switch on the pipe A, we need to set things up with a
13187          * proper mode and output configuration. As a gross hack, enable pipe A
13188          * by enabling the load detect pipe once. */
13189         list_for_each_entry(connector,
13190                             &dev->mode_config.connector_list,
13191                             base.head) {
13192                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13193                         crt = &connector->base;
13194                         break;
13195                 }
13196         }
13197
13198         if (!crt)
13199                 return;
13200
13201         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13202                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13203 }
13204
13205 static bool
13206 intel_check_plane_mapping(struct intel_crtc *crtc)
13207 {
13208         struct drm_device *dev = crtc->base.dev;
13209         struct drm_i915_private *dev_priv = dev->dev_private;
13210         u32 reg, val;
13211
13212         if (INTEL_INFO(dev)->num_pipes == 1)
13213                 return true;
13214
13215         reg = DSPCNTR(!crtc->plane);
13216         val = I915_READ(reg);
13217
13218         if ((val & DISPLAY_PLANE_ENABLE) &&
13219             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13220                 return false;
13221
13222         return true;
13223 }
13224
13225 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13226 {
13227         struct drm_device *dev = crtc->base.dev;
13228         struct drm_i915_private *dev_priv = dev->dev_private;
13229         u32 reg;
13230
13231         /* Clear any frame start delays used for debugging left by the BIOS */
13232         reg = PIPECONF(crtc->config.cpu_transcoder);
13233         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13234
13235         /* restore vblank interrupts to correct state */
13236         if (crtc->active) {
13237                 update_scanline_offset(crtc);
13238                 drm_vblank_on(dev, crtc->pipe);
13239         } else
13240                 drm_vblank_off(dev, crtc->pipe);
13241
13242         /* We need to sanitize the plane -> pipe mapping first because this will
13243          * disable the crtc (and hence change the state) if it is wrong. Note
13244          * that gen4+ has a fixed plane -> pipe mapping.  */
13245         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13246                 struct intel_connector *connector;
13247                 bool plane;
13248
13249                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13250                               crtc->base.base.id);
13251
13252                 /* Pipe has the wrong plane attached and the plane is active.
13253                  * Temporarily change the plane mapping and disable everything
13254                  * ...  */
13255                 plane = crtc->plane;
13256                 crtc->plane = !plane;
13257                 crtc->primary_enabled = true;
13258                 dev_priv->display.crtc_disable(&crtc->base);
13259                 crtc->plane = plane;
13260
13261                 /* ... and break all links. */
13262                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13263                                     base.head) {
13264                         if (connector->encoder->base.crtc != &crtc->base)
13265                                 continue;
13266
13267                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13268                         connector->base.encoder = NULL;
13269                 }
13270                 /* multiple connectors may have the same encoder:
13271                  *  handle them and break crtc link separately */
13272                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13273                                     base.head)
13274                         if (connector->encoder->base.crtc == &crtc->base) {
13275                                 connector->encoder->base.crtc = NULL;
13276                                 connector->encoder->connectors_active = false;
13277                         }
13278
13279                 WARN_ON(crtc->active);
13280                 crtc->base.enabled = false;
13281         }
13282
13283         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13284             crtc->pipe == PIPE_A && !crtc->active) {
13285                 /* BIOS forgot to enable pipe A, this mostly happens after
13286                  * resume. Force-enable the pipe to fix this, the update_dpms
13287                  * call below we restore the pipe to the right state, but leave
13288                  * the required bits on. */
13289                 intel_enable_pipe_a(dev);
13290         }
13291
13292         /* Adjust the state of the output pipe according to whether we
13293          * have active connectors/encoders. */
13294         intel_crtc_update_dpms(&crtc->base);
13295
13296         if (crtc->active != crtc->base.enabled) {
13297                 struct intel_encoder *encoder;
13298
13299                 /* This can happen either due to bugs in the get_hw_state
13300                  * functions or because the pipe is force-enabled due to the
13301                  * pipe A quirk. */
13302                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13303                               crtc->base.base.id,
13304                               crtc->base.enabled ? "enabled" : "disabled",
13305                               crtc->active ? "enabled" : "disabled");
13306
13307                 crtc->base.enabled = crtc->active;
13308
13309                 /* Because we only establish the connector -> encoder ->
13310                  * crtc links if something is active, this means the
13311                  * crtc is now deactivated. Break the links. connector
13312                  * -> encoder links are only establish when things are
13313                  *  actually up, hence no need to break them. */
13314                 WARN_ON(crtc->active);
13315
13316                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13317                         WARN_ON(encoder->connectors_active);
13318                         encoder->base.crtc = NULL;
13319                 }
13320         }
13321
13322         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13323                 /*
13324                  * We start out with underrun reporting disabled to avoid races.
13325                  * For correct bookkeeping mark this on active crtcs.
13326                  *
13327                  * Also on gmch platforms we dont have any hardware bits to
13328                  * disable the underrun reporting. Which means we need to start
13329                  * out with underrun reporting disabled also on inactive pipes,
13330                  * since otherwise we'll complain about the garbage we read when
13331                  * e.g. coming up after runtime pm.
13332                  *
13333                  * No protection against concurrent access is required - at
13334                  * worst a fifo underrun happens which also sets this to false.
13335                  */
13336                 crtc->cpu_fifo_underrun_disabled = true;
13337                 crtc->pch_fifo_underrun_disabled = true;
13338         }
13339 }
13340
13341 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13342 {
13343         struct intel_connector *connector;
13344         struct drm_device *dev = encoder->base.dev;
13345
13346         /* We need to check both for a crtc link (meaning that the
13347          * encoder is active and trying to read from a pipe) and the
13348          * pipe itself being active. */
13349         bool has_active_crtc = encoder->base.crtc &&
13350                 to_intel_crtc(encoder->base.crtc)->active;
13351
13352         if (encoder->connectors_active && !has_active_crtc) {
13353                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13354                               encoder->base.base.id,
13355                               encoder->base.name);
13356
13357                 /* Connector is active, but has no active pipe. This is
13358                  * fallout from our resume register restoring. Disable
13359                  * the encoder manually again. */
13360                 if (encoder->base.crtc) {
13361                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13362                                       encoder->base.base.id,
13363                                       encoder->base.name);
13364                         encoder->disable(encoder);
13365                         if (encoder->post_disable)
13366                                 encoder->post_disable(encoder);
13367                 }
13368                 encoder->base.crtc = NULL;
13369                 encoder->connectors_active = false;
13370
13371                 /* Inconsistent output/port/pipe state happens presumably due to
13372                  * a bug in one of the get_hw_state functions. Or someplace else
13373                  * in our code, like the register restore mess on resume. Clamp
13374                  * things to off as a safer default. */
13375                 list_for_each_entry(connector,
13376                                     &dev->mode_config.connector_list,
13377                                     base.head) {
13378                         if (connector->encoder != encoder)
13379                                 continue;
13380                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13381                         connector->base.encoder = NULL;
13382                 }
13383         }
13384         /* Enabled encoders without active connectors will be fixed in
13385          * the crtc fixup. */
13386 }
13387
13388 void i915_redisable_vga_power_on(struct drm_device *dev)
13389 {
13390         struct drm_i915_private *dev_priv = dev->dev_private;
13391         u32 vga_reg = i915_vgacntrl_reg(dev);
13392
13393         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13394                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13395                 i915_disable_vga(dev);
13396         }
13397 }
13398
13399 void i915_redisable_vga(struct drm_device *dev)
13400 {
13401         struct drm_i915_private *dev_priv = dev->dev_private;
13402
13403         /* This function can be called both from intel_modeset_setup_hw_state or
13404          * at a very early point in our resume sequence, where the power well
13405          * structures are not yet restored. Since this function is at a very
13406          * paranoid "someone might have enabled VGA while we were not looking"
13407          * level, just check if the power well is enabled instead of trying to
13408          * follow the "don't touch the power well if we don't need it" policy
13409          * the rest of the driver uses. */
13410         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13411                 return;
13412
13413         i915_redisable_vga_power_on(dev);
13414 }
13415
13416 static bool primary_get_hw_state(struct intel_crtc *crtc)
13417 {
13418         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13419
13420         if (!crtc->active)
13421                 return false;
13422
13423         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13424 }
13425
13426 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13427 {
13428         struct drm_i915_private *dev_priv = dev->dev_private;
13429         enum pipe pipe;
13430         struct intel_crtc *crtc;
13431         struct intel_encoder *encoder;
13432         struct intel_connector *connector;
13433         int i;
13434
13435         for_each_intel_crtc(dev, crtc) {
13436                 memset(&crtc->config, 0, sizeof(crtc->config));
13437
13438                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13439
13440                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13441                                                                  &crtc->config);
13442
13443                 crtc->base.enabled = crtc->active;
13444                 crtc->primary_enabled = primary_get_hw_state(crtc);
13445
13446                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13447                               crtc->base.base.id,
13448                               crtc->active ? "enabled" : "disabled");
13449         }
13450
13451         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13452                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13453
13454                 pll->on = pll->get_hw_state(dev_priv, pll,
13455                                             &pll->config.hw_state);
13456                 pll->active = 0;
13457                 pll->config.crtc_mask = 0;
13458                 for_each_intel_crtc(dev, crtc) {
13459                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13460                                 pll->active++;
13461                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13462                         }
13463                 }
13464
13465                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13466                               pll->name, pll->config.crtc_mask, pll->on);
13467
13468                 if (pll->config.crtc_mask)
13469                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13470         }
13471
13472         for_each_intel_encoder(dev, encoder) {
13473                 pipe = 0;
13474
13475                 if (encoder->get_hw_state(encoder, &pipe)) {
13476                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13477                         encoder->base.crtc = &crtc->base;
13478                         encoder->get_config(encoder, &crtc->config);
13479                 } else {
13480                         encoder->base.crtc = NULL;
13481                 }
13482
13483                 encoder->connectors_active = false;
13484                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13485                               encoder->base.base.id,
13486                               encoder->base.name,
13487                               encoder->base.crtc ? "enabled" : "disabled",
13488                               pipe_name(pipe));
13489         }
13490
13491         list_for_each_entry(connector, &dev->mode_config.connector_list,
13492                             base.head) {
13493                 if (connector->get_hw_state(connector)) {
13494                         connector->base.dpms = DRM_MODE_DPMS_ON;
13495                         connector->encoder->connectors_active = true;
13496                         connector->base.encoder = &connector->encoder->base;
13497                 } else {
13498                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13499                         connector->base.encoder = NULL;
13500                 }
13501                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13502                               connector->base.base.id,
13503                               connector->base.name,
13504                               connector->base.encoder ? "enabled" : "disabled");
13505         }
13506 }
13507
13508 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13509  * and i915 state tracking structures. */
13510 void intel_modeset_setup_hw_state(struct drm_device *dev,
13511                                   bool force_restore)
13512 {
13513         struct drm_i915_private *dev_priv = dev->dev_private;
13514         enum pipe pipe;
13515         struct intel_crtc *crtc;
13516         struct intel_encoder *encoder;
13517         int i;
13518
13519         intel_modeset_readout_hw_state(dev);
13520
13521         /*
13522          * Now that we have the config, copy it to each CRTC struct
13523          * Note that this could go away if we move to using crtc_config
13524          * checking everywhere.
13525          */
13526         for_each_intel_crtc(dev, crtc) {
13527                 if (crtc->active && i915.fastboot) {
13528                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13529                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13530                                       crtc->base.base.id);
13531                         drm_mode_debug_printmodeline(&crtc->base.mode);
13532                 }
13533         }
13534
13535         /* HW state is read out, now we need to sanitize this mess. */
13536         for_each_intel_encoder(dev, encoder) {
13537                 intel_sanitize_encoder(encoder);
13538         }
13539
13540         for_each_pipe(dev_priv, pipe) {
13541                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13542                 intel_sanitize_crtc(crtc);
13543                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13544         }
13545
13546         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13547                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13548
13549                 if (!pll->on || pll->active)
13550                         continue;
13551
13552                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13553
13554                 pll->disable(dev_priv, pll);
13555                 pll->on = false;
13556         }
13557
13558         if (IS_GEN9(dev))
13559                 skl_wm_get_hw_state(dev);
13560         else if (HAS_PCH_SPLIT(dev))
13561                 ilk_wm_get_hw_state(dev);
13562
13563         if (force_restore) {
13564                 i915_redisable_vga(dev);
13565
13566                 /*
13567                  * We need to use raw interfaces for restoring state to avoid
13568                  * checking (bogus) intermediate states.
13569                  */
13570                 for_each_pipe(dev_priv, pipe) {
13571                         struct drm_crtc *crtc =
13572                                 dev_priv->pipe_to_crtc_mapping[pipe];
13573
13574                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13575                                        crtc->primary->fb);
13576                 }
13577         } else {
13578                 intel_modeset_update_staged_output_state(dev);
13579         }
13580
13581         intel_modeset_check_state(dev);
13582 }
13583
13584 void intel_modeset_gem_init(struct drm_device *dev)
13585 {
13586         struct drm_i915_private *dev_priv = dev->dev_private;
13587         struct drm_crtc *c;
13588         struct drm_i915_gem_object *obj;
13589
13590         mutex_lock(&dev->struct_mutex);
13591         intel_init_gt_powersave(dev);
13592         mutex_unlock(&dev->struct_mutex);
13593
13594         /*
13595          * There may be no VBT; and if the BIOS enabled SSC we can
13596          * just keep using it to avoid unnecessary flicker.  Whereas if the
13597          * BIOS isn't using it, don't assume it will work even if the VBT
13598          * indicates as much.
13599          */
13600         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13601                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13602                                                 DREF_SSC1_ENABLE);
13603
13604         intel_modeset_init_hw(dev);
13605
13606         intel_setup_overlay(dev);
13607
13608         /*
13609          * Make sure any fbs we allocated at startup are properly
13610          * pinned & fenced.  When we do the allocation it's too early
13611          * for this.
13612          */
13613         mutex_lock(&dev->struct_mutex);
13614         for_each_crtc(dev, c) {
13615                 obj = intel_fb_obj(c->primary->fb);
13616                 if (obj == NULL)
13617                         continue;
13618
13619                 if (intel_pin_and_fence_fb_obj(c->primary,
13620                                                c->primary->fb,
13621                                                NULL)) {
13622                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13623                                   to_intel_crtc(c)->pipe);
13624                         drm_framebuffer_unreference(c->primary->fb);
13625                         c->primary->fb = NULL;
13626                 }
13627         }
13628         mutex_unlock(&dev->struct_mutex);
13629
13630         intel_backlight_register(dev);
13631 }
13632
13633 void intel_connector_unregister(struct intel_connector *intel_connector)
13634 {
13635         struct drm_connector *connector = &intel_connector->base;
13636
13637         intel_panel_destroy_backlight(connector);
13638         drm_connector_unregister(connector);
13639 }
13640
13641 void intel_modeset_cleanup(struct drm_device *dev)
13642 {
13643         struct drm_i915_private *dev_priv = dev->dev_private;
13644         struct drm_connector *connector;
13645
13646         intel_disable_gt_powersave(dev);
13647
13648         intel_backlight_unregister(dev);
13649
13650         /*
13651          * Interrupts and polling as the first thing to avoid creating havoc.
13652          * Too much stuff here (turning of connectors, ...) would
13653          * experience fancy races otherwise.
13654          */
13655         intel_irq_uninstall(dev_priv);
13656
13657         /*
13658          * Due to the hpd irq storm handling the hotplug work can re-arm the
13659          * poll handlers. Hence disable polling after hpd handling is shut down.
13660          */
13661         drm_kms_helper_poll_fini(dev);
13662
13663         mutex_lock(&dev->struct_mutex);
13664
13665         intel_unregister_dsm_handler();
13666
13667         intel_disable_fbc(dev);
13668
13669         ironlake_teardown_rc6(dev);
13670
13671         mutex_unlock(&dev->struct_mutex);
13672
13673         /* flush any delayed tasks or pending work */
13674         flush_scheduled_work();
13675
13676         /* destroy the backlight and sysfs files before encoders/connectors */
13677         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13678                 struct intel_connector *intel_connector;
13679
13680                 intel_connector = to_intel_connector(connector);
13681                 intel_connector->unregister(intel_connector);
13682         }
13683
13684         drm_mode_config_cleanup(dev);
13685
13686         intel_cleanup_overlay(dev);
13687
13688         mutex_lock(&dev->struct_mutex);
13689         intel_cleanup_gt_powersave(dev);
13690         mutex_unlock(&dev->struct_mutex);
13691 }
13692
13693 /*
13694  * Return which encoder is currently attached for connector.
13695  */
13696 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13697 {
13698         return &intel_attached_encoder(connector)->base;
13699 }
13700
13701 void intel_connector_attach_encoder(struct intel_connector *connector,
13702                                     struct intel_encoder *encoder)
13703 {
13704         connector->encoder = encoder;
13705         drm_mode_connector_attach_encoder(&connector->base,
13706                                           &encoder->base);
13707 }
13708
13709 /*
13710  * set vga decode state - true == enable VGA decode
13711  */
13712 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13713 {
13714         struct drm_i915_private *dev_priv = dev->dev_private;
13715         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13716         u16 gmch_ctrl;
13717
13718         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13719                 DRM_ERROR("failed to read control word\n");
13720                 return -EIO;
13721         }
13722
13723         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13724                 return 0;
13725
13726         if (state)
13727                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13728         else
13729                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13730
13731         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13732                 DRM_ERROR("failed to write control word\n");
13733                 return -EIO;
13734         }
13735
13736         return 0;
13737 }
13738
13739 struct intel_display_error_state {
13740
13741         u32 power_well_driver;
13742
13743         int num_transcoders;
13744
13745         struct intel_cursor_error_state {
13746                 u32 control;
13747                 u32 position;
13748                 u32 base;
13749                 u32 size;
13750         } cursor[I915_MAX_PIPES];
13751
13752         struct intel_pipe_error_state {
13753                 bool power_domain_on;
13754                 u32 source;
13755                 u32 stat;
13756         } pipe[I915_MAX_PIPES];
13757
13758         struct intel_plane_error_state {
13759                 u32 control;
13760                 u32 stride;
13761                 u32 size;
13762                 u32 pos;
13763                 u32 addr;
13764                 u32 surface;
13765                 u32 tile_offset;
13766         } plane[I915_MAX_PIPES];
13767
13768         struct intel_transcoder_error_state {
13769                 bool power_domain_on;
13770                 enum transcoder cpu_transcoder;
13771
13772                 u32 conf;
13773
13774                 u32 htotal;
13775                 u32 hblank;
13776                 u32 hsync;
13777                 u32 vtotal;
13778                 u32 vblank;
13779                 u32 vsync;
13780         } transcoder[4];
13781 };
13782
13783 struct intel_display_error_state *
13784 intel_display_capture_error_state(struct drm_device *dev)
13785 {
13786         struct drm_i915_private *dev_priv = dev->dev_private;
13787         struct intel_display_error_state *error;
13788         int transcoders[] = {
13789                 TRANSCODER_A,
13790                 TRANSCODER_B,
13791                 TRANSCODER_C,
13792                 TRANSCODER_EDP,
13793         };
13794         int i;
13795
13796         if (INTEL_INFO(dev)->num_pipes == 0)
13797                 return NULL;
13798
13799         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13800         if (error == NULL)
13801                 return NULL;
13802
13803         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13804                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13805
13806         for_each_pipe(dev_priv, i) {
13807                 error->pipe[i].power_domain_on =
13808                         __intel_display_power_is_enabled(dev_priv,
13809                                                          POWER_DOMAIN_PIPE(i));
13810                 if (!error->pipe[i].power_domain_on)
13811                         continue;
13812
13813                 error->cursor[i].control = I915_READ(CURCNTR(i));
13814                 error->cursor[i].position = I915_READ(CURPOS(i));
13815                 error->cursor[i].base = I915_READ(CURBASE(i));
13816
13817                 error->plane[i].control = I915_READ(DSPCNTR(i));
13818                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13819                 if (INTEL_INFO(dev)->gen <= 3) {
13820                         error->plane[i].size = I915_READ(DSPSIZE(i));
13821                         error->plane[i].pos = I915_READ(DSPPOS(i));
13822                 }
13823                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13824                         error->plane[i].addr = I915_READ(DSPADDR(i));
13825                 if (INTEL_INFO(dev)->gen >= 4) {
13826                         error->plane[i].surface = I915_READ(DSPSURF(i));
13827                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13828                 }
13829
13830                 error->pipe[i].source = I915_READ(PIPESRC(i));
13831
13832                 if (HAS_GMCH_DISPLAY(dev))
13833                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13834         }
13835
13836         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13837         if (HAS_DDI(dev_priv->dev))
13838                 error->num_transcoders++; /* Account for eDP. */
13839
13840         for (i = 0; i < error->num_transcoders; i++) {
13841                 enum transcoder cpu_transcoder = transcoders[i];
13842
13843                 error->transcoder[i].power_domain_on =
13844                         __intel_display_power_is_enabled(dev_priv,
13845                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13846                 if (!error->transcoder[i].power_domain_on)
13847                         continue;
13848
13849                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13850
13851                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13852                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13853                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13854                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13855                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13856                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13857                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13858         }
13859
13860         return error;
13861 }
13862
13863 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13864
13865 void
13866 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13867                                 struct drm_device *dev,
13868                                 struct intel_display_error_state *error)
13869 {
13870         struct drm_i915_private *dev_priv = dev->dev_private;
13871         int i;
13872
13873         if (!error)
13874                 return;
13875
13876         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13877         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13878                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13879                            error->power_well_driver);
13880         for_each_pipe(dev_priv, i) {
13881                 err_printf(m, "Pipe [%d]:\n", i);
13882                 err_printf(m, "  Power: %s\n",
13883                            error->pipe[i].power_domain_on ? "on" : "off");
13884                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13885                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13886
13887                 err_printf(m, "Plane [%d]:\n", i);
13888                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13889                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13890                 if (INTEL_INFO(dev)->gen <= 3) {
13891                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13892                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13893                 }
13894                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13895                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13896                 if (INTEL_INFO(dev)->gen >= 4) {
13897                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13898                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13899                 }
13900
13901                 err_printf(m, "Cursor [%d]:\n", i);
13902                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13903                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13904                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13905         }
13906
13907         for (i = 0; i < error->num_transcoders; i++) {
13908                 err_printf(m, "CPU transcoder: %c\n",
13909                            transcoder_name(error->transcoder[i].cpu_transcoder));
13910                 err_printf(m, "  Power: %s\n",
13911                            error->transcoder[i].power_domain_on ? "on" : "off");
13912                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13913                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13914                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13915                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13916                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13917                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13918                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13919         }
13920 }
13921
13922 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13923 {
13924         struct intel_crtc *crtc;
13925
13926         for_each_intel_crtc(dev, crtc) {
13927                 struct intel_unpin_work *work;
13928
13929                 spin_lock_irq(&dev->event_lock);
13930
13931                 work = crtc->unpin_work;
13932
13933                 if (work && work->event &&
13934                     work->event->base.file_priv == file) {
13935                         kfree(work->event);
13936                         work->event = NULL;
13937                 }
13938
13939                 spin_unlock_irq(&dev->event_lock);
13940         }
13941 }