Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
61 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
62 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
63
64 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
65 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
66 #define GEN8_LEGACY_PDPS                4
67
68 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
69 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
70 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
71 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
72
73 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
74                                              enum i915_cache_level level,
75                                              bool valid)
76 {
77         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
78         pte |= addr;
79         if (level != I915_CACHE_NONE)
80                 pte |= PPAT_CACHED_INDEX;
81         else
82                 pte |= PPAT_UNCACHED_INDEX;
83         return pte;
84 }
85
86 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
87                                              dma_addr_t addr,
88                                              enum i915_cache_level level)
89 {
90         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
91         pde |= addr;
92         if (level != I915_CACHE_NONE)
93                 pde |= PPAT_CACHED_PDE_INDEX;
94         else
95                 pde |= PPAT_UNCACHED_INDEX;
96         return pde;
97 }
98
99 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
100                                      enum i915_cache_level level,
101                                      bool valid)
102 {
103         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
104         pte |= GEN6_PTE_ADDR_ENCODE(addr);
105
106         switch (level) {
107         case I915_CACHE_L3_LLC:
108         case I915_CACHE_LLC:
109                 pte |= GEN6_PTE_CACHE_LLC;
110                 break;
111         case I915_CACHE_NONE:
112                 pte |= GEN6_PTE_UNCACHED;
113                 break;
114         default:
115                 WARN_ON(1);
116         }
117
118         return pte;
119 }
120
121 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
122                                      enum i915_cache_level level,
123                                      bool valid)
124 {
125         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
126         pte |= GEN6_PTE_ADDR_ENCODE(addr);
127
128         switch (level) {
129         case I915_CACHE_L3_LLC:
130                 pte |= GEN7_PTE_CACHE_L3_LLC;
131                 break;
132         case I915_CACHE_LLC:
133                 pte |= GEN6_PTE_CACHE_LLC;
134                 break;
135         case I915_CACHE_NONE:
136                 pte |= GEN6_PTE_UNCACHED;
137                 break;
138         default:
139                 WARN_ON(1);
140         }
141
142         return pte;
143 }
144
145 #define BYT_PTE_WRITEABLE               (1 << 1)
146 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
147
148 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
149                                      enum i915_cache_level level,
150                                      bool valid)
151 {
152         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
153         pte |= GEN6_PTE_ADDR_ENCODE(addr);
154
155         /* Mark the page as writeable.  Other platforms don't have a
156          * setting for read-only/writable, so this matches that behavior.
157          */
158         pte |= BYT_PTE_WRITEABLE;
159
160         if (level != I915_CACHE_NONE)
161                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
162
163         return pte;
164 }
165
166 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
167                                      enum i915_cache_level level,
168                                      bool valid)
169 {
170         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
171         pte |= HSW_PTE_ADDR_ENCODE(addr);
172
173         if (level != I915_CACHE_NONE)
174                 pte |= HSW_WB_LLC_AGE3;
175
176         return pte;
177 }
178
179 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
180                                       enum i915_cache_level level,
181                                       bool valid)
182 {
183         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
184         pte |= HSW_PTE_ADDR_ENCODE(addr);
185
186         switch (level) {
187         case I915_CACHE_NONE:
188                 break;
189         case I915_CACHE_WT:
190                 pte |= HSW_WT_ELLC_LLC_AGE3;
191                 break;
192         default:
193                 pte |= HSW_WB_ELLC_LLC_AGE3;
194                 break;
195         }
196
197         return pte;
198 }
199
200 /* Broadwell Page Directory Pointer Descriptors */
201 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
202                            uint64_t val)
203 {
204         int ret;
205
206         BUG_ON(entry >= 4);
207
208         ret = intel_ring_begin(ring, 6);
209         if (ret)
210                 return ret;
211
212         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
213         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
214         intel_ring_emit(ring, (u32)(val >> 32));
215         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
216         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
217         intel_ring_emit(ring, (u32)(val));
218         intel_ring_advance(ring);
219
220         return 0;
221 }
222
223 static int gen8_ppgtt_enable(struct drm_device *dev)
224 {
225         struct drm_i915_private *dev_priv = dev->dev_private;
226         struct intel_ring_buffer *ring;
227         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
228         int i, j, ret;
229
230         /* bit of a hack to find the actual last used pd */
231         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
232
233         for_each_ring(ring, dev_priv, j) {
234                 I915_WRITE(RING_MODE_GEN7(ring),
235                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
236         }
237
238         for (i = used_pd - 1; i >= 0; i--) {
239                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
240                 for_each_ring(ring, dev_priv, j) {
241                         ret = gen8_write_pdp(ring, i, addr);
242                         if (ret)
243                                 return ret;
244                 }
245         }
246         return 0;
247 }
248
249 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
250                                    unsigned first_entry,
251                                    unsigned num_entries,
252                                    bool use_scratch)
253 {
254         struct i915_hw_ppgtt *ppgtt =
255                 container_of(vm, struct i915_hw_ppgtt, base);
256         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
257         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
258         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
259         unsigned last_pte, i;
260
261         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
262                                       I915_CACHE_LLC, use_scratch);
263
264         while (num_entries) {
265                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
266
267                 last_pte = first_pte + num_entries;
268                 if (last_pte > GEN8_PTES_PER_PAGE)
269                         last_pte = GEN8_PTES_PER_PAGE;
270
271                 pt_vaddr = kmap_atomic(page_table);
272
273                 for (i = first_pte; i < last_pte; i++)
274                         pt_vaddr[i] = scratch_pte;
275
276                 kunmap_atomic(pt_vaddr);
277
278                 num_entries -= last_pte - first_pte;
279                 first_pte = 0;
280                 act_pt++;
281         }
282 }
283
284 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
285                                       struct sg_table *pages,
286                                       unsigned first_entry,
287                                       enum i915_cache_level cache_level)
288 {
289         struct i915_hw_ppgtt *ppgtt =
290                 container_of(vm, struct i915_hw_ppgtt, base);
291         gen8_gtt_pte_t *pt_vaddr;
292         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
293         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
294         struct sg_page_iter sg_iter;
295
296         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
297         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
298                 dma_addr_t page_addr;
299
300                 page_addr = sg_dma_address(sg_iter.sg) +
301                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
302                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
303                                                     true);
304                 if (++act_pte == GEN8_PTES_PER_PAGE) {
305                         kunmap_atomic(pt_vaddr);
306                         act_pt++;
307                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
308                         act_pte = 0;
309
310                 }
311         }
312         kunmap_atomic(pt_vaddr);
313 }
314
315 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
316 {
317         struct i915_hw_ppgtt *ppgtt =
318                 container_of(vm, struct i915_hw_ppgtt, base);
319         int i, j;
320
321         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
322                 if (ppgtt->pd_dma_addr[i]) {
323                         pci_unmap_page(ppgtt->base.dev->pdev,
324                                        ppgtt->pd_dma_addr[i],
325                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
326
327                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
328                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
329                                 if (addr)
330                                         pci_unmap_page(ppgtt->base.dev->pdev,
331                                                        addr,
332                                                        PAGE_SIZE,
333                                                        PCI_DMA_BIDIRECTIONAL);
334
335                         }
336                 }
337                 kfree(ppgtt->gen8_pt_dma_addr[i]);
338         }
339
340         __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
341         __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
342 }
343
344 /**
345  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
346  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
347  * represents 1GB of memory
348  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
349  *
350  * TODO: Do something with the size parameter
351  **/
352 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
353 {
354         struct page *pt_pages;
355         int i, j, ret = -ENOMEM;
356         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
357         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
358
359         if (size % (1<<30))
360                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
361
362         /* FIXME: split allocation into smaller pieces. For now we only ever do
363          * this once, but with full PPGTT, the multiple contiguous allocations
364          * will be bad.
365          */
366         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
367         if (!ppgtt->pd_pages)
368                 return -ENOMEM;
369
370         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
371         if (!pt_pages) {
372                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
373                 return -ENOMEM;
374         }
375
376         ppgtt->gen8_pt_pages = pt_pages;
377         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
378         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
379         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
380         ppgtt->enable = gen8_ppgtt_enable;
381         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
382         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
383         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
384
385         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
386
387         /*
388          * - Create a mapping for the page directories.
389          * - For each page directory:
390          *      allocate space for page table mappings.
391          *      map each page table
392          */
393         for (i = 0; i < max_pdp; i++) {
394                 dma_addr_t temp;
395                 temp = pci_map_page(ppgtt->base.dev->pdev,
396                                     &ppgtt->pd_pages[i], 0,
397                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
398                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
399                         goto err_out;
400
401                 ppgtt->pd_dma_addr[i] = temp;
402
403                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
404                 if (!ppgtt->gen8_pt_dma_addr[i])
405                         goto err_out;
406
407                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
408                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
409                         temp = pci_map_page(ppgtt->base.dev->pdev,
410                                             p, 0, PAGE_SIZE,
411                                             PCI_DMA_BIDIRECTIONAL);
412
413                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
414                                 goto err_out;
415
416                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
417                 }
418         }
419
420         /* For now, the PPGTT helper functions all require that the PDEs are
421          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
422          * will never need to touch the PDEs again */
423         for (i = 0; i < max_pdp; i++) {
424                 gen8_ppgtt_pde_t *pd_vaddr;
425                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
426                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
427                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
428                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
429                                                       I915_CACHE_LLC);
430                 }
431                 kunmap_atomic(pd_vaddr);
432         }
433
434         ppgtt->base.clear_range(&ppgtt->base, 0,
435                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
436                                 true);
437
438         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
439                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
440         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
441                          ppgtt->num_pt_pages,
442                          (ppgtt->num_pt_pages - num_pt_pages) +
443                          size % (1<<30));
444         return 0;
445
446 err_out:
447         ppgtt->base.cleanup(&ppgtt->base);
448         return ret;
449 }
450
451 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
452 {
453         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
454         gen6_gtt_pte_t __iomem *pd_addr;
455         uint32_t pd_entry;
456         int i;
457
458         WARN_ON(ppgtt->pd_offset & 0x3f);
459         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
460                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
461         for (i = 0; i < ppgtt->num_pd_entries; i++) {
462                 dma_addr_t pt_addr;
463
464                 pt_addr = ppgtt->pt_dma_addr[i];
465                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
466                 pd_entry |= GEN6_PDE_VALID;
467
468                 writel(pd_entry, pd_addr + i);
469         }
470         readl(pd_addr);
471 }
472
473 static int gen6_ppgtt_enable(struct drm_device *dev)
474 {
475         drm_i915_private_t *dev_priv = dev->dev_private;
476         uint32_t pd_offset;
477         struct intel_ring_buffer *ring;
478         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
479         int i;
480
481         BUG_ON(ppgtt->pd_offset & 0x3f);
482
483         gen6_write_pdes(ppgtt);
484
485         pd_offset = ppgtt->pd_offset;
486         pd_offset /= 64; /* in cachelines, */
487         pd_offset <<= 16;
488
489         if (INTEL_INFO(dev)->gen == 6) {
490                 uint32_t ecochk, gab_ctl, ecobits;
491
492                 ecobits = I915_READ(GAC_ECO_BITS);
493                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
494                                          ECOBITS_PPGTT_CACHE64B);
495
496                 gab_ctl = I915_READ(GAB_CTL);
497                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
498
499                 ecochk = I915_READ(GAM_ECOCHK);
500                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
501                                        ECOCHK_PPGTT_CACHE64B);
502                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
503         } else if (INTEL_INFO(dev)->gen >= 7) {
504                 uint32_t ecochk, ecobits;
505
506                 ecobits = I915_READ(GAC_ECO_BITS);
507                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
508
509                 ecochk = I915_READ(GAM_ECOCHK);
510                 if (IS_HASWELL(dev)) {
511                         ecochk |= ECOCHK_PPGTT_WB_HSW;
512                 } else {
513                         ecochk |= ECOCHK_PPGTT_LLC_IVB;
514                         ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
515                 }
516                 I915_WRITE(GAM_ECOCHK, ecochk);
517                 /* GFX_MODE is per-ring on gen7+ */
518         }
519
520         for_each_ring(ring, dev_priv, i) {
521                 if (INTEL_INFO(dev)->gen >= 7)
522                         I915_WRITE(RING_MODE_GEN7(ring),
523                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
524
525                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
526                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
527         }
528         return 0;
529 }
530
531 /* PPGTT support for Sandybdrige/Gen6 and later */
532 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
533                                    unsigned first_entry,
534                                    unsigned num_entries,
535                                    bool use_scratch)
536 {
537         struct i915_hw_ppgtt *ppgtt =
538                 container_of(vm, struct i915_hw_ppgtt, base);
539         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
540         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
541         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
542         unsigned last_pte, i;
543
544         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
545
546         while (num_entries) {
547                 last_pte = first_pte + num_entries;
548                 if (last_pte > I915_PPGTT_PT_ENTRIES)
549                         last_pte = I915_PPGTT_PT_ENTRIES;
550
551                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
552
553                 for (i = first_pte; i < last_pte; i++)
554                         pt_vaddr[i] = scratch_pte;
555
556                 kunmap_atomic(pt_vaddr);
557
558                 num_entries -= last_pte - first_pte;
559                 first_pte = 0;
560                 act_pt++;
561         }
562 }
563
564 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
565                                       struct sg_table *pages,
566                                       unsigned first_entry,
567                                       enum i915_cache_level cache_level)
568 {
569         struct i915_hw_ppgtt *ppgtt =
570                 container_of(vm, struct i915_hw_ppgtt, base);
571         gen6_gtt_pte_t *pt_vaddr;
572         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
573         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
574         struct sg_page_iter sg_iter;
575
576         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
577         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
578                 dma_addr_t page_addr;
579
580                 page_addr = sg_page_iter_dma_address(&sg_iter);
581                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
582                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
583                         kunmap_atomic(pt_vaddr);
584                         act_pt++;
585                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
586                         act_pte = 0;
587
588                 }
589         }
590         kunmap_atomic(pt_vaddr);
591 }
592
593 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
594 {
595         struct i915_hw_ppgtt *ppgtt =
596                 container_of(vm, struct i915_hw_ppgtt, base);
597         int i;
598
599         drm_mm_takedown(&ppgtt->base.mm);
600
601         if (ppgtt->pt_dma_addr) {
602                 for (i = 0; i < ppgtt->num_pd_entries; i++)
603                         pci_unmap_page(ppgtt->base.dev->pdev,
604                                        ppgtt->pt_dma_addr[i],
605                                        4096, PCI_DMA_BIDIRECTIONAL);
606         }
607
608         kfree(ppgtt->pt_dma_addr);
609         for (i = 0; i < ppgtt->num_pd_entries; i++)
610                 __free_page(ppgtt->pt_pages[i]);
611         kfree(ppgtt->pt_pages);
612         kfree(ppgtt);
613 }
614
615 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
616 {
617         struct drm_device *dev = ppgtt->base.dev;
618         struct drm_i915_private *dev_priv = dev->dev_private;
619         unsigned first_pd_entry_in_global_pt;
620         int i;
621         int ret = -ENOMEM;
622
623         /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
624          * entries. For aliasing ppgtt support we just steal them at the end for
625          * now. */
626         first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
627
628         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
629         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
630         ppgtt->enable = gen6_ppgtt_enable;
631         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
632         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
633         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
634         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
635         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
636                                   GFP_KERNEL);
637         if (!ppgtt->pt_pages)
638                 return -ENOMEM;
639
640         for (i = 0; i < ppgtt->num_pd_entries; i++) {
641                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
642                 if (!ppgtt->pt_pages[i])
643                         goto err_pt_alloc;
644         }
645
646         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
647                                      GFP_KERNEL);
648         if (!ppgtt->pt_dma_addr)
649                 goto err_pt_alloc;
650
651         for (i = 0; i < ppgtt->num_pd_entries; i++) {
652                 dma_addr_t pt_addr;
653
654                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
655                                        PCI_DMA_BIDIRECTIONAL);
656
657                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
658                         ret = -EIO;
659                         goto err_pd_pin;
660
661                 }
662                 ppgtt->pt_dma_addr[i] = pt_addr;
663         }
664
665         ppgtt->base.clear_range(&ppgtt->base, 0,
666                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
667
668         ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
669
670         return 0;
671
672 err_pd_pin:
673         if (ppgtt->pt_dma_addr) {
674                 for (i--; i >= 0; i--)
675                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
676                                        4096, PCI_DMA_BIDIRECTIONAL);
677         }
678 err_pt_alloc:
679         kfree(ppgtt->pt_dma_addr);
680         for (i = 0; i < ppgtt->num_pd_entries; i++) {
681                 if (ppgtt->pt_pages[i])
682                         __free_page(ppgtt->pt_pages[i]);
683         }
684         kfree(ppgtt->pt_pages);
685
686         return ret;
687 }
688
689 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
690 {
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         struct i915_hw_ppgtt *ppgtt;
693         int ret;
694
695         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
696         if (!ppgtt)
697                 return -ENOMEM;
698
699         ppgtt->base.dev = dev;
700
701         if (INTEL_INFO(dev)->gen < 8)
702                 ret = gen6_ppgtt_init(ppgtt);
703         else if (IS_GEN8(dev))
704                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
705         else
706                 BUG();
707
708         if (ret)
709                 kfree(ppgtt);
710         else {
711                 dev_priv->mm.aliasing_ppgtt = ppgtt;
712                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
713                             ppgtt->base.total);
714         }
715
716         return ret;
717 }
718
719 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
720 {
721         struct drm_i915_private *dev_priv = dev->dev_private;
722         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
723
724         if (!ppgtt)
725                 return;
726
727         ppgtt->base.cleanup(&ppgtt->base);
728         dev_priv->mm.aliasing_ppgtt = NULL;
729 }
730
731 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
732                             struct drm_i915_gem_object *obj,
733                             enum i915_cache_level cache_level)
734 {
735         ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
736                                    i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
737                                    cache_level);
738 }
739
740 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
741                               struct drm_i915_gem_object *obj)
742 {
743         ppgtt->base.clear_range(&ppgtt->base,
744                                 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
745                                 obj->base.size >> PAGE_SHIFT,
746                                 true);
747 }
748
749 extern int intel_iommu_gfx_mapped;
750 /* Certain Gen5 chipsets require require idling the GPU before
751  * unmapping anything from the GTT when VT-d is enabled.
752  */
753 static inline bool needs_idle_maps(struct drm_device *dev)
754 {
755 #ifdef CONFIG_INTEL_IOMMU
756         /* Query intel_iommu to see if we need the workaround. Presumably that
757          * was loaded first.
758          */
759         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
760                 return true;
761 #endif
762         return false;
763 }
764
765 static bool do_idling(struct drm_i915_private *dev_priv)
766 {
767         bool ret = dev_priv->mm.interruptible;
768
769         if (unlikely(dev_priv->gtt.do_idle_maps)) {
770                 dev_priv->mm.interruptible = false;
771                 if (i915_gpu_idle(dev_priv->dev)) {
772                         DRM_ERROR("Couldn't idle GPU\n");
773                         /* Wait a bit, in hopes it avoids the hang */
774                         udelay(10);
775                 }
776         }
777
778         return ret;
779 }
780
781 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
782 {
783         if (unlikely(dev_priv->gtt.do_idle_maps))
784                 dev_priv->mm.interruptible = interruptible;
785 }
786
787 void i915_check_and_clear_faults(struct drm_device *dev)
788 {
789         struct drm_i915_private *dev_priv = dev->dev_private;
790         struct intel_ring_buffer *ring;
791         int i;
792
793         if (INTEL_INFO(dev)->gen < 6)
794                 return;
795
796         for_each_ring(ring, dev_priv, i) {
797                 u32 fault_reg;
798                 fault_reg = I915_READ(RING_FAULT_REG(ring));
799                 if (fault_reg & RING_FAULT_VALID) {
800                         DRM_DEBUG_DRIVER("Unexpected fault\n"
801                                          "\tAddr: 0x%08lx\\n"
802                                          "\tAddress space: %s\n"
803                                          "\tSource ID: %d\n"
804                                          "\tType: %d\n",
805                                          fault_reg & PAGE_MASK,
806                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
807                                          RING_FAULT_SRCID(fault_reg),
808                                          RING_FAULT_FAULT_TYPE(fault_reg));
809                         I915_WRITE(RING_FAULT_REG(ring),
810                                    fault_reg & ~RING_FAULT_VALID);
811                 }
812         }
813         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
814 }
815
816 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
817 {
818         struct drm_i915_private *dev_priv = dev->dev_private;
819
820         /* Don't bother messing with faults pre GEN6 as we have little
821          * documentation supporting that it's a good idea.
822          */
823         if (INTEL_INFO(dev)->gen < 6)
824                 return;
825
826         i915_check_and_clear_faults(dev);
827
828         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
829                                        dev_priv->gtt.base.start / PAGE_SIZE,
830                                        dev_priv->gtt.base.total / PAGE_SIZE,
831                                        false);
832 }
833
834 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
835 {
836         struct drm_i915_private *dev_priv = dev->dev_private;
837         struct drm_i915_gem_object *obj;
838
839         i915_check_and_clear_faults(dev);
840
841         /* First fill our portion of the GTT with scratch pages */
842         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
843                                        dev_priv->gtt.base.start / PAGE_SIZE,
844                                        dev_priv->gtt.base.total / PAGE_SIZE,
845                                        true);
846
847         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
848                 i915_gem_clflush_object(obj, obj->pin_display);
849                 i915_gem_gtt_bind_object(obj, obj->cache_level);
850         }
851
852         i915_gem_chipset_flush(dev);
853 }
854
855 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
856 {
857         if (obj->has_dma_mapping)
858                 return 0;
859
860         if (!dma_map_sg(&obj->base.dev->pdev->dev,
861                         obj->pages->sgl, obj->pages->nents,
862                         PCI_DMA_BIDIRECTIONAL))
863                 return -ENOSPC;
864
865         return 0;
866 }
867
868 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
869 {
870 #ifdef writeq
871         writeq(pte, addr);
872 #else
873         iowrite32((u32)pte, addr);
874         iowrite32(pte >> 32, addr + 4);
875 #endif
876 }
877
878 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
879                                      struct sg_table *st,
880                                      unsigned int first_entry,
881                                      enum i915_cache_level level)
882 {
883         struct drm_i915_private *dev_priv = vm->dev->dev_private;
884         gen8_gtt_pte_t __iomem *gtt_entries =
885                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
886         int i = 0;
887         struct sg_page_iter sg_iter;
888         dma_addr_t addr;
889
890         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
891                 addr = sg_dma_address(sg_iter.sg) +
892                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
893                 gen8_set_pte(&gtt_entries[i],
894                              gen8_pte_encode(addr, level, true));
895                 i++;
896         }
897
898         /*
899          * XXX: This serves as a posting read to make sure that the PTE has
900          * actually been updated. There is some concern that even though
901          * registers and PTEs are within the same BAR that they are potentially
902          * of NUMA access patterns. Therefore, even with the way we assume
903          * hardware should work, we must keep this posting read for paranoia.
904          */
905         if (i != 0)
906                 WARN_ON(readq(&gtt_entries[i-1])
907                         != gen8_pte_encode(addr, level, true));
908
909 #if 0 /* TODO: Still needed on GEN8? */
910         /* This next bit makes the above posting read even more important. We
911          * want to flush the TLBs only after we're certain all the PTE updates
912          * have finished.
913          */
914         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
915         POSTING_READ(GFX_FLSH_CNTL_GEN6);
916 #endif
917 }
918
919 /*
920  * Binds an object into the global gtt with the specified cache level. The object
921  * will be accessible to the GPU via commands whose operands reference offsets
922  * within the global GTT as well as accessible by the GPU through the GMADR
923  * mapped BAR (dev_priv->mm.gtt->gtt).
924  */
925 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
926                                      struct sg_table *st,
927                                      unsigned int first_entry,
928                                      enum i915_cache_level level)
929 {
930         struct drm_i915_private *dev_priv = vm->dev->dev_private;
931         gen6_gtt_pte_t __iomem *gtt_entries =
932                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
933         int i = 0;
934         struct sg_page_iter sg_iter;
935         dma_addr_t addr;
936
937         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
938                 addr = sg_page_iter_dma_address(&sg_iter);
939                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
940                 i++;
941         }
942
943         /* XXX: This serves as a posting read to make sure that the PTE has
944          * actually been updated. There is some concern that even though
945          * registers and PTEs are within the same BAR that they are potentially
946          * of NUMA access patterns. Therefore, even with the way we assume
947          * hardware should work, we must keep this posting read for paranoia.
948          */
949         if (i != 0)
950                 WARN_ON(readl(&gtt_entries[i-1]) !=
951                         vm->pte_encode(addr, level, true));
952
953         /* This next bit makes the above posting read even more important. We
954          * want to flush the TLBs only after we're certain all the PTE updates
955          * have finished.
956          */
957         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
958         POSTING_READ(GFX_FLSH_CNTL_GEN6);
959 }
960
961 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
962                                   unsigned int first_entry,
963                                   unsigned int num_entries,
964                                   bool use_scratch)
965 {
966         struct drm_i915_private *dev_priv = vm->dev->dev_private;
967         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
968                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
969         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
970         int i;
971
972         if (WARN(num_entries > max_entries,
973                  "First entry = %d; Num entries = %d (max=%d)\n",
974                  first_entry, num_entries, max_entries))
975                 num_entries = max_entries;
976
977         scratch_pte = gen8_pte_encode(vm->scratch.addr,
978                                       I915_CACHE_LLC,
979                                       use_scratch);
980         for (i = 0; i < num_entries; i++)
981                 gen8_set_pte(&gtt_base[i], scratch_pte);
982         readl(gtt_base);
983 }
984
985 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
986                                   unsigned int first_entry,
987                                   unsigned int num_entries,
988                                   bool use_scratch)
989 {
990         struct drm_i915_private *dev_priv = vm->dev->dev_private;
991         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
992                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
993         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
994         int i;
995
996         if (WARN(num_entries > max_entries,
997                  "First entry = %d; Num entries = %d (max=%d)\n",
998                  first_entry, num_entries, max_entries))
999                 num_entries = max_entries;
1000
1001         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1002
1003         for (i = 0; i < num_entries; i++)
1004                 iowrite32(scratch_pte, &gtt_base[i]);
1005         readl(gtt_base);
1006 }
1007
1008 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1009                                      struct sg_table *st,
1010                                      unsigned int pg_start,
1011                                      enum i915_cache_level cache_level)
1012 {
1013         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1014                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1015
1016         intel_gtt_insert_sg_entries(st, pg_start, flags);
1017
1018 }
1019
1020 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1021                                   unsigned int first_entry,
1022                                   unsigned int num_entries,
1023                                   bool unused)
1024 {
1025         intel_gtt_clear_range(first_entry, num_entries);
1026 }
1027
1028
1029 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1030                               enum i915_cache_level cache_level)
1031 {
1032         struct drm_device *dev = obj->base.dev;
1033         struct drm_i915_private *dev_priv = dev->dev_private;
1034         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1035
1036         dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1037                                           entry,
1038                                           cache_level);
1039
1040         obj->has_global_gtt_mapping = 1;
1041 }
1042
1043 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1044 {
1045         struct drm_device *dev = obj->base.dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1048
1049         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1050                                        entry,
1051                                        obj->base.size >> PAGE_SHIFT,
1052                                        true);
1053
1054         obj->has_global_gtt_mapping = 0;
1055 }
1056
1057 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1058 {
1059         struct drm_device *dev = obj->base.dev;
1060         struct drm_i915_private *dev_priv = dev->dev_private;
1061         bool interruptible;
1062
1063         interruptible = do_idling(dev_priv);
1064
1065         if (!obj->has_dma_mapping)
1066                 dma_unmap_sg(&dev->pdev->dev,
1067                              obj->pages->sgl, obj->pages->nents,
1068                              PCI_DMA_BIDIRECTIONAL);
1069
1070         undo_idling(dev_priv, interruptible);
1071 }
1072
1073 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1074                                   unsigned long color,
1075                                   unsigned long *start,
1076                                   unsigned long *end)
1077 {
1078         if (node->color != color)
1079                 *start += 4096;
1080
1081         if (!list_empty(&node->node_list)) {
1082                 node = list_entry(node->node_list.next,
1083                                   struct drm_mm_node,
1084                                   node_list);
1085                 if (node->allocated && node->color != color)
1086                         *end -= 4096;
1087         }
1088 }
1089
1090 void i915_gem_setup_global_gtt(struct drm_device *dev,
1091                                unsigned long start,
1092                                unsigned long mappable_end,
1093                                unsigned long end)
1094 {
1095         /* Let GEM Manage all of the aperture.
1096          *
1097          * However, leave one page at the end still bound to the scratch page.
1098          * There are a number of places where the hardware apparently prefetches
1099          * past the end of the object, and we've seen multiple hangs with the
1100          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1101          * aperture.  One page should be enough to keep any prefetching inside
1102          * of the aperture.
1103          */
1104         struct drm_i915_private *dev_priv = dev->dev_private;
1105         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1106         struct drm_mm_node *entry;
1107         struct drm_i915_gem_object *obj;
1108         unsigned long hole_start, hole_end;
1109
1110         BUG_ON(mappable_end > end);
1111
1112         /* Subtract the guard page ... */
1113         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1114         if (!HAS_LLC(dev))
1115                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1116
1117         /* Mark any preallocated objects as occupied */
1118         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1119                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1120                 int ret;
1121                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1122                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1123
1124                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1125                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1126                 if (ret)
1127                         DRM_DEBUG_KMS("Reservation failed\n");
1128                 obj->has_global_gtt_mapping = 1;
1129                 list_add(&vma->vma_link, &obj->vma_list);
1130         }
1131
1132         dev_priv->gtt.base.start = start;
1133         dev_priv->gtt.base.total = end - start;
1134
1135         /* Clear any non-preallocated blocks */
1136         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1137                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1138                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1139                               hole_start, hole_end);
1140                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1141         }
1142
1143         /* And finally clear the reserved guard page */
1144         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1145 }
1146
1147 static bool
1148 intel_enable_ppgtt(struct drm_device *dev)
1149 {
1150         if (i915_enable_ppgtt >= 0)
1151                 return i915_enable_ppgtt;
1152
1153 #ifdef CONFIG_INTEL_IOMMU
1154         /* Disable ppgtt on SNB if VT-d is on. */
1155         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1156                 return false;
1157 #endif
1158
1159         return true;
1160 }
1161
1162 void i915_gem_init_global_gtt(struct drm_device *dev)
1163 {
1164         struct drm_i915_private *dev_priv = dev->dev_private;
1165         unsigned long gtt_size, mappable_size;
1166
1167         gtt_size = dev_priv->gtt.base.total;
1168         mappable_size = dev_priv->gtt.mappable_end;
1169
1170         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1171                 int ret;
1172
1173                 if (INTEL_INFO(dev)->gen <= 7) {
1174                         /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1175                          * aperture accordingly when using aliasing ppgtt. */
1176                         gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1177                 }
1178
1179                 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1180
1181                 ret = i915_gem_init_aliasing_ppgtt(dev);
1182                 if (!ret)
1183                         return;
1184
1185                 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1186                 drm_mm_takedown(&dev_priv->gtt.base.mm);
1187                 if (INTEL_INFO(dev)->gen < 8)
1188                         gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1189         }
1190         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1191 }
1192
1193 static int setup_scratch_page(struct drm_device *dev)
1194 {
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         struct page *page;
1197         dma_addr_t dma_addr;
1198
1199         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1200         if (page == NULL)
1201                 return -ENOMEM;
1202         get_page(page);
1203         set_pages_uc(page, 1);
1204
1205 #ifdef CONFIG_INTEL_IOMMU
1206         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1207                                 PCI_DMA_BIDIRECTIONAL);
1208         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1209                 return -EINVAL;
1210 #else
1211         dma_addr = page_to_phys(page);
1212 #endif
1213         dev_priv->gtt.base.scratch.page = page;
1214         dev_priv->gtt.base.scratch.addr = dma_addr;
1215
1216         return 0;
1217 }
1218
1219 static void teardown_scratch_page(struct drm_device *dev)
1220 {
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         struct page *page = dev_priv->gtt.base.scratch.page;
1223
1224         set_pages_wb(page, 1);
1225         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1226                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1227         put_page(page);
1228         __free_page(page);
1229 }
1230
1231 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1232 {
1233         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1234         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1235         return snb_gmch_ctl << 20;
1236 }
1237
1238 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1239 {
1240         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1241         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1242         if (bdw_gmch_ctl)
1243                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1244         return bdw_gmch_ctl << 20;
1245 }
1246
1247 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1248 {
1249         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1250         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1251         return snb_gmch_ctl << 25; /* 32 MB units */
1252 }
1253
1254 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1255 {
1256         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1257         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1258         return bdw_gmch_ctl << 25; /* 32 MB units */
1259 }
1260
1261 static int ggtt_probe_common(struct drm_device *dev,
1262                              size_t gtt_size)
1263 {
1264         struct drm_i915_private *dev_priv = dev->dev_private;
1265         phys_addr_t gtt_bus_addr;
1266         int ret;
1267
1268         /* For Modern GENs the PTEs and register space are split in the BAR */
1269         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1270                 (pci_resource_len(dev->pdev, 0) / 2);
1271
1272         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1273         if (!dev_priv->gtt.gsm) {
1274                 DRM_ERROR("Failed to map the gtt page table\n");
1275                 return -ENOMEM;
1276         }
1277
1278         ret = setup_scratch_page(dev);
1279         if (ret) {
1280                 DRM_ERROR("Scratch setup failed\n");
1281                 /* iounmap will also get called at remove, but meh */
1282                 iounmap(dev_priv->gtt.gsm);
1283         }
1284
1285         return ret;
1286 }
1287
1288 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1289  * bits. When using advanced contexts each context stores its own PAT, but
1290  * writing this data shouldn't be harmful even in those cases. */
1291 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1292 {
1293 #define GEN8_PPAT_UC            (0<<0)
1294 #define GEN8_PPAT_WC            (1<<0)
1295 #define GEN8_PPAT_WT            (2<<0)
1296 #define GEN8_PPAT_WB            (3<<0)
1297 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1298 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1299 #define GEN8_PPAT_LLC           (1<<2)
1300 #define GEN8_PPAT_LLCELLC       (2<<2)
1301 #define GEN8_PPAT_LLCeLLC       (3<<2)
1302 #define GEN8_PPAT_AGE(x)        (x<<4)
1303 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1304         uint64_t pat;
1305
1306         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1307               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1308               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1309               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1310               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1311               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1312               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1313               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1314
1315         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1316          * write would work. */
1317         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1318         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1319 }
1320
1321 static int gen8_gmch_probe(struct drm_device *dev,
1322                            size_t *gtt_total,
1323                            size_t *stolen,
1324                            phys_addr_t *mappable_base,
1325                            unsigned long *mappable_end)
1326 {
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         unsigned int gtt_size;
1329         u16 snb_gmch_ctl;
1330         int ret;
1331
1332         /* TODO: We're not aware of mappable constraints on gen8 yet */
1333         *mappable_base = pci_resource_start(dev->pdev, 2);
1334         *mappable_end = pci_resource_len(dev->pdev, 2);
1335
1336         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1337                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1338
1339         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1340
1341         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1342
1343         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1344         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1345
1346         gen8_setup_private_ppat(dev_priv);
1347
1348         ret = ggtt_probe_common(dev, gtt_size);
1349
1350         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1351         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1352
1353         return ret;
1354 }
1355
1356 static int gen6_gmch_probe(struct drm_device *dev,
1357                            size_t *gtt_total,
1358                            size_t *stolen,
1359                            phys_addr_t *mappable_base,
1360                            unsigned long *mappable_end)
1361 {
1362         struct drm_i915_private *dev_priv = dev->dev_private;
1363         unsigned int gtt_size;
1364         u16 snb_gmch_ctl;
1365         int ret;
1366
1367         *mappable_base = pci_resource_start(dev->pdev, 2);
1368         *mappable_end = pci_resource_len(dev->pdev, 2);
1369
1370         /* 64/512MB is the current min/max we actually know of, but this is just
1371          * a coarse sanity check.
1372          */
1373         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1374                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1375                           dev_priv->gtt.mappable_end);
1376                 return -ENXIO;
1377         }
1378
1379         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1380                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1381         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1382
1383         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1384
1385         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1386         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1387
1388         ret = ggtt_probe_common(dev, gtt_size);
1389
1390         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1391         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1392
1393         return ret;
1394 }
1395
1396 static void gen6_gmch_remove(struct i915_address_space *vm)
1397 {
1398
1399         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1400         iounmap(gtt->gsm);
1401         teardown_scratch_page(vm->dev);
1402 }
1403
1404 static int i915_gmch_probe(struct drm_device *dev,
1405                            size_t *gtt_total,
1406                            size_t *stolen,
1407                            phys_addr_t *mappable_base,
1408                            unsigned long *mappable_end)
1409 {
1410         struct drm_i915_private *dev_priv = dev->dev_private;
1411         int ret;
1412
1413         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1414         if (!ret) {
1415                 DRM_ERROR("failed to set up gmch\n");
1416                 return -EIO;
1417         }
1418
1419         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1420
1421         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1422         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1423         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1424
1425         return 0;
1426 }
1427
1428 static void i915_gmch_remove(struct i915_address_space *vm)
1429 {
1430         intel_gmch_remove();
1431 }
1432
1433 int i915_gem_gtt_init(struct drm_device *dev)
1434 {
1435         struct drm_i915_private *dev_priv = dev->dev_private;
1436         struct i915_gtt *gtt = &dev_priv->gtt;
1437         int ret;
1438
1439         if (INTEL_INFO(dev)->gen <= 5) {
1440                 gtt->gtt_probe = i915_gmch_probe;
1441                 gtt->base.cleanup = i915_gmch_remove;
1442         } else if (INTEL_INFO(dev)->gen < 8) {
1443                 gtt->gtt_probe = gen6_gmch_probe;
1444                 gtt->base.cleanup = gen6_gmch_remove;
1445                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1446                         gtt->base.pte_encode = iris_pte_encode;
1447                 else if (IS_HASWELL(dev))
1448                         gtt->base.pte_encode = hsw_pte_encode;
1449                 else if (IS_VALLEYVIEW(dev))
1450                         gtt->base.pte_encode = byt_pte_encode;
1451                 else if (INTEL_INFO(dev)->gen >= 7)
1452                         gtt->base.pte_encode = ivb_pte_encode;
1453                 else
1454                         gtt->base.pte_encode = snb_pte_encode;
1455         } else {
1456                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1457                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1458         }
1459
1460         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1461                              &gtt->mappable_base, &gtt->mappable_end);
1462         if (ret)
1463                 return ret;
1464
1465         gtt->base.dev = dev;
1466
1467         /* GMADR is the PCI mmio aperture into the global GTT. */
1468         DRM_INFO("Memory usable by graphics device = %zdM\n",
1469                  gtt->base.total >> 20);
1470         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1471         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1472
1473         return 0;
1474 }