drm/i915: Do not call intel_crtc_disable if the crtc is already disabled.
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150                           enum i915_cache_level cache_level,
151                           u32 unused)
152 {
153         u32 pte_flags = 0;
154
155         /* Currently applicable only to VLV */
156         if (vma->obj->gt_ro)
157                 pte_flags |= PTE_READ_ONLY;
158
159         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160                                 cache_level, pte_flags);
161
162         return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167         vma->vm->clear_range(vma->vm,
168                              vma->node.start,
169                              vma->obj->base.size,
170                              true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174                                   enum i915_cache_level level,
175                                   bool valid)
176 {
177         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178         pte |= addr;
179
180         switch (level) {
181         case I915_CACHE_NONE:
182                 pte |= PPAT_UNCACHED_INDEX;
183                 break;
184         case I915_CACHE_WT:
185                 pte |= PPAT_DISPLAY_ELLC_INDEX;
186                 break;
187         default:
188                 pte |= PPAT_CACHED_INDEX;
189                 break;
190         }
191
192         return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
196                                   dma_addr_t addr,
197                                   enum i915_cache_level level)
198 {
199         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
200         pde |= addr;
201         if (level != I915_CACHE_NONE)
202                 pde |= PPAT_CACHED_PDE_INDEX;
203         else
204                 pde |= PPAT_UNCACHED_INDEX;
205         return pde;
206 }
207
208 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
209                                  enum i915_cache_level level,
210                                  bool valid, u32 unused)
211 {
212         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
213         pte |= GEN6_PTE_ADDR_ENCODE(addr);
214
215         switch (level) {
216         case I915_CACHE_L3_LLC:
217         case I915_CACHE_LLC:
218                 pte |= GEN6_PTE_CACHE_LLC;
219                 break;
220         case I915_CACHE_NONE:
221                 pte |= GEN6_PTE_UNCACHED;
222                 break;
223         default:
224                 MISSING_CASE(level);
225         }
226
227         return pte;
228 }
229
230 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
231                                  enum i915_cache_level level,
232                                  bool valid, u32 unused)
233 {
234         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
235         pte |= GEN6_PTE_ADDR_ENCODE(addr);
236
237         switch (level) {
238         case I915_CACHE_L3_LLC:
239                 pte |= GEN7_PTE_CACHE_L3_LLC;
240                 break;
241         case I915_CACHE_LLC:
242                 pte |= GEN6_PTE_CACHE_LLC;
243                 break;
244         case I915_CACHE_NONE:
245                 pte |= GEN6_PTE_UNCACHED;
246                 break;
247         default:
248                 MISSING_CASE(level);
249         }
250
251         return pte;
252 }
253
254 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
255                                  enum i915_cache_level level,
256                                  bool valid, u32 flags)
257 {
258         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259         pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261         if (!(flags & PTE_READ_ONLY))
262                 pte |= BYT_PTE_WRITEABLE;
263
264         if (level != I915_CACHE_NONE)
265                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
266
267         return pte;
268 }
269
270 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
271                                  enum i915_cache_level level,
272                                  bool valid, u32 unused)
273 {
274         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
275         pte |= HSW_PTE_ADDR_ENCODE(addr);
276
277         if (level != I915_CACHE_NONE)
278                 pte |= HSW_WB_LLC_AGE3;
279
280         return pte;
281 }
282
283 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
284                                   enum i915_cache_level level,
285                                   bool valid, u32 unused)
286 {
287         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
288         pte |= HSW_PTE_ADDR_ENCODE(addr);
289
290         switch (level) {
291         case I915_CACHE_NONE:
292                 break;
293         case I915_CACHE_WT:
294                 pte |= HSW_WT_ELLC_LLC_AGE3;
295                 break;
296         default:
297                 pte |= HSW_WB_ELLC_LLC_AGE3;
298                 break;
299         }
300
301         return pte;
302 }
303
304 #define i915_dma_unmap_single(px, dev) \
305         __i915_dma_unmap_single((px)->daddr, dev)
306
307 static void __i915_dma_unmap_single(dma_addr_t daddr,
308                                     struct drm_device *dev)
309 {
310         struct device *device = &dev->pdev->dev;
311
312         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
313 }
314
315 /**
316  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
317  * @px: Page table/dir/etc to get a DMA map for
318  * @dev:        drm device
319  *
320  * Page table allocations are unified across all gens. They always require a
321  * single 4k allocation, as well as a DMA mapping. If we keep the structs
322  * symmetric here, the simple macro covers us for every page table type.
323  *
324  * Return: 0 if success.
325  */
326 #define i915_dma_map_single(px, dev) \
327         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
328
329 static int i915_dma_map_page_single(struct page *page,
330                                     struct drm_device *dev,
331                                     dma_addr_t *daddr)
332 {
333         struct device *device = &dev->pdev->dev;
334
335         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
336         if (dma_mapping_error(device, *daddr))
337                 return -ENOMEM;
338
339         return 0;
340 }
341
342 static void unmap_and_free_pt(struct i915_page_table *pt,
343                                struct drm_device *dev)
344 {
345         if (WARN_ON(!pt->page))
346                 return;
347
348         i915_dma_unmap_single(pt, dev);
349         __free_page(pt->page);
350         kfree(pt->used_ptes);
351         kfree(pt);
352 }
353
354 static void gen8_initialize_pt(struct i915_address_space *vm,
355                                struct i915_page_table *pt)
356 {
357         gen8_pte_t *pt_vaddr, scratch_pte;
358         int i;
359
360         pt_vaddr = kmap_atomic(pt->page);
361         scratch_pte = gen8_pte_encode(vm->scratch.addr,
362                                       I915_CACHE_LLC, true);
363
364         for (i = 0; i < GEN8_PTES; i++)
365                 pt_vaddr[i] = scratch_pte;
366
367         if (!HAS_LLC(vm->dev))
368                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
369         kunmap_atomic(pt_vaddr);
370 }
371
372 static struct i915_page_table *alloc_pt_single(struct drm_device *dev)
373 {
374         struct i915_page_table *pt;
375         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
376                 GEN8_PTES : GEN6_PTES;
377         int ret = -ENOMEM;
378
379         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
380         if (!pt)
381                 return ERR_PTR(-ENOMEM);
382
383         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
384                                 GFP_KERNEL);
385
386         if (!pt->used_ptes)
387                 goto fail_bitmap;
388
389         pt->page = alloc_page(GFP_KERNEL);
390         if (!pt->page)
391                 goto fail_page;
392
393         ret = i915_dma_map_single(pt, dev);
394         if (ret)
395                 goto fail_dma;
396
397         return pt;
398
399 fail_dma:
400         __free_page(pt->page);
401 fail_page:
402         kfree(pt->used_ptes);
403 fail_bitmap:
404         kfree(pt);
405
406         return ERR_PTR(ret);
407 }
408
409 static void unmap_and_free_pd(struct i915_page_directory *pd,
410                               struct drm_device *dev)
411 {
412         if (pd->page) {
413                 i915_dma_unmap_single(pd, dev);
414                 __free_page(pd->page);
415                 kfree(pd->used_pdes);
416                 kfree(pd);
417         }
418 }
419
420 static struct i915_page_directory *alloc_pd_single(struct drm_device *dev)
421 {
422         struct i915_page_directory *pd;
423         int ret = -ENOMEM;
424
425         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
426         if (!pd)
427                 return ERR_PTR(-ENOMEM);
428
429         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
430                                 sizeof(*pd->used_pdes), GFP_KERNEL);
431         if (!pd->used_pdes)
432                 goto free_pd;
433
434         pd->page = alloc_page(GFP_KERNEL);
435         if (!pd->page)
436                 goto free_bitmap;
437
438         ret = i915_dma_map_single(pd, dev);
439         if (ret)
440                 goto free_page;
441
442         return pd;
443
444 free_page:
445         __free_page(pd->page);
446 free_bitmap:
447         kfree(pd->used_pdes);
448 free_pd:
449         kfree(pd);
450
451         return ERR_PTR(ret);
452 }
453
454 /* Broadwell Page Directory Pointer Descriptors */
455 static int gen8_write_pdp(struct intel_engine_cs *ring,
456                           unsigned entry,
457                           dma_addr_t addr)
458 {
459         int ret;
460
461         BUG_ON(entry >= 4);
462
463         ret = intel_ring_begin(ring, 6);
464         if (ret)
465                 return ret;
466
467         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
468         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
469         intel_ring_emit(ring, upper_32_bits(addr));
470         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
471         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
472         intel_ring_emit(ring, lower_32_bits(addr));
473         intel_ring_advance(ring);
474
475         return 0;
476 }
477
478 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
479                           struct intel_engine_cs *ring)
480 {
481         int i, ret;
482
483         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
484                 struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
485                 dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr;
486                 /* The page directory might be NULL, but we need to clear out
487                  * whatever the previous context might have used. */
488                 ret = gen8_write_pdp(ring, i, pd_daddr);
489                 if (ret)
490                         return ret;
491         }
492
493         return 0;
494 }
495
496 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
497                                    uint64_t start,
498                                    uint64_t length,
499                                    bool use_scratch)
500 {
501         struct i915_hw_ppgtt *ppgtt =
502                 container_of(vm, struct i915_hw_ppgtt, base);
503         gen8_pte_t *pt_vaddr, scratch_pte;
504         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
505         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
506         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
507         unsigned num_entries = length >> PAGE_SHIFT;
508         unsigned last_pte, i;
509
510         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
511                                       I915_CACHE_LLC, use_scratch);
512
513         while (num_entries) {
514                 struct i915_page_directory *pd;
515                 struct i915_page_table *pt;
516                 struct page *page_table;
517
518                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
519                         break;
520
521                 pd = ppgtt->pdp.page_directory[pdpe];
522
523                 if (WARN_ON(!pd->page_table[pde]))
524                         break;
525
526                 pt = pd->page_table[pde];
527
528                 if (WARN_ON(!pt->page))
529                         break;
530
531                 page_table = pt->page;
532
533                 last_pte = pte + num_entries;
534                 if (last_pte > GEN8_PTES)
535                         last_pte = GEN8_PTES;
536
537                 pt_vaddr = kmap_atomic(page_table);
538
539                 for (i = pte; i < last_pte; i++) {
540                         pt_vaddr[i] = scratch_pte;
541                         num_entries--;
542                 }
543
544                 if (!HAS_LLC(ppgtt->base.dev))
545                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
546                 kunmap_atomic(pt_vaddr);
547
548                 pte = 0;
549                 if (++pde == I915_PDES) {
550                         pdpe++;
551                         pde = 0;
552                 }
553         }
554 }
555
556 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
557                                       struct sg_table *pages,
558                                       uint64_t start,
559                                       enum i915_cache_level cache_level, u32 unused)
560 {
561         struct i915_hw_ppgtt *ppgtt =
562                 container_of(vm, struct i915_hw_ppgtt, base);
563         gen8_pte_t *pt_vaddr;
564         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
565         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
566         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
567         struct sg_page_iter sg_iter;
568
569         pt_vaddr = NULL;
570
571         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
572                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
573                         break;
574
575                 if (pt_vaddr == NULL) {
576                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
577                         struct i915_page_table *pt = pd->page_table[pde];
578                         struct page *page_table = pt->page;
579
580                         pt_vaddr = kmap_atomic(page_table);
581                 }
582
583                 pt_vaddr[pte] =
584                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
585                                         cache_level, true);
586                 if (++pte == GEN8_PTES) {
587                         if (!HAS_LLC(ppgtt->base.dev))
588                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
589                         kunmap_atomic(pt_vaddr);
590                         pt_vaddr = NULL;
591                         if (++pde == I915_PDES) {
592                                 pdpe++;
593                                 pde = 0;
594                         }
595                         pte = 0;
596                 }
597         }
598         if (pt_vaddr) {
599                 if (!HAS_LLC(ppgtt->base.dev))
600                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
601                 kunmap_atomic(pt_vaddr);
602         }
603 }
604
605 static void __gen8_do_map_pt(gen8_pde_t * const pde,
606                              struct i915_page_table *pt,
607                              struct drm_device *dev)
608 {
609         gen8_pde_t entry =
610                 gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
611         *pde = entry;
612 }
613
614 static void gen8_initialize_pd(struct i915_address_space *vm,
615                                struct i915_page_directory *pd)
616 {
617         struct i915_hw_ppgtt *ppgtt =
618                         container_of(vm, struct i915_hw_ppgtt, base);
619         gen8_pde_t *page_directory;
620         struct i915_page_table *pt;
621         int i;
622
623         page_directory = kmap_atomic(pd->page);
624         pt = ppgtt->scratch_pt;
625         for (i = 0; i < I915_PDES; i++)
626                 /* Map the PDE to the page table */
627                 __gen8_do_map_pt(page_directory + i, pt, vm->dev);
628
629         if (!HAS_LLC(vm->dev))
630                 drm_clflush_virt_range(page_directory, PAGE_SIZE);
631         kunmap_atomic(page_directory);
632 }
633
634 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
635 {
636         int i;
637
638         if (!pd->page)
639                 return;
640
641         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
642                 if (WARN_ON(!pd->page_table[i]))
643                         continue;
644
645                 unmap_and_free_pt(pd->page_table[i], dev);
646                 pd->page_table[i] = NULL;
647         }
648 }
649
650 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
651 {
652         struct i915_hw_ppgtt *ppgtt =
653                 container_of(vm, struct i915_hw_ppgtt, base);
654         int i;
655
656         for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
657                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
658                         continue;
659
660                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
661                 unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
662         }
663
664         unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
665         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
666 }
667
668 /**
669  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
670  * @ppgtt:      Master ppgtt structure.
671  * @pd:         Page directory for this address range.
672  * @start:      Starting virtual address to begin allocations.
673  * @length      Size of the allocations.
674  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
675  *              caller to free on error.
676  *
677  * Allocate the required number of page tables. Extremely similar to
678  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
679  * the page directory boundary (instead of the page directory pointer). That
680  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
681  * possible, and likely that the caller will need to use multiple calls of this
682  * function to achieve the appropriate allocation.
683  *
684  * Return: 0 if success; negative error code otherwise.
685  */
686 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
687                                      struct i915_page_directory *pd,
688                                      uint64_t start,
689                                      uint64_t length,
690                                      unsigned long *new_pts)
691 {
692         struct drm_device *dev = ppgtt->base.dev;
693         struct i915_page_table *pt;
694         uint64_t temp;
695         uint32_t pde;
696
697         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
698                 /* Don't reallocate page tables */
699                 if (pt) {
700                         /* Scratch is never allocated this way */
701                         WARN_ON(pt == ppgtt->scratch_pt);
702                         continue;
703                 }
704
705                 pt = alloc_pt_single(dev);
706                 if (IS_ERR(pt))
707                         goto unwind_out;
708
709                 gen8_initialize_pt(&ppgtt->base, pt);
710                 pd->page_table[pde] = pt;
711                 set_bit(pde, new_pts);
712         }
713
714         return 0;
715
716 unwind_out:
717         for_each_set_bit(pde, new_pts, I915_PDES)
718                 unmap_and_free_pt(pd->page_table[pde], dev);
719
720         return -ENOMEM;
721 }
722
723 /**
724  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
725  * @ppgtt:      Master ppgtt structure.
726  * @pdp:        Page directory pointer for this address range.
727  * @start:      Starting virtual address to begin allocations.
728  * @length      Size of the allocations.
729  * @new_pds     Bitmap set by function with new allocations. Likely used by the
730  *              caller to free on error.
731  *
732  * Allocate the required number of page directories starting at the pde index of
733  * @start, and ending at the pde index @start + @length. This function will skip
734  * over already allocated page directories within the range, and only allocate
735  * new ones, setting the appropriate pointer within the pdp as well as the
736  * correct position in the bitmap @new_pds.
737  *
738  * The function will only allocate the pages within the range for a give page
739  * directory pointer. In other words, if @start + @length straddles a virtually
740  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
741  * required by the caller, This is not currently possible, and the BUG in the
742  * code will prevent it.
743  *
744  * Return: 0 if success; negative error code otherwise.
745  */
746 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
747                                      struct i915_page_directory_pointer *pdp,
748                                      uint64_t start,
749                                      uint64_t length,
750                                      unsigned long *new_pds)
751 {
752         struct drm_device *dev = ppgtt->base.dev;
753         struct i915_page_directory *pd;
754         uint64_t temp;
755         uint32_t pdpe;
756
757         WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
758
759         /* FIXME: upper bound must not overflow 32 bits  */
760         WARN_ON((start + length) > (1ULL << 32));
761
762         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
763                 if (pd)
764                         continue;
765
766                 pd = alloc_pd_single(dev);
767                 if (IS_ERR(pd))
768                         goto unwind_out;
769
770                 gen8_initialize_pd(&ppgtt->base, pd);
771                 pdp->page_directory[pdpe] = pd;
772                 set_bit(pdpe, new_pds);
773         }
774
775         return 0;
776
777 unwind_out:
778         for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
779                 unmap_and_free_pd(pdp->page_directory[pdpe], dev);
780
781         return -ENOMEM;
782 }
783
784 static void
785 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
786 {
787         int i;
788
789         for (i = 0; i < GEN8_LEGACY_PDPES; i++)
790                 kfree(new_pts[i]);
791         kfree(new_pts);
792         kfree(new_pds);
793 }
794
795 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
796  * of these are based on the number of PDPEs in the system.
797  */
798 static
799 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
800                                          unsigned long ***new_pts)
801 {
802         int i;
803         unsigned long *pds;
804         unsigned long **pts;
805
806         pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
807         if (!pds)
808                 return -ENOMEM;
809
810         pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
811         if (!pts) {
812                 kfree(pds);
813                 return -ENOMEM;
814         }
815
816         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
817                 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
818                                  sizeof(unsigned long), GFP_KERNEL);
819                 if (!pts[i])
820                         goto err_out;
821         }
822
823         *new_pds = pds;
824         *new_pts = pts;
825
826         return 0;
827
828 err_out:
829         free_gen8_temp_bitmaps(pds, pts);
830         return -ENOMEM;
831 }
832
833 static int gen8_alloc_va_range(struct i915_address_space *vm,
834                                uint64_t start,
835                                uint64_t length)
836 {
837         struct i915_hw_ppgtt *ppgtt =
838                 container_of(vm, struct i915_hw_ppgtt, base);
839         unsigned long *new_page_dirs, **new_page_tables;
840         struct i915_page_directory *pd;
841         const uint64_t orig_start = start;
842         const uint64_t orig_length = length;
843         uint64_t temp;
844         uint32_t pdpe;
845         int ret;
846
847         /* Wrap is never okay since we can only represent 48b, and we don't
848          * actually use the other side of the canonical address space.
849          */
850         if (WARN_ON(start + length < start))
851                 return -ERANGE;
852
853         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
854         if (ret)
855                 return ret;
856
857         /* Do the allocations first so we can easily bail out */
858         ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
859                                         new_page_dirs);
860         if (ret) {
861                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
862                 return ret;
863         }
864
865         /* For every page directory referenced, allocate page tables */
866         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
867                 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
868                                                 new_page_tables[pdpe]);
869                 if (ret)
870                         goto err_out;
871         }
872
873         start = orig_start;
874         length = orig_length;
875
876         /* Allocations have completed successfully, so set the bitmaps, and do
877          * the mappings. */
878         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
879                 gen8_pde_t *const page_directory = kmap_atomic(pd->page);
880                 struct i915_page_table *pt;
881                 uint64_t pd_len = gen8_clamp_pd(start, length);
882                 uint64_t pd_start = start;
883                 uint32_t pde;
884
885                 /* Every pd should be allocated, we just did that above. */
886                 WARN_ON(!pd);
887
888                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
889                         /* Same reasoning as pd */
890                         WARN_ON(!pt);
891                         WARN_ON(!pd_len);
892                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
893
894                         /* Set our used ptes within the page table */
895                         bitmap_set(pt->used_ptes,
896                                    gen8_pte_index(pd_start),
897                                    gen8_pte_count(pd_start, pd_len));
898
899                         /* Our pde is now pointing to the pagetable, pt */
900                         set_bit(pde, pd->used_pdes);
901
902                         /* Map the PDE to the page table */
903                         __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
904
905                         /* NB: We haven't yet mapped ptes to pages. At this
906                          * point we're still relying on insert_entries() */
907                 }
908
909                 if (!HAS_LLC(vm->dev))
910                         drm_clflush_virt_range(page_directory, PAGE_SIZE);
911
912                 kunmap_atomic(page_directory);
913
914                 set_bit(pdpe, ppgtt->pdp.used_pdpes);
915         }
916
917         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
918         return 0;
919
920 err_out:
921         while (pdpe--) {
922                 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
923                         unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev);
924         }
925
926         for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
927                 unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev);
928
929         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
930         return ret;
931 }
932
933 /*
934  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
935  * with a net effect resembling a 2-level page table in normal x86 terms. Each
936  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
937  * space.
938  *
939  */
940 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
941 {
942         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
943         if (IS_ERR(ppgtt->scratch_pt))
944                 return PTR_ERR(ppgtt->scratch_pt);
945
946         ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev);
947         if (IS_ERR(ppgtt->scratch_pd))
948                 return PTR_ERR(ppgtt->scratch_pd);
949
950         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
951         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
952
953         ppgtt->base.start = 0;
954         ppgtt->base.total = 1ULL << 32;
955         if (IS_ENABLED(CONFIG_X86_32))
956                 /* While we have a proliferation of size_t variables
957                  * we cannot represent the full ppgtt size on 32bit,
958                  * so limit it to the same size as the GGTT (currently
959                  * 2GiB).
960                  */
961                 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
962         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
963         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
964         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
965         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
966         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
967         ppgtt->base.bind_vma = ppgtt_bind_vma;
968
969         ppgtt->switch_mm = gen8_mm_switch;
970
971         return 0;
972 }
973
974 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
975 {
976         struct i915_address_space *vm = &ppgtt->base;
977         struct i915_page_table *unused;
978         gen6_pte_t scratch_pte;
979         uint32_t pd_entry;
980         uint32_t  pte, pde, temp;
981         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
982
983         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
984
985         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
986                 u32 expected;
987                 gen6_pte_t *pt_vaddr;
988                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
989                 pd_entry = readl(ppgtt->pd_addr + pde);
990                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
991
992                 if (pd_entry != expected)
993                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
994                                    pde,
995                                    pd_entry,
996                                    expected);
997                 seq_printf(m, "\tPDE: %x\n", pd_entry);
998
999                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
1000                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1001                         unsigned long va =
1002                                 (pde * PAGE_SIZE * GEN6_PTES) +
1003                                 (pte * PAGE_SIZE);
1004                         int i;
1005                         bool found = false;
1006                         for (i = 0; i < 4; i++)
1007                                 if (pt_vaddr[pte + i] != scratch_pte)
1008                                         found = true;
1009                         if (!found)
1010                                 continue;
1011
1012                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1013                         for (i = 0; i < 4; i++) {
1014                                 if (pt_vaddr[pte + i] != scratch_pte)
1015                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1016                                 else
1017                                         seq_puts(m, "  SCRATCH ");
1018                         }
1019                         seq_puts(m, "\n");
1020                 }
1021                 kunmap_atomic(pt_vaddr);
1022         }
1023 }
1024
1025 /* Write pde (index) from the page directory @pd to the page table @pt */
1026 static void gen6_write_pde(struct i915_page_directory *pd,
1027                             const int pde, struct i915_page_table *pt)
1028 {
1029         /* Caller needs to make sure the write completes if necessary */
1030         struct i915_hw_ppgtt *ppgtt =
1031                 container_of(pd, struct i915_hw_ppgtt, pd);
1032         u32 pd_entry;
1033
1034         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
1035         pd_entry |= GEN6_PDE_VALID;
1036
1037         writel(pd_entry, ppgtt->pd_addr + pde);
1038 }
1039
1040 /* Write all the page tables found in the ppgtt structure to incrementing page
1041  * directories. */
1042 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1043                                   struct i915_page_directory *pd,
1044                                   uint32_t start, uint32_t length)
1045 {
1046         struct i915_page_table *pt;
1047         uint32_t pde, temp;
1048
1049         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1050                 gen6_write_pde(pd, pde, pt);
1051
1052         /* Make sure write is complete before other code can use this page
1053          * table. Also require for WC mapped PTEs */
1054         readl(dev_priv->gtt.gsm);
1055 }
1056
1057 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1058 {
1059         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1060
1061         return (ppgtt->pd.pd_offset / 64) << 16;
1062 }
1063
1064 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1065                          struct intel_engine_cs *ring)
1066 {
1067         int ret;
1068
1069         /* NB: TLBs must be flushed and invalidated before a switch */
1070         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1071         if (ret)
1072                 return ret;
1073
1074         ret = intel_ring_begin(ring, 6);
1075         if (ret)
1076                 return ret;
1077
1078         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1079         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1080         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1081         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1082         intel_ring_emit(ring, get_pd_offset(ppgtt));
1083         intel_ring_emit(ring, MI_NOOP);
1084         intel_ring_advance(ring);
1085
1086         return 0;
1087 }
1088
1089 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1090                           struct intel_engine_cs *ring)
1091 {
1092         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1093
1094         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1095         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1096         return 0;
1097 }
1098
1099 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1100                           struct intel_engine_cs *ring)
1101 {
1102         int ret;
1103
1104         /* NB: TLBs must be flushed and invalidated before a switch */
1105         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1106         if (ret)
1107                 return ret;
1108
1109         ret = intel_ring_begin(ring, 6);
1110         if (ret)
1111                 return ret;
1112
1113         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1114         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1115         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1116         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1117         intel_ring_emit(ring, get_pd_offset(ppgtt));
1118         intel_ring_emit(ring, MI_NOOP);
1119         intel_ring_advance(ring);
1120
1121         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1122         if (ring->id != RCS) {
1123                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1124                 if (ret)
1125                         return ret;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1132                           struct intel_engine_cs *ring)
1133 {
1134         struct drm_device *dev = ppgtt->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136
1137
1138         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1139         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1140
1141         POSTING_READ(RING_PP_DIR_DCLV(ring));
1142
1143         return 0;
1144 }
1145
1146 static void gen8_ppgtt_enable(struct drm_device *dev)
1147 {
1148         struct drm_i915_private *dev_priv = dev->dev_private;
1149         struct intel_engine_cs *ring;
1150         int j;
1151
1152         for_each_ring(ring, dev_priv, j) {
1153                 I915_WRITE(RING_MODE_GEN7(ring),
1154                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1155         }
1156 }
1157
1158 static void gen7_ppgtt_enable(struct drm_device *dev)
1159 {
1160         struct drm_i915_private *dev_priv = dev->dev_private;
1161         struct intel_engine_cs *ring;
1162         uint32_t ecochk, ecobits;
1163         int i;
1164
1165         ecobits = I915_READ(GAC_ECO_BITS);
1166         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1167
1168         ecochk = I915_READ(GAM_ECOCHK);
1169         if (IS_HASWELL(dev)) {
1170                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1171         } else {
1172                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1173                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1174         }
1175         I915_WRITE(GAM_ECOCHK, ecochk);
1176
1177         for_each_ring(ring, dev_priv, i) {
1178                 /* GFX_MODE is per-ring on gen7+ */
1179                 I915_WRITE(RING_MODE_GEN7(ring),
1180                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1181         }
1182 }
1183
1184 static void gen6_ppgtt_enable(struct drm_device *dev)
1185 {
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187         uint32_t ecochk, gab_ctl, ecobits;
1188
1189         ecobits = I915_READ(GAC_ECO_BITS);
1190         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1191                    ECOBITS_PPGTT_CACHE64B);
1192
1193         gab_ctl = I915_READ(GAB_CTL);
1194         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1195
1196         ecochk = I915_READ(GAM_ECOCHK);
1197         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1198
1199         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1200 }
1201
1202 /* PPGTT support for Sandybdrige/Gen6 and later */
1203 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1204                                    uint64_t start,
1205                                    uint64_t length,
1206                                    bool use_scratch)
1207 {
1208         struct i915_hw_ppgtt *ppgtt =
1209                 container_of(vm, struct i915_hw_ppgtt, base);
1210         gen6_pte_t *pt_vaddr, scratch_pte;
1211         unsigned first_entry = start >> PAGE_SHIFT;
1212         unsigned num_entries = length >> PAGE_SHIFT;
1213         unsigned act_pt = first_entry / GEN6_PTES;
1214         unsigned first_pte = first_entry % GEN6_PTES;
1215         unsigned last_pte, i;
1216
1217         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1218
1219         while (num_entries) {
1220                 last_pte = first_pte + num_entries;
1221                 if (last_pte > GEN6_PTES)
1222                         last_pte = GEN6_PTES;
1223
1224                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1225
1226                 for (i = first_pte; i < last_pte; i++)
1227                         pt_vaddr[i] = scratch_pte;
1228
1229                 kunmap_atomic(pt_vaddr);
1230
1231                 num_entries -= last_pte - first_pte;
1232                 first_pte = 0;
1233                 act_pt++;
1234         }
1235 }
1236
1237 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1238                                       struct sg_table *pages,
1239                                       uint64_t start,
1240                                       enum i915_cache_level cache_level, u32 flags)
1241 {
1242         struct i915_hw_ppgtt *ppgtt =
1243                 container_of(vm, struct i915_hw_ppgtt, base);
1244         gen6_pte_t *pt_vaddr;
1245         unsigned first_entry = start >> PAGE_SHIFT;
1246         unsigned act_pt = first_entry / GEN6_PTES;
1247         unsigned act_pte = first_entry % GEN6_PTES;
1248         struct sg_page_iter sg_iter;
1249
1250         pt_vaddr = NULL;
1251         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1252                 if (pt_vaddr == NULL)
1253                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1254
1255                 pt_vaddr[act_pte] =
1256                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1257                                        cache_level, true, flags);
1258
1259                 if (++act_pte == GEN6_PTES) {
1260                         kunmap_atomic(pt_vaddr);
1261                         pt_vaddr = NULL;
1262                         act_pt++;
1263                         act_pte = 0;
1264                 }
1265         }
1266         if (pt_vaddr)
1267                 kunmap_atomic(pt_vaddr);
1268 }
1269
1270 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1271  * are switching between contexts with the same LRCA, we also must do a force
1272  * restore.
1273  */
1274 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1275 {
1276         /* If current vm != vm, */
1277         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1278 }
1279
1280 static void gen6_initialize_pt(struct i915_address_space *vm,
1281                 struct i915_page_table *pt)
1282 {
1283         gen6_pte_t *pt_vaddr, scratch_pte;
1284         int i;
1285
1286         WARN_ON(vm->scratch.addr == 0);
1287
1288         scratch_pte = vm->pte_encode(vm->scratch.addr,
1289                         I915_CACHE_LLC, true, 0);
1290
1291         pt_vaddr = kmap_atomic(pt->page);
1292
1293         for (i = 0; i < GEN6_PTES; i++)
1294                 pt_vaddr[i] = scratch_pte;
1295
1296         kunmap_atomic(pt_vaddr);
1297 }
1298
1299 static int gen6_alloc_va_range(struct i915_address_space *vm,
1300                                uint64_t start, uint64_t length)
1301 {
1302         DECLARE_BITMAP(new_page_tables, I915_PDES);
1303         struct drm_device *dev = vm->dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         struct i915_hw_ppgtt *ppgtt =
1306                                 container_of(vm, struct i915_hw_ppgtt, base);
1307         struct i915_page_table *pt;
1308         const uint32_t start_save = start, length_save = length;
1309         uint32_t pde, temp;
1310         int ret;
1311
1312         WARN_ON(upper_32_bits(start));
1313
1314         bitmap_zero(new_page_tables, I915_PDES);
1315
1316         /* The allocation is done in two stages so that we can bail out with
1317          * minimal amount of pain. The first stage finds new page tables that
1318          * need allocation. The second stage marks use ptes within the page
1319          * tables.
1320          */
1321         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1322                 if (pt != ppgtt->scratch_pt) {
1323                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1324                         continue;
1325                 }
1326
1327                 /* We've already allocated a page table */
1328                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1329
1330                 pt = alloc_pt_single(dev);
1331                 if (IS_ERR(pt)) {
1332                         ret = PTR_ERR(pt);
1333                         goto unwind_out;
1334                 }
1335
1336                 gen6_initialize_pt(vm, pt);
1337
1338                 ppgtt->pd.page_table[pde] = pt;
1339                 set_bit(pde, new_page_tables);
1340                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1341         }
1342
1343         start = start_save;
1344         length = length_save;
1345
1346         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1347                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1348
1349                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1350                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1351                            gen6_pte_count(start, length));
1352
1353                 if (test_and_clear_bit(pde, new_page_tables))
1354                         gen6_write_pde(&ppgtt->pd, pde, pt);
1355
1356                 trace_i915_page_table_entry_map(vm, pde, pt,
1357                                          gen6_pte_index(start),
1358                                          gen6_pte_count(start, length),
1359                                          GEN6_PTES);
1360                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1361                                 GEN6_PTES);
1362         }
1363
1364         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1365
1366         /* Make sure write is complete before other code can use this page
1367          * table. Also require for WC mapped PTEs */
1368         readl(dev_priv->gtt.gsm);
1369
1370         mark_tlbs_dirty(ppgtt);
1371         return 0;
1372
1373 unwind_out:
1374         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1375                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1376
1377                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1378                 unmap_and_free_pt(pt, vm->dev);
1379         }
1380
1381         mark_tlbs_dirty(ppgtt);
1382         return ret;
1383 }
1384
1385 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1386 {
1387         struct i915_hw_ppgtt *ppgtt =
1388                 container_of(vm, struct i915_hw_ppgtt, base);
1389         struct i915_page_table *pt;
1390         uint32_t pde;
1391
1392
1393         drm_mm_remove_node(&ppgtt->node);
1394
1395         gen6_for_all_pdes(pt, ppgtt, pde) {
1396                 if (pt != ppgtt->scratch_pt)
1397                         unmap_and_free_pt(pt, ppgtt->base.dev);
1398         }
1399
1400         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1401         unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev);
1402 }
1403
1404 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1405 {
1406         struct drm_device *dev = ppgtt->base.dev;
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         bool retried = false;
1409         int ret;
1410
1411         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1412          * allocator works in address space sizes, so it's multiplied by page
1413          * size. We allocate at the top of the GTT to avoid fragmentation.
1414          */
1415         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1416         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1417         if (IS_ERR(ppgtt->scratch_pt))
1418                 return PTR_ERR(ppgtt->scratch_pt);
1419
1420         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1421
1422 alloc:
1423         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1424                                                   &ppgtt->node, GEN6_PD_SIZE,
1425                                                   GEN6_PD_ALIGN, 0,
1426                                                   0, dev_priv->gtt.base.total,
1427                                                   DRM_MM_TOPDOWN);
1428         if (ret == -ENOSPC && !retried) {
1429                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1430                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1431                                                I915_CACHE_NONE,
1432                                                0, dev_priv->gtt.base.total,
1433                                                0);
1434                 if (ret)
1435                         goto err_out;
1436
1437                 retried = true;
1438                 goto alloc;
1439         }
1440
1441         if (ret)
1442                 goto err_out;
1443
1444
1445         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1446                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1447
1448         return 0;
1449
1450 err_out:
1451         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1452         return ret;
1453 }
1454
1455 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1456 {
1457         return gen6_ppgtt_allocate_page_directories(ppgtt);
1458 }
1459
1460 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1461                                   uint64_t start, uint64_t length)
1462 {
1463         struct i915_page_table *unused;
1464         uint32_t pde, temp;
1465
1466         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1467                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1468 }
1469
1470 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1471 {
1472         struct drm_device *dev = ppgtt->base.dev;
1473         struct drm_i915_private *dev_priv = dev->dev_private;
1474         int ret;
1475
1476         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1477         if (IS_GEN6(dev)) {
1478                 ppgtt->switch_mm = gen6_mm_switch;
1479         } else if (IS_HASWELL(dev)) {
1480                 ppgtt->switch_mm = hsw_mm_switch;
1481         } else if (IS_GEN7(dev)) {
1482                 ppgtt->switch_mm = gen7_mm_switch;
1483         } else
1484                 BUG();
1485
1486         if (intel_vgpu_active(dev))
1487                 ppgtt->switch_mm = vgpu_mm_switch;
1488
1489         ret = gen6_ppgtt_alloc(ppgtt);
1490         if (ret)
1491                 return ret;
1492
1493         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1494         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1495         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1496         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1497         ppgtt->base.bind_vma = ppgtt_bind_vma;
1498         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1499         ppgtt->base.start = 0;
1500         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1501         ppgtt->debug_dump = gen6_dump_ppgtt;
1502
1503         ppgtt->pd.pd_offset =
1504                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1505
1506         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1507                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1508
1509         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1510
1511         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1512
1513         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1514                          ppgtt->node.size >> 20,
1515                          ppgtt->node.start / PAGE_SIZE);
1516
1517         DRM_DEBUG("Adding PPGTT at offset %x\n",
1518                   ppgtt->pd.pd_offset << 10);
1519
1520         return 0;
1521 }
1522
1523 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1524 {
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526
1527         ppgtt->base.dev = dev;
1528         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1529
1530         if (INTEL_INFO(dev)->gen < 8)
1531                 return gen6_ppgtt_init(ppgtt);
1532         else
1533                 return gen8_ppgtt_init(ppgtt);
1534 }
1535 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1536 {
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538         int ret = 0;
1539
1540         ret = __hw_ppgtt_init(dev, ppgtt);
1541         if (ret == 0) {
1542                 kref_init(&ppgtt->ref);
1543                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1544                             ppgtt->base.total);
1545                 i915_init_vm(dev_priv, &ppgtt->base);
1546         }
1547
1548         return ret;
1549 }
1550
1551 int i915_ppgtt_init_hw(struct drm_device *dev)
1552 {
1553         struct drm_i915_private *dev_priv = dev->dev_private;
1554         struct intel_engine_cs *ring;
1555         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1556         int i, ret = 0;
1557
1558         /* In the case of execlists, PPGTT is enabled by the context descriptor
1559          * and the PDPs are contained within the context itself.  We don't
1560          * need to do anything here. */
1561         if (i915.enable_execlists)
1562                 return 0;
1563
1564         if (!USES_PPGTT(dev))
1565                 return 0;
1566
1567         if (IS_GEN6(dev))
1568                 gen6_ppgtt_enable(dev);
1569         else if (IS_GEN7(dev))
1570                 gen7_ppgtt_enable(dev);
1571         else if (INTEL_INFO(dev)->gen >= 8)
1572                 gen8_ppgtt_enable(dev);
1573         else
1574                 MISSING_CASE(INTEL_INFO(dev)->gen);
1575
1576         if (ppgtt) {
1577                 for_each_ring(ring, dev_priv, i) {
1578                         ret = ppgtt->switch_mm(ppgtt, ring);
1579                         if (ret != 0)
1580                                 return ret;
1581                 }
1582         }
1583
1584         return ret;
1585 }
1586 struct i915_hw_ppgtt *
1587 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1588 {
1589         struct i915_hw_ppgtt *ppgtt;
1590         int ret;
1591
1592         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1593         if (!ppgtt)
1594                 return ERR_PTR(-ENOMEM);
1595
1596         ret = i915_ppgtt_init(dev, ppgtt);
1597         if (ret) {
1598                 kfree(ppgtt);
1599                 return ERR_PTR(ret);
1600         }
1601
1602         ppgtt->file_priv = fpriv;
1603
1604         trace_i915_ppgtt_create(&ppgtt->base);
1605
1606         return ppgtt;
1607 }
1608
1609 void  i915_ppgtt_release(struct kref *kref)
1610 {
1611         struct i915_hw_ppgtt *ppgtt =
1612                 container_of(kref, struct i915_hw_ppgtt, ref);
1613
1614         trace_i915_ppgtt_release(&ppgtt->base);
1615
1616         /* vmas should already be unbound */
1617         WARN_ON(!list_empty(&ppgtt->base.active_list));
1618         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1619
1620         list_del(&ppgtt->base.global_link);
1621         drm_mm_takedown(&ppgtt->base.mm);
1622
1623         ppgtt->base.cleanup(&ppgtt->base);
1624         kfree(ppgtt);
1625 }
1626
1627 extern int intel_iommu_gfx_mapped;
1628 /* Certain Gen5 chipsets require require idling the GPU before
1629  * unmapping anything from the GTT when VT-d is enabled.
1630  */
1631 static bool needs_idle_maps(struct drm_device *dev)
1632 {
1633 #ifdef CONFIG_INTEL_IOMMU
1634         /* Query intel_iommu to see if we need the workaround. Presumably that
1635          * was loaded first.
1636          */
1637         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1638                 return true;
1639 #endif
1640         return false;
1641 }
1642
1643 static bool do_idling(struct drm_i915_private *dev_priv)
1644 {
1645         bool ret = dev_priv->mm.interruptible;
1646
1647         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1648                 dev_priv->mm.interruptible = false;
1649                 if (i915_gpu_idle(dev_priv->dev)) {
1650                         DRM_ERROR("Couldn't idle GPU\n");
1651                         /* Wait a bit, in hopes it avoids the hang */
1652                         udelay(10);
1653                 }
1654         }
1655
1656         return ret;
1657 }
1658
1659 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1660 {
1661         if (unlikely(dev_priv->gtt.do_idle_maps))
1662                 dev_priv->mm.interruptible = interruptible;
1663 }
1664
1665 void i915_check_and_clear_faults(struct drm_device *dev)
1666 {
1667         struct drm_i915_private *dev_priv = dev->dev_private;
1668         struct intel_engine_cs *ring;
1669         int i;
1670
1671         if (INTEL_INFO(dev)->gen < 6)
1672                 return;
1673
1674         for_each_ring(ring, dev_priv, i) {
1675                 u32 fault_reg;
1676                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1677                 if (fault_reg & RING_FAULT_VALID) {
1678                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1679                                          "\tAddr: 0x%08lx\n"
1680                                          "\tAddress space: %s\n"
1681                                          "\tSource ID: %d\n"
1682                                          "\tType: %d\n",
1683                                          fault_reg & PAGE_MASK,
1684                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1685                                          RING_FAULT_SRCID(fault_reg),
1686                                          RING_FAULT_FAULT_TYPE(fault_reg));
1687                         I915_WRITE(RING_FAULT_REG(ring),
1688                                    fault_reg & ~RING_FAULT_VALID);
1689                 }
1690         }
1691         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1692 }
1693
1694 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1695 {
1696         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1697                 intel_gtt_chipset_flush();
1698         } else {
1699                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1700                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1701         }
1702 }
1703
1704 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1705 {
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707
1708         /* Don't bother messing with faults pre GEN6 as we have little
1709          * documentation supporting that it's a good idea.
1710          */
1711         if (INTEL_INFO(dev)->gen < 6)
1712                 return;
1713
1714         i915_check_and_clear_faults(dev);
1715
1716         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1717                                        dev_priv->gtt.base.start,
1718                                        dev_priv->gtt.base.total,
1719                                        true);
1720
1721         i915_ggtt_flush(dev_priv);
1722 }
1723
1724 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1725 {
1726         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1727                         obj->pages->sgl, obj->pages->nents,
1728                         PCI_DMA_BIDIRECTIONAL))
1729                 return -ENOSPC;
1730
1731         return 0;
1732 }
1733
1734 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1735 {
1736 #ifdef writeq
1737         writeq(pte, addr);
1738 #else
1739         iowrite32((u32)pte, addr);
1740         iowrite32(pte >> 32, addr + 4);
1741 #endif
1742 }
1743
1744 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1745                                      struct sg_table *st,
1746                                      uint64_t start,
1747                                      enum i915_cache_level level, u32 unused)
1748 {
1749         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1750         unsigned first_entry = start >> PAGE_SHIFT;
1751         gen8_pte_t __iomem *gtt_entries =
1752                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1753         int i = 0;
1754         struct sg_page_iter sg_iter;
1755         dma_addr_t addr = 0; /* shut up gcc */
1756
1757         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1758                 addr = sg_dma_address(sg_iter.sg) +
1759                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1760                 gen8_set_pte(&gtt_entries[i],
1761                              gen8_pte_encode(addr, level, true));
1762                 i++;
1763         }
1764
1765         /*
1766          * XXX: This serves as a posting read to make sure that the PTE has
1767          * actually been updated. There is some concern that even though
1768          * registers and PTEs are within the same BAR that they are potentially
1769          * of NUMA access patterns. Therefore, even with the way we assume
1770          * hardware should work, we must keep this posting read for paranoia.
1771          */
1772         if (i != 0)
1773                 WARN_ON(readq(&gtt_entries[i-1])
1774                         != gen8_pte_encode(addr, level, true));
1775
1776         /* This next bit makes the above posting read even more important. We
1777          * want to flush the TLBs only after we're certain all the PTE updates
1778          * have finished.
1779          */
1780         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1781         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1782 }
1783
1784 /*
1785  * Binds an object into the global gtt with the specified cache level. The object
1786  * will be accessible to the GPU via commands whose operands reference offsets
1787  * within the global GTT as well as accessible by the GPU through the GMADR
1788  * mapped BAR (dev_priv->mm.gtt->gtt).
1789  */
1790 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1791                                      struct sg_table *st,
1792                                      uint64_t start,
1793                                      enum i915_cache_level level, u32 flags)
1794 {
1795         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1796         unsigned first_entry = start >> PAGE_SHIFT;
1797         gen6_pte_t __iomem *gtt_entries =
1798                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1799         int i = 0;
1800         struct sg_page_iter sg_iter;
1801         dma_addr_t addr = 0;
1802
1803         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1804                 addr = sg_page_iter_dma_address(&sg_iter);
1805                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1806                 i++;
1807         }
1808
1809         /* XXX: This serves as a posting read to make sure that the PTE has
1810          * actually been updated. There is some concern that even though
1811          * registers and PTEs are within the same BAR that they are potentially
1812          * of NUMA access patterns. Therefore, even with the way we assume
1813          * hardware should work, we must keep this posting read for paranoia.
1814          */
1815         if (i != 0) {
1816                 unsigned long gtt = readl(&gtt_entries[i-1]);
1817                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1818         }
1819
1820         /* This next bit makes the above posting read even more important. We
1821          * want to flush the TLBs only after we're certain all the PTE updates
1822          * have finished.
1823          */
1824         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1825         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1826 }
1827
1828 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1829                                   uint64_t start,
1830                                   uint64_t length,
1831                                   bool use_scratch)
1832 {
1833         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1834         unsigned first_entry = start >> PAGE_SHIFT;
1835         unsigned num_entries = length >> PAGE_SHIFT;
1836         gen8_pte_t scratch_pte, __iomem *gtt_base =
1837                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1838         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1839         int i;
1840
1841         if (WARN(num_entries > max_entries,
1842                  "First entry = %d; Num entries = %d (max=%d)\n",
1843                  first_entry, num_entries, max_entries))
1844                 num_entries = max_entries;
1845
1846         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1847                                       I915_CACHE_LLC,
1848                                       use_scratch);
1849         for (i = 0; i < num_entries; i++)
1850                 gen8_set_pte(&gtt_base[i], scratch_pte);
1851         readl(gtt_base);
1852 }
1853
1854 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1855                                   uint64_t start,
1856                                   uint64_t length,
1857                                   bool use_scratch)
1858 {
1859         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1860         unsigned first_entry = start >> PAGE_SHIFT;
1861         unsigned num_entries = length >> PAGE_SHIFT;
1862         gen6_pte_t scratch_pte, __iomem *gtt_base =
1863                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1864         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1865         int i;
1866
1867         if (WARN(num_entries > max_entries,
1868                  "First entry = %d; Num entries = %d (max=%d)\n",
1869                  first_entry, num_entries, max_entries))
1870                 num_entries = max_entries;
1871
1872         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1873
1874         for (i = 0; i < num_entries; i++)
1875                 iowrite32(scratch_pte, &gtt_base[i]);
1876         readl(gtt_base);
1877 }
1878
1879 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1880                                      struct sg_table *pages,
1881                                      uint64_t start,
1882                                      enum i915_cache_level cache_level, u32 unused)
1883 {
1884         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1885                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1886
1887         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1888
1889 }
1890
1891 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1892                                   uint64_t start,
1893                                   uint64_t length,
1894                                   bool unused)
1895 {
1896         unsigned first_entry = start >> PAGE_SHIFT;
1897         unsigned num_entries = length >> PAGE_SHIFT;
1898         intel_gtt_clear_range(first_entry, num_entries);
1899 }
1900
1901 static int ggtt_bind_vma(struct i915_vma *vma,
1902                          enum i915_cache_level cache_level,
1903                          u32 flags)
1904 {
1905         struct drm_device *dev = vma->vm->dev;
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907         struct drm_i915_gem_object *obj = vma->obj;
1908         struct sg_table *pages = obj->pages;
1909         u32 pte_flags = 0;
1910         int ret;
1911
1912         ret = i915_get_ggtt_vma_pages(vma);
1913         if (ret)
1914                 return ret;
1915         pages = vma->ggtt_view.pages;
1916
1917         /* Currently applicable only to VLV */
1918         if (obj->gt_ro)
1919                 pte_flags |= PTE_READ_ONLY;
1920
1921
1922         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1923                 vma->vm->insert_entries(vma->vm, pages,
1924                                         vma->node.start,
1925                                         cache_level, pte_flags);
1926         }
1927
1928         if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1929                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1930                 appgtt->base.insert_entries(&appgtt->base, pages,
1931                                             vma->node.start,
1932                                             cache_level, pte_flags);
1933         }
1934
1935         return 0;
1936 }
1937
1938 static void ggtt_unbind_vma(struct i915_vma *vma)
1939 {
1940         struct drm_device *dev = vma->vm->dev;
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         struct drm_i915_gem_object *obj = vma->obj;
1943         const uint64_t size = min_t(uint64_t,
1944                                     obj->base.size,
1945                                     vma->node.size);
1946
1947         if (vma->bound & GLOBAL_BIND) {
1948                 vma->vm->clear_range(vma->vm,
1949                                      vma->node.start,
1950                                      size,
1951                                      true);
1952         }
1953
1954         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1955                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1956
1957                 appgtt->base.clear_range(&appgtt->base,
1958                                          vma->node.start,
1959                                          size,
1960                                          true);
1961         }
1962 }
1963
1964 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1965 {
1966         struct drm_device *dev = obj->base.dev;
1967         struct drm_i915_private *dev_priv = dev->dev_private;
1968         bool interruptible;
1969
1970         interruptible = do_idling(dev_priv);
1971
1972         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
1973                      PCI_DMA_BIDIRECTIONAL);
1974
1975         undo_idling(dev_priv, interruptible);
1976 }
1977
1978 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1979                                   unsigned long color,
1980                                   u64 *start,
1981                                   u64 *end)
1982 {
1983         if (node->color != color)
1984                 *start += 4096;
1985
1986         if (!list_empty(&node->node_list)) {
1987                 node = list_entry(node->node_list.next,
1988                                   struct drm_mm_node,
1989                                   node_list);
1990                 if (node->allocated && node->color != color)
1991                         *end -= 4096;
1992         }
1993 }
1994
1995 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1996                                      unsigned long start,
1997                                      unsigned long mappable_end,
1998                                      unsigned long end)
1999 {
2000         /* Let GEM Manage all of the aperture.
2001          *
2002          * However, leave one page at the end still bound to the scratch page.
2003          * There are a number of places where the hardware apparently prefetches
2004          * past the end of the object, and we've seen multiple hangs with the
2005          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2006          * aperture.  One page should be enough to keep any prefetching inside
2007          * of the aperture.
2008          */
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2011         struct drm_mm_node *entry;
2012         struct drm_i915_gem_object *obj;
2013         unsigned long hole_start, hole_end;
2014         int ret;
2015
2016         BUG_ON(mappable_end > end);
2017
2018         /* Subtract the guard page ... */
2019         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2020
2021         dev_priv->gtt.base.start = start;
2022         dev_priv->gtt.base.total = end - start;
2023
2024         if (intel_vgpu_active(dev)) {
2025                 ret = intel_vgt_balloon(dev);
2026                 if (ret)
2027                         return ret;
2028         }
2029
2030         if (!HAS_LLC(dev))
2031                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2032
2033         /* Mark any preallocated objects as occupied */
2034         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2035                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2036
2037                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2038                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2039
2040                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2041                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2042                 if (ret) {
2043                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2044                         return ret;
2045                 }
2046                 vma->bound |= GLOBAL_BIND;
2047         }
2048
2049         /* Clear any non-preallocated blocks */
2050         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2051                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2052                               hole_start, hole_end);
2053                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2054                                      hole_end - hole_start, true);
2055         }
2056
2057         /* And finally clear the reserved guard page */
2058         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2059
2060         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2061                 struct i915_hw_ppgtt *ppgtt;
2062
2063                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2064                 if (!ppgtt)
2065                         return -ENOMEM;
2066
2067                 ret = __hw_ppgtt_init(dev, ppgtt);
2068                 if (ret) {
2069                         ppgtt->base.cleanup(&ppgtt->base);
2070                         kfree(ppgtt);
2071                         return ret;
2072                 }
2073
2074                 if (ppgtt->base.allocate_va_range)
2075                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2076                                                             ppgtt->base.total);
2077                 if (ret) {
2078                         ppgtt->base.cleanup(&ppgtt->base);
2079                         kfree(ppgtt);
2080                         return ret;
2081                 }
2082
2083                 ppgtt->base.clear_range(&ppgtt->base,
2084                                         ppgtt->base.start,
2085                                         ppgtt->base.total,
2086                                         true);
2087
2088                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2089         }
2090
2091         return 0;
2092 }
2093
2094 void i915_gem_init_global_gtt(struct drm_device *dev)
2095 {
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         unsigned long gtt_size, mappable_size;
2098
2099         gtt_size = dev_priv->gtt.base.total;
2100         mappable_size = dev_priv->gtt.mappable_end;
2101
2102         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2103 }
2104
2105 void i915_global_gtt_cleanup(struct drm_device *dev)
2106 {
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         struct i915_address_space *vm = &dev_priv->gtt.base;
2109
2110         if (dev_priv->mm.aliasing_ppgtt) {
2111                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2112
2113                 ppgtt->base.cleanup(&ppgtt->base);
2114         }
2115
2116         if (drm_mm_initialized(&vm->mm)) {
2117                 if (intel_vgpu_active(dev))
2118                         intel_vgt_deballoon();
2119
2120                 drm_mm_takedown(&vm->mm);
2121                 list_del(&vm->global_link);
2122         }
2123
2124         vm->cleanup(vm);
2125 }
2126
2127 static int setup_scratch_page(struct drm_device *dev)
2128 {
2129         struct drm_i915_private *dev_priv = dev->dev_private;
2130         struct page *page;
2131         dma_addr_t dma_addr;
2132
2133         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2134         if (page == NULL)
2135                 return -ENOMEM;
2136         set_pages_uc(page, 1);
2137
2138 #ifdef CONFIG_INTEL_IOMMU
2139         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2140                                 PCI_DMA_BIDIRECTIONAL);
2141         if (pci_dma_mapping_error(dev->pdev, dma_addr))
2142                 return -EINVAL;
2143 #else
2144         dma_addr = page_to_phys(page);
2145 #endif
2146         dev_priv->gtt.base.scratch.page = page;
2147         dev_priv->gtt.base.scratch.addr = dma_addr;
2148
2149         return 0;
2150 }
2151
2152 static void teardown_scratch_page(struct drm_device *dev)
2153 {
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         struct page *page = dev_priv->gtt.base.scratch.page;
2156
2157         set_pages_wb(page, 1);
2158         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2159                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2160         __free_page(page);
2161 }
2162
2163 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2164 {
2165         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2166         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2167         return snb_gmch_ctl << 20;
2168 }
2169
2170 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2171 {
2172         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2173         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2174         if (bdw_gmch_ctl)
2175                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2176
2177 #ifdef CONFIG_X86_32
2178         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2179         if (bdw_gmch_ctl > 4)
2180                 bdw_gmch_ctl = 4;
2181 #endif
2182
2183         return bdw_gmch_ctl << 20;
2184 }
2185
2186 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2187 {
2188         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2189         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2190
2191         if (gmch_ctrl)
2192                 return 1 << (20 + gmch_ctrl);
2193
2194         return 0;
2195 }
2196
2197 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2198 {
2199         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2200         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2201         return snb_gmch_ctl << 25; /* 32 MB units */
2202 }
2203
2204 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2205 {
2206         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2207         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2208         return bdw_gmch_ctl << 25; /* 32 MB units */
2209 }
2210
2211 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2212 {
2213         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2214         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2215
2216         /*
2217          * 0x0  to 0x10: 32MB increments starting at 0MB
2218          * 0x11 to 0x16: 4MB increments starting at 8MB
2219          * 0x17 to 0x1d: 4MB increments start at 36MB
2220          */
2221         if (gmch_ctrl < 0x11)
2222                 return gmch_ctrl << 25;
2223         else if (gmch_ctrl < 0x17)
2224                 return (gmch_ctrl - 0x11 + 2) << 22;
2225         else
2226                 return (gmch_ctrl - 0x17 + 9) << 22;
2227 }
2228
2229 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2230 {
2231         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2232         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2233
2234         if (gen9_gmch_ctl < 0xf0)
2235                 return gen9_gmch_ctl << 25; /* 32 MB units */
2236         else
2237                 /* 4MB increments starting at 0xf0 for 4MB */
2238                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2239 }
2240
2241 static int ggtt_probe_common(struct drm_device *dev,
2242                              size_t gtt_size)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         phys_addr_t gtt_phys_addr;
2246         int ret;
2247
2248         /* For Modern GENs the PTEs and register space are split in the BAR */
2249         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2250                 (pci_resource_len(dev->pdev, 0) / 2);
2251
2252         /*
2253          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2254          * dropped. For WC mappings in general we have 64 byte burst writes
2255          * when the WC buffer is flushed, so we can't use it, but have to
2256          * resort to an uncached mapping. The WC issue is easily caught by the
2257          * readback check when writing GTT PTE entries.
2258          */
2259         if (IS_BROXTON(dev))
2260                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2261         else
2262                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2263         if (!dev_priv->gtt.gsm) {
2264                 DRM_ERROR("Failed to map the gtt page table\n");
2265                 return -ENOMEM;
2266         }
2267
2268         ret = setup_scratch_page(dev);
2269         if (ret) {
2270                 DRM_ERROR("Scratch setup failed\n");
2271                 /* iounmap will also get called at remove, but meh */
2272                 iounmap(dev_priv->gtt.gsm);
2273         }
2274
2275         return ret;
2276 }
2277
2278 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2279  * bits. When using advanced contexts each context stores its own PAT, but
2280  * writing this data shouldn't be harmful even in those cases. */
2281 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2282 {
2283         uint64_t pat;
2284
2285         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2286               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2287               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2288               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2289               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2290               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2291               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2292               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2293
2294         if (!USES_PPGTT(dev_priv->dev))
2295                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2296                  * so RTL will always use the value corresponding to
2297                  * pat_sel = 000".
2298                  * So let's disable cache for GGTT to avoid screen corruptions.
2299                  * MOCS still can be used though.
2300                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2301                  * before this patch, i.e. the same uncached + snooping access
2302                  * like on gen6/7 seems to be in effect.
2303                  * - So this just fixes blitter/render access. Again it looks
2304                  * like it's not just uncached access, but uncached + snooping.
2305                  * So we can still hold onto all our assumptions wrt cpu
2306                  * clflushing on LLC machines.
2307                  */
2308                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2309
2310         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2311          * write would work. */
2312         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2313         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2314 }
2315
2316 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2317 {
2318         uint64_t pat;
2319
2320         /*
2321          * Map WB on BDW to snooped on CHV.
2322          *
2323          * Only the snoop bit has meaning for CHV, the rest is
2324          * ignored.
2325          *
2326          * The hardware will never snoop for certain types of accesses:
2327          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2328          * - PPGTT page tables
2329          * - some other special cycles
2330          *
2331          * As with BDW, we also need to consider the following for GT accesses:
2332          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2333          * so RTL will always use the value corresponding to
2334          * pat_sel = 000".
2335          * Which means we must set the snoop bit in PAT entry 0
2336          * in order to keep the global status page working.
2337          */
2338         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2339               GEN8_PPAT(1, 0) |
2340               GEN8_PPAT(2, 0) |
2341               GEN8_PPAT(3, 0) |
2342               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2343               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2344               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2345               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2346
2347         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2348         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2349 }
2350
2351 static int gen8_gmch_probe(struct drm_device *dev,
2352                            size_t *gtt_total,
2353                            size_t *stolen,
2354                            phys_addr_t *mappable_base,
2355                            unsigned long *mappable_end)
2356 {
2357         struct drm_i915_private *dev_priv = dev->dev_private;
2358         unsigned int gtt_size;
2359         u16 snb_gmch_ctl;
2360         int ret;
2361
2362         /* TODO: We're not aware of mappable constraints on gen8 yet */
2363         *mappable_base = pci_resource_start(dev->pdev, 2);
2364         *mappable_end = pci_resource_len(dev->pdev, 2);
2365
2366         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2367                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2368
2369         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2370
2371         if (INTEL_INFO(dev)->gen >= 9) {
2372                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2373                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2374         } else if (IS_CHERRYVIEW(dev)) {
2375                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2376                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2377         } else {
2378                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2379                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2380         }
2381
2382         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2383
2384         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2385                 chv_setup_private_ppat(dev_priv);
2386         else
2387                 bdw_setup_private_ppat(dev_priv);
2388
2389         ret = ggtt_probe_common(dev, gtt_size);
2390
2391         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2392         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2393         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2394         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2395
2396         return ret;
2397 }
2398
2399 static int gen6_gmch_probe(struct drm_device *dev,
2400                            size_t *gtt_total,
2401                            size_t *stolen,
2402                            phys_addr_t *mappable_base,
2403                            unsigned long *mappable_end)
2404 {
2405         struct drm_i915_private *dev_priv = dev->dev_private;
2406         unsigned int gtt_size;
2407         u16 snb_gmch_ctl;
2408         int ret;
2409
2410         *mappable_base = pci_resource_start(dev->pdev, 2);
2411         *mappable_end = pci_resource_len(dev->pdev, 2);
2412
2413         /* 64/512MB is the current min/max we actually know of, but this is just
2414          * a coarse sanity check.
2415          */
2416         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2417                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2418                           dev_priv->gtt.mappable_end);
2419                 return -ENXIO;
2420         }
2421
2422         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2423                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2424         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2425
2426         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2427
2428         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2429         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2430
2431         ret = ggtt_probe_common(dev, gtt_size);
2432
2433         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2434         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2435         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2436         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2437
2438         return ret;
2439 }
2440
2441 static void gen6_gmch_remove(struct i915_address_space *vm)
2442 {
2443
2444         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2445
2446         iounmap(gtt->gsm);
2447         teardown_scratch_page(vm->dev);
2448 }
2449
2450 static int i915_gmch_probe(struct drm_device *dev,
2451                            size_t *gtt_total,
2452                            size_t *stolen,
2453                            phys_addr_t *mappable_base,
2454                            unsigned long *mappable_end)
2455 {
2456         struct drm_i915_private *dev_priv = dev->dev_private;
2457         int ret;
2458
2459         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2460         if (!ret) {
2461                 DRM_ERROR("failed to set up gmch\n");
2462                 return -EIO;
2463         }
2464
2465         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2466
2467         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2468         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2469         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2470         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2471         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2472
2473         if (unlikely(dev_priv->gtt.do_idle_maps))
2474                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2475
2476         return 0;
2477 }
2478
2479 static void i915_gmch_remove(struct i915_address_space *vm)
2480 {
2481         intel_gmch_remove();
2482 }
2483
2484 int i915_gem_gtt_init(struct drm_device *dev)
2485 {
2486         struct drm_i915_private *dev_priv = dev->dev_private;
2487         struct i915_gtt *gtt = &dev_priv->gtt;
2488         int ret;
2489
2490         if (INTEL_INFO(dev)->gen <= 5) {
2491                 gtt->gtt_probe = i915_gmch_probe;
2492                 gtt->base.cleanup = i915_gmch_remove;
2493         } else if (INTEL_INFO(dev)->gen < 8) {
2494                 gtt->gtt_probe = gen6_gmch_probe;
2495                 gtt->base.cleanup = gen6_gmch_remove;
2496                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2497                         gtt->base.pte_encode = iris_pte_encode;
2498                 else if (IS_HASWELL(dev))
2499                         gtt->base.pte_encode = hsw_pte_encode;
2500                 else if (IS_VALLEYVIEW(dev))
2501                         gtt->base.pte_encode = byt_pte_encode;
2502                 else if (INTEL_INFO(dev)->gen >= 7)
2503                         gtt->base.pte_encode = ivb_pte_encode;
2504                 else
2505                         gtt->base.pte_encode = snb_pte_encode;
2506         } else {
2507                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2508                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2509         }
2510
2511         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2512                              &gtt->mappable_base, &gtt->mappable_end);
2513         if (ret)
2514                 return ret;
2515
2516         gtt->base.dev = dev;
2517
2518         /* GMADR is the PCI mmio aperture into the global GTT. */
2519         DRM_INFO("Memory usable by graphics device = %zdM\n",
2520                  gtt->base.total >> 20);
2521         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2522         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2523 #ifdef CONFIG_INTEL_IOMMU
2524         if (intel_iommu_gfx_mapped)
2525                 DRM_INFO("VT-d active for gfx access\n");
2526 #endif
2527         /*
2528          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2529          * user's requested state against the hardware/driver capabilities.  We
2530          * do this now so that we can print out any log messages once rather
2531          * than every time we check intel_enable_ppgtt().
2532          */
2533         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2534         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2535
2536         return 0;
2537 }
2538
2539 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2540 {
2541         struct drm_i915_private *dev_priv = dev->dev_private;
2542         struct drm_i915_gem_object *obj;
2543         struct i915_address_space *vm;
2544         struct i915_vma *vma;
2545         bool flush;
2546
2547         i915_check_and_clear_faults(dev);
2548
2549         /* First fill our portion of the GTT with scratch pages */
2550         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2551                                        dev_priv->gtt.base.start,
2552                                        dev_priv->gtt.base.total,
2553                                        true);
2554
2555         /* Cache flush objects bound into GGTT and rebind them. */
2556         vm = &dev_priv->gtt.base;
2557         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2558                 flush = false;
2559                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2560                         if (vma->vm != vm)
2561                                 continue;
2562
2563                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
2564                                               PIN_UPDATE));
2565
2566                         flush = true;
2567                 }
2568
2569                 if (flush)
2570                         i915_gem_clflush_object(obj, obj->pin_display);
2571         }
2572
2573         if (INTEL_INFO(dev)->gen >= 8) {
2574                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2575                         chv_setup_private_ppat(dev_priv);
2576                 else
2577                         bdw_setup_private_ppat(dev_priv);
2578
2579                 return;
2580         }
2581
2582         if (USES_PPGTT(dev)) {
2583                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2584                         /* TODO: Perhaps it shouldn't be gen6 specific */
2585
2586                         struct i915_hw_ppgtt *ppgtt =
2587                                         container_of(vm, struct i915_hw_ppgtt,
2588                                                      base);
2589
2590                         if (i915_is_ggtt(vm))
2591                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2592
2593                         gen6_write_page_range(dev_priv, &ppgtt->pd,
2594                                               0, ppgtt->base.total);
2595                 }
2596         }
2597
2598         i915_ggtt_flush(dev_priv);
2599 }
2600
2601 static struct i915_vma *
2602 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2603                       struct i915_address_space *vm,
2604                       const struct i915_ggtt_view *ggtt_view)
2605 {
2606         struct i915_vma *vma;
2607
2608         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2609                 return ERR_PTR(-EINVAL);
2610
2611         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2612         if (vma == NULL)
2613                 return ERR_PTR(-ENOMEM);
2614
2615         INIT_LIST_HEAD(&vma->vma_link);
2616         INIT_LIST_HEAD(&vma->mm_list);
2617         INIT_LIST_HEAD(&vma->exec_list);
2618         vma->vm = vm;
2619         vma->obj = obj;
2620
2621         if (i915_is_ggtt(vm))
2622                 vma->ggtt_view = *ggtt_view;
2623
2624         list_add_tail(&vma->vma_link, &obj->vma_list);
2625         if (!i915_is_ggtt(vm))
2626                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2627
2628         return vma;
2629 }
2630
2631 struct i915_vma *
2632 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2633                                   struct i915_address_space *vm)
2634 {
2635         struct i915_vma *vma;
2636
2637         vma = i915_gem_obj_to_vma(obj, vm);
2638         if (!vma)
2639                 vma = __i915_gem_vma_create(obj, vm,
2640                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2641
2642         return vma;
2643 }
2644
2645 struct i915_vma *
2646 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2647                                        const struct i915_ggtt_view *view)
2648 {
2649         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2650         struct i915_vma *vma;
2651
2652         if (WARN_ON(!view))
2653                 return ERR_PTR(-EINVAL);
2654
2655         vma = i915_gem_obj_to_ggtt_view(obj, view);
2656
2657         if (IS_ERR(vma))
2658                 return vma;
2659
2660         if (!vma)
2661                 vma = __i915_gem_vma_create(obj, ggtt, view);
2662
2663         return vma;
2664
2665 }
2666
2667 static void
2668 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2669              struct sg_table *st)
2670 {
2671         unsigned int column, row;
2672         unsigned int src_idx;
2673         struct scatterlist *sg = st->sgl;
2674
2675         st->nents = 0;
2676
2677         for (column = 0; column < width; column++) {
2678                 src_idx = width * (height - 1) + column;
2679                 for (row = 0; row < height; row++) {
2680                         st->nents++;
2681                         /* We don't need the pages, but need to initialize
2682                          * the entries so the sg list can be happily traversed.
2683                          * The only thing we need are DMA addresses.
2684                          */
2685                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2686                         sg_dma_address(sg) = in[src_idx];
2687                         sg_dma_len(sg) = PAGE_SIZE;
2688                         sg = sg_next(sg);
2689                         src_idx -= width;
2690                 }
2691         }
2692 }
2693
2694 static struct sg_table *
2695 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2696                           struct drm_i915_gem_object *obj)
2697 {
2698         struct drm_device *dev = obj->base.dev;
2699         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2700         unsigned long size, pages, rot_pages;
2701         struct sg_page_iter sg_iter;
2702         unsigned long i;
2703         dma_addr_t *page_addr_list;
2704         struct sg_table *st;
2705         unsigned int tile_pitch, tile_height;
2706         unsigned int width_pages, height_pages;
2707         int ret = -ENOMEM;
2708
2709         pages = obj->base.size / PAGE_SIZE;
2710
2711         /* Calculate tiling geometry. */
2712         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2713                                         rot_info->fb_modifier);
2714         tile_pitch = PAGE_SIZE / tile_height;
2715         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2716         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2717         rot_pages = width_pages * height_pages;
2718         size = rot_pages * PAGE_SIZE;
2719
2720         /* Allocate a temporary list of source pages for random access. */
2721         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2722         if (!page_addr_list)
2723                 return ERR_PTR(ret);
2724
2725         /* Allocate target SG list. */
2726         st = kmalloc(sizeof(*st), GFP_KERNEL);
2727         if (!st)
2728                 goto err_st_alloc;
2729
2730         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2731         if (ret)
2732                 goto err_sg_alloc;
2733
2734         /* Populate source page list from the object. */
2735         i = 0;
2736         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2737                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2738                 i++;
2739         }
2740
2741         /* Rotate the pages. */
2742         rotate_pages(page_addr_list, width_pages, height_pages, st);
2743
2744         DRM_DEBUG_KMS(
2745                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2746                       size, rot_info->pitch, rot_info->height,
2747                       rot_info->pixel_format, width_pages, height_pages,
2748                       rot_pages);
2749
2750         drm_free_large(page_addr_list);
2751
2752         return st;
2753
2754 err_sg_alloc:
2755         kfree(st);
2756 err_st_alloc:
2757         drm_free_large(page_addr_list);
2758
2759         DRM_DEBUG_KMS(
2760                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2761                       size, ret, rot_info->pitch, rot_info->height,
2762                       rot_info->pixel_format, width_pages, height_pages,
2763                       rot_pages);
2764         return ERR_PTR(ret);
2765 }
2766
2767 static struct sg_table *
2768 intel_partial_pages(const struct i915_ggtt_view *view,
2769                     struct drm_i915_gem_object *obj)
2770 {
2771         struct sg_table *st;
2772         struct scatterlist *sg;
2773         struct sg_page_iter obj_sg_iter;
2774         int ret = -ENOMEM;
2775
2776         st = kmalloc(sizeof(*st), GFP_KERNEL);
2777         if (!st)
2778                 goto err_st_alloc;
2779
2780         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2781         if (ret)
2782                 goto err_sg_alloc;
2783
2784         sg = st->sgl;
2785         st->nents = 0;
2786         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2787                 view->params.partial.offset)
2788         {
2789                 if (st->nents >= view->params.partial.size)
2790                         break;
2791
2792                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2793                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2794                 sg_dma_len(sg) = PAGE_SIZE;
2795
2796                 sg = sg_next(sg);
2797                 st->nents++;
2798         }
2799
2800         return st;
2801
2802 err_sg_alloc:
2803         kfree(st);
2804 err_st_alloc:
2805         return ERR_PTR(ret);
2806 }
2807
2808 static int
2809 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2810 {
2811         int ret = 0;
2812
2813         if (vma->ggtt_view.pages)
2814                 return 0;
2815
2816         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2817                 vma->ggtt_view.pages = vma->obj->pages;
2818         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2819                 vma->ggtt_view.pages =
2820                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2821         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2822                 vma->ggtt_view.pages =
2823                         intel_partial_pages(&vma->ggtt_view, vma->obj);
2824         else
2825                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2826                           vma->ggtt_view.type);
2827
2828         if (!vma->ggtt_view.pages) {
2829                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2830                           vma->ggtt_view.type);
2831                 ret = -EINVAL;
2832         } else if (IS_ERR(vma->ggtt_view.pages)) {
2833                 ret = PTR_ERR(vma->ggtt_view.pages);
2834                 vma->ggtt_view.pages = NULL;
2835                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2836                           vma->ggtt_view.type, ret);
2837         }
2838
2839         return ret;
2840 }
2841
2842 /**
2843  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2844  * @vma: VMA to map
2845  * @cache_level: mapping cache level
2846  * @flags: flags like global or local mapping
2847  *
2848  * DMA addresses are taken from the scatter-gather table of this object (or of
2849  * this VMA in case of non-default GGTT views) and PTE entries set up.
2850  * Note that DMA addresses are also the only part of the SG table we care about.
2851  */
2852 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2853                   u32 flags)
2854 {
2855         int ret;
2856         u32 bind_flags;
2857
2858         if (WARN_ON(flags == 0))
2859                 return -EINVAL;
2860
2861         bind_flags = 0;
2862         if (flags & PIN_GLOBAL)
2863                 bind_flags |= GLOBAL_BIND;
2864         if (flags & PIN_USER)
2865                 bind_flags |= LOCAL_BIND;
2866
2867         if (flags & PIN_UPDATE)
2868                 bind_flags |= vma->bound;
2869         else
2870                 bind_flags &= ~vma->bound;
2871
2872         if (bind_flags == 0)
2873                 return 0;
2874
2875         if (vma->bound == 0 && vma->vm->allocate_va_range) {
2876                 trace_i915_va_alloc(vma->vm,
2877                                     vma->node.start,
2878                                     vma->node.size,
2879                                     VM_TO_TRACE_NAME(vma->vm));
2880
2881                 ret = vma->vm->allocate_va_range(vma->vm,
2882                                                  vma->node.start,
2883                                                  vma->node.size);
2884                 if (ret)
2885                         return ret;
2886         }
2887
2888         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2889         if (ret)
2890                 return ret;
2891
2892         vma->bound |= bind_flags;
2893
2894         return 0;
2895 }
2896
2897 /**
2898  * i915_ggtt_view_size - Get the size of a GGTT view.
2899  * @obj: Object the view is of.
2900  * @view: The view in question.
2901  *
2902  * @return The size of the GGTT view in bytes.
2903  */
2904 size_t
2905 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2906                     const struct i915_ggtt_view *view)
2907 {
2908         if (view->type == I915_GGTT_VIEW_NORMAL ||
2909             view->type == I915_GGTT_VIEW_ROTATED) {
2910                 return obj->base.size;
2911         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2912                 return view->params.partial.size << PAGE_SHIFT;
2913         } else {
2914                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2915                 return obj->base.size;
2916         }
2917 }