drm/i915: Do not call intel_crtc_disable if the crtc is already disabled.
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50                                  struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52                                          struct drm_i915_fence_reg *fence,
53                                          bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56                                   enum i915_cache_level level)
57 {
58         return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64                 return true;
65
66         return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71         if (obj->tiling_mode)
72                 i915_gem_release_mmap(obj);
73
74         /* As we do not have an associated fence register, we will force
75          * a tiling change if we ever need to acquire one.
76          */
77         obj->fence_dirty = false;
78         obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83                                   size_t size)
84 {
85         spin_lock(&dev_priv->mm.object_stat_lock);
86         dev_priv->mm.object_count++;
87         dev_priv->mm.object_memory += size;
88         spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92                                      size_t size)
93 {
94         spin_lock(&dev_priv->mm.object_stat_lock);
95         dev_priv->mm.object_count--;
96         dev_priv->mm.object_memory -= size;
97         spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103         int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106                    i915_terminally_wedged(error))
107         if (EXIT_COND)
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                EXIT_COND,
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         }
124 #undef EXIT_COND
125
126         return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_i915_gem_get_aperture *args = data;
152         struct drm_i915_gem_object *obj;
153         size_t pinned;
154
155         pinned = 0;
156         mutex_lock(&dev->struct_mutex);
157         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158                 if (i915_gem_obj_is_pinned(obj))
159                         pinned += i915_gem_obj_ggtt_size(obj);
160         mutex_unlock(&dev->struct_mutex);
161
162         args->aper_size = dev_priv->gtt.base.total;
163         args->aper_available_size = args->aper_size - pinned;
164
165         return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172         char *vaddr = obj->phys_handle->vaddr;
173         struct sg_table *st;
174         struct scatterlist *sg;
175         int i;
176
177         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178                 return -EINVAL;
179
180         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181                 struct page *page;
182                 char *src;
183
184                 page = shmem_read_mapping_page(mapping, i);
185                 if (IS_ERR(page))
186                         return PTR_ERR(page);
187
188                 src = kmap_atomic(page);
189                 memcpy(vaddr, src, PAGE_SIZE);
190                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191                 kunmap_atomic(src);
192
193                 page_cache_release(page);
194                 vaddr += PAGE_SIZE;
195         }
196
197         i915_gem_chipset_flush(obj->base.dev);
198
199         st = kmalloc(sizeof(*st), GFP_KERNEL);
200         if (st == NULL)
201                 return -ENOMEM;
202
203         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204                 kfree(st);
205                 return -ENOMEM;
206         }
207
208         sg = st->sgl;
209         sg->offset = 0;
210         sg->length = obj->base.size;
211
212         sg_dma_address(sg) = obj->phys_handle->busaddr;
213         sg_dma_len(sg) = obj->base.size;
214
215         obj->pages = st;
216         return 0;
217 }
218
219 static void
220 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
221 {
222         int ret;
223
224         BUG_ON(obj->madv == __I915_MADV_PURGED);
225
226         ret = i915_gem_object_set_to_cpu_domain(obj, true);
227         if (ret) {
228                 /* In the event of a disaster, abandon all caches and
229                  * hope for the best.
230                  */
231                 WARN_ON(ret != -EIO);
232                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
233         }
234
235         if (obj->madv == I915_MADV_DONTNEED)
236                 obj->dirty = 0;
237
238         if (obj->dirty) {
239                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240                 char *vaddr = obj->phys_handle->vaddr;
241                 int i;
242
243                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244                         struct page *page;
245                         char *dst;
246
247                         page = shmem_read_mapping_page(mapping, i);
248                         if (IS_ERR(page))
249                                 continue;
250
251                         dst = kmap_atomic(page);
252                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
253                         memcpy(dst, vaddr, PAGE_SIZE);
254                         kunmap_atomic(dst);
255
256                         set_page_dirty(page);
257                         if (obj->madv == I915_MADV_WILLNEED)
258                                 mark_page_accessed(page);
259                         page_cache_release(page);
260                         vaddr += PAGE_SIZE;
261                 }
262                 obj->dirty = 0;
263         }
264
265         sg_free_table(obj->pages);
266         kfree(obj->pages);
267 }
268
269 static void
270 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
271 {
272         drm_pci_free(obj->base.dev, obj->phys_handle);
273 }
274
275 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
276         .get_pages = i915_gem_object_get_pages_phys,
277         .put_pages = i915_gem_object_put_pages_phys,
278         .release = i915_gem_object_release_phys,
279 };
280
281 static int
282 drop_pages(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma, *next;
285         int ret;
286
287         drm_gem_object_reference(&obj->base);
288         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
289                 if (i915_vma_unbind(vma))
290                         break;
291
292         ret = i915_gem_object_put_pages(obj);
293         drm_gem_object_unreference(&obj->base);
294
295         return ret;
296 }
297
298 int
299 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
300                             int align)
301 {
302         drm_dma_handle_t *phys;
303         int ret;
304
305         if (obj->phys_handle) {
306                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
307                         return -EBUSY;
308
309                 return 0;
310         }
311
312         if (obj->madv != I915_MADV_WILLNEED)
313                 return -EFAULT;
314
315         if (obj->base.filp == NULL)
316                 return -EINVAL;
317
318         ret = drop_pages(obj);
319         if (ret)
320                 return ret;
321
322         /* create a new object */
323         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
324         if (!phys)
325                 return -ENOMEM;
326
327         obj->phys_handle = phys;
328         obj->ops = &i915_gem_phys_ops;
329
330         return i915_gem_object_get_pages(obj);
331 }
332
333 static int
334 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
335                      struct drm_i915_gem_pwrite *args,
336                      struct drm_file *file_priv)
337 {
338         struct drm_device *dev = obj->base.dev;
339         void *vaddr = obj->phys_handle->vaddr + args->offset;
340         char __user *user_data = to_user_ptr(args->data_ptr);
341         int ret = 0;
342
343         /* We manually control the domain here and pretend that it
344          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
345          */
346         ret = i915_gem_object_wait_rendering(obj, false);
347         if (ret)
348                 return ret;
349
350         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
351         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
352                 unsigned long unwritten;
353
354                 /* The physical object once assigned is fixed for the lifetime
355                  * of the obj, so we can safely drop the lock and continue
356                  * to access vaddr.
357                  */
358                 mutex_unlock(&dev->struct_mutex);
359                 unwritten = copy_from_user(vaddr, user_data, args->size);
360                 mutex_lock(&dev->struct_mutex);
361                 if (unwritten) {
362                         ret = -EFAULT;
363                         goto out;
364                 }
365         }
366
367         drm_clflush_virt_range(vaddr, args->size);
368         i915_gem_chipset_flush(dev);
369
370 out:
371         intel_fb_obj_flush(obj, false);
372         return ret;
373 }
374
375 void *i915_gem_object_alloc(struct drm_device *dev)
376 {
377         struct drm_i915_private *dev_priv = dev->dev_private;
378         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
379 }
380
381 void i915_gem_object_free(struct drm_i915_gem_object *obj)
382 {
383         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
384         kmem_cache_free(dev_priv->objects, obj);
385 }
386
387 static int
388 i915_gem_create(struct drm_file *file,
389                 struct drm_device *dev,
390                 uint64_t size,
391                 uint32_t *handle_p)
392 {
393         struct drm_i915_gem_object *obj;
394         int ret;
395         u32 handle;
396
397         size = roundup(size, PAGE_SIZE);
398         if (size == 0)
399                 return -EINVAL;
400
401         /* Allocate the new object */
402         obj = i915_gem_alloc_object(dev, size);
403         if (obj == NULL)
404                 return -ENOMEM;
405
406         ret = drm_gem_handle_create(file, &obj->base, &handle);
407         /* drop reference from allocate - handle holds it now */
408         drm_gem_object_unreference_unlocked(&obj->base);
409         if (ret)
410                 return ret;
411
412         *handle_p = handle;
413         return 0;
414 }
415
416 int
417 i915_gem_dumb_create(struct drm_file *file,
418                      struct drm_device *dev,
419                      struct drm_mode_create_dumb *args)
420 {
421         /* have to work out size/pitch and return them */
422         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
423         args->size = args->pitch * args->height;
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 /**
429  * Creates a new mm object and returns a handle to it.
430  */
431 int
432 i915_gem_create_ioctl(struct drm_device *dev, void *data,
433                       struct drm_file *file)
434 {
435         struct drm_i915_gem_create *args = data;
436
437         return i915_gem_create(file, dev,
438                                args->size, &args->handle);
439 }
440
441 static inline int
442 __copy_to_user_swizzled(char __user *cpu_vaddr,
443                         const char *gpu_vaddr, int gpu_offset,
444                         int length)
445 {
446         int ret, cpu_offset = 0;
447
448         while (length > 0) {
449                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
450                 int this_length = min(cacheline_end - gpu_offset, length);
451                 int swizzled_gpu_offset = gpu_offset ^ 64;
452
453                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
454                                      gpu_vaddr + swizzled_gpu_offset,
455                                      this_length);
456                 if (ret)
457                         return ret + length;
458
459                 cpu_offset += this_length;
460                 gpu_offset += this_length;
461                 length -= this_length;
462         }
463
464         return 0;
465 }
466
467 static inline int
468 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
469                           const char __user *cpu_vaddr,
470                           int length)
471 {
472         int ret, cpu_offset = 0;
473
474         while (length > 0) {
475                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
476                 int this_length = min(cacheline_end - gpu_offset, length);
477                 int swizzled_gpu_offset = gpu_offset ^ 64;
478
479                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
480                                        cpu_vaddr + cpu_offset,
481                                        this_length);
482                 if (ret)
483                         return ret + length;
484
485                 cpu_offset += this_length;
486                 gpu_offset += this_length;
487                 length -= this_length;
488         }
489
490         return 0;
491 }
492
493 /*
494  * Pins the specified object's pages and synchronizes the object with
495  * GPU accesses. Sets needs_clflush to non-zero if the caller should
496  * flush the object from the CPU cache.
497  */
498 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
499                                     int *needs_clflush)
500 {
501         int ret;
502
503         *needs_clflush = 0;
504
505         if (!obj->base.filp)
506                 return -EINVAL;
507
508         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
509                 /* If we're not in the cpu read domain, set ourself into the gtt
510                  * read domain and manually flush cachelines (if required). This
511                  * optimizes for the case when the gpu will dirty the data
512                  * anyway again before the next pread happens. */
513                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
514                                                         obj->cache_level);
515                 ret = i915_gem_object_wait_rendering(obj, true);
516                 if (ret)
517                         return ret;
518         }
519
520         ret = i915_gem_object_get_pages(obj);
521         if (ret)
522                 return ret;
523
524         i915_gem_object_pin_pages(obj);
525
526         return ret;
527 }
528
529 /* Per-page copy function for the shmem pread fastpath.
530  * Flushes invalid cachelines before reading the target if
531  * needs_clflush is set. */
532 static int
533 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
534                  char __user *user_data,
535                  bool page_do_bit17_swizzling, bool needs_clflush)
536 {
537         char *vaddr;
538         int ret;
539
540         if (unlikely(page_do_bit17_swizzling))
541                 return -EINVAL;
542
543         vaddr = kmap_atomic(page);
544         if (needs_clflush)
545                 drm_clflush_virt_range(vaddr + shmem_page_offset,
546                                        page_length);
547         ret = __copy_to_user_inatomic(user_data,
548                                       vaddr + shmem_page_offset,
549                                       page_length);
550         kunmap_atomic(vaddr);
551
552         return ret ? -EFAULT : 0;
553 }
554
555 static void
556 shmem_clflush_swizzled_range(char *addr, unsigned long length,
557                              bool swizzled)
558 {
559         if (unlikely(swizzled)) {
560                 unsigned long start = (unsigned long) addr;
561                 unsigned long end = (unsigned long) addr + length;
562
563                 /* For swizzling simply ensure that we always flush both
564                  * channels. Lame, but simple and it works. Swizzled
565                  * pwrite/pread is far from a hotpath - current userspace
566                  * doesn't use it at all. */
567                 start = round_down(start, 128);
568                 end = round_up(end, 128);
569
570                 drm_clflush_virt_range((void *)start, end - start);
571         } else {
572                 drm_clflush_virt_range(addr, length);
573         }
574
575 }
576
577 /* Only difference to the fast-path function is that this can handle bit17
578  * and uses non-atomic copy and kmap functions. */
579 static int
580 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
581                  char __user *user_data,
582                  bool page_do_bit17_swizzling, bool needs_clflush)
583 {
584         char *vaddr;
585         int ret;
586
587         vaddr = kmap(page);
588         if (needs_clflush)
589                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
590                                              page_length,
591                                              page_do_bit17_swizzling);
592
593         if (page_do_bit17_swizzling)
594                 ret = __copy_to_user_swizzled(user_data,
595                                               vaddr, shmem_page_offset,
596                                               page_length);
597         else
598                 ret = __copy_to_user(user_data,
599                                      vaddr + shmem_page_offset,
600                                      page_length);
601         kunmap(page);
602
603         return ret ? - EFAULT : 0;
604 }
605
606 static int
607 i915_gem_shmem_pread(struct drm_device *dev,
608                      struct drm_i915_gem_object *obj,
609                      struct drm_i915_gem_pread *args,
610                      struct drm_file *file)
611 {
612         char __user *user_data;
613         ssize_t remain;
614         loff_t offset;
615         int shmem_page_offset, page_length, ret = 0;
616         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
617         int prefaulted = 0;
618         int needs_clflush = 0;
619         struct sg_page_iter sg_iter;
620
621         user_data = to_user_ptr(args->data_ptr);
622         remain = args->size;
623
624         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
625
626         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
627         if (ret)
628                 return ret;
629
630         offset = args->offset;
631
632         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
633                          offset >> PAGE_SHIFT) {
634                 struct page *page = sg_page_iter_page(&sg_iter);
635
636                 if (remain <= 0)
637                         break;
638
639                 /* Operation in this page
640                  *
641                  * shmem_page_offset = offset within page in shmem file
642                  * page_length = bytes to copy for this page
643                  */
644                 shmem_page_offset = offset_in_page(offset);
645                 page_length = remain;
646                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
647                         page_length = PAGE_SIZE - shmem_page_offset;
648
649                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
650                         (page_to_phys(page) & (1 << 17)) != 0;
651
652                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
653                                        user_data, page_do_bit17_swizzling,
654                                        needs_clflush);
655                 if (ret == 0)
656                         goto next_page;
657
658                 mutex_unlock(&dev->struct_mutex);
659
660                 if (likely(!i915.prefault_disable) && !prefaulted) {
661                         ret = fault_in_multipages_writeable(user_data, remain);
662                         /* Userspace is tricking us, but we've already clobbered
663                          * its pages with the prefault and promised to write the
664                          * data up to the first fault. Hence ignore any errors
665                          * and just continue. */
666                         (void)ret;
667                         prefaulted = 1;
668                 }
669
670                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
671                                        user_data, page_do_bit17_swizzling,
672                                        needs_clflush);
673
674                 mutex_lock(&dev->struct_mutex);
675
676                 if (ret)
677                         goto out;
678
679 next_page:
680                 remain -= page_length;
681                 user_data += page_length;
682                 offset += page_length;
683         }
684
685 out:
686         i915_gem_object_unpin_pages(obj);
687
688         return ret;
689 }
690
691 /**
692  * Reads data from the object referenced by handle.
693  *
694  * On error, the contents of *data are undefined.
695  */
696 int
697 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
698                      struct drm_file *file)
699 {
700         struct drm_i915_gem_pread *args = data;
701         struct drm_i915_gem_object *obj;
702         int ret = 0;
703
704         if (args->size == 0)
705                 return 0;
706
707         if (!access_ok(VERIFY_WRITE,
708                        to_user_ptr(args->data_ptr),
709                        args->size))
710                 return -EFAULT;
711
712         ret = i915_mutex_lock_interruptible(dev);
713         if (ret)
714                 return ret;
715
716         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
717         if (&obj->base == NULL) {
718                 ret = -ENOENT;
719                 goto unlock;
720         }
721
722         /* Bounds check source.  */
723         if (args->offset > obj->base.size ||
724             args->size > obj->base.size - args->offset) {
725                 ret = -EINVAL;
726                 goto out;
727         }
728
729         /* prime objects have no backing filp to GEM pread/pwrite
730          * pages from.
731          */
732         if (!obj->base.filp) {
733                 ret = -EINVAL;
734                 goto out;
735         }
736
737         trace_i915_gem_object_pread(obj, args->offset, args->size);
738
739         ret = i915_gem_shmem_pread(dev, obj, args, file);
740
741 out:
742         drm_gem_object_unreference(&obj->base);
743 unlock:
744         mutex_unlock(&dev->struct_mutex);
745         return ret;
746 }
747
748 /* This is the fast write path which cannot handle
749  * page faults in the source data
750  */
751
752 static inline int
753 fast_user_write(struct io_mapping *mapping,
754                 loff_t page_base, int page_offset,
755                 char __user *user_data,
756                 int length)
757 {
758         void __iomem *vaddr_atomic;
759         void *vaddr;
760         unsigned long unwritten;
761
762         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
763         /* We can use the cpu mem copy function because this is X86. */
764         vaddr = (void __force*)vaddr_atomic + page_offset;
765         unwritten = __copy_from_user_inatomic_nocache(vaddr,
766                                                       user_data, length);
767         io_mapping_unmap_atomic(vaddr_atomic);
768         return unwritten;
769 }
770
771 /**
772  * This is the fast pwrite path, where we copy the data directly from the
773  * user into the GTT, uncached.
774  */
775 static int
776 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
777                          struct drm_i915_gem_object *obj,
778                          struct drm_i915_gem_pwrite *args,
779                          struct drm_file *file)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length, ret;
786
787         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
788         if (ret)
789                 goto out;
790
791         ret = i915_gem_object_set_to_gtt_domain(obj, true);
792         if (ret)
793                 goto out_unpin;
794
795         ret = i915_gem_object_put_fence(obj);
796         if (ret)
797                 goto out_unpin;
798
799         user_data = to_user_ptr(args->data_ptr);
800         remain = args->size;
801
802         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
803
804         intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
805
806         while (remain > 0) {
807                 /* Operation in this page
808                  *
809                  * page_base = page offset within aperture
810                  * page_offset = offset within page
811                  * page_length = bytes to copy for this page
812                  */
813                 page_base = offset & PAGE_MASK;
814                 page_offset = offset_in_page(offset);
815                 page_length = remain;
816                 if ((page_offset + remain) > PAGE_SIZE)
817                         page_length = PAGE_SIZE - page_offset;
818
819                 /* If we get a fault while copying data, then (presumably) our
820                  * source page isn't available.  Return the error and we'll
821                  * retry in the slow path.
822                  */
823                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
824                                     page_offset, user_data, page_length)) {
825                         ret = -EFAULT;
826                         goto out_flush;
827                 }
828
829                 remain -= page_length;
830                 user_data += page_length;
831                 offset += page_length;
832         }
833
834 out_flush:
835         intel_fb_obj_flush(obj, false);
836 out_unpin:
837         i915_gem_object_ggtt_unpin(obj);
838 out:
839         return ret;
840 }
841
842 /* Per-page copy function for the shmem pwrite fastpath.
843  * Flushes invalid cachelines before writing to the target if
844  * needs_clflush_before is set and flushes out any written cachelines after
845  * writing if needs_clflush is set. */
846 static int
847 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
848                   char __user *user_data,
849                   bool page_do_bit17_swizzling,
850                   bool needs_clflush_before,
851                   bool needs_clflush_after)
852 {
853         char *vaddr;
854         int ret;
855
856         if (unlikely(page_do_bit17_swizzling))
857                 return -EINVAL;
858
859         vaddr = kmap_atomic(page);
860         if (needs_clflush_before)
861                 drm_clflush_virt_range(vaddr + shmem_page_offset,
862                                        page_length);
863         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
864                                         user_data, page_length);
865         if (needs_clflush_after)
866                 drm_clflush_virt_range(vaddr + shmem_page_offset,
867                                        page_length);
868         kunmap_atomic(vaddr);
869
870         return ret ? -EFAULT : 0;
871 }
872
873 /* Only difference to the fast-path function is that this can handle bit17
874  * and uses non-atomic copy and kmap functions. */
875 static int
876 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
877                   char __user *user_data,
878                   bool page_do_bit17_swizzling,
879                   bool needs_clflush_before,
880                   bool needs_clflush_after)
881 {
882         char *vaddr;
883         int ret;
884
885         vaddr = kmap(page);
886         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
887                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
888                                              page_length,
889                                              page_do_bit17_swizzling);
890         if (page_do_bit17_swizzling)
891                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
892                                                 user_data,
893                                                 page_length);
894         else
895                 ret = __copy_from_user(vaddr + shmem_page_offset,
896                                        user_data,
897                                        page_length);
898         if (needs_clflush_after)
899                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
900                                              page_length,
901                                              page_do_bit17_swizzling);
902         kunmap(page);
903
904         return ret ? -EFAULT : 0;
905 }
906
907 static int
908 i915_gem_shmem_pwrite(struct drm_device *dev,
909                       struct drm_i915_gem_object *obj,
910                       struct drm_i915_gem_pwrite *args,
911                       struct drm_file *file)
912 {
913         ssize_t remain;
914         loff_t offset;
915         char __user *user_data;
916         int shmem_page_offset, page_length, ret = 0;
917         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
918         int hit_slowpath = 0;
919         int needs_clflush_after = 0;
920         int needs_clflush_before = 0;
921         struct sg_page_iter sg_iter;
922
923         user_data = to_user_ptr(args->data_ptr);
924         remain = args->size;
925
926         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
927
928         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
929                 /* If we're not in the cpu write domain, set ourself into the gtt
930                  * write domain and manually flush cachelines (if required). This
931                  * optimizes for the case when the gpu will use the data
932                  * right away and we therefore have to clflush anyway. */
933                 needs_clflush_after = cpu_write_needs_clflush(obj);
934                 ret = i915_gem_object_wait_rendering(obj, false);
935                 if (ret)
936                         return ret;
937         }
938         /* Same trick applies to invalidate partially written cachelines read
939          * before writing. */
940         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
941                 needs_clflush_before =
942                         !cpu_cache_is_coherent(dev, obj->cache_level);
943
944         ret = i915_gem_object_get_pages(obj);
945         if (ret)
946                 return ret;
947
948         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
949
950         i915_gem_object_pin_pages(obj);
951
952         offset = args->offset;
953         obj->dirty = 1;
954
955         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
956                          offset >> PAGE_SHIFT) {
957                 struct page *page = sg_page_iter_page(&sg_iter);
958                 int partial_cacheline_write;
959
960                 if (remain <= 0)
961                         break;
962
963                 /* Operation in this page
964                  *
965                  * shmem_page_offset = offset within page in shmem file
966                  * page_length = bytes to copy for this page
967                  */
968                 shmem_page_offset = offset_in_page(offset);
969
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 /* If we don't overwrite a cacheline completely we need to be
975                  * careful to have up-to-date data by first clflushing. Don't
976                  * overcomplicate things and flush the entire patch. */
977                 partial_cacheline_write = needs_clflush_before &&
978                         ((shmem_page_offset | page_length)
979                                 & (boot_cpu_data.x86_clflush_size - 1));
980
981                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
982                         (page_to_phys(page) & (1 << 17)) != 0;
983
984                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
985                                         user_data, page_do_bit17_swizzling,
986                                         partial_cacheline_write,
987                                         needs_clflush_after);
988                 if (ret == 0)
989                         goto next_page;
990
991                 hit_slowpath = 1;
992                 mutex_unlock(&dev->struct_mutex);
993                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
994                                         user_data, page_do_bit17_swizzling,
995                                         partial_cacheline_write,
996                                         needs_clflush_after);
997
998                 mutex_lock(&dev->struct_mutex);
999
1000                 if (ret)
1001                         goto out;
1002
1003 next_page:
1004                 remain -= page_length;
1005                 user_data += page_length;
1006                 offset += page_length;
1007         }
1008
1009 out:
1010         i915_gem_object_unpin_pages(obj);
1011
1012         if (hit_slowpath) {
1013                 /*
1014                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1015                  * cachelines in-line while writing and the object moved
1016                  * out of the cpu write domain while we've dropped the lock.
1017                  */
1018                 if (!needs_clflush_after &&
1019                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1020                         if (i915_gem_clflush_object(obj, obj->pin_display))
1021                                 i915_gem_chipset_flush(dev);
1022                 }
1023         }
1024
1025         if (needs_clflush_after)
1026                 i915_gem_chipset_flush(dev);
1027
1028         intel_fb_obj_flush(obj, false);
1029         return ret;
1030 }
1031
1032 /**
1033  * Writes data to the object referenced by handle.
1034  *
1035  * On error, the contents of the buffer that were to be modified are undefined.
1036  */
1037 int
1038 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1039                       struct drm_file *file)
1040 {
1041         struct drm_i915_private *dev_priv = dev->dev_private;
1042         struct drm_i915_gem_pwrite *args = data;
1043         struct drm_i915_gem_object *obj;
1044         int ret;
1045
1046         if (args->size == 0)
1047                 return 0;
1048
1049         if (!access_ok(VERIFY_READ,
1050                        to_user_ptr(args->data_ptr),
1051                        args->size))
1052                 return -EFAULT;
1053
1054         if (likely(!i915.prefault_disable)) {
1055                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1056                                                    args->size);
1057                 if (ret)
1058                         return -EFAULT;
1059         }
1060
1061         intel_runtime_pm_get(dev_priv);
1062
1063         ret = i915_mutex_lock_interruptible(dev);
1064         if (ret)
1065                 goto put_rpm;
1066
1067         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1068         if (&obj->base == NULL) {
1069                 ret = -ENOENT;
1070                 goto unlock;
1071         }
1072
1073         /* Bounds check destination. */
1074         if (args->offset > obj->base.size ||
1075             args->size > obj->base.size - args->offset) {
1076                 ret = -EINVAL;
1077                 goto out;
1078         }
1079
1080         /* prime objects have no backing filp to GEM pread/pwrite
1081          * pages from.
1082          */
1083         if (!obj->base.filp) {
1084                 ret = -EINVAL;
1085                 goto out;
1086         }
1087
1088         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1089
1090         ret = -EFAULT;
1091         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1092          * it would end up going through the fenced access, and we'll get
1093          * different detiling behavior between reading and writing.
1094          * pread/pwrite currently are reading and writing from the CPU
1095          * perspective, requiring manual detiling by the client.
1096          */
1097         if (obj->tiling_mode == I915_TILING_NONE &&
1098             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1099             cpu_write_needs_clflush(obj)) {
1100                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1101                 /* Note that the gtt paths might fail with non-page-backed user
1102                  * pointers (e.g. gtt mappings when moving data between
1103                  * textures). Fallback to the shmem path in that case. */
1104         }
1105
1106         if (ret == -EFAULT || ret == -ENOSPC) {
1107                 if (obj->phys_handle)
1108                         ret = i915_gem_phys_pwrite(obj, args, file);
1109                 else
1110                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1111         }
1112
1113 out:
1114         drm_gem_object_unreference(&obj->base);
1115 unlock:
1116         mutex_unlock(&dev->struct_mutex);
1117 put_rpm:
1118         intel_runtime_pm_put(dev_priv);
1119
1120         return ret;
1121 }
1122
1123 int
1124 i915_gem_check_wedge(struct i915_gpu_error *error,
1125                      bool interruptible)
1126 {
1127         if (i915_reset_in_progress(error)) {
1128                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1129                  * -EIO unconditionally for these. */
1130                 if (!interruptible)
1131                         return -EIO;
1132
1133                 /* Recovery complete, but the reset failed ... */
1134                 if (i915_terminally_wedged(error))
1135                         return -EIO;
1136
1137                 /*
1138                  * Check if GPU Reset is in progress - we need intel_ring_begin
1139                  * to work properly to reinit the hw state while the gpu is
1140                  * still marked as reset-in-progress. Handle this with a flag.
1141                  */
1142                 if (!error->reload_in_reset)
1143                         return -EAGAIN;
1144         }
1145
1146         return 0;
1147 }
1148
1149 /*
1150  * Compare arbitrary request against outstanding lazy request. Emit on match.
1151  */
1152 int
1153 i915_gem_check_olr(struct drm_i915_gem_request *req)
1154 {
1155         int ret;
1156
1157         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1158
1159         ret = 0;
1160         if (req == req->ring->outstanding_lazy_request)
1161                 ret = i915_add_request(req->ring);
1162
1163         return ret;
1164 }
1165
1166 static void fake_irq(unsigned long data)
1167 {
1168         wake_up_process((struct task_struct *)data);
1169 }
1170
1171 static bool missed_irq(struct drm_i915_private *dev_priv,
1172                        struct intel_engine_cs *ring)
1173 {
1174         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175 }
1176
1177 static int __i915_spin_request(struct drm_i915_gem_request *req)
1178 {
1179         unsigned long timeout;
1180
1181         if (i915_gem_request_get_ring(req)->irq_refcount)
1182                 return -EBUSY;
1183
1184         timeout = jiffies + 1;
1185         while (!need_resched()) {
1186                 if (i915_gem_request_completed(req, true))
1187                         return 0;
1188
1189                 if (time_after_eq(jiffies, timeout))
1190                         break;
1191
1192                 cpu_relax_lowlatency();
1193         }
1194         if (i915_gem_request_completed(req, false))
1195                 return 0;
1196
1197         return -EAGAIN;
1198 }
1199
1200 /**
1201  * __i915_wait_request - wait until execution of request has finished
1202  * @req: duh!
1203  * @reset_counter: reset sequence associated with the given request
1204  * @interruptible: do an interruptible wait (normally yes)
1205  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206  *
1207  * Note: It is of utmost importance that the passed in seqno and reset_counter
1208  * values have been read by the caller in an smp safe manner. Where read-side
1209  * locks are involved, it is sufficient to read the reset_counter before
1210  * unlocking the lock that protects the seqno. For lockless tricks, the
1211  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212  * inserted.
1213  *
1214  * Returns 0 if the request was found within the alloted time. Else returns the
1215  * errno with remaining time filled in timeout argument.
1216  */
1217 int __i915_wait_request(struct drm_i915_gem_request *req,
1218                         unsigned reset_counter,
1219                         bool interruptible,
1220                         s64 *timeout,
1221                         struct intel_rps_client *rps)
1222 {
1223         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1224         struct drm_device *dev = ring->dev;
1225         struct drm_i915_private *dev_priv = dev->dev_private;
1226         const bool irq_test_in_progress =
1227                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1228         DEFINE_WAIT(wait);
1229         unsigned long timeout_expire;
1230         s64 before, now;
1231         int ret;
1232
1233         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1234
1235         if (list_empty(&req->list))
1236                 return 0;
1237
1238         if (i915_gem_request_completed(req, true))
1239                 return 0;
1240
1241         timeout_expire = timeout ?
1242                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1243
1244         if (INTEL_INFO(dev_priv)->gen >= 6)
1245                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1246
1247         /* Record current time in case interrupted by signal, or wedged */
1248         trace_i915_gem_request_wait_begin(req);
1249         before = ktime_get_raw_ns();
1250
1251         /* Optimistic spin for the next jiffie before touching IRQs */
1252         ret = __i915_spin_request(req);
1253         if (ret == 0)
1254                 goto out;
1255
1256         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257                 ret = -ENODEV;
1258                 goto out;
1259         }
1260
1261         for (;;) {
1262                 struct timer_list timer;
1263
1264                 prepare_to_wait(&ring->irq_queue, &wait,
1265                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1266
1267                 /* We need to check whether any gpu reset happened in between
1268                  * the caller grabbing the seqno and now ... */
1269                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271                          * is truely gone. */
1272                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273                         if (ret == 0)
1274                                 ret = -EAGAIN;
1275                         break;
1276                 }
1277
1278                 if (i915_gem_request_completed(req, false)) {
1279                         ret = 0;
1280                         break;
1281                 }
1282
1283                 if (interruptible && signal_pending(current)) {
1284                         ret = -ERESTARTSYS;
1285                         break;
1286                 }
1287
1288                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1289                         ret = -ETIME;
1290                         break;
1291                 }
1292
1293                 timer.function = NULL;
1294                 if (timeout || missed_irq(dev_priv, ring)) {
1295                         unsigned long expire;
1296
1297                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1298                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1299                         mod_timer(&timer, expire);
1300                 }
1301
1302                 io_schedule();
1303
1304                 if (timer.function) {
1305                         del_singleshot_timer_sync(&timer);
1306                         destroy_timer_on_stack(&timer);
1307                 }
1308         }
1309         if (!irq_test_in_progress)
1310                 ring->irq_put(ring);
1311
1312         finish_wait(&ring->irq_queue, &wait);
1313
1314 out:
1315         now = ktime_get_raw_ns();
1316         trace_i915_gem_request_wait_end(req);
1317
1318         if (timeout) {
1319                 s64 tres = *timeout - (now - before);
1320
1321                 *timeout = tres < 0 ? 0 : tres;
1322
1323                 /*
1324                  * Apparently ktime isn't accurate enough and occasionally has a
1325                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326                  * things up to make the test happy. We allow up to 1 jiffy.
1327                  *
1328                  * This is a regrssion from the timespec->ktime conversion.
1329                  */
1330                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331                         *timeout = 0;
1332         }
1333
1334         return ret;
1335 }
1336
1337 static inline void
1338 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339 {
1340         struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342         if (!file_priv)
1343                 return;
1344
1345         spin_lock(&file_priv->mm.lock);
1346         list_del(&request->client_list);
1347         request->file_priv = NULL;
1348         spin_unlock(&file_priv->mm.lock);
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353         trace_i915_gem_request_retire(request);
1354
1355         /* We know the GPU must have read the request to have
1356          * sent us the seqno + interrupt, so use the position
1357          * of tail of the request to update the last known position
1358          * of the GPU head.
1359          *
1360          * Note this requires that we are always called in request
1361          * completion order.
1362          */
1363         request->ringbuf->last_retired_head = request->postfix;
1364
1365         list_del_init(&request->list);
1366         i915_gem_request_remove_from_client(request);
1367
1368         put_pid(request->pid);
1369
1370         i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376         struct intel_engine_cs *engine = req->ring;
1377         struct drm_i915_gem_request *tmp;
1378
1379         lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381         if (list_empty(&req->list))
1382                 return;
1383
1384         do {
1385                 tmp = list_first_entry(&engine->request_list,
1386                                        typeof(*tmp), list);
1387
1388                 i915_gem_request_retire(tmp);
1389         } while (tmp != req);
1390
1391         WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401         struct drm_device *dev;
1402         struct drm_i915_private *dev_priv;
1403         bool interruptible;
1404         int ret;
1405
1406         BUG_ON(req == NULL);
1407
1408         dev = req->ring->dev;
1409         dev_priv = dev->dev_private;
1410         interruptible = dev_priv->mm.interruptible;
1411
1412         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415         if (ret)
1416                 return ret;
1417
1418         ret = i915_gem_check_olr(req);
1419         if (ret)
1420                 return ret;
1421
1422         ret = __i915_wait_request(req,
1423                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1424                                   interruptible, NULL, NULL);
1425         if (ret)
1426                 return ret;
1427
1428         __i915_gem_request_retire__upto(req);
1429         return 0;
1430 }
1431
1432 /**
1433  * Ensures that all rendering to the object has completed and the object is
1434  * safe to unbind from the GTT or access from the CPU.
1435  */
1436 int
1437 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438                                bool readonly)
1439 {
1440         int ret, i;
1441
1442         if (!obj->active)
1443                 return 0;
1444
1445         if (readonly) {
1446                 if (obj->last_write_req != NULL) {
1447                         ret = i915_wait_request(obj->last_write_req);
1448                         if (ret)
1449                                 return ret;
1450
1451                         i = obj->last_write_req->ring->id;
1452                         if (obj->last_read_req[i] == obj->last_write_req)
1453                                 i915_gem_object_retire__read(obj, i);
1454                         else
1455                                 i915_gem_object_retire__write(obj);
1456                 }
1457         } else {
1458                 for (i = 0; i < I915_NUM_RINGS; i++) {
1459                         if (obj->last_read_req[i] == NULL)
1460                                 continue;
1461
1462                         ret = i915_wait_request(obj->last_read_req[i]);
1463                         if (ret)
1464                                 return ret;
1465
1466                         i915_gem_object_retire__read(obj, i);
1467                 }
1468                 RQ_BUG_ON(obj->active);
1469         }
1470
1471         return 0;
1472 }
1473
1474 static void
1475 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476                                struct drm_i915_gem_request *req)
1477 {
1478         int ring = req->ring->id;
1479
1480         if (obj->last_read_req[ring] == req)
1481                 i915_gem_object_retire__read(obj, ring);
1482         else if (obj->last_write_req == req)
1483                 i915_gem_object_retire__write(obj);
1484
1485         __i915_gem_request_retire__upto(req);
1486 }
1487
1488 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1489  * as the object state may change during this call.
1490  */
1491 static __must_check int
1492 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1493                                             struct intel_rps_client *rps,
1494                                             bool readonly)
1495 {
1496         struct drm_device *dev = obj->base.dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1499         unsigned reset_counter;
1500         int ret, i, n = 0;
1501
1502         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503         BUG_ON(!dev_priv->mm.interruptible);
1504
1505         if (!obj->active)
1506                 return 0;
1507
1508         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1509         if (ret)
1510                 return ret;
1511
1512         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1513
1514         if (readonly) {
1515                 struct drm_i915_gem_request *req;
1516
1517                 req = obj->last_write_req;
1518                 if (req == NULL)
1519                         return 0;
1520
1521                 ret = i915_gem_check_olr(req);
1522                 if (ret)
1523                         goto err;
1524
1525                 requests[n++] = i915_gem_request_reference(req);
1526         } else {
1527                 for (i = 0; i < I915_NUM_RINGS; i++) {
1528                         struct drm_i915_gem_request *req;
1529
1530                         req = obj->last_read_req[i];
1531                         if (req == NULL)
1532                                 continue;
1533
1534                         ret = i915_gem_check_olr(req);
1535                         if (ret)
1536                                 goto err;
1537
1538                         requests[n++] = i915_gem_request_reference(req);
1539                 }
1540         }
1541
1542         mutex_unlock(&dev->struct_mutex);
1543         for (i = 0; ret == 0 && i < n; i++)
1544                 ret = __i915_wait_request(requests[i], reset_counter, true,
1545                                           NULL, rps);
1546         mutex_lock(&dev->struct_mutex);
1547
1548 err:
1549         for (i = 0; i < n; i++) {
1550                 if (ret == 0)
1551                         i915_gem_object_retire_request(obj, requests[i]);
1552                 i915_gem_request_unreference(requests[i]);
1553         }
1554
1555         return ret;
1556 }
1557
1558 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559 {
1560         struct drm_i915_file_private *fpriv = file->driver_priv;
1561         return &fpriv->rps;
1562 }
1563
1564 /**
1565  * Called when user space prepares to use an object with the CPU, either
1566  * through the mmap ioctl's mapping or a GTT mapping.
1567  */
1568 int
1569 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1570                           struct drm_file *file)
1571 {
1572         struct drm_i915_gem_set_domain *args = data;
1573         struct drm_i915_gem_object *obj;
1574         uint32_t read_domains = args->read_domains;
1575         uint32_t write_domain = args->write_domain;
1576         int ret;
1577
1578         /* Only handle setting domains to types used by the CPU. */
1579         if (write_domain & I915_GEM_GPU_DOMAINS)
1580                 return -EINVAL;
1581
1582         if (read_domains & I915_GEM_GPU_DOMAINS)
1583                 return -EINVAL;
1584
1585         /* Having something in the write domain implies it's in the read
1586          * domain, and only that read domain.  Enforce that in the request.
1587          */
1588         if (write_domain != 0 && read_domains != write_domain)
1589                 return -EINVAL;
1590
1591         ret = i915_mutex_lock_interruptible(dev);
1592         if (ret)
1593                 return ret;
1594
1595         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1596         if (&obj->base == NULL) {
1597                 ret = -ENOENT;
1598                 goto unlock;
1599         }
1600
1601         /* Try to flush the object off the GPU without holding the lock.
1602          * We will repeat the flush holding the lock in the normal manner
1603          * to catch cases where we are gazumped.
1604          */
1605         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1606                                                           to_rps_client(file),
1607                                                           !write_domain);
1608         if (ret)
1609                 goto unref;
1610
1611         if (read_domains & I915_GEM_DOMAIN_GTT)
1612                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1613         else
1614                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1615
1616 unref:
1617         drm_gem_object_unreference(&obj->base);
1618 unlock:
1619         mutex_unlock(&dev->struct_mutex);
1620         return ret;
1621 }
1622
1623 /**
1624  * Called when user space has done writes to this buffer
1625  */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628                          struct drm_file *file)
1629 {
1630         struct drm_i915_gem_sw_finish *args = data;
1631         struct drm_i915_gem_object *obj;
1632         int ret = 0;
1633
1634         ret = i915_mutex_lock_interruptible(dev);
1635         if (ret)
1636                 return ret;
1637
1638         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639         if (&obj->base == NULL) {
1640                 ret = -ENOENT;
1641                 goto unlock;
1642         }
1643
1644         /* Pinned buffers may be scanout, so flush the cache */
1645         if (obj->pin_display)
1646                 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648         drm_gem_object_unreference(&obj->base);
1649 unlock:
1650         mutex_unlock(&dev->struct_mutex);
1651         return ret;
1652 }
1653
1654 /**
1655  * Maps the contents of an object, returning the address it is mapped
1656  * into.
1657  *
1658  * While the mapping holds a reference on the contents of the object, it doesn't
1659  * imply a ref on the object itself.
1660  *
1661  * IMPORTANT:
1662  *
1663  * DRM driver writers who look a this function as an example for how to do GEM
1664  * mmap support, please don't implement mmap support like here. The modern way
1665  * to implement DRM mmap support is with an mmap offset ioctl (like
1666  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667  * That way debug tooling like valgrind will understand what's going on, hiding
1668  * the mmap call in a driver private ioctl will break that. The i915 driver only
1669  * does cpu mmaps this way because we didn't know better.
1670  */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673                     struct drm_file *file)
1674 {
1675         struct drm_i915_gem_mmap *args = data;
1676         struct drm_gem_object *obj;
1677         unsigned long addr;
1678
1679         if (args->flags & ~(I915_MMAP_WC))
1680                 return -EINVAL;
1681
1682         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683                 return -ENODEV;
1684
1685         obj = drm_gem_object_lookup(dev, file, args->handle);
1686         if (obj == NULL)
1687                 return -ENOENT;
1688
1689         /* prime objects have no backing filp to GEM mmap
1690          * pages from.
1691          */
1692         if (!obj->filp) {
1693                 drm_gem_object_unreference_unlocked(obj);
1694                 return -EINVAL;
1695         }
1696
1697         addr = vm_mmap(obj->filp, 0, args->size,
1698                        PROT_READ | PROT_WRITE, MAP_SHARED,
1699                        args->offset);
1700         if (args->flags & I915_MMAP_WC) {
1701                 struct mm_struct *mm = current->mm;
1702                 struct vm_area_struct *vma;
1703
1704                 down_write(&mm->mmap_sem);
1705                 vma = find_vma(mm, addr);
1706                 if (vma)
1707                         vma->vm_page_prot =
1708                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709                 else
1710                         addr = -ENOMEM;
1711                 up_write(&mm->mmap_sem);
1712         }
1713         drm_gem_object_unreference_unlocked(obj);
1714         if (IS_ERR((void *)addr))
1715                 return addr;
1716
1717         args->addr_ptr = (uint64_t) addr;
1718
1719         return 0;
1720 }
1721
1722 /**
1723  * i915_gem_fault - fault a page into the GTT
1724  * vma: VMA in question
1725  * vmf: fault info
1726  *
1727  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728  * from userspace.  The fault handler takes care of binding the object to
1729  * the GTT (if needed), allocating and programming a fence register (again,
1730  * only if needed based on whether the old reg is still valid or the object
1731  * is tiled) and inserting a new PTE into the faulting process.
1732  *
1733  * Note that the faulting process may involve evicting existing objects
1734  * from the GTT and/or fence registers to make room.  So performance may
1735  * suffer if the GTT working set is large or there are few fence registers
1736  * left.
1737  */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741         struct drm_device *dev = obj->base.dev;
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         struct i915_ggtt_view view = i915_ggtt_view_normal;
1744         pgoff_t page_offset;
1745         unsigned long pfn;
1746         int ret = 0;
1747         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749         intel_runtime_pm_get(dev_priv);
1750
1751         /* We don't use vmf->pgoff since that has the fake offset */
1752         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753                 PAGE_SHIFT;
1754
1755         ret = i915_mutex_lock_interruptible(dev);
1756         if (ret)
1757                 goto out;
1758
1759         trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761         /* Try to flush the object off the GPU first without holding the lock.
1762          * Upon reacquiring the lock, we will perform our sanity checks and then
1763          * repeat the flush holding the lock in the normal manner to catch cases
1764          * where we are gazumped.
1765          */
1766         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767         if (ret)
1768                 goto unlock;
1769
1770         /* Access to snoopable pages through the GTT is incoherent. */
1771         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772                 ret = -EFAULT;
1773                 goto unlock;
1774         }
1775
1776         /* Use a partial view if the object is bigger than the aperture. */
1777         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778             obj->tiling_mode == I915_TILING_NONE) {
1779                 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781                 memset(&view, 0, sizeof(view));
1782                 view.type = I915_GGTT_VIEW_PARTIAL;
1783                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784                 view.params.partial.size =
1785                         min_t(unsigned int,
1786                               chunk_size,
1787                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788                               view.params.partial.offset);
1789         }
1790
1791         /* Now pin it into the GTT if needed */
1792         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793         if (ret)
1794                 goto unlock;
1795
1796         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797         if (ret)
1798                 goto unpin;
1799
1800         ret = i915_gem_object_get_fence(obj);
1801         if (ret)
1802                 goto unpin;
1803
1804         /* Finally, remap it using the new GTT offset */
1805         pfn = dev_priv->gtt.mappable_base +
1806                 i915_gem_obj_ggtt_offset_view(obj, &view);
1807         pfn >>= PAGE_SHIFT;
1808
1809         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810                 /* Overriding existing pages in partial view does not cause
1811                  * us any trouble as TLBs are still valid because the fault
1812                  * is due to userspace losing part of the mapping or never
1813                  * having accessed it before (at this partials' range).
1814                  */
1815                 unsigned long base = vma->vm_start +
1816                                      (view.params.partial.offset << PAGE_SHIFT);
1817                 unsigned int i;
1818
1819                 for (i = 0; i < view.params.partial.size; i++) {
1820                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821                         if (ret)
1822                                 break;
1823                 }
1824
1825                 obj->fault_mappable = true;
1826         } else {
1827                 if (!obj->fault_mappable) {
1828                         unsigned long size = min_t(unsigned long,
1829                                                    vma->vm_end - vma->vm_start,
1830                                                    obj->base.size);
1831                         int i;
1832
1833                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834                                 ret = vm_insert_pfn(vma,
1835                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836                                                     pfn + i);
1837                                 if (ret)
1838                                         break;
1839                         }
1840
1841                         obj->fault_mappable = true;
1842                 } else
1843                         ret = vm_insert_pfn(vma,
1844                                             (unsigned long)vmf->virtual_address,
1845                                             pfn + page_offset);
1846         }
1847 unpin:
1848         i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850         mutex_unlock(&dev->struct_mutex);
1851 out:
1852         switch (ret) {
1853         case -EIO:
1854                 /*
1855                  * We eat errors when the gpu is terminally wedged to avoid
1856                  * userspace unduly crashing (gl has no provisions for mmaps to
1857                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858                  * and so needs to be reported.
1859                  */
1860                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861                         ret = VM_FAULT_SIGBUS;
1862                         break;
1863                 }
1864         case -EAGAIN:
1865                 /*
1866                  * EAGAIN means the gpu is hung and we'll wait for the error
1867                  * handler to reset everything when re-faulting in
1868                  * i915_mutex_lock_interruptible.
1869                  */
1870         case 0:
1871         case -ERESTARTSYS:
1872         case -EINTR:
1873         case -EBUSY:
1874                 /*
1875                  * EBUSY is ok: this just means that another thread
1876                  * already did the job.
1877                  */
1878                 ret = VM_FAULT_NOPAGE;
1879                 break;
1880         case -ENOMEM:
1881                 ret = VM_FAULT_OOM;
1882                 break;
1883         case -ENOSPC:
1884         case -EFAULT:
1885                 ret = VM_FAULT_SIGBUS;
1886                 break;
1887         default:
1888                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889                 ret = VM_FAULT_SIGBUS;
1890                 break;
1891         }
1892
1893         intel_runtime_pm_put(dev_priv);
1894         return ret;
1895 }
1896
1897 /**
1898  * i915_gem_release_mmap - remove physical page mappings
1899  * @obj: obj in question
1900  *
1901  * Preserve the reservation of the mmapping with the DRM core code, but
1902  * relinquish ownership of the pages back to the system.
1903  *
1904  * It is vital that we remove the page mapping if we have mapped a tiled
1905  * object through the GTT and then lose the fence register due to
1906  * resource pressure. Similarly if the object has been moved out of the
1907  * aperture, than pages mapped into userspace must be revoked. Removing the
1908  * mapping will then trigger a page fault on the next user access, allowing
1909  * fixup by i915_gem_fault().
1910  */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914         if (!obj->fault_mappable)
1915                 return;
1916
1917         drm_vma_node_unmap(&obj->base.vma_node,
1918                            obj->base.dev->anon_inode->i_mapping);
1919         obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925         struct drm_i915_gem_object *obj;
1926
1927         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928                 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934         uint32_t gtt_size;
1935
1936         if (INTEL_INFO(dev)->gen >= 4 ||
1937             tiling_mode == I915_TILING_NONE)
1938                 return size;
1939
1940         /* Previous chips need a power-of-two fence region when tiling */
1941         if (INTEL_INFO(dev)->gen == 3)
1942                 gtt_size = 1024*1024;
1943         else
1944                 gtt_size = 512*1024;
1945
1946         while (gtt_size < size)
1947                 gtt_size <<= 1;
1948
1949         return gtt_size;
1950 }
1951
1952 /**
1953  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954  * @obj: object to check
1955  *
1956  * Return the required GTT alignment for an object, taking into account
1957  * potential fence register mapping.
1958  */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961                            int tiling_mode, bool fenced)
1962 {
1963         /*
1964          * Minimum alignment is 4k (GTT page size), but might be greater
1965          * if a fence register is needed for the object.
1966          */
1967         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968             tiling_mode == I915_TILING_NONE)
1969                 return 4096;
1970
1971         /*
1972          * Previous chips need to be aligned to the size of the smallest
1973          * fence register that can contain the object.
1974          */
1975         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981         int ret;
1982
1983         if (drm_vma_node_has_offset(&obj->base.vma_node))
1984                 return 0;
1985
1986         dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988         ret = drm_gem_create_mmap_offset(&obj->base);
1989         if (ret != -ENOSPC)
1990                 goto out;
1991
1992         /* Badly fragmented mmap space? The only way we can recover
1993          * space is by destroying unwanted objects. We can't randomly release
1994          * mmap_offsets as userspace expects them to be persistent for the
1995          * lifetime of the objects. The closest we can is to release the
1996          * offsets on purgeable objects by truncating it and marking it purged,
1997          * which prevents userspace from ever using that object again.
1998          */
1999         i915_gem_shrink(dev_priv,
2000                         obj->base.size >> PAGE_SHIFT,
2001                         I915_SHRINK_BOUND |
2002                         I915_SHRINK_UNBOUND |
2003                         I915_SHRINK_PURGEABLE);
2004         ret = drm_gem_create_mmap_offset(&obj->base);
2005         if (ret != -ENOSPC)
2006                 goto out;
2007
2008         i915_gem_shrink_all(dev_priv);
2009         ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011         dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013         return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018         drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023                   struct drm_device *dev,
2024                   uint32_t handle,
2025                   uint64_t *offset)
2026 {
2027         struct drm_i915_gem_object *obj;
2028         int ret;
2029
2030         ret = i915_mutex_lock_interruptible(dev);
2031         if (ret)
2032                 return ret;
2033
2034         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035         if (&obj->base == NULL) {
2036                 ret = -ENOENT;
2037                 goto unlock;
2038         }
2039
2040         if (obj->madv != I915_MADV_WILLNEED) {
2041                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042                 ret = -EFAULT;
2043                 goto out;
2044         }
2045
2046         ret = i915_gem_object_create_mmap_offset(obj);
2047         if (ret)
2048                 goto out;
2049
2050         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053         drm_gem_object_unreference(&obj->base);
2054 unlock:
2055         mutex_unlock(&dev->struct_mutex);
2056         return ret;
2057 }
2058
2059 /**
2060  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061  * @dev: DRM device
2062  * @data: GTT mapping ioctl data
2063  * @file: GEM object info
2064  *
2065  * Simply returns the fake offset to userspace so it can mmap it.
2066  * The mmap call will end up in drm_gem_mmap(), which will set things
2067  * up so we can get faults in the handler above.
2068  *
2069  * The fault handler will take care of binding the object into the GTT
2070  * (since it may have been evicted to make room for something), allocating
2071  * a fence register, and mapping the appropriate aperture address into
2072  * userspace.
2073  */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076                         struct drm_file *file)
2077 {
2078         struct drm_i915_gem_mmap_gtt *args = data;
2079
2080         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087         i915_gem_object_free_mmap_offset(obj);
2088
2089         if (obj->base.filp == NULL)
2090                 return;
2091
2092         /* Our goal here is to return as much of the memory as
2093          * is possible back to the system as we are called from OOM.
2094          * To do this we must instruct the shmfs to drop all of its
2095          * backing pages, *now*.
2096          */
2097         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098         obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105         struct address_space *mapping;
2106
2107         switch (obj->madv) {
2108         case I915_MADV_DONTNEED:
2109                 i915_gem_object_truncate(obj);
2110         case __I915_MADV_PURGED:
2111                 return;
2112         }
2113
2114         if (obj->base.filp == NULL)
2115                 return;
2116
2117         mapping = file_inode(obj->base.filp)->i_mapping,
2118         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124         struct sg_page_iter sg_iter;
2125         int ret;
2126
2127         BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130         if (ret) {
2131                 /* In the event of a disaster, abandon all caches and
2132                  * hope for the best.
2133                  */
2134                 WARN_ON(ret != -EIO);
2135                 i915_gem_clflush_object(obj, true);
2136                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137         }
2138
2139         i915_gem_gtt_finish_object(obj);
2140
2141         if (i915_gem_object_needs_bit17_swizzle(obj))
2142                 i915_gem_object_save_bit_17_swizzle(obj);
2143
2144         if (obj->madv == I915_MADV_DONTNEED)
2145                 obj->dirty = 0;
2146
2147         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2148                 struct page *page = sg_page_iter_page(&sg_iter);
2149
2150                 if (obj->dirty)
2151                         set_page_dirty(page);
2152
2153                 if (obj->madv == I915_MADV_WILLNEED)
2154                         mark_page_accessed(page);
2155
2156                 page_cache_release(page);
2157         }
2158         obj->dirty = 0;
2159
2160         sg_free_table(obj->pages);
2161         kfree(obj->pages);
2162 }
2163
2164 int
2165 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2166 {
2167         const struct drm_i915_gem_object_ops *ops = obj->ops;
2168
2169         if (obj->pages == NULL)
2170                 return 0;
2171
2172         if (obj->pages_pin_count)
2173                 return -EBUSY;
2174
2175         BUG_ON(i915_gem_obj_bound_any(obj));
2176
2177         /* ->put_pages might need to allocate memory for the bit17 swizzle
2178          * array, hence protect them from being reaped by removing them from gtt
2179          * lists early. */
2180         list_del(&obj->global_list);
2181
2182         ops->put_pages(obj);
2183         obj->pages = NULL;
2184
2185         i915_gem_object_invalidate(obj);
2186
2187         return 0;
2188 }
2189
2190 static int
2191 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2192 {
2193         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194         int page_count, i;
2195         struct address_space *mapping;
2196         struct sg_table *st;
2197         struct scatterlist *sg;
2198         struct sg_page_iter sg_iter;
2199         struct page *page;
2200         unsigned long last_pfn = 0;     /* suppress gcc warning */
2201         int ret;
2202         gfp_t gfp;
2203
2204         /* Assert that the object is not currently in any GPU domain. As it
2205          * wasn't in the GTT, there shouldn't be any way it could have been in
2206          * a GPU cache
2207          */
2208         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211         st = kmalloc(sizeof(*st), GFP_KERNEL);
2212         if (st == NULL)
2213                 return -ENOMEM;
2214
2215         page_count = obj->base.size / PAGE_SIZE;
2216         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217                 kfree(st);
2218                 return -ENOMEM;
2219         }
2220
2221         /* Get the list of pages out of our struct file.  They'll be pinned
2222          * at this point until we release them.
2223          *
2224          * Fail silently without starting the shrinker
2225          */
2226         mapping = file_inode(obj->base.filp)->i_mapping;
2227         gfp = mapping_gfp_mask(mapping);
2228         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2229         gfp &= ~(__GFP_IO | __GFP_WAIT);
2230         sg = st->sgl;
2231         st->nents = 0;
2232         for (i = 0; i < page_count; i++) {
2233                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2234                 if (IS_ERR(page)) {
2235                         i915_gem_shrink(dev_priv,
2236                                         page_count,
2237                                         I915_SHRINK_BOUND |
2238                                         I915_SHRINK_UNBOUND |
2239                                         I915_SHRINK_PURGEABLE);
2240                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241                 }
2242                 if (IS_ERR(page)) {
2243                         /* We've tried hard to allocate the memory by reaping
2244                          * our own buffer, now let the real VM do its job and
2245                          * go down in flames if truly OOM.
2246                          */
2247                         i915_gem_shrink_all(dev_priv);
2248                         page = shmem_read_mapping_page(mapping, i);
2249                         if (IS_ERR(page)) {
2250                                 ret = PTR_ERR(page);
2251                                 goto err_pages;
2252                         }
2253                 }
2254 #ifdef CONFIG_SWIOTLB
2255                 if (swiotlb_nr_tbl()) {
2256                         st->nents++;
2257                         sg_set_page(sg, page, PAGE_SIZE, 0);
2258                         sg = sg_next(sg);
2259                         continue;
2260                 }
2261 #endif
2262                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2263                         if (i)
2264                                 sg = sg_next(sg);
2265                         st->nents++;
2266                         sg_set_page(sg, page, PAGE_SIZE, 0);
2267                 } else {
2268                         sg->length += PAGE_SIZE;
2269                 }
2270                 last_pfn = page_to_pfn(page);
2271
2272                 /* Check that the i965g/gm workaround works. */
2273                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2274         }
2275 #ifdef CONFIG_SWIOTLB
2276         if (!swiotlb_nr_tbl())
2277 #endif
2278                 sg_mark_end(sg);
2279         obj->pages = st;
2280
2281         ret = i915_gem_gtt_prepare_object(obj);
2282         if (ret)
2283                 goto err_pages;
2284
2285         if (i915_gem_object_needs_bit17_swizzle(obj))
2286                 i915_gem_object_do_bit_17_swizzle(obj);
2287
2288         if (obj->tiling_mode != I915_TILING_NONE &&
2289             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2290                 i915_gem_object_pin_pages(obj);
2291
2292         return 0;
2293
2294 err_pages:
2295         sg_mark_end(sg);
2296         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2297                 page_cache_release(sg_page_iter_page(&sg_iter));
2298         sg_free_table(st);
2299         kfree(st);
2300
2301         /* shmemfs first checks if there is enough memory to allocate the page
2302          * and reports ENOSPC should there be insufficient, along with the usual
2303          * ENOMEM for a genuine allocation failure.
2304          *
2305          * We use ENOSPC in our driver to mean that we have run out of aperture
2306          * space and so want to translate the error from shmemfs back to our
2307          * usual understanding of ENOMEM.
2308          */
2309         if (ret == -ENOSPC)
2310                 ret = -ENOMEM;
2311
2312         return ret;
2313 }
2314
2315 /* Ensure that the associated pages are gathered from the backing storage
2316  * and pinned into our object. i915_gem_object_get_pages() may be called
2317  * multiple times before they are released by a single call to
2318  * i915_gem_object_put_pages() - once the pages are no longer referenced
2319  * either as a result of memory pressure (reaping pages under the shrinker)
2320  * or as the object is itself released.
2321  */
2322 int
2323 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2324 {
2325         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2326         const struct drm_i915_gem_object_ops *ops = obj->ops;
2327         int ret;
2328
2329         if (obj->pages)
2330                 return 0;
2331
2332         if (obj->madv != I915_MADV_WILLNEED) {
2333                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2334                 return -EFAULT;
2335         }
2336
2337         BUG_ON(obj->pages_pin_count);
2338
2339         ret = ops->get_pages(obj);
2340         if (ret)
2341                 return ret;
2342
2343         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2344
2345         obj->get_page.sg = obj->pages->sgl;
2346         obj->get_page.last = 0;
2347
2348         return 0;
2349 }
2350
2351 void i915_vma_move_to_active(struct i915_vma *vma,
2352                              struct intel_engine_cs *ring)
2353 {
2354         struct drm_i915_gem_object *obj = vma->obj;
2355
2356         /* Add a reference if we're newly entering the active list. */
2357         if (obj->active == 0)
2358                 drm_gem_object_reference(&obj->base);
2359         obj->active |= intel_ring_flag(ring);
2360
2361         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2362         i915_gem_request_assign(&obj->last_read_req[ring->id],
2363                                 intel_ring_get_request(ring));
2364
2365         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2366 }
2367
2368 static void
2369 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2370 {
2371         RQ_BUG_ON(obj->last_write_req == NULL);
2372         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2373
2374         i915_gem_request_assign(&obj->last_write_req, NULL);
2375         intel_fb_obj_flush(obj, true);
2376 }
2377
2378 static void
2379 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2380 {
2381         struct i915_vma *vma;
2382
2383         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2384         RQ_BUG_ON(!(obj->active & (1 << ring)));
2385
2386         list_del_init(&obj->ring_list[ring]);
2387         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2388
2389         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2390                 i915_gem_object_retire__write(obj);
2391
2392         obj->active &= ~(1 << ring);
2393         if (obj->active)
2394                 return;
2395
2396         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397                 if (!list_empty(&vma->mm_list))
2398                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2399         }
2400
2401         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402         drm_gem_object_unreference(&obj->base);
2403 }
2404
2405 static int
2406 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct intel_engine_cs *ring;
2410         int ret, i, j;
2411
2412         /* Carefully retire all requests without writing to the rings */
2413         for_each_ring(ring, dev_priv, i) {
2414                 ret = intel_ring_idle(ring);
2415                 if (ret)
2416                         return ret;
2417         }
2418         i915_gem_retire_requests(dev);
2419
2420         /* Finally reset hw state */
2421         for_each_ring(ring, dev_priv, i) {
2422                 intel_ring_init_seqno(ring, seqno);
2423
2424                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425                         ring->semaphore.sync_seqno[j] = 0;
2426         }
2427
2428         return 0;
2429 }
2430
2431 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432 {
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         int ret;
2435
2436         if (seqno == 0)
2437                 return -EINVAL;
2438
2439         /* HWS page needs to be set less than what we
2440          * will inject to ring
2441          */
2442         ret = i915_gem_init_seqno(dev, seqno - 1);
2443         if (ret)
2444                 return ret;
2445
2446         /* Carefully set the last_seqno value so that wrap
2447          * detection still works
2448          */
2449         dev_priv->next_seqno = seqno;
2450         dev_priv->last_seqno = seqno - 1;
2451         if (dev_priv->last_seqno == 0)
2452                 dev_priv->last_seqno--;
2453
2454         return 0;
2455 }
2456
2457 int
2458 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2459 {
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462         /* reserve 0 for non-seqno */
2463         if (dev_priv->next_seqno == 0) {
2464                 int ret = i915_gem_init_seqno(dev, 0);
2465                 if (ret)
2466                         return ret;
2467
2468                 dev_priv->next_seqno = 1;
2469         }
2470
2471         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2472         return 0;
2473 }
2474
2475 int __i915_add_request(struct intel_engine_cs *ring,
2476                        struct drm_file *file,
2477                        struct drm_i915_gem_object *obj)
2478 {
2479         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2480         struct drm_i915_gem_request *request;
2481         struct intel_ringbuffer *ringbuf;
2482         u32 request_start;
2483         int ret;
2484
2485         request = ring->outstanding_lazy_request;
2486         if (WARN_ON(request == NULL))
2487                 return -ENOMEM;
2488
2489         if (i915.enable_execlists) {
2490                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2491         } else
2492                 ringbuf = ring->buffer;
2493
2494         request_start = intel_ring_get_tail(ringbuf);
2495         /*
2496          * Emit any outstanding flushes - execbuf can fail to emit the flush
2497          * after having emitted the batchbuffer command. Hence we need to fix
2498          * things up similar to emitting the lazy request. The difference here
2499          * is that the flush _must_ happen before the next request, no matter
2500          * what.
2501          */
2502         if (i915.enable_execlists) {
2503                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2504                 if (ret)
2505                         return ret;
2506         } else {
2507                 ret = intel_ring_flush_all_caches(ring);
2508                 if (ret)
2509                         return ret;
2510         }
2511
2512         /* Record the position of the start of the request so that
2513          * should we detect the updated seqno part-way through the
2514          * GPU processing the request, we never over-estimate the
2515          * position of the head.
2516          */
2517         request->postfix = intel_ring_get_tail(ringbuf);
2518
2519         if (i915.enable_execlists) {
2520                 ret = ring->emit_request(ringbuf, request);
2521                 if (ret)
2522                         return ret;
2523         } else {
2524                 ret = ring->add_request(ring);
2525                 if (ret)
2526                         return ret;
2527
2528                 request->tail = intel_ring_get_tail(ringbuf);
2529         }
2530
2531         request->head = request_start;
2532
2533         /* Whilst this request exists, batch_obj will be on the
2534          * active_list, and so will hold the active reference. Only when this
2535          * request is retired will the the batch_obj be moved onto the
2536          * inactive_list and lose its active reference. Hence we do not need
2537          * to explicitly hold another reference here.
2538          */
2539         request->batch_obj = obj;
2540
2541         if (!i915.enable_execlists) {
2542                 /* Hold a reference to the current context so that we can inspect
2543                  * it later in case a hangcheck error event fires.
2544                  */
2545                 request->ctx = ring->last_context;
2546                 if (request->ctx)
2547                         i915_gem_context_reference(request->ctx);
2548         }
2549
2550         request->emitted_jiffies = jiffies;
2551         ring->last_submitted_seqno = request->seqno;
2552         list_add_tail(&request->list, &ring->request_list);
2553         request->file_priv = NULL;
2554
2555         if (file) {
2556                 struct drm_i915_file_private *file_priv = file->driver_priv;
2557
2558                 spin_lock(&file_priv->mm.lock);
2559                 request->file_priv = file_priv;
2560                 list_add_tail(&request->client_list,
2561                               &file_priv->mm.request_list);
2562                 spin_unlock(&file_priv->mm.lock);
2563
2564                 request->pid = get_pid(task_pid(current));
2565         }
2566
2567         trace_i915_gem_request_add(request);
2568         ring->outstanding_lazy_request = NULL;
2569
2570         i915_queue_hangcheck(ring->dev);
2571
2572         queue_delayed_work(dev_priv->wq,
2573                            &dev_priv->mm.retire_work,
2574                            round_jiffies_up_relative(HZ));
2575         intel_mark_busy(dev_priv->dev);
2576
2577         return 0;
2578 }
2579
2580 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2581                                    const struct intel_context *ctx)
2582 {
2583         unsigned long elapsed;
2584
2585         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2586
2587         if (ctx->hang_stats.banned)
2588                 return true;
2589
2590         if (ctx->hang_stats.ban_period_seconds &&
2591             elapsed <= ctx->hang_stats.ban_period_seconds) {
2592                 if (!i915_gem_context_is_default(ctx)) {
2593                         DRM_DEBUG("context hanging too fast, banning!\n");
2594                         return true;
2595                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2596                         if (i915_stop_ring_allow_warn(dev_priv))
2597                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2598                         return true;
2599                 }
2600         }
2601
2602         return false;
2603 }
2604
2605 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2606                                   struct intel_context *ctx,
2607                                   const bool guilty)
2608 {
2609         struct i915_ctx_hang_stats *hs;
2610
2611         if (WARN_ON(!ctx))
2612                 return;
2613
2614         hs = &ctx->hang_stats;
2615
2616         if (guilty) {
2617                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2618                 hs->batch_active++;
2619                 hs->guilty_ts = get_seconds();
2620         } else {
2621                 hs->batch_pending++;
2622         }
2623 }
2624
2625 void i915_gem_request_free(struct kref *req_ref)
2626 {
2627         struct drm_i915_gem_request *req = container_of(req_ref,
2628                                                  typeof(*req), ref);
2629         struct intel_context *ctx = req->ctx;
2630
2631         if (ctx) {
2632                 if (i915.enable_execlists) {
2633                         struct intel_engine_cs *ring = req->ring;
2634
2635                         if (ctx != ring->default_context)
2636                                 intel_lr_context_unpin(ring, ctx);
2637                 }
2638
2639                 i915_gem_context_unreference(ctx);
2640         }
2641
2642         kmem_cache_free(req->i915->requests, req);
2643 }
2644
2645 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2646                            struct intel_context *ctx)
2647 {
2648         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2649         struct drm_i915_gem_request *req;
2650         int ret;
2651
2652         if (ring->outstanding_lazy_request)
2653                 return 0;
2654
2655         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2656         if (req == NULL)
2657                 return -ENOMEM;
2658
2659         kref_init(&req->ref);
2660         req->i915 = dev_priv;
2661
2662         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2663         if (ret)
2664                 goto err;
2665
2666         req->ring = ring;
2667
2668         if (i915.enable_execlists)
2669                 ret = intel_logical_ring_alloc_request_extras(req, ctx);
2670         else
2671                 ret = intel_ring_alloc_request_extras(req);
2672         if (ret)
2673                 goto err;
2674
2675         ring->outstanding_lazy_request = req;
2676         return 0;
2677
2678 err:
2679         kmem_cache_free(dev_priv->requests, req);
2680         return ret;
2681 }
2682
2683 struct drm_i915_gem_request *
2684 i915_gem_find_active_request(struct intel_engine_cs *ring)
2685 {
2686         struct drm_i915_gem_request *request;
2687
2688         list_for_each_entry(request, &ring->request_list, list) {
2689                 if (i915_gem_request_completed(request, false))
2690                         continue;
2691
2692                 return request;
2693         }
2694
2695         return NULL;
2696 }
2697
2698 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2699                                        struct intel_engine_cs *ring)
2700 {
2701         struct drm_i915_gem_request *request;
2702         bool ring_hung;
2703
2704         request = i915_gem_find_active_request(ring);
2705
2706         if (request == NULL)
2707                 return;
2708
2709         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2710
2711         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2712
2713         list_for_each_entry_continue(request, &ring->request_list, list)
2714                 i915_set_reset_status(dev_priv, request->ctx, false);
2715 }
2716
2717 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2718                                         struct intel_engine_cs *ring)
2719 {
2720         while (!list_empty(&ring->active_list)) {
2721                 struct drm_i915_gem_object *obj;
2722
2723                 obj = list_first_entry(&ring->active_list,
2724                                        struct drm_i915_gem_object,
2725                                        ring_list[ring->id]);
2726
2727                 i915_gem_object_retire__read(obj, ring->id);
2728         }
2729
2730         /*
2731          * Clear the execlists queue up before freeing the requests, as those
2732          * are the ones that keep the context and ringbuffer backing objects
2733          * pinned in place.
2734          */
2735         while (!list_empty(&ring->execlist_queue)) {
2736                 struct drm_i915_gem_request *submit_req;
2737
2738                 submit_req = list_first_entry(&ring->execlist_queue,
2739                                 struct drm_i915_gem_request,
2740                                 execlist_link);
2741                 list_del(&submit_req->execlist_link);
2742
2743                 if (submit_req->ctx != ring->default_context)
2744                         intel_lr_context_unpin(ring, submit_req->ctx);
2745
2746                 i915_gem_request_unreference(submit_req);
2747         }
2748
2749         /*
2750          * We must free the requests after all the corresponding objects have
2751          * been moved off active lists. Which is the same order as the normal
2752          * retire_requests function does. This is important if object hold
2753          * implicit references on things like e.g. ppgtt address spaces through
2754          * the request.
2755          */
2756         while (!list_empty(&ring->request_list)) {
2757                 struct drm_i915_gem_request *request;
2758
2759                 request = list_first_entry(&ring->request_list,
2760                                            struct drm_i915_gem_request,
2761                                            list);
2762
2763                 i915_gem_request_retire(request);
2764         }
2765
2766         /* This may not have been flushed before the reset, so clean it now */
2767         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2768 }
2769
2770 void i915_gem_restore_fences(struct drm_device *dev)
2771 {
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         int i;
2774
2775         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2776                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2777
2778                 /*
2779                  * Commit delayed tiling changes if we have an object still
2780                  * attached to the fence, otherwise just clear the fence.
2781                  */
2782                 if (reg->obj) {
2783                         i915_gem_object_update_fence(reg->obj, reg,
2784                                                      reg->obj->tiling_mode);
2785                 } else {
2786                         i915_gem_write_fence(dev, i, NULL);
2787                 }
2788         }
2789 }
2790
2791 void i915_gem_reset(struct drm_device *dev)
2792 {
2793         struct drm_i915_private *dev_priv = dev->dev_private;
2794         struct intel_engine_cs *ring;
2795         int i;
2796
2797         /*
2798          * Before we free the objects from the requests, we need to inspect
2799          * them for finding the guilty party. As the requests only borrow
2800          * their reference to the objects, the inspection must be done first.
2801          */
2802         for_each_ring(ring, dev_priv, i)
2803                 i915_gem_reset_ring_status(dev_priv, ring);
2804
2805         for_each_ring(ring, dev_priv, i)
2806                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2807
2808         i915_gem_context_reset(dev);
2809
2810         i915_gem_restore_fences(dev);
2811
2812         WARN_ON(i915_verify_lists(dev));
2813 }
2814
2815 /**
2816  * This function clears the request list as sequence numbers are passed.
2817  */
2818 void
2819 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2820 {
2821         WARN_ON(i915_verify_lists(ring->dev));
2822
2823         /* Retire requests first as we use it above for the early return.
2824          * If we retire requests last, we may use a later seqno and so clear
2825          * the requests lists without clearing the active list, leading to
2826          * confusion.
2827          */
2828         while (!list_empty(&ring->request_list)) {
2829                 struct drm_i915_gem_request *request;
2830
2831                 request = list_first_entry(&ring->request_list,
2832                                            struct drm_i915_gem_request,
2833                                            list);
2834
2835                 if (!i915_gem_request_completed(request, true))
2836                         break;
2837
2838                 i915_gem_request_retire(request);
2839         }
2840
2841         /* Move any buffers on the active list that are no longer referenced
2842          * by the ringbuffer to the flushing/inactive lists as appropriate,
2843          * before we free the context associated with the requests.
2844          */
2845         while (!list_empty(&ring->active_list)) {
2846                 struct drm_i915_gem_object *obj;
2847
2848                 obj = list_first_entry(&ring->active_list,
2849                                       struct drm_i915_gem_object,
2850                                       ring_list[ring->id]);
2851
2852                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2853                         break;
2854
2855                 i915_gem_object_retire__read(obj, ring->id);
2856         }
2857
2858         if (unlikely(ring->trace_irq_req &&
2859                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2860                 ring->irq_put(ring);
2861                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2862         }
2863
2864         WARN_ON(i915_verify_lists(ring->dev));
2865 }
2866
2867 bool
2868 i915_gem_retire_requests(struct drm_device *dev)
2869 {
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871         struct intel_engine_cs *ring;
2872         bool idle = true;
2873         int i;
2874
2875         for_each_ring(ring, dev_priv, i) {
2876                 i915_gem_retire_requests_ring(ring);
2877                 idle &= list_empty(&ring->request_list);
2878                 if (i915.enable_execlists) {
2879                         unsigned long flags;
2880
2881                         spin_lock_irqsave(&ring->execlist_lock, flags);
2882                         idle &= list_empty(&ring->execlist_queue);
2883                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2884
2885                         intel_execlists_retire_requests(ring);
2886                 }
2887         }
2888
2889         if (idle)
2890                 mod_delayed_work(dev_priv->wq,
2891                                    &dev_priv->mm.idle_work,
2892                                    msecs_to_jiffies(100));
2893
2894         return idle;
2895 }
2896
2897 static void
2898 i915_gem_retire_work_handler(struct work_struct *work)
2899 {
2900         struct drm_i915_private *dev_priv =
2901                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2902         struct drm_device *dev = dev_priv->dev;
2903         bool idle;
2904
2905         /* Come back later if the device is busy... */
2906         idle = false;
2907         if (mutex_trylock(&dev->struct_mutex)) {
2908                 idle = i915_gem_retire_requests(dev);
2909                 mutex_unlock(&dev->struct_mutex);
2910         }
2911         if (!idle)
2912                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2913                                    round_jiffies_up_relative(HZ));
2914 }
2915
2916 static void
2917 i915_gem_idle_work_handler(struct work_struct *work)
2918 {
2919         struct drm_i915_private *dev_priv =
2920                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2921         struct drm_device *dev = dev_priv->dev;
2922         struct intel_engine_cs *ring;
2923         int i;
2924
2925         for_each_ring(ring, dev_priv, i)
2926                 if (!list_empty(&ring->request_list))
2927                         return;
2928
2929         intel_mark_idle(dev);
2930
2931         if (mutex_trylock(&dev->struct_mutex)) {
2932                 struct intel_engine_cs *ring;
2933                 int i;
2934
2935                 for_each_ring(ring, dev_priv, i)
2936                         i915_gem_batch_pool_fini(&ring->batch_pool);
2937
2938                 mutex_unlock(&dev->struct_mutex);
2939         }
2940 }
2941
2942 /**
2943  * Ensures that an object will eventually get non-busy by flushing any required
2944  * write domains, emitting any outstanding lazy request and retiring and
2945  * completed requests.
2946  */
2947 static int
2948 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2949 {
2950         int ret, i;
2951
2952         if (!obj->active)
2953                 return 0;
2954
2955         for (i = 0; i < I915_NUM_RINGS; i++) {
2956                 struct drm_i915_gem_request *req;
2957
2958                 req = obj->last_read_req[i];
2959                 if (req == NULL)
2960                         continue;
2961
2962                 if (list_empty(&req->list))
2963                         goto retire;
2964
2965                 ret = i915_gem_check_olr(req);
2966                 if (ret)
2967                         return ret;
2968
2969                 if (i915_gem_request_completed(req, true)) {
2970                         __i915_gem_request_retire__upto(req);
2971 retire:
2972                         i915_gem_object_retire__read(obj, i);
2973                 }
2974         }
2975
2976         return 0;
2977 }
2978
2979 /**
2980  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2981  * @DRM_IOCTL_ARGS: standard ioctl arguments
2982  *
2983  * Returns 0 if successful, else an error is returned with the remaining time in
2984  * the timeout parameter.
2985  *  -ETIME: object is still busy after timeout
2986  *  -ERESTARTSYS: signal interrupted the wait
2987  *  -ENONENT: object doesn't exist
2988  * Also possible, but rare:
2989  *  -EAGAIN: GPU wedged
2990  *  -ENOMEM: damn
2991  *  -ENODEV: Internal IRQ fail
2992  *  -E?: The add request failed
2993  *
2994  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2995  * non-zero timeout parameter the wait ioctl will wait for the given number of
2996  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2997  * without holding struct_mutex the object may become re-busied before this
2998  * function completes. A similar but shorter * race condition exists in the busy
2999  * ioctl
3000  */
3001 int
3002 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3003 {
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         struct drm_i915_gem_wait *args = data;
3006         struct drm_i915_gem_object *obj;
3007         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3008         unsigned reset_counter;
3009         int i, n = 0;
3010         int ret;
3011
3012         if (args->flags != 0)
3013                 return -EINVAL;
3014
3015         ret = i915_mutex_lock_interruptible(dev);
3016         if (ret)
3017                 return ret;
3018
3019         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3020         if (&obj->base == NULL) {
3021                 mutex_unlock(&dev->struct_mutex);
3022                 return -ENOENT;
3023         }
3024
3025         /* Need to make sure the object gets inactive eventually. */
3026         ret = i915_gem_object_flush_active(obj);
3027         if (ret)
3028                 goto out;
3029
3030         if (!obj->active)
3031                 goto out;
3032
3033         /* Do this after OLR check to make sure we make forward progress polling
3034          * on this IOCTL with a timeout == 0 (like busy ioctl)
3035          */
3036         if (args->timeout_ns == 0) {
3037                 ret = -ETIME;
3038                 goto out;
3039         }
3040
3041         drm_gem_object_unreference(&obj->base);
3042         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3043
3044         for (i = 0; i < I915_NUM_RINGS; i++) {
3045                 if (obj->last_read_req[i] == NULL)
3046                         continue;
3047
3048                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3049         }
3050
3051         mutex_unlock(&dev->struct_mutex);
3052
3053         for (i = 0; i < n; i++) {
3054                 if (ret == 0)
3055                         ret = __i915_wait_request(req[i], reset_counter, true,
3056                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3057                                                   file->driver_priv);
3058                 i915_gem_request_unreference__unlocked(req[i]);
3059         }
3060         return ret;
3061
3062 out:
3063         drm_gem_object_unreference(&obj->base);
3064         mutex_unlock(&dev->struct_mutex);
3065         return ret;
3066 }
3067
3068 static int
3069 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3070                        struct intel_engine_cs *to,
3071                        struct drm_i915_gem_request *req)
3072 {
3073         struct intel_engine_cs *from;
3074         int ret;
3075
3076         from = i915_gem_request_get_ring(req);
3077         if (to == from)
3078                 return 0;
3079
3080         if (i915_gem_request_completed(req, true))
3081                 return 0;
3082
3083         ret = i915_gem_check_olr(req);
3084         if (ret)
3085                 return ret;
3086
3087         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3088                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3089                 ret = __i915_wait_request(req,
3090                                           atomic_read(&i915->gpu_error.reset_counter),
3091                                           i915->mm.interruptible,
3092                                           NULL,
3093                                           &i915->rps.semaphores);
3094                 if (ret)
3095                         return ret;
3096
3097                 i915_gem_object_retire_request(obj, req);
3098         } else {
3099                 int idx = intel_ring_sync_index(from, to);
3100                 u32 seqno = i915_gem_request_get_seqno(req);
3101
3102                 if (seqno <= from->semaphore.sync_seqno[idx])
3103                         return 0;
3104
3105                 trace_i915_gem_ring_sync_to(from, to, req);
3106                 ret = to->semaphore.sync_to(to, from, seqno);
3107                 if (ret)
3108                         return ret;
3109
3110                 /* We use last_read_req because sync_to()
3111                  * might have just caused seqno wrap under
3112                  * the radar.
3113                  */
3114                 from->semaphore.sync_seqno[idx] =
3115                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3116         }
3117
3118         return 0;
3119 }
3120
3121 /**
3122  * i915_gem_object_sync - sync an object to a ring.
3123  *
3124  * @obj: object which may be in use on another ring.
3125  * @to: ring we wish to use the object on. May be NULL.
3126  *
3127  * This code is meant to abstract object synchronization with the GPU.
3128  * Calling with NULL implies synchronizing the object with the CPU
3129  * rather than a particular GPU ring. Conceptually we serialise writes
3130  * between engines inside the GPU. We only allow on engine to write
3131  * into a buffer at any time, but multiple readers. To ensure each has
3132  * a coherent view of memory, we must:
3133  *
3134  * - If there is an outstanding write request to the object, the new
3135  *   request must wait for it to complete (either CPU or in hw, requests
3136  *   on the same ring will be naturally ordered).
3137  *
3138  * - If we are a write request (pending_write_domain is set), the new
3139  *   request must wait for outstanding read requests to complete.
3140  *
3141  * Returns 0 if successful, else propagates up the lower layer error.
3142  */
3143 int
3144 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3145                      struct intel_engine_cs *to)
3146 {
3147         const bool readonly = obj->base.pending_write_domain == 0;
3148         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3149         int ret, i, n;
3150
3151         if (!obj->active)
3152                 return 0;
3153
3154         if (to == NULL)
3155                 return i915_gem_object_wait_rendering(obj, readonly);
3156
3157         n = 0;
3158         if (readonly) {
3159                 if (obj->last_write_req)
3160                         req[n++] = obj->last_write_req;
3161         } else {
3162                 for (i = 0; i < I915_NUM_RINGS; i++)
3163                         if (obj->last_read_req[i])
3164                                 req[n++] = obj->last_read_req[i];
3165         }
3166         for (i = 0; i < n; i++) {
3167                 ret = __i915_gem_object_sync(obj, to, req[i]);
3168                 if (ret)
3169                         return ret;
3170         }
3171
3172         return 0;
3173 }
3174
3175 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3176 {
3177         u32 old_write_domain, old_read_domains;
3178
3179         /* Force a pagefault for domain tracking on next user access */
3180         i915_gem_release_mmap(obj);
3181
3182         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3183                 return;
3184
3185         /* Wait for any direct GTT access to complete */
3186         mb();
3187
3188         old_read_domains = obj->base.read_domains;
3189         old_write_domain = obj->base.write_domain;
3190
3191         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3192         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3193
3194         trace_i915_gem_object_change_domain(obj,
3195                                             old_read_domains,
3196                                             old_write_domain);
3197 }
3198
3199 int i915_vma_unbind(struct i915_vma *vma)
3200 {
3201         struct drm_i915_gem_object *obj = vma->obj;
3202         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3203         int ret;
3204
3205         if (list_empty(&vma->vma_link))
3206                 return 0;
3207
3208         if (!drm_mm_node_allocated(&vma->node)) {
3209                 i915_gem_vma_destroy(vma);
3210                 return 0;
3211         }
3212
3213         if (vma->pin_count)
3214                 return -EBUSY;
3215
3216         BUG_ON(obj->pages == NULL);
3217
3218         ret = i915_gem_object_wait_rendering(obj, false);
3219         if (ret)
3220                 return ret;
3221         /* Continue on if we fail due to EIO, the GPU is hung so we
3222          * should be safe and we need to cleanup or else we might
3223          * cause memory corruption through use-after-free.
3224          */
3225
3226         if (i915_is_ggtt(vma->vm) &&
3227             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3228                 i915_gem_object_finish_gtt(obj);
3229
3230                 /* release the fence reg _after_ flushing */
3231                 ret = i915_gem_object_put_fence(obj);
3232                 if (ret)
3233                         return ret;
3234         }
3235
3236         trace_i915_vma_unbind(vma);
3237
3238         vma->vm->unbind_vma(vma);
3239         vma->bound = 0;
3240
3241         list_del_init(&vma->mm_list);
3242         if (i915_is_ggtt(vma->vm)) {
3243                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3244                         obj->map_and_fenceable = false;
3245                 } else if (vma->ggtt_view.pages) {
3246                         sg_free_table(vma->ggtt_view.pages);
3247                         kfree(vma->ggtt_view.pages);
3248                 }
3249                 vma->ggtt_view.pages = NULL;
3250         }
3251
3252         drm_mm_remove_node(&vma->node);
3253         i915_gem_vma_destroy(vma);
3254
3255         /* Since the unbound list is global, only move to that list if
3256          * no more VMAs exist. */
3257         if (list_empty(&obj->vma_list))
3258                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3259
3260         /* And finally now the object is completely decoupled from this vma,
3261          * we can drop its hold on the backing storage and allow it to be
3262          * reaped by the shrinker.
3263          */
3264         i915_gem_object_unpin_pages(obj);
3265
3266         return 0;
3267 }
3268
3269 int i915_gpu_idle(struct drm_device *dev)
3270 {
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272         struct intel_engine_cs *ring;
3273         int ret, i;
3274
3275         /* Flush everything onto the inactive list. */
3276         for_each_ring(ring, dev_priv, i) {
3277                 if (!i915.enable_execlists) {
3278                         ret = i915_switch_context(ring, ring->default_context);
3279                         if (ret)
3280                                 return ret;
3281                 }
3282
3283                 ret = intel_ring_idle(ring);
3284                 if (ret)
3285                         return ret;
3286         }
3287
3288         WARN_ON(i915_verify_lists(dev));
3289         return 0;
3290 }
3291
3292 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3293                                  struct drm_i915_gem_object *obj)
3294 {
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296         int fence_reg;
3297         int fence_pitch_shift;
3298
3299         if (INTEL_INFO(dev)->gen >= 6) {
3300                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3301                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3302         } else {
3303                 fence_reg = FENCE_REG_965_0;
3304                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3305         }
3306
3307         fence_reg += reg * 8;
3308
3309         /* To w/a incoherency with non-atomic 64-bit register updates,
3310          * we split the 64-bit update into two 32-bit writes. In order
3311          * for a partial fence not to be evaluated between writes, we
3312          * precede the update with write to turn off the fence register,
3313          * and only enable the fence as the last step.
3314          *
3315          * For extra levels of paranoia, we make sure each step lands
3316          * before applying the next step.
3317          */
3318         I915_WRITE(fence_reg, 0);
3319         POSTING_READ(fence_reg);
3320
3321         if (obj) {
3322                 u32 size = i915_gem_obj_ggtt_size(obj);
3323                 uint64_t val;
3324
3325                 /* Adjust fence size to match tiled area */
3326                 if (obj->tiling_mode != I915_TILING_NONE) {
3327                         uint32_t row_size = obj->stride *
3328                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3329                         size = (size / row_size) * row_size;
3330                 }
3331
3332                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3333                                  0xfffff000) << 32;
3334                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3335                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3336                 if (obj->tiling_mode == I915_TILING_Y)
3337                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3338                 val |= I965_FENCE_REG_VALID;
3339
3340                 I915_WRITE(fence_reg + 4, val >> 32);
3341                 POSTING_READ(fence_reg + 4);
3342
3343                 I915_WRITE(fence_reg + 0, val);
3344                 POSTING_READ(fence_reg);
3345         } else {
3346                 I915_WRITE(fence_reg + 4, 0);
3347                 POSTING_READ(fence_reg + 4);
3348         }
3349 }
3350
3351 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3352                                  struct drm_i915_gem_object *obj)
3353 {
3354         struct drm_i915_private *dev_priv = dev->dev_private;
3355         u32 val;
3356
3357         if (obj) {
3358                 u32 size = i915_gem_obj_ggtt_size(obj);
3359                 int pitch_val;
3360                 int tile_width;
3361
3362                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3363                      (size & -size) != size ||
3364                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3365                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3366                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3367
3368                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3369                         tile_width = 128;
3370                 else
3371                         tile_width = 512;
3372
3373                 /* Note: pitch better be a power of two tile widths */
3374                 pitch_val = obj->stride / tile_width;
3375                 pitch_val = ffs(pitch_val) - 1;
3376
3377                 val = i915_gem_obj_ggtt_offset(obj);
3378                 if (obj->tiling_mode == I915_TILING_Y)
3379                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3380                 val |= I915_FENCE_SIZE_BITS(size);
3381                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3382                 val |= I830_FENCE_REG_VALID;
3383         } else
3384                 val = 0;
3385
3386         if (reg < 8)
3387                 reg = FENCE_REG_830_0 + reg * 4;
3388         else
3389                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3390
3391         I915_WRITE(reg, val);
3392         POSTING_READ(reg);
3393 }
3394
3395 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3396                                 struct drm_i915_gem_object *obj)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399         uint32_t val;
3400
3401         if (obj) {
3402                 u32 size = i915_gem_obj_ggtt_size(obj);
3403                 uint32_t pitch_val;
3404
3405                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3406                      (size & -size) != size ||
3407                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3408                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3409                      i915_gem_obj_ggtt_offset(obj), size);
3410
3411                 pitch_val = obj->stride / 128;
3412                 pitch_val = ffs(pitch_val) - 1;
3413
3414                 val = i915_gem_obj_ggtt_offset(obj);
3415                 if (obj->tiling_mode == I915_TILING_Y)
3416                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3417                 val |= I830_FENCE_SIZE_BITS(size);
3418                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3419                 val |= I830_FENCE_REG_VALID;
3420         } else
3421                 val = 0;
3422
3423         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3424         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3425 }
3426
3427 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3428 {
3429         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3430 }
3431
3432 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3433                                  struct drm_i915_gem_object *obj)
3434 {
3435         struct drm_i915_private *dev_priv = dev->dev_private;
3436
3437         /* Ensure that all CPU reads are completed before installing a fence
3438          * and all writes before removing the fence.
3439          */
3440         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3441                 mb();
3442
3443         WARN(obj && (!obj->stride || !obj->tiling_mode),
3444              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3445              obj->stride, obj->tiling_mode);
3446
3447         if (IS_GEN2(dev))
3448                 i830_write_fence_reg(dev, reg, obj);
3449         else if (IS_GEN3(dev))
3450                 i915_write_fence_reg(dev, reg, obj);
3451         else if (INTEL_INFO(dev)->gen >= 4)
3452                 i965_write_fence_reg(dev, reg, obj);
3453
3454         /* And similarly be paranoid that no direct access to this region
3455          * is reordered to before the fence is installed.
3456          */
3457         if (i915_gem_object_needs_mb(obj))
3458                 mb();
3459 }
3460
3461 static inline int fence_number(struct drm_i915_private *dev_priv,
3462                                struct drm_i915_fence_reg *fence)
3463 {
3464         return fence - dev_priv->fence_regs;
3465 }
3466
3467 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3468                                          struct drm_i915_fence_reg *fence,
3469                                          bool enable)
3470 {
3471         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3472         int reg = fence_number(dev_priv, fence);
3473
3474         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3475
3476         if (enable) {
3477                 obj->fence_reg = reg;
3478                 fence->obj = obj;
3479                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3480         } else {
3481                 obj->fence_reg = I915_FENCE_REG_NONE;
3482                 fence->obj = NULL;
3483                 list_del_init(&fence->lru_list);
3484         }
3485         obj->fence_dirty = false;
3486 }
3487
3488 static int
3489 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3490 {
3491         if (obj->last_fenced_req) {
3492                 int ret = i915_wait_request(obj->last_fenced_req);
3493                 if (ret)
3494                         return ret;
3495
3496                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3497         }
3498
3499         return 0;
3500 }
3501
3502 int
3503 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3504 {
3505         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3506         struct drm_i915_fence_reg *fence;
3507         int ret;
3508
3509         ret = i915_gem_object_wait_fence(obj);
3510         if (ret)
3511                 return ret;
3512
3513         if (obj->fence_reg == I915_FENCE_REG_NONE)
3514                 return 0;
3515
3516         fence = &dev_priv->fence_regs[obj->fence_reg];
3517
3518         if (WARN_ON(fence->pin_count))
3519                 return -EBUSY;
3520
3521         i915_gem_object_fence_lost(obj);
3522         i915_gem_object_update_fence(obj, fence, false);
3523
3524         return 0;
3525 }
3526
3527 static struct drm_i915_fence_reg *
3528 i915_find_fence_reg(struct drm_device *dev)
3529 {
3530         struct drm_i915_private *dev_priv = dev->dev_private;
3531         struct drm_i915_fence_reg *reg, *avail;
3532         int i;
3533
3534         /* First try to find a free reg */
3535         avail = NULL;
3536         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3537                 reg = &dev_priv->fence_regs[i];
3538                 if (!reg->obj)
3539                         return reg;
3540
3541                 if (!reg->pin_count)
3542                         avail = reg;
3543         }
3544
3545         if (avail == NULL)
3546                 goto deadlock;
3547
3548         /* None available, try to steal one or wait for a user to finish */
3549         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3550                 if (reg->pin_count)
3551                         continue;
3552
3553                 return reg;
3554         }
3555
3556 deadlock:
3557         /* Wait for completion of pending flips which consume fences */
3558         if (intel_has_pending_fb_unpin(dev))
3559                 return ERR_PTR(-EAGAIN);
3560
3561         return ERR_PTR(-EDEADLK);
3562 }
3563
3564 /**
3565  * i915_gem_object_get_fence - set up fencing for an object
3566  * @obj: object to map through a fence reg
3567  *
3568  * When mapping objects through the GTT, userspace wants to be able to write
3569  * to them without having to worry about swizzling if the object is tiled.
3570  * This function walks the fence regs looking for a free one for @obj,
3571  * stealing one if it can't find any.
3572  *
3573  * It then sets up the reg based on the object's properties: address, pitch
3574  * and tiling format.
3575  *
3576  * For an untiled surface, this removes any existing fence.
3577  */
3578 int
3579 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3580 {
3581         struct drm_device *dev = obj->base.dev;
3582         struct drm_i915_private *dev_priv = dev->dev_private;
3583         bool enable = obj->tiling_mode != I915_TILING_NONE;
3584         struct drm_i915_fence_reg *reg;
3585         int ret;
3586
3587         /* Have we updated the tiling parameters upon the object and so
3588          * will need to serialise the write to the associated fence register?
3589          */
3590         if (obj->fence_dirty) {
3591                 ret = i915_gem_object_wait_fence(obj);
3592                 if (ret)
3593                         return ret;
3594         }
3595
3596         /* Just update our place in the LRU if our fence is getting reused. */
3597         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3598                 reg = &dev_priv->fence_regs[obj->fence_reg];
3599                 if (!obj->fence_dirty) {
3600                         list_move_tail(&reg->lru_list,
3601                                        &dev_priv->mm.fence_list);
3602                         return 0;
3603                 }
3604         } else if (enable) {
3605                 if (WARN_ON(!obj->map_and_fenceable))
3606                         return -EINVAL;
3607
3608                 reg = i915_find_fence_reg(dev);
3609                 if (IS_ERR(reg))
3610                         return PTR_ERR(reg);
3611
3612                 if (reg->obj) {
3613                         struct drm_i915_gem_object *old = reg->obj;
3614
3615                         ret = i915_gem_object_wait_fence(old);
3616                         if (ret)
3617                                 return ret;
3618
3619                         i915_gem_object_fence_lost(old);
3620                 }
3621         } else
3622                 return 0;
3623
3624         i915_gem_object_update_fence(obj, reg, enable);
3625
3626         return 0;
3627 }
3628
3629 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3630                                      unsigned long cache_level)
3631 {
3632         struct drm_mm_node *gtt_space = &vma->node;
3633         struct drm_mm_node *other;
3634
3635         /*
3636          * On some machines we have to be careful when putting differing types
3637          * of snoopable memory together to avoid the prefetcher crossing memory
3638          * domains and dying. During vm initialisation, we decide whether or not
3639          * these constraints apply and set the drm_mm.color_adjust
3640          * appropriately.
3641          */
3642         if (vma->vm->mm.color_adjust == NULL)
3643                 return true;
3644
3645         if (!drm_mm_node_allocated(gtt_space))
3646                 return true;
3647
3648         if (list_empty(&gtt_space->node_list))
3649                 return true;
3650
3651         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3652         if (other->allocated && !other->hole_follows && other->color != cache_level)
3653                 return false;
3654
3655         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3656         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3657                 return false;
3658
3659         return true;
3660 }
3661
3662 /**
3663  * Finds free space in the GTT aperture and binds the object or a view of it
3664  * there.
3665  */
3666 static struct i915_vma *
3667 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3668                            struct i915_address_space *vm,
3669                            const struct i915_ggtt_view *ggtt_view,
3670                            unsigned alignment,
3671                            uint64_t flags)
3672 {
3673         struct drm_device *dev = obj->base.dev;
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675         u32 size, fence_size, fence_alignment, unfenced_alignment;
3676         unsigned long start =
3677                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3678         unsigned long end =
3679                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3680         struct i915_vma *vma;
3681         int ret;
3682
3683         if (i915_is_ggtt(vm)) {
3684                 u32 view_size;
3685
3686                 if (WARN_ON(!ggtt_view))
3687                         return ERR_PTR(-EINVAL);
3688
3689                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3690
3691                 fence_size = i915_gem_get_gtt_size(dev,
3692                                                    view_size,
3693                                                    obj->tiling_mode);
3694                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3695                                                              view_size,
3696                                                              obj->tiling_mode,
3697                                                              true);
3698                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3699                                                                 view_size,
3700                                                                 obj->tiling_mode,
3701                                                                 false);
3702                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3703         } else {
3704                 fence_size = i915_gem_get_gtt_size(dev,
3705                                                    obj->base.size,
3706                                                    obj->tiling_mode);
3707                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3708                                                              obj->base.size,
3709                                                              obj->tiling_mode,
3710                                                              true);
3711                 unfenced_alignment =
3712                         i915_gem_get_gtt_alignment(dev,
3713                                                    obj->base.size,
3714                                                    obj->tiling_mode,
3715                                                    false);
3716                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3717         }
3718
3719         if (alignment == 0)
3720                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3721                                                 unfenced_alignment;
3722         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3723                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3724                           ggtt_view ? ggtt_view->type : 0,
3725                           alignment);
3726                 return ERR_PTR(-EINVAL);
3727         }
3728
3729         /* If binding the object/GGTT view requires more space than the entire
3730          * aperture has, reject it early before evicting everything in a vain
3731          * attempt to find space.
3732          */
3733         if (size > end) {
3734                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3735                           ggtt_view ? ggtt_view->type : 0,
3736                           size,
3737                           flags & PIN_MAPPABLE ? "mappable" : "total",
3738                           end);
3739                 return ERR_PTR(-E2BIG);
3740         }
3741
3742         ret = i915_gem_object_get_pages(obj);
3743         if (ret)
3744                 return ERR_PTR(ret);
3745
3746         i915_gem_object_pin_pages(obj);
3747
3748         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3749                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3750
3751         if (IS_ERR(vma))
3752                 goto err_unpin;
3753
3754 search_free:
3755         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3756                                                   size, alignment,
3757                                                   obj->cache_level,
3758                                                   start, end,
3759                                                   DRM_MM_SEARCH_DEFAULT,
3760                                                   DRM_MM_CREATE_DEFAULT);
3761         if (ret) {
3762                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3763                                                obj->cache_level,
3764                                                start, end,
3765                                                flags);
3766                 if (ret == 0)
3767                         goto search_free;
3768
3769                 goto err_free_vma;
3770         }
3771         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3772                 ret = -EINVAL;
3773                 goto err_remove_node;
3774         }
3775
3776         trace_i915_vma_bind(vma, flags);
3777         ret = i915_vma_bind(vma, obj->cache_level, flags);
3778         if (ret)
3779                 goto err_remove_node;
3780
3781         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3782         list_add_tail(&vma->mm_list, &vm->inactive_list);
3783
3784         return vma;
3785
3786 err_remove_node:
3787         drm_mm_remove_node(&vma->node);
3788 err_free_vma:
3789         i915_gem_vma_destroy(vma);
3790         vma = ERR_PTR(ret);
3791 err_unpin:
3792         i915_gem_object_unpin_pages(obj);
3793         return vma;
3794 }
3795
3796 bool
3797 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3798                         bool force)
3799 {
3800         /* If we don't have a page list set up, then we're not pinned
3801          * to GPU, and we can ignore the cache flush because it'll happen
3802          * again at bind time.
3803          */
3804         if (obj->pages == NULL)
3805                 return false;
3806
3807         /*
3808          * Stolen memory is always coherent with the GPU as it is explicitly
3809          * marked as wc by the system, or the system is cache-coherent.
3810          */
3811         if (obj->stolen || obj->phys_handle)
3812                 return false;
3813
3814         /* If the GPU is snooping the contents of the CPU cache,
3815          * we do not need to manually clear the CPU cache lines.  However,
3816          * the caches are only snooped when the render cache is
3817          * flushed/invalidated.  As we always have to emit invalidations
3818          * and flushes when moving into and out of the RENDER domain, correct
3819          * snooping behaviour occurs naturally as the result of our domain
3820          * tracking.
3821          */
3822         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3823                 obj->cache_dirty = true;
3824                 return false;
3825         }
3826
3827         trace_i915_gem_object_clflush(obj);
3828         drm_clflush_sg(obj->pages);
3829         obj->cache_dirty = false;
3830
3831         return true;
3832 }
3833
3834 /** Flushes the GTT write domain for the object if it's dirty. */
3835 static void
3836 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3837 {
3838         uint32_t old_write_domain;
3839
3840         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3841                 return;
3842
3843         /* No actual flushing is required for the GTT write domain.  Writes
3844          * to it immediately go to main memory as far as we know, so there's
3845          * no chipset flush.  It also doesn't land in render cache.
3846          *
3847          * However, we do have to enforce the order so that all writes through
3848          * the GTT land before any writes to the device, such as updates to
3849          * the GATT itself.
3850          */
3851         wmb();
3852
3853         old_write_domain = obj->base.write_domain;
3854         obj->base.write_domain = 0;
3855
3856         intel_fb_obj_flush(obj, false);
3857
3858         trace_i915_gem_object_change_domain(obj,
3859                                             obj->base.read_domains,
3860                                             old_write_domain);
3861 }
3862
3863 /** Flushes the CPU write domain for the object if it's dirty. */
3864 static void
3865 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3866 {
3867         uint32_t old_write_domain;
3868
3869         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3870                 return;
3871
3872         if (i915_gem_clflush_object(obj, obj->pin_display))
3873                 i915_gem_chipset_flush(obj->base.dev);
3874
3875         old_write_domain = obj->base.write_domain;
3876         obj->base.write_domain = 0;
3877
3878         intel_fb_obj_flush(obj, false);
3879
3880         trace_i915_gem_object_change_domain(obj,
3881                                             obj->base.read_domains,
3882                                             old_write_domain);
3883 }
3884
3885 /**
3886  * Moves a single object to the GTT read, and possibly write domain.
3887  *
3888  * This function returns when the move is complete, including waiting on
3889  * flushes to occur.
3890  */
3891 int
3892 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3893 {
3894         uint32_t old_write_domain, old_read_domains;
3895         struct i915_vma *vma;
3896         int ret;
3897
3898         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3899                 return 0;
3900
3901         ret = i915_gem_object_wait_rendering(obj, !write);
3902         if (ret)
3903                 return ret;
3904
3905         /* Flush and acquire obj->pages so that we are coherent through
3906          * direct access in memory with previous cached writes through
3907          * shmemfs and that our cache domain tracking remains valid.
3908          * For example, if the obj->filp was moved to swap without us
3909          * being notified and releasing the pages, we would mistakenly
3910          * continue to assume that the obj remained out of the CPU cached
3911          * domain.
3912          */
3913         ret = i915_gem_object_get_pages(obj);
3914         if (ret)
3915                 return ret;
3916
3917         i915_gem_object_flush_cpu_write_domain(obj);
3918
3919         /* Serialise direct access to this object with the barriers for
3920          * coherent writes from the GPU, by effectively invalidating the
3921          * GTT domain upon first access.
3922          */
3923         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3924                 mb();
3925
3926         old_write_domain = obj->base.write_domain;
3927         old_read_domains = obj->base.read_domains;
3928
3929         /* It should now be out of any other write domains, and we can update
3930          * the domain values for our changes.
3931          */
3932         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3933         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3934         if (write) {
3935                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3936                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3937                 obj->dirty = 1;
3938         }
3939
3940         if (write)
3941                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3942
3943         trace_i915_gem_object_change_domain(obj,
3944                                             old_read_domains,
3945                                             old_write_domain);
3946
3947         /* And bump the LRU for this access */
3948         vma = i915_gem_obj_to_ggtt(obj);
3949         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3950                 list_move_tail(&vma->mm_list,
3951                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3952
3953         return 0;
3954 }
3955
3956 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3957                                     enum i915_cache_level cache_level)
3958 {
3959         struct drm_device *dev = obj->base.dev;
3960         struct i915_vma *vma, *next;
3961         int ret;
3962
3963         if (obj->cache_level == cache_level)
3964                 return 0;
3965
3966         if (i915_gem_obj_is_pinned(obj)) {
3967                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3968                 return -EBUSY;
3969         }
3970
3971         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3972                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3973                         ret = i915_vma_unbind(vma);
3974                         if (ret)
3975                                 return ret;
3976                 }
3977         }
3978
3979         if (i915_gem_obj_bound_any(obj)) {
3980                 ret = i915_gem_object_wait_rendering(obj, false);
3981                 if (ret)
3982                         return ret;
3983
3984                 i915_gem_object_finish_gtt(obj);
3985
3986                 /* Before SandyBridge, you could not use tiling or fence
3987                  * registers with snooped memory, so relinquish any fences
3988                  * currently pointing to our region in the aperture.
3989                  */
3990                 if (INTEL_INFO(dev)->gen < 6) {
3991                         ret = i915_gem_object_put_fence(obj);
3992                         if (ret)
3993                                 return ret;
3994                 }
3995
3996                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3997                         if (drm_mm_node_allocated(&vma->node)) {
3998                                 ret = i915_vma_bind(vma, cache_level,
3999                                                     PIN_UPDATE);
4000                                 if (ret)
4001                                         return ret;
4002                         }
4003         }
4004
4005         list_for_each_entry(vma, &obj->vma_list, vma_link)
4006                 vma->node.color = cache_level;
4007         obj->cache_level = cache_level;
4008
4009         if (obj->cache_dirty &&
4010             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4011             cpu_write_needs_clflush(obj)) {
4012                 if (i915_gem_clflush_object(obj, true))
4013                         i915_gem_chipset_flush(obj->base.dev);
4014         }
4015
4016         return 0;
4017 }
4018
4019 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4020                                struct drm_file *file)
4021 {
4022         struct drm_i915_gem_caching *args = data;
4023         struct drm_i915_gem_object *obj;
4024
4025         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4026         if (&obj->base == NULL)
4027                 return -ENOENT;
4028
4029         switch (obj->cache_level) {
4030         case I915_CACHE_LLC:
4031         case I915_CACHE_L3_LLC:
4032                 args->caching = I915_CACHING_CACHED;
4033                 break;
4034
4035         case I915_CACHE_WT:
4036                 args->caching = I915_CACHING_DISPLAY;
4037                 break;
4038
4039         default:
4040                 args->caching = I915_CACHING_NONE;
4041                 break;
4042         }
4043
4044         drm_gem_object_unreference_unlocked(&obj->base);
4045         return 0;
4046 }
4047
4048 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4049                                struct drm_file *file)
4050 {
4051         struct drm_i915_gem_caching *args = data;
4052         struct drm_i915_gem_object *obj;
4053         enum i915_cache_level level;
4054         int ret;
4055
4056         switch (args->caching) {
4057         case I915_CACHING_NONE:
4058                 level = I915_CACHE_NONE;
4059                 break;
4060         case I915_CACHING_CACHED:
4061                 level = I915_CACHE_LLC;
4062                 break;
4063         case I915_CACHING_DISPLAY:
4064                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4065                 break;
4066         default:
4067                 return -EINVAL;
4068         }
4069
4070         ret = i915_mutex_lock_interruptible(dev);
4071         if (ret)
4072                 return ret;
4073
4074         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4075         if (&obj->base == NULL) {
4076                 ret = -ENOENT;
4077                 goto unlock;
4078         }
4079
4080         ret = i915_gem_object_set_cache_level(obj, level);
4081
4082         drm_gem_object_unreference(&obj->base);
4083 unlock:
4084         mutex_unlock(&dev->struct_mutex);
4085         return ret;
4086 }
4087
4088 /*
4089  * Prepare buffer for display plane (scanout, cursors, etc).
4090  * Can be called from an uninterruptible phase (modesetting) and allows
4091  * any flushes to be pipelined (for pageflips).
4092  */
4093 int
4094 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4095                                      u32 alignment,
4096                                      struct intel_engine_cs *pipelined,
4097                                      const struct i915_ggtt_view *view)
4098 {
4099         u32 old_read_domains, old_write_domain;
4100         int ret;
4101
4102         ret = i915_gem_object_sync(obj, pipelined);
4103         if (ret)
4104                 return ret;
4105
4106         /* Mark the pin_display early so that we account for the
4107          * display coherency whilst setting up the cache domains.
4108          */
4109         obj->pin_display++;
4110
4111         /* The display engine is not coherent with the LLC cache on gen6.  As
4112          * a result, we make sure that the pinning that is about to occur is
4113          * done with uncached PTEs. This is lowest common denominator for all
4114          * chipsets.
4115          *
4116          * However for gen6+, we could do better by using the GFDT bit instead
4117          * of uncaching, which would allow us to flush all the LLC-cached data
4118          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119          */
4120         ret = i915_gem_object_set_cache_level(obj,
4121                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4122         if (ret)
4123                 goto err_unpin_display;
4124
4125         /* As the user may map the buffer once pinned in the display plane
4126          * (e.g. libkms for the bootup splash), we have to ensure that we
4127          * always use map_and_fenceable for all scanout buffers.
4128          */
4129         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4130                                        view->type == I915_GGTT_VIEW_NORMAL ?
4131                                        PIN_MAPPABLE : 0);
4132         if (ret)
4133                 goto err_unpin_display;
4134
4135         i915_gem_object_flush_cpu_write_domain(obj);
4136
4137         old_write_domain = obj->base.write_domain;
4138         old_read_domains = obj->base.read_domains;
4139
4140         /* It should now be out of any other write domains, and we can update
4141          * the domain values for our changes.
4142          */
4143         obj->base.write_domain = 0;
4144         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4145
4146         trace_i915_gem_object_change_domain(obj,
4147                                             old_read_domains,
4148                                             old_write_domain);
4149
4150         return 0;
4151
4152 err_unpin_display:
4153         obj->pin_display--;
4154         return ret;
4155 }
4156
4157 void
4158 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4159                                          const struct i915_ggtt_view *view)
4160 {
4161         if (WARN_ON(obj->pin_display == 0))
4162                 return;
4163
4164         i915_gem_object_ggtt_unpin_view(obj, view);
4165
4166         obj->pin_display--;
4167 }
4168
4169 /**
4170  * Moves a single object to the CPU read, and possibly write domain.
4171  *
4172  * This function returns when the move is complete, including waiting on
4173  * flushes to occur.
4174  */
4175 int
4176 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4177 {
4178         uint32_t old_write_domain, old_read_domains;
4179         int ret;
4180
4181         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4182                 return 0;
4183
4184         ret = i915_gem_object_wait_rendering(obj, !write);
4185         if (ret)
4186                 return ret;
4187
4188         i915_gem_object_flush_gtt_write_domain(obj);
4189
4190         old_write_domain = obj->base.write_domain;
4191         old_read_domains = obj->base.read_domains;
4192
4193         /* Flush the CPU cache if it's still invalid. */
4194         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4195                 i915_gem_clflush_object(obj, false);
4196
4197                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4198         }
4199
4200         /* It should now be out of any other write domains, and we can update
4201          * the domain values for our changes.
4202          */
4203         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4204
4205         /* If we're writing through the CPU, then the GPU read domains will
4206          * need to be invalidated at next use.
4207          */
4208         if (write) {
4209                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4210                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4211         }
4212
4213         if (write)
4214                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4215
4216         trace_i915_gem_object_change_domain(obj,
4217                                             old_read_domains,
4218                                             old_write_domain);
4219
4220         return 0;
4221 }
4222
4223 /* Throttle our rendering by waiting until the ring has completed our requests
4224  * emitted over 20 msec ago.
4225  *
4226  * Note that if we were to use the current jiffies each time around the loop,
4227  * we wouldn't escape the function with any frames outstanding if the time to
4228  * render a frame was over 20ms.
4229  *
4230  * This should get us reasonable parallelism between CPU and GPU but also
4231  * relatively low latency when blocking on a particular request to finish.
4232  */
4233 static int
4234 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4235 {
4236         struct drm_i915_private *dev_priv = dev->dev_private;
4237         struct drm_i915_file_private *file_priv = file->driver_priv;
4238         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4239         struct drm_i915_gem_request *request, *target = NULL;
4240         unsigned reset_counter;
4241         int ret;
4242
4243         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4244         if (ret)
4245                 return ret;
4246
4247         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4248         if (ret)
4249                 return ret;
4250
4251         spin_lock(&file_priv->mm.lock);
4252         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4253                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4254                         break;
4255
4256                 target = request;
4257         }
4258         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4259         if (target)
4260                 i915_gem_request_reference(target);
4261         spin_unlock(&file_priv->mm.lock);
4262
4263         if (target == NULL)
4264                 return 0;
4265
4266         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4267         if (ret == 0)
4268                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4269
4270         i915_gem_request_unreference__unlocked(target);
4271
4272         return ret;
4273 }
4274
4275 static bool
4276 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4277 {
4278         struct drm_i915_gem_object *obj = vma->obj;
4279
4280         if (alignment &&
4281             vma->node.start & (alignment - 1))
4282                 return true;
4283
4284         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4285                 return true;
4286
4287         if (flags & PIN_OFFSET_BIAS &&
4288             vma->node.start < (flags & PIN_OFFSET_MASK))
4289                 return true;
4290
4291         return false;
4292 }
4293
4294 static int
4295 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4296                        struct i915_address_space *vm,
4297                        const struct i915_ggtt_view *ggtt_view,
4298                        uint32_t alignment,
4299                        uint64_t flags)
4300 {
4301         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4302         struct i915_vma *vma;
4303         unsigned bound;
4304         int ret;
4305
4306         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4307                 return -ENODEV;
4308
4309         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4310                 return -EINVAL;
4311
4312         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4313                 return -EINVAL;
4314
4315         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4316                 return -EINVAL;
4317
4318         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4319                           i915_gem_obj_to_vma(obj, vm);
4320
4321         if (IS_ERR(vma))
4322                 return PTR_ERR(vma);
4323
4324         if (vma) {
4325                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4326                         return -EBUSY;
4327
4328                 if (i915_vma_misplaced(vma, alignment, flags)) {
4329                         unsigned long offset;
4330                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4331                                              i915_gem_obj_offset(obj, vm);
4332                         WARN(vma->pin_count,
4333                              "bo is already pinned in %s with incorrect alignment:"
4334                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4335                              " obj->map_and_fenceable=%d\n",
4336                              ggtt_view ? "ggtt" : "ppgtt",
4337                              offset,
4338                              alignment,
4339                              !!(flags & PIN_MAPPABLE),
4340                              obj->map_and_fenceable);
4341                         ret = i915_vma_unbind(vma);
4342                         if (ret)
4343                                 return ret;
4344
4345                         vma = NULL;
4346                 }
4347         }
4348
4349         bound = vma ? vma->bound : 0;
4350         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4351                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4352                                                  flags);
4353                 if (IS_ERR(vma))
4354                         return PTR_ERR(vma);
4355         } else {
4356                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4357                 if (ret)
4358                         return ret;
4359         }
4360
4361         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4362             (bound ^ vma->bound) & GLOBAL_BIND) {
4363                 bool mappable, fenceable;
4364                 u32 fence_size, fence_alignment;
4365
4366                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4367                                                    obj->base.size,
4368                                                    obj->tiling_mode);
4369                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4370                                                              obj->base.size,
4371                                                              obj->tiling_mode,
4372                                                              true);
4373
4374                 fenceable = (vma->node.size == fence_size &&
4375                              (vma->node.start & (fence_alignment - 1)) == 0);
4376
4377                 mappable = (vma->node.start + fence_size <=
4378                             dev_priv->gtt.mappable_end);
4379
4380                 obj->map_and_fenceable = mappable && fenceable;
4381
4382                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4383         }
4384
4385         vma->pin_count++;
4386         return 0;
4387 }
4388
4389 int
4390 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4391                     struct i915_address_space *vm,
4392                     uint32_t alignment,
4393                     uint64_t flags)
4394 {
4395         return i915_gem_object_do_pin(obj, vm,
4396                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4397                                       alignment, flags);
4398 }
4399
4400 int
4401 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4402                          const struct i915_ggtt_view *view,
4403                          uint32_t alignment,
4404                          uint64_t flags)
4405 {
4406         if (WARN_ONCE(!view, "no view specified"))
4407                 return -EINVAL;
4408
4409         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4410                                       alignment, flags | PIN_GLOBAL);
4411 }
4412
4413 void
4414 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4415                                 const struct i915_ggtt_view *view)
4416 {
4417         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4418
4419         BUG_ON(!vma);
4420         WARN_ON(vma->pin_count == 0);
4421         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4422
4423         --vma->pin_count;
4424 }
4425
4426 bool
4427 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4428 {
4429         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4430                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4431                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4432
4433                 WARN_ON(!ggtt_vma ||
4434                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4435                         ggtt_vma->pin_count);
4436                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4437                 return true;
4438         } else
4439                 return false;
4440 }
4441
4442 void
4443 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4444 {
4445         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4446                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4447                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4448                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4449         }
4450 }
4451
4452 int
4453 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4454                     struct drm_file *file)
4455 {
4456         struct drm_i915_gem_busy *args = data;
4457         struct drm_i915_gem_object *obj;
4458         int ret;
4459
4460         ret = i915_mutex_lock_interruptible(dev);
4461         if (ret)
4462                 return ret;
4463
4464         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4465         if (&obj->base == NULL) {
4466                 ret = -ENOENT;
4467                 goto unlock;
4468         }
4469
4470         /* Count all active objects as busy, even if they are currently not used
4471          * by the gpu. Users of this interface expect objects to eventually
4472          * become non-busy without any further actions, therefore emit any
4473          * necessary flushes here.
4474          */
4475         ret = i915_gem_object_flush_active(obj);
4476         if (ret)
4477                 goto unref;
4478
4479         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4480         args->busy = obj->active << 16;
4481         if (obj->last_write_req)
4482                 args->busy |= obj->last_write_req->ring->id;
4483
4484 unref:
4485         drm_gem_object_unreference(&obj->base);
4486 unlock:
4487         mutex_unlock(&dev->struct_mutex);
4488         return ret;
4489 }
4490
4491 int
4492 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4493                         struct drm_file *file_priv)
4494 {
4495         return i915_gem_ring_throttle(dev, file_priv);
4496 }
4497
4498 int
4499 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4500                        struct drm_file *file_priv)
4501 {
4502         struct drm_i915_private *dev_priv = dev->dev_private;
4503         struct drm_i915_gem_madvise *args = data;
4504         struct drm_i915_gem_object *obj;
4505         int ret;
4506
4507         switch (args->madv) {
4508         case I915_MADV_DONTNEED:
4509         case I915_MADV_WILLNEED:
4510             break;
4511         default:
4512             return -EINVAL;
4513         }
4514
4515         ret = i915_mutex_lock_interruptible(dev);
4516         if (ret)
4517                 return ret;
4518
4519         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4520         if (&obj->base == NULL) {
4521                 ret = -ENOENT;
4522                 goto unlock;
4523         }
4524
4525         if (i915_gem_obj_is_pinned(obj)) {
4526                 ret = -EINVAL;
4527                 goto out;
4528         }
4529
4530         if (obj->pages &&
4531             obj->tiling_mode != I915_TILING_NONE &&
4532             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4533                 if (obj->madv == I915_MADV_WILLNEED)
4534                         i915_gem_object_unpin_pages(obj);
4535                 if (args->madv == I915_MADV_WILLNEED)
4536                         i915_gem_object_pin_pages(obj);
4537         }
4538
4539         if (obj->madv != __I915_MADV_PURGED)
4540                 obj->madv = args->madv;
4541
4542         /* if the object is no longer attached, discard its backing storage */
4543         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4544                 i915_gem_object_truncate(obj);
4545
4546         args->retained = obj->madv != __I915_MADV_PURGED;
4547
4548 out:
4549         drm_gem_object_unreference(&obj->base);
4550 unlock:
4551         mutex_unlock(&dev->struct_mutex);
4552         return ret;
4553 }
4554
4555 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4556                           const struct drm_i915_gem_object_ops *ops)
4557 {
4558         int i;
4559
4560         INIT_LIST_HEAD(&obj->global_list);
4561         for (i = 0; i < I915_NUM_RINGS; i++)
4562                 INIT_LIST_HEAD(&obj->ring_list[i]);
4563         INIT_LIST_HEAD(&obj->obj_exec_link);
4564         INIT_LIST_HEAD(&obj->vma_list);
4565         INIT_LIST_HEAD(&obj->batch_pool_link);
4566
4567         obj->ops = ops;
4568
4569         obj->fence_reg = I915_FENCE_REG_NONE;
4570         obj->madv = I915_MADV_WILLNEED;
4571
4572         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4573 }
4574
4575 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4576         .get_pages = i915_gem_object_get_pages_gtt,
4577         .put_pages = i915_gem_object_put_pages_gtt,
4578 };
4579
4580 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4581                                                   size_t size)
4582 {
4583         struct drm_i915_gem_object *obj;
4584         struct address_space *mapping;
4585         gfp_t mask;
4586
4587         obj = i915_gem_object_alloc(dev);
4588         if (obj == NULL)
4589                 return NULL;
4590
4591         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4592                 i915_gem_object_free(obj);
4593                 return NULL;
4594         }
4595
4596         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4597         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4598                 /* 965gm cannot relocate objects above 4GiB. */
4599                 mask &= ~__GFP_HIGHMEM;
4600                 mask |= __GFP_DMA32;
4601         }
4602
4603         mapping = file_inode(obj->base.filp)->i_mapping;
4604         mapping_set_gfp_mask(mapping, mask);
4605
4606         i915_gem_object_init(obj, &i915_gem_object_ops);
4607
4608         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4609         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4610
4611         if (HAS_LLC(dev)) {
4612                 /* On some devices, we can have the GPU use the LLC (the CPU
4613                  * cache) for about a 10% performance improvement
4614                  * compared to uncached.  Graphics requests other than
4615                  * display scanout are coherent with the CPU in
4616                  * accessing this cache.  This means in this mode we
4617                  * don't need to clflush on the CPU side, and on the
4618                  * GPU side we only need to flush internal caches to
4619                  * get data visible to the CPU.
4620                  *
4621                  * However, we maintain the display planes as UC, and so
4622                  * need to rebind when first used as such.
4623                  */
4624                 obj->cache_level = I915_CACHE_LLC;
4625         } else
4626                 obj->cache_level = I915_CACHE_NONE;
4627
4628         trace_i915_gem_object_create(obj);
4629
4630         return obj;
4631 }
4632
4633 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4634 {
4635         /* If we are the last user of the backing storage (be it shmemfs
4636          * pages or stolen etc), we know that the pages are going to be
4637          * immediately released. In this case, we can then skip copying
4638          * back the contents from the GPU.
4639          */
4640
4641         if (obj->madv != I915_MADV_WILLNEED)
4642                 return false;
4643
4644         if (obj->base.filp == NULL)
4645                 return true;
4646
4647         /* At first glance, this looks racy, but then again so would be
4648          * userspace racing mmap against close. However, the first external
4649          * reference to the filp can only be obtained through the
4650          * i915_gem_mmap_ioctl() which safeguards us against the user
4651          * acquiring such a reference whilst we are in the middle of
4652          * freeing the object.
4653          */
4654         return atomic_long_read(&obj->base.filp->f_count) == 1;
4655 }
4656
4657 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4658 {
4659         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4660         struct drm_device *dev = obj->base.dev;
4661         struct drm_i915_private *dev_priv = dev->dev_private;
4662         struct i915_vma *vma, *next;
4663
4664         intel_runtime_pm_get(dev_priv);
4665
4666         trace_i915_gem_object_destroy(obj);
4667
4668         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4669                 int ret;
4670
4671                 vma->pin_count = 0;
4672                 ret = i915_vma_unbind(vma);
4673                 if (WARN_ON(ret == -ERESTARTSYS)) {
4674                         bool was_interruptible;
4675
4676                         was_interruptible = dev_priv->mm.interruptible;
4677                         dev_priv->mm.interruptible = false;
4678
4679                         WARN_ON(i915_vma_unbind(vma));
4680
4681                         dev_priv->mm.interruptible = was_interruptible;
4682                 }
4683         }
4684
4685         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4686          * before progressing. */
4687         if (obj->stolen)
4688                 i915_gem_object_unpin_pages(obj);
4689
4690         WARN_ON(obj->frontbuffer_bits);
4691
4692         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4693             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4694             obj->tiling_mode != I915_TILING_NONE)
4695                 i915_gem_object_unpin_pages(obj);
4696
4697         if (WARN_ON(obj->pages_pin_count))
4698                 obj->pages_pin_count = 0;
4699         if (discard_backing_storage(obj))
4700                 obj->madv = I915_MADV_DONTNEED;
4701         i915_gem_object_put_pages(obj);
4702         i915_gem_object_free_mmap_offset(obj);
4703
4704         BUG_ON(obj->pages);
4705
4706         if (obj->base.import_attach)
4707                 drm_prime_gem_destroy(&obj->base, NULL);
4708
4709         if (obj->ops->release)
4710                 obj->ops->release(obj);
4711
4712         drm_gem_object_release(&obj->base);
4713         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4714
4715         kfree(obj->bit_17);
4716         i915_gem_object_free(obj);
4717
4718         intel_runtime_pm_put(dev_priv);
4719 }
4720
4721 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4722                                      struct i915_address_space *vm)
4723 {
4724         struct i915_vma *vma;
4725         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4726                 if (i915_is_ggtt(vma->vm) &&
4727                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4728                         continue;
4729                 if (vma->vm == vm)
4730                         return vma;
4731         }
4732         return NULL;
4733 }
4734
4735 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4736                                            const struct i915_ggtt_view *view)
4737 {
4738         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4739         struct i915_vma *vma;
4740
4741         if (WARN_ONCE(!view, "no view specified"))
4742                 return ERR_PTR(-EINVAL);
4743
4744         list_for_each_entry(vma, &obj->vma_list, vma_link)
4745                 if (vma->vm == ggtt &&
4746                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4747                         return vma;
4748         return NULL;
4749 }
4750
4751 void i915_gem_vma_destroy(struct i915_vma *vma)
4752 {
4753         struct i915_address_space *vm = NULL;
4754         WARN_ON(vma->node.allocated);
4755
4756         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4757         if (!list_empty(&vma->exec_list))
4758                 return;
4759
4760         vm = vma->vm;
4761
4762         if (!i915_is_ggtt(vm))
4763                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4764
4765         list_del(&vma->vma_link);
4766
4767         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4768 }
4769
4770 static void
4771 i915_gem_stop_ringbuffers(struct drm_device *dev)
4772 {
4773         struct drm_i915_private *dev_priv = dev->dev_private;
4774         struct intel_engine_cs *ring;
4775         int i;
4776
4777         for_each_ring(ring, dev_priv, i)
4778                 dev_priv->gt.stop_ring(ring);
4779 }
4780
4781 int
4782 i915_gem_suspend(struct drm_device *dev)
4783 {
4784         struct drm_i915_private *dev_priv = dev->dev_private;
4785         int ret = 0;
4786
4787         mutex_lock(&dev->struct_mutex);
4788         ret = i915_gpu_idle(dev);
4789         if (ret)
4790                 goto err;
4791
4792         i915_gem_retire_requests(dev);
4793
4794         i915_gem_stop_ringbuffers(dev);
4795         mutex_unlock(&dev->struct_mutex);
4796
4797         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4798         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4799         flush_delayed_work(&dev_priv->mm.idle_work);
4800
4801         /* Assert that we sucessfully flushed all the work and
4802          * reset the GPU back to its idle, low power state.
4803          */
4804         WARN_ON(dev_priv->mm.busy);
4805
4806         return 0;
4807
4808 err:
4809         mutex_unlock(&dev->struct_mutex);
4810         return ret;
4811 }
4812
4813 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4814 {
4815         struct drm_device *dev = ring->dev;
4816         struct drm_i915_private *dev_priv = dev->dev_private;
4817         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4818         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4819         int i, ret;
4820
4821         if (!HAS_L3_DPF(dev) || !remap_info)
4822                 return 0;
4823
4824         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4825         if (ret)
4826                 return ret;
4827
4828         /*
4829          * Note: We do not worry about the concurrent register cacheline hang
4830          * here because no other code should access these registers other than
4831          * at initialization time.
4832          */
4833         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4834                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4835                 intel_ring_emit(ring, reg_base + i);
4836                 intel_ring_emit(ring, remap_info[i/4]);
4837         }
4838
4839         intel_ring_advance(ring);
4840
4841         return ret;
4842 }
4843
4844 void i915_gem_init_swizzling(struct drm_device *dev)
4845 {
4846         struct drm_i915_private *dev_priv = dev->dev_private;
4847
4848         if (INTEL_INFO(dev)->gen < 5 ||
4849             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4850                 return;
4851
4852         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4853                                  DISP_TILE_SURFACE_SWIZZLING);
4854
4855         if (IS_GEN5(dev))
4856                 return;
4857
4858         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4859         if (IS_GEN6(dev))
4860                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4861         else if (IS_GEN7(dev))
4862                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4863         else if (IS_GEN8(dev))
4864                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4865         else
4866                 BUG();
4867 }
4868
4869 static bool
4870 intel_enable_blt(struct drm_device *dev)
4871 {
4872         if (!HAS_BLT(dev))
4873                 return false;
4874
4875         /* The blitter was dysfunctional on early prototypes */
4876         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4877                 DRM_INFO("BLT not supported on this pre-production hardware;"
4878                          " graphics performance will be degraded.\n");
4879                 return false;
4880         }
4881
4882         return true;
4883 }
4884
4885 static void init_unused_ring(struct drm_device *dev, u32 base)
4886 {
4887         struct drm_i915_private *dev_priv = dev->dev_private;
4888
4889         I915_WRITE(RING_CTL(base), 0);
4890         I915_WRITE(RING_HEAD(base), 0);
4891         I915_WRITE(RING_TAIL(base), 0);
4892         I915_WRITE(RING_START(base), 0);
4893 }
4894
4895 static void init_unused_rings(struct drm_device *dev)
4896 {
4897         if (IS_I830(dev)) {
4898                 init_unused_ring(dev, PRB1_BASE);
4899                 init_unused_ring(dev, SRB0_BASE);
4900                 init_unused_ring(dev, SRB1_BASE);
4901                 init_unused_ring(dev, SRB2_BASE);
4902                 init_unused_ring(dev, SRB3_BASE);
4903         } else if (IS_GEN2(dev)) {
4904                 init_unused_ring(dev, SRB0_BASE);
4905                 init_unused_ring(dev, SRB1_BASE);
4906         } else if (IS_GEN3(dev)) {
4907                 init_unused_ring(dev, PRB1_BASE);
4908                 init_unused_ring(dev, PRB2_BASE);
4909         }
4910 }
4911
4912 int i915_gem_init_rings(struct drm_device *dev)
4913 {
4914         struct drm_i915_private *dev_priv = dev->dev_private;
4915         int ret;
4916
4917         ret = intel_init_render_ring_buffer(dev);
4918         if (ret)
4919                 return ret;
4920
4921         if (HAS_BSD(dev)) {
4922                 ret = intel_init_bsd_ring_buffer(dev);
4923                 if (ret)
4924                         goto cleanup_render_ring;
4925         }
4926
4927         if (intel_enable_blt(dev)) {
4928                 ret = intel_init_blt_ring_buffer(dev);
4929                 if (ret)
4930                         goto cleanup_bsd_ring;
4931         }
4932
4933         if (HAS_VEBOX(dev)) {
4934                 ret = intel_init_vebox_ring_buffer(dev);
4935                 if (ret)
4936                         goto cleanup_blt_ring;
4937         }
4938
4939         if (HAS_BSD2(dev)) {
4940                 ret = intel_init_bsd2_ring_buffer(dev);
4941                 if (ret)
4942                         goto cleanup_vebox_ring;
4943         }
4944
4945         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4946         if (ret)
4947                 goto cleanup_bsd2_ring;
4948
4949         return 0;
4950
4951 cleanup_bsd2_ring:
4952         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4953 cleanup_vebox_ring:
4954         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4955 cleanup_blt_ring:
4956         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4957 cleanup_bsd_ring:
4958         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4959 cleanup_render_ring:
4960         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4961
4962         return ret;
4963 }
4964
4965 int
4966 i915_gem_init_hw(struct drm_device *dev)
4967 {
4968         struct drm_i915_private *dev_priv = dev->dev_private;
4969         struct intel_engine_cs *ring;
4970         int ret, i;
4971
4972         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4973                 return -EIO;
4974
4975         /* Double layer security blanket, see i915_gem_init() */
4976         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977
4978         if (dev_priv->ellc_size)
4979                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4980
4981         if (IS_HASWELL(dev))
4982                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4983                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4984
4985         if (HAS_PCH_NOP(dev)) {
4986                 if (IS_IVYBRIDGE(dev)) {
4987                         u32 temp = I915_READ(GEN7_MSG_CTL);
4988                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4989                         I915_WRITE(GEN7_MSG_CTL, temp);
4990                 } else if (INTEL_INFO(dev)->gen >= 7) {
4991                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4992                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4993                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4994                 }
4995         }
4996
4997         i915_gem_init_swizzling(dev);
4998
4999         /*
5000          * At least 830 can leave some of the unused rings
5001          * "active" (ie. head != tail) after resume which
5002          * will prevent c3 entry. Makes sure all unused rings
5003          * are totally idle.
5004          */
5005         init_unused_rings(dev);
5006
5007         for_each_ring(ring, dev_priv, i) {
5008                 ret = ring->init_hw(ring);
5009                 if (ret)
5010                         goto out;
5011         }
5012
5013         for (i = 0; i < NUM_L3_SLICES(dev); i++)
5014                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5015
5016         ret = i915_ppgtt_init_hw(dev);
5017         if (ret && ret != -EIO) {
5018                 DRM_ERROR("PPGTT enable failed %d\n", ret);
5019                 i915_gem_cleanup_ringbuffer(dev);
5020         }
5021
5022         ret = i915_gem_context_enable(dev_priv);
5023         if (ret && ret != -EIO) {
5024                 DRM_ERROR("Context enable failed %d\n", ret);
5025                 i915_gem_cleanup_ringbuffer(dev);
5026
5027                 goto out;
5028         }
5029
5030 out:
5031         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5032         return ret;
5033 }
5034
5035 int i915_gem_init(struct drm_device *dev)
5036 {
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         int ret;
5039
5040         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5041                         i915.enable_execlists);
5042
5043         mutex_lock(&dev->struct_mutex);
5044
5045         if (IS_VALLEYVIEW(dev)) {
5046                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5047                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5048                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5049                               VLV_GTLC_ALLOWWAKEACK), 10))
5050                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5051         }
5052
5053         if (!i915.enable_execlists) {
5054                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5055                 dev_priv->gt.init_rings = i915_gem_init_rings;
5056                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5057                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5058         } else {
5059                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5060                 dev_priv->gt.init_rings = intel_logical_rings_init;
5061                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5062                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5063         }
5064
5065         /* This is just a security blanket to placate dragons.
5066          * On some systems, we very sporadically observe that the first TLBs
5067          * used by the CS may be stale, despite us poking the TLB reset. If
5068          * we hold the forcewake during initialisation these problems
5069          * just magically go away.
5070          */
5071         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5072
5073         ret = i915_gem_init_userptr(dev);
5074         if (ret)
5075                 goto out_unlock;
5076
5077         i915_gem_init_global_gtt(dev);
5078
5079         ret = i915_gem_context_init(dev);
5080         if (ret)
5081                 goto out_unlock;
5082
5083         ret = dev_priv->gt.init_rings(dev);
5084         if (ret)
5085                 goto out_unlock;
5086
5087         ret = i915_gem_init_hw(dev);
5088         if (ret == -EIO) {
5089                 /* Allow ring initialisation to fail by marking the GPU as
5090                  * wedged. But we only want to do this where the GPU is angry,
5091                  * for all other failure, such as an allocation failure, bail.
5092                  */
5093                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5094                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5095                 ret = 0;
5096         }
5097
5098 out_unlock:
5099         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5100         mutex_unlock(&dev->struct_mutex);
5101
5102         return ret;
5103 }
5104
5105 void
5106 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5107 {
5108         struct drm_i915_private *dev_priv = dev->dev_private;
5109         struct intel_engine_cs *ring;
5110         int i;
5111
5112         for_each_ring(ring, dev_priv, i)
5113                 dev_priv->gt.cleanup_ring(ring);
5114 }
5115
5116 static void
5117 init_ring_lists(struct intel_engine_cs *ring)
5118 {
5119         INIT_LIST_HEAD(&ring->active_list);
5120         INIT_LIST_HEAD(&ring->request_list);
5121 }
5122
5123 void i915_init_vm(struct drm_i915_private *dev_priv,
5124                   struct i915_address_space *vm)
5125 {
5126         if (!i915_is_ggtt(vm))
5127                 drm_mm_init(&vm->mm, vm->start, vm->total);
5128         vm->dev = dev_priv->dev;
5129         INIT_LIST_HEAD(&vm->active_list);
5130         INIT_LIST_HEAD(&vm->inactive_list);
5131         INIT_LIST_HEAD(&vm->global_link);
5132         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5133 }
5134
5135 void
5136 i915_gem_load(struct drm_device *dev)
5137 {
5138         struct drm_i915_private *dev_priv = dev->dev_private;
5139         int i;
5140
5141         dev_priv->objects =
5142                 kmem_cache_create("i915_gem_object",
5143                                   sizeof(struct drm_i915_gem_object), 0,
5144                                   SLAB_HWCACHE_ALIGN,
5145                                   NULL);
5146         dev_priv->vmas =
5147                 kmem_cache_create("i915_gem_vma",
5148                                   sizeof(struct i915_vma), 0,
5149                                   SLAB_HWCACHE_ALIGN,
5150                                   NULL);
5151         dev_priv->requests =
5152                 kmem_cache_create("i915_gem_request",
5153                                   sizeof(struct drm_i915_gem_request), 0,
5154                                   SLAB_HWCACHE_ALIGN,
5155                                   NULL);
5156
5157         INIT_LIST_HEAD(&dev_priv->vm_list);
5158         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5159
5160         INIT_LIST_HEAD(&dev_priv->context_list);
5161         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5162         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5163         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5164         for (i = 0; i < I915_NUM_RINGS; i++)
5165                 init_ring_lists(&dev_priv->ring[i]);
5166         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5167                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5168         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5169                           i915_gem_retire_work_handler);
5170         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5171                           i915_gem_idle_work_handler);
5172         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5173
5174         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5175
5176         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5177                 dev_priv->num_fence_regs = 32;
5178         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5179                 dev_priv->num_fence_regs = 16;
5180         else
5181                 dev_priv->num_fence_regs = 8;
5182
5183         if (intel_vgpu_active(dev))
5184                 dev_priv->num_fence_regs =
5185                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5186
5187         /* Initialize fence registers to zero */
5188         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5189         i915_gem_restore_fences(dev);
5190
5191         i915_gem_detect_bit_6_swizzle(dev);
5192         init_waitqueue_head(&dev_priv->pending_flip_queue);
5193
5194         dev_priv->mm.interruptible = true;
5195
5196         i915_gem_shrinker_init(dev_priv);
5197
5198         mutex_init(&dev_priv->fb_tracking.lock);
5199 }
5200
5201 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5202 {
5203         struct drm_i915_file_private *file_priv = file->driver_priv;
5204
5205         /* Clean up our request list when the client is going away, so that
5206          * later retire_requests won't dereference our soon-to-be-gone
5207          * file_priv.
5208          */
5209         spin_lock(&file_priv->mm.lock);
5210         while (!list_empty(&file_priv->mm.request_list)) {
5211                 struct drm_i915_gem_request *request;
5212
5213                 request = list_first_entry(&file_priv->mm.request_list,
5214                                            struct drm_i915_gem_request,
5215                                            client_list);
5216                 list_del(&request->client_list);
5217                 request->file_priv = NULL;
5218         }
5219         spin_unlock(&file_priv->mm.lock);
5220
5221         if (!list_empty(&file_priv->rps.link)) {
5222                 spin_lock(&to_i915(dev)->rps.client_lock);
5223                 list_del(&file_priv->rps.link);
5224                 spin_unlock(&to_i915(dev)->rps.client_lock);
5225         }
5226 }
5227
5228 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5229 {
5230         struct drm_i915_file_private *file_priv;
5231         int ret;
5232
5233         DRM_DEBUG_DRIVER("\n");
5234
5235         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5236         if (!file_priv)
5237                 return -ENOMEM;
5238
5239         file->driver_priv = file_priv;
5240         file_priv->dev_priv = dev->dev_private;
5241         file_priv->file = file;
5242         INIT_LIST_HEAD(&file_priv->rps.link);
5243
5244         spin_lock_init(&file_priv->mm.lock);
5245         INIT_LIST_HEAD(&file_priv->mm.request_list);
5246
5247         ret = i915_gem_context_open(dev, file);
5248         if (ret)
5249                 kfree(file_priv);
5250
5251         return ret;
5252 }
5253
5254 /**
5255  * i915_gem_track_fb - update frontbuffer tracking
5256  * old: current GEM buffer for the frontbuffer slots
5257  * new: new GEM buffer for the frontbuffer slots
5258  * frontbuffer_bits: bitmask of frontbuffer slots
5259  *
5260  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5261  * from @old and setting them in @new. Both @old and @new can be NULL.
5262  */
5263 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5264                        struct drm_i915_gem_object *new,
5265                        unsigned frontbuffer_bits)
5266 {
5267         if (old) {
5268                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5269                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5270                 old->frontbuffer_bits &= ~frontbuffer_bits;
5271         }
5272
5273         if (new) {
5274                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5275                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5276                 new->frontbuffer_bits |= frontbuffer_bits;
5277         }
5278 }
5279
5280 /* All the new VM stuff */
5281 unsigned long
5282 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5283                     struct i915_address_space *vm)
5284 {
5285         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5286         struct i915_vma *vma;
5287
5288         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5289
5290         list_for_each_entry(vma, &o->vma_list, vma_link) {
5291                 if (i915_is_ggtt(vma->vm) &&
5292                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5293                         continue;
5294                 if (vma->vm == vm)
5295                         return vma->node.start;
5296         }
5297
5298         WARN(1, "%s vma for this object not found.\n",
5299              i915_is_ggtt(vm) ? "global" : "ppgtt");
5300         return -1;
5301 }
5302
5303 unsigned long
5304 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5305                               const struct i915_ggtt_view *view)
5306 {
5307         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5308         struct i915_vma *vma;
5309
5310         list_for_each_entry(vma, &o->vma_list, vma_link)
5311                 if (vma->vm == ggtt &&
5312                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5313                         return vma->node.start;
5314
5315         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5316         return -1;
5317 }
5318
5319 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5320                         struct i915_address_space *vm)
5321 {
5322         struct i915_vma *vma;
5323
5324         list_for_each_entry(vma, &o->vma_list, vma_link) {
5325                 if (i915_is_ggtt(vma->vm) &&
5326                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5327                         continue;
5328                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5329                         return true;
5330         }
5331
5332         return false;
5333 }
5334
5335 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5336                                   const struct i915_ggtt_view *view)
5337 {
5338         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5339         struct i915_vma *vma;
5340
5341         list_for_each_entry(vma, &o->vma_list, vma_link)
5342                 if (vma->vm == ggtt &&
5343                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5344                     drm_mm_node_allocated(&vma->node))
5345                         return true;
5346
5347         return false;
5348 }
5349
5350 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5351 {
5352         struct i915_vma *vma;
5353
5354         list_for_each_entry(vma, &o->vma_list, vma_link)
5355                 if (drm_mm_node_allocated(&vma->node))
5356                         return true;
5357
5358         return false;
5359 }
5360
5361 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5362                                 struct i915_address_space *vm)
5363 {
5364         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5365         struct i915_vma *vma;
5366
5367         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5368
5369         BUG_ON(list_empty(&o->vma_list));
5370
5371         list_for_each_entry(vma, &o->vma_list, vma_link) {
5372                 if (i915_is_ggtt(vma->vm) &&
5373                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5374                         continue;
5375                 if (vma->vm == vm)
5376                         return vma->node.size;
5377         }
5378         return 0;
5379 }
5380
5381 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5382 {
5383         struct i915_vma *vma;
5384         list_for_each_entry(vma, &obj->vma_list, vma_link)
5385                 if (vma->pin_count > 0)
5386                         return true;
5387
5388         return false;
5389 }
5390