Merge tag 'drm-intel-fixes-2015-07-15' into drm-intel-next-queued
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->pin_display)
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
121 {
122         u64 size = 0;
123         struct i915_vma *vma;
124
125         list_for_each_entry(vma, &obj->vma_list, vma_link) {
126                 if (i915_is_ggtt(vma->vm) &&
127                     drm_mm_node_allocated(&vma->node))
128                         size += vma->node.size;
129         }
130
131         return size;
132 }
133
134 static void
135 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
136 {
137         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
138         struct intel_engine_cs *ring;
139         struct i915_vma *vma;
140         int pin_count = 0;
141         int i;
142
143         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
144                    &obj->base,
145                    obj->active ? "*" : " ",
146                    get_pin_flag(obj),
147                    get_tiling_flag(obj),
148                    get_global_flag(obj),
149                    obj->base.size / 1024,
150                    obj->base.read_domains,
151                    obj->base.write_domain);
152         for_each_ring(ring, dev_priv, i)
153                 seq_printf(m, "%x ",
154                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
155         seq_printf(m, "] %x %x%s%s%s",
156                    i915_gem_request_get_seqno(obj->last_write_req),
157                    i915_gem_request_get_seqno(obj->last_fenced_req),
158                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
159                    obj->dirty ? " dirty" : "",
160                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
161         if (obj->base.name)
162                 seq_printf(m, " (name: %d)", obj->base.name);
163         list_for_each_entry(vma, &obj->vma_list, vma_link) {
164                 if (vma->pin_count > 0)
165                         pin_count++;
166         }
167         seq_printf(m, " (pinned x %d)", pin_count);
168         if (obj->pin_display)
169                 seq_printf(m, " (display)");
170         if (obj->fence_reg != I915_FENCE_REG_NONE)
171                 seq_printf(m, " (fence: %d)", obj->fence_reg);
172         list_for_each_entry(vma, &obj->vma_list, vma_link) {
173                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
174                            i915_is_ggtt(vma->vm) ? "g" : "pp",
175                            vma->node.start, vma->node.size);
176                 if (i915_is_ggtt(vma->vm))
177                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
178                 else
179                         seq_puts(m, ")");
180         }
181         if (obj->stolen)
182                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
183         if (obj->pin_display || obj->fault_mappable) {
184                 char s[3], *t = s;
185                 if (obj->pin_display)
186                         *t++ = 'p';
187                 if (obj->fault_mappable)
188                         *t++ = 'f';
189                 *t = '\0';
190                 seq_printf(m, " (%s mappable)", s);
191         }
192         if (obj->last_write_req != NULL)
193                 seq_printf(m, " (%s)",
194                            i915_gem_request_get_ring(obj->last_write_req)->name);
195         if (obj->frontbuffer_bits)
196                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
197 }
198
199 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
200 {
201         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
202         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
203         seq_putc(m, ' ');
204 }
205
206 static int i915_gem_object_list_info(struct seq_file *m, void *data)
207 {
208         struct drm_info_node *node = m->private;
209         uintptr_t list = (uintptr_t) node->info_ent->data;
210         struct list_head *head;
211         struct drm_device *dev = node->minor->dev;
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         struct i915_address_space *vm = &dev_priv->gtt.base;
214         struct i915_vma *vma;
215         u64 total_obj_size, total_gtt_size;
216         int count, ret;
217
218         ret = mutex_lock_interruptible(&dev->struct_mutex);
219         if (ret)
220                 return ret;
221
222         /* FIXME: the user of this interface might want more than just GGTT */
223         switch (list) {
224         case ACTIVE_LIST:
225                 seq_puts(m, "Active:\n");
226                 head = &vm->active_list;
227                 break;
228         case INACTIVE_LIST:
229                 seq_puts(m, "Inactive:\n");
230                 head = &vm->inactive_list;
231                 break;
232         default:
233                 mutex_unlock(&dev->struct_mutex);
234                 return -EINVAL;
235         }
236
237         total_obj_size = total_gtt_size = count = 0;
238         list_for_each_entry(vma, head, mm_list) {
239                 seq_printf(m, "   ");
240                 describe_obj(m, vma->obj);
241                 seq_printf(m, "\n");
242                 total_obj_size += vma->obj->base.size;
243                 total_gtt_size += vma->node.size;
244                 count++;
245         }
246         mutex_unlock(&dev->struct_mutex);
247
248         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
249                    count, total_obj_size, total_gtt_size);
250         return 0;
251 }
252
253 static int obj_rank_by_stolen(void *priv,
254                               struct list_head *A, struct list_head *B)
255 {
256         struct drm_i915_gem_object *a =
257                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
258         struct drm_i915_gem_object *b =
259                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
260
261         return a->stolen->start - b->stolen->start;
262 }
263
264 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
265 {
266         struct drm_info_node *node = m->private;
267         struct drm_device *dev = node->minor->dev;
268         struct drm_i915_private *dev_priv = dev->dev_private;
269         struct drm_i915_gem_object *obj;
270         u64 total_obj_size, total_gtt_size;
271         LIST_HEAD(stolen);
272         int count, ret;
273
274         ret = mutex_lock_interruptible(&dev->struct_mutex);
275         if (ret)
276                 return ret;
277
278         total_obj_size = total_gtt_size = count = 0;
279         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
280                 if (obj->stolen == NULL)
281                         continue;
282
283                 list_add(&obj->obj_exec_link, &stolen);
284
285                 total_obj_size += obj->base.size;
286                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
287                 count++;
288         }
289         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
290                 if (obj->stolen == NULL)
291                         continue;
292
293                 list_add(&obj->obj_exec_link, &stolen);
294
295                 total_obj_size += obj->base.size;
296                 count++;
297         }
298         list_sort(NULL, &stolen, obj_rank_by_stolen);
299         seq_puts(m, "Stolen:\n");
300         while (!list_empty(&stolen)) {
301                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
302                 seq_puts(m, "   ");
303                 describe_obj(m, obj);
304                 seq_putc(m, '\n');
305                 list_del_init(&obj->obj_exec_link);
306         }
307         mutex_unlock(&dev->struct_mutex);
308
309         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
310                    count, total_obj_size, total_gtt_size);
311         return 0;
312 }
313
314 #define count_objects(list, member) do { \
315         list_for_each_entry(obj, list, member) { \
316                 size += i915_gem_obj_total_ggtt_size(obj); \
317                 ++count; \
318                 if (obj->map_and_fenceable) { \
319                         mappable_size += i915_gem_obj_ggtt_size(obj); \
320                         ++mappable_count; \
321                 } \
322         } \
323 } while (0)
324
325 struct file_stats {
326         struct drm_i915_file_private *file_priv;
327         unsigned long count;
328         u64 total, unbound;
329         u64 global, shared;
330         u64 active, inactive;
331 };
332
333 static int per_file_stats(int id, void *ptr, void *data)
334 {
335         struct drm_i915_gem_object *obj = ptr;
336         struct file_stats *stats = data;
337         struct i915_vma *vma;
338
339         stats->count++;
340         stats->total += obj->base.size;
341
342         if (obj->base.name || obj->base.dma_buf)
343                 stats->shared += obj->base.size;
344
345         if (USES_FULL_PPGTT(obj->base.dev)) {
346                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
347                         struct i915_hw_ppgtt *ppgtt;
348
349                         if (!drm_mm_node_allocated(&vma->node))
350                                 continue;
351
352                         if (i915_is_ggtt(vma->vm)) {
353                                 stats->global += obj->base.size;
354                                 continue;
355                         }
356
357                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
358                         if (ppgtt->file_priv != stats->file_priv)
359                                 continue;
360
361                         if (obj->active) /* XXX per-vma statistic */
362                                 stats->active += obj->base.size;
363                         else
364                                 stats->inactive += obj->base.size;
365
366                         return 0;
367                 }
368         } else {
369                 if (i915_gem_obj_ggtt_bound(obj)) {
370                         stats->global += obj->base.size;
371                         if (obj->active)
372                                 stats->active += obj->base.size;
373                         else
374                                 stats->inactive += obj->base.size;
375                         return 0;
376                 }
377         }
378
379         if (!list_empty(&obj->global_list))
380                 stats->unbound += obj->base.size;
381
382         return 0;
383 }
384
385 #define print_file_stats(m, name, stats) do { \
386         if (stats.count) \
387                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
388                            name, \
389                            stats.count, \
390                            stats.total, \
391                            stats.active, \
392                            stats.inactive, \
393                            stats.global, \
394                            stats.shared, \
395                            stats.unbound); \
396 } while (0)
397
398 static void print_batch_pool_stats(struct seq_file *m,
399                                    struct drm_i915_private *dev_priv)
400 {
401         struct drm_i915_gem_object *obj;
402         struct file_stats stats;
403         struct intel_engine_cs *ring;
404         int i, j;
405
406         memset(&stats, 0, sizeof(stats));
407
408         for_each_ring(ring, dev_priv, i) {
409                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
410                         list_for_each_entry(obj,
411                                             &ring->batch_pool.cache_list[j],
412                                             batch_pool_link)
413                                 per_file_stats(0, obj, &stats);
414                 }
415         }
416
417         print_file_stats(m, "[k]batch pool", stats);
418 }
419
420 #define count_vmas(list, member) do { \
421         list_for_each_entry(vma, list, member) { \
422                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
423                 ++count; \
424                 if (vma->obj->map_and_fenceable) { \
425                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
426                         ++mappable_count; \
427                 } \
428         } \
429 } while (0)
430
431 static int i915_gem_object_info(struct seq_file *m, void* data)
432 {
433         struct drm_info_node *node = m->private;
434         struct drm_device *dev = node->minor->dev;
435         struct drm_i915_private *dev_priv = dev->dev_private;
436         u32 count, mappable_count, purgeable_count;
437         u64 size, mappable_size, purgeable_size;
438         struct drm_i915_gem_object *obj;
439         struct i915_address_space *vm = &dev_priv->gtt.base;
440         struct drm_file *file;
441         struct i915_vma *vma;
442         int ret;
443
444         ret = mutex_lock_interruptible(&dev->struct_mutex);
445         if (ret)
446                 return ret;
447
448         seq_printf(m, "%u objects, %zu bytes\n",
449                    dev_priv->mm.object_count,
450                    dev_priv->mm.object_memory);
451
452         size = count = mappable_size = mappable_count = 0;
453         count_objects(&dev_priv->mm.bound_list, global_list);
454         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
455                    count, mappable_count, size, mappable_size);
456
457         size = count = mappable_size = mappable_count = 0;
458         count_vmas(&vm->active_list, mm_list);
459         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
460                    count, mappable_count, size, mappable_size);
461
462         size = count = mappable_size = mappable_count = 0;
463         count_vmas(&vm->inactive_list, mm_list);
464         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
465                    count, mappable_count, size, mappable_size);
466
467         size = count = purgeable_size = purgeable_count = 0;
468         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
469                 size += obj->base.size, ++count;
470                 if (obj->madv == I915_MADV_DONTNEED)
471                         purgeable_size += obj->base.size, ++purgeable_count;
472         }
473         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
474
475         size = count = mappable_size = mappable_count = 0;
476         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
477                 if (obj->fault_mappable) {
478                         size += i915_gem_obj_ggtt_size(obj);
479                         ++count;
480                 }
481                 if (obj->pin_display) {
482                         mappable_size += i915_gem_obj_ggtt_size(obj);
483                         ++mappable_count;
484                 }
485                 if (obj->madv == I915_MADV_DONTNEED) {
486                         purgeable_size += obj->base.size;
487                         ++purgeable_count;
488                 }
489         }
490         seq_printf(m, "%u purgeable objects, %llu bytes\n",
491                    purgeable_count, purgeable_size);
492         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
493                    mappable_count, mappable_size);
494         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
495                    count, size);
496
497         seq_printf(m, "%llu [%llu] gtt total\n",
498                    dev_priv->gtt.base.total,
499                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
500
501         seq_putc(m, '\n');
502         print_batch_pool_stats(m, dev_priv);
503         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
504                 struct file_stats stats;
505                 struct task_struct *task;
506
507                 memset(&stats, 0, sizeof(stats));
508                 stats.file_priv = file->driver_priv;
509                 spin_lock(&file->table_lock);
510                 idr_for_each(&file->object_idr, per_file_stats, &stats);
511                 spin_unlock(&file->table_lock);
512                 /*
513                  * Although we have a valid reference on file->pid, that does
514                  * not guarantee that the task_struct who called get_pid() is
515                  * still alive (e.g. get_pid(current) => fork() => exit()).
516                  * Therefore, we need to protect this ->comm access using RCU.
517                  */
518                 rcu_read_lock();
519                 task = pid_task(file->pid, PIDTYPE_PID);
520                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
521                 rcu_read_unlock();
522         }
523
524         mutex_unlock(&dev->struct_mutex);
525
526         return 0;
527 }
528
529 static int i915_gem_gtt_info(struct seq_file *m, void *data)
530 {
531         struct drm_info_node *node = m->private;
532         struct drm_device *dev = node->minor->dev;
533         uintptr_t list = (uintptr_t) node->info_ent->data;
534         struct drm_i915_private *dev_priv = dev->dev_private;
535         struct drm_i915_gem_object *obj;
536         u64 total_obj_size, total_gtt_size;
537         int count, ret;
538
539         ret = mutex_lock_interruptible(&dev->struct_mutex);
540         if (ret)
541                 return ret;
542
543         total_obj_size = total_gtt_size = count = 0;
544         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
545                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
546                         continue;
547
548                 seq_puts(m, "   ");
549                 describe_obj(m, obj);
550                 seq_putc(m, '\n');
551                 total_obj_size += obj->base.size;
552                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
553                 count++;
554         }
555
556         mutex_unlock(&dev->struct_mutex);
557
558         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
559                    count, total_obj_size, total_gtt_size);
560
561         return 0;
562 }
563
564 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
565 {
566         struct drm_info_node *node = m->private;
567         struct drm_device *dev = node->minor->dev;
568         struct drm_i915_private *dev_priv = dev->dev_private;
569         struct intel_crtc *crtc;
570         int ret;
571
572         ret = mutex_lock_interruptible(&dev->struct_mutex);
573         if (ret)
574                 return ret;
575
576         for_each_intel_crtc(dev, crtc) {
577                 const char pipe = pipe_name(crtc->pipe);
578                 const char plane = plane_name(crtc->plane);
579                 struct intel_unpin_work *work;
580
581                 spin_lock_irq(&dev->event_lock);
582                 work = crtc->unpin_work;
583                 if (work == NULL) {
584                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
585                                    pipe, plane);
586                 } else {
587                         u32 addr;
588
589                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
590                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
591                                            pipe, plane);
592                         } else {
593                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
594                                            pipe, plane);
595                         }
596                         if (work->flip_queued_req) {
597                                 struct intel_engine_cs *ring =
598                                         i915_gem_request_get_ring(work->flip_queued_req);
599
600                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
601                                            ring->name,
602                                            i915_gem_request_get_seqno(work->flip_queued_req),
603                                            dev_priv->next_seqno,
604                                            ring->get_seqno(ring, true),
605                                            i915_gem_request_completed(work->flip_queued_req, true));
606                         } else
607                                 seq_printf(m, "Flip not associated with any ring\n");
608                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
609                                    work->flip_queued_vblank,
610                                    work->flip_ready_vblank,
611                                    drm_crtc_vblank_count(&crtc->base));
612                         if (work->enable_stall_check)
613                                 seq_puts(m, "Stall check enabled, ");
614                         else
615                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
616                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
617
618                         if (INTEL_INFO(dev)->gen >= 4)
619                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
620                         else
621                                 addr = I915_READ(DSPADDR(crtc->plane));
622                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
623
624                         if (work->pending_flip_obj) {
625                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
626                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
627                         }
628                 }
629                 spin_unlock_irq(&dev->event_lock);
630         }
631
632         mutex_unlock(&dev->struct_mutex);
633
634         return 0;
635 }
636
637 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
638 {
639         struct drm_info_node *node = m->private;
640         struct drm_device *dev = node->minor->dev;
641         struct drm_i915_private *dev_priv = dev->dev_private;
642         struct drm_i915_gem_object *obj;
643         struct intel_engine_cs *ring;
644         int total = 0;
645         int ret, i, j;
646
647         ret = mutex_lock_interruptible(&dev->struct_mutex);
648         if (ret)
649                 return ret;
650
651         for_each_ring(ring, dev_priv, i) {
652                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
653                         int count;
654
655                         count = 0;
656                         list_for_each_entry(obj,
657                                             &ring->batch_pool.cache_list[j],
658                                             batch_pool_link)
659                                 count++;
660                         seq_printf(m, "%s cache[%d]: %d objects\n",
661                                    ring->name, j, count);
662
663                         list_for_each_entry(obj,
664                                             &ring->batch_pool.cache_list[j],
665                                             batch_pool_link) {
666                                 seq_puts(m, "   ");
667                                 describe_obj(m, obj);
668                                 seq_putc(m, '\n');
669                         }
670
671                         total += count;
672                 }
673         }
674
675         seq_printf(m, "total: %d\n", total);
676
677         mutex_unlock(&dev->struct_mutex);
678
679         return 0;
680 }
681
682 static int i915_gem_request_info(struct seq_file *m, void *data)
683 {
684         struct drm_info_node *node = m->private;
685         struct drm_device *dev = node->minor->dev;
686         struct drm_i915_private *dev_priv = dev->dev_private;
687         struct intel_engine_cs *ring;
688         struct drm_i915_gem_request *req;
689         int ret, any, i;
690
691         ret = mutex_lock_interruptible(&dev->struct_mutex);
692         if (ret)
693                 return ret;
694
695         any = 0;
696         for_each_ring(ring, dev_priv, i) {
697                 int count;
698
699                 count = 0;
700                 list_for_each_entry(req, &ring->request_list, list)
701                         count++;
702                 if (count == 0)
703                         continue;
704
705                 seq_printf(m, "%s requests: %d\n", ring->name, count);
706                 list_for_each_entry(req, &ring->request_list, list) {
707                         struct task_struct *task;
708
709                         rcu_read_lock();
710                         task = NULL;
711                         if (req->pid)
712                                 task = pid_task(req->pid, PIDTYPE_PID);
713                         seq_printf(m, "    %x @ %d: %s [%d]\n",
714                                    req->seqno,
715                                    (int) (jiffies - req->emitted_jiffies),
716                                    task ? task->comm : "<unknown>",
717                                    task ? task->pid : -1);
718                         rcu_read_unlock();
719                 }
720
721                 any++;
722         }
723         mutex_unlock(&dev->struct_mutex);
724
725         if (any == 0)
726                 seq_puts(m, "No requests\n");
727
728         return 0;
729 }
730
731 static void i915_ring_seqno_info(struct seq_file *m,
732                                  struct intel_engine_cs *ring)
733 {
734         if (ring->get_seqno) {
735                 seq_printf(m, "Current sequence (%s): %x\n",
736                            ring->name, ring->get_seqno(ring, false));
737         }
738 }
739
740 static int i915_gem_seqno_info(struct seq_file *m, void *data)
741 {
742         struct drm_info_node *node = m->private;
743         struct drm_device *dev = node->minor->dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745         struct intel_engine_cs *ring;
746         int ret, i;
747
748         ret = mutex_lock_interruptible(&dev->struct_mutex);
749         if (ret)
750                 return ret;
751         intel_runtime_pm_get(dev_priv);
752
753         for_each_ring(ring, dev_priv, i)
754                 i915_ring_seqno_info(m, ring);
755
756         intel_runtime_pm_put(dev_priv);
757         mutex_unlock(&dev->struct_mutex);
758
759         return 0;
760 }
761
762
763 static int i915_interrupt_info(struct seq_file *m, void *data)
764 {
765         struct drm_info_node *node = m->private;
766         struct drm_device *dev = node->minor->dev;
767         struct drm_i915_private *dev_priv = dev->dev_private;
768         struct intel_engine_cs *ring;
769         int ret, i, pipe;
770
771         ret = mutex_lock_interruptible(&dev->struct_mutex);
772         if (ret)
773                 return ret;
774         intel_runtime_pm_get(dev_priv);
775
776         if (IS_CHERRYVIEW(dev)) {
777                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
778                            I915_READ(GEN8_MASTER_IRQ));
779
780                 seq_printf(m, "Display IER:\t%08x\n",
781                            I915_READ(VLV_IER));
782                 seq_printf(m, "Display IIR:\t%08x\n",
783                            I915_READ(VLV_IIR));
784                 seq_printf(m, "Display IIR_RW:\t%08x\n",
785                            I915_READ(VLV_IIR_RW));
786                 seq_printf(m, "Display IMR:\t%08x\n",
787                            I915_READ(VLV_IMR));
788                 for_each_pipe(dev_priv, pipe)
789                         seq_printf(m, "Pipe %c stat:\t%08x\n",
790                                    pipe_name(pipe),
791                                    I915_READ(PIPESTAT(pipe)));
792
793                 seq_printf(m, "Port hotplug:\t%08x\n",
794                            I915_READ(PORT_HOTPLUG_EN));
795                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
796                            I915_READ(VLV_DPFLIPSTAT));
797                 seq_printf(m, "DPINVGTT:\t%08x\n",
798                            I915_READ(DPINVGTT));
799
800                 for (i = 0; i < 4; i++) {
801                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
802                                    i, I915_READ(GEN8_GT_IMR(i)));
803                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
804                                    i, I915_READ(GEN8_GT_IIR(i)));
805                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
806                                    i, I915_READ(GEN8_GT_IER(i)));
807                 }
808
809                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
810                            I915_READ(GEN8_PCU_IMR));
811                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
812                            I915_READ(GEN8_PCU_IIR));
813                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
814                            I915_READ(GEN8_PCU_IER));
815         } else if (INTEL_INFO(dev)->gen >= 8) {
816                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
817                            I915_READ(GEN8_MASTER_IRQ));
818
819                 for (i = 0; i < 4; i++) {
820                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
821                                    i, I915_READ(GEN8_GT_IMR(i)));
822                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
823                                    i, I915_READ(GEN8_GT_IIR(i)));
824                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
825                                    i, I915_READ(GEN8_GT_IER(i)));
826                 }
827
828                 for_each_pipe(dev_priv, pipe) {
829                         if (!intel_display_power_is_enabled(dev_priv,
830                                                 POWER_DOMAIN_PIPE(pipe))) {
831                                 seq_printf(m, "Pipe %c power disabled\n",
832                                            pipe_name(pipe));
833                                 continue;
834                         }
835                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
836                                    pipe_name(pipe),
837                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
839                                    pipe_name(pipe),
840                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841                         seq_printf(m, "Pipe %c IER:\t%08x\n",
842                                    pipe_name(pipe),
843                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
844                 }
845
846                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
847                            I915_READ(GEN8_DE_PORT_IMR));
848                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
849                            I915_READ(GEN8_DE_PORT_IIR));
850                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
851                            I915_READ(GEN8_DE_PORT_IER));
852
853                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
854                            I915_READ(GEN8_DE_MISC_IMR));
855                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
856                            I915_READ(GEN8_DE_MISC_IIR));
857                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
858                            I915_READ(GEN8_DE_MISC_IER));
859
860                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
861                            I915_READ(GEN8_PCU_IMR));
862                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
863                            I915_READ(GEN8_PCU_IIR));
864                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
865                            I915_READ(GEN8_PCU_IER));
866         } else if (IS_VALLEYVIEW(dev)) {
867                 seq_printf(m, "Display IER:\t%08x\n",
868                            I915_READ(VLV_IER));
869                 seq_printf(m, "Display IIR:\t%08x\n",
870                            I915_READ(VLV_IIR));
871                 seq_printf(m, "Display IIR_RW:\t%08x\n",
872                            I915_READ(VLV_IIR_RW));
873                 seq_printf(m, "Display IMR:\t%08x\n",
874                            I915_READ(VLV_IMR));
875                 for_each_pipe(dev_priv, pipe)
876                         seq_printf(m, "Pipe %c stat:\t%08x\n",
877                                    pipe_name(pipe),
878                                    I915_READ(PIPESTAT(pipe)));
879
880                 seq_printf(m, "Master IER:\t%08x\n",
881                            I915_READ(VLV_MASTER_IER));
882
883                 seq_printf(m, "Render IER:\t%08x\n",
884                            I915_READ(GTIER));
885                 seq_printf(m, "Render IIR:\t%08x\n",
886                            I915_READ(GTIIR));
887                 seq_printf(m, "Render IMR:\t%08x\n",
888                            I915_READ(GTIMR));
889
890                 seq_printf(m, "PM IER:\t\t%08x\n",
891                            I915_READ(GEN6_PMIER));
892                 seq_printf(m, "PM IIR:\t\t%08x\n",
893                            I915_READ(GEN6_PMIIR));
894                 seq_printf(m, "PM IMR:\t\t%08x\n",
895                            I915_READ(GEN6_PMIMR));
896
897                 seq_printf(m, "Port hotplug:\t%08x\n",
898                            I915_READ(PORT_HOTPLUG_EN));
899                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
900                            I915_READ(VLV_DPFLIPSTAT));
901                 seq_printf(m, "DPINVGTT:\t%08x\n",
902                            I915_READ(DPINVGTT));
903
904         } else if (!HAS_PCH_SPLIT(dev)) {
905                 seq_printf(m, "Interrupt enable:    %08x\n",
906                            I915_READ(IER));
907                 seq_printf(m, "Interrupt identity:  %08x\n",
908                            I915_READ(IIR));
909                 seq_printf(m, "Interrupt mask:      %08x\n",
910                            I915_READ(IMR));
911                 for_each_pipe(dev_priv, pipe)
912                         seq_printf(m, "Pipe %c stat:         %08x\n",
913                                    pipe_name(pipe),
914                                    I915_READ(PIPESTAT(pipe)));
915         } else {
916                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
917                            I915_READ(DEIER));
918                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
919                            I915_READ(DEIIR));
920                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
921                            I915_READ(DEIMR));
922                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
923                            I915_READ(SDEIER));
924                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
925                            I915_READ(SDEIIR));
926                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
927                            I915_READ(SDEIMR));
928                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
929                            I915_READ(GTIER));
930                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
931                            I915_READ(GTIIR));
932                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
933                            I915_READ(GTIMR));
934         }
935         for_each_ring(ring, dev_priv, i) {
936                 if (INTEL_INFO(dev)->gen >= 6) {
937                         seq_printf(m,
938                                    "Graphics Interrupt mask (%s):       %08x\n",
939                                    ring->name, I915_READ_IMR(ring));
940                 }
941                 i915_ring_seqno_info(m, ring);
942         }
943         intel_runtime_pm_put(dev_priv);
944         mutex_unlock(&dev->struct_mutex);
945
946         return 0;
947 }
948
949 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
950 {
951         struct drm_info_node *node = m->private;
952         struct drm_device *dev = node->minor->dev;
953         struct drm_i915_private *dev_priv = dev->dev_private;
954         int i, ret;
955
956         ret = mutex_lock_interruptible(&dev->struct_mutex);
957         if (ret)
958                 return ret;
959
960         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
961         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
962         for (i = 0; i < dev_priv->num_fence_regs; i++) {
963                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
964
965                 seq_printf(m, "Fence %d, pin count = %d, object = ",
966                            i, dev_priv->fence_regs[i].pin_count);
967                 if (obj == NULL)
968                         seq_puts(m, "unused");
969                 else
970                         describe_obj(m, obj);
971                 seq_putc(m, '\n');
972         }
973
974         mutex_unlock(&dev->struct_mutex);
975         return 0;
976 }
977
978 static int i915_hws_info(struct seq_file *m, void *data)
979 {
980         struct drm_info_node *node = m->private;
981         struct drm_device *dev = node->minor->dev;
982         struct drm_i915_private *dev_priv = dev->dev_private;
983         struct intel_engine_cs *ring;
984         const u32 *hws;
985         int i;
986
987         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
988         hws = ring->status_page.page_addr;
989         if (hws == NULL)
990                 return 0;
991
992         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
993                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
994                            i * 4,
995                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
996         }
997         return 0;
998 }
999
1000 static ssize_t
1001 i915_error_state_write(struct file *filp,
1002                        const char __user *ubuf,
1003                        size_t cnt,
1004                        loff_t *ppos)
1005 {
1006         struct i915_error_state_file_priv *error_priv = filp->private_data;
1007         struct drm_device *dev = error_priv->dev;
1008         int ret;
1009
1010         DRM_DEBUG_DRIVER("Resetting error state\n");
1011
1012         ret = mutex_lock_interruptible(&dev->struct_mutex);
1013         if (ret)
1014                 return ret;
1015
1016         i915_destroy_error_state(dev);
1017         mutex_unlock(&dev->struct_mutex);
1018
1019         return cnt;
1020 }
1021
1022 static int i915_error_state_open(struct inode *inode, struct file *file)
1023 {
1024         struct drm_device *dev = inode->i_private;
1025         struct i915_error_state_file_priv *error_priv;
1026
1027         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1028         if (!error_priv)
1029                 return -ENOMEM;
1030
1031         error_priv->dev = dev;
1032
1033         i915_error_state_get(dev, error_priv);
1034
1035         file->private_data = error_priv;
1036
1037         return 0;
1038 }
1039
1040 static int i915_error_state_release(struct inode *inode, struct file *file)
1041 {
1042         struct i915_error_state_file_priv *error_priv = file->private_data;
1043
1044         i915_error_state_put(error_priv);
1045         kfree(error_priv);
1046
1047         return 0;
1048 }
1049
1050 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1051                                      size_t count, loff_t *pos)
1052 {
1053         struct i915_error_state_file_priv *error_priv = file->private_data;
1054         struct drm_i915_error_state_buf error_str;
1055         loff_t tmp_pos = 0;
1056         ssize_t ret_count = 0;
1057         int ret;
1058
1059         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1060         if (ret)
1061                 return ret;
1062
1063         ret = i915_error_state_to_str(&error_str, error_priv);
1064         if (ret)
1065                 goto out;
1066
1067         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1068                                             error_str.buf,
1069                                             error_str.bytes);
1070
1071         if (ret_count < 0)
1072                 ret = ret_count;
1073         else
1074                 *pos = error_str.start + ret_count;
1075 out:
1076         i915_error_state_buf_release(&error_str);
1077         return ret ?: ret_count;
1078 }
1079
1080 static const struct file_operations i915_error_state_fops = {
1081         .owner = THIS_MODULE,
1082         .open = i915_error_state_open,
1083         .read = i915_error_state_read,
1084         .write = i915_error_state_write,
1085         .llseek = default_llseek,
1086         .release = i915_error_state_release,
1087 };
1088
1089 static int
1090 i915_next_seqno_get(void *data, u64 *val)
1091 {
1092         struct drm_device *dev = data;
1093         struct drm_i915_private *dev_priv = dev->dev_private;
1094         int ret;
1095
1096         ret = mutex_lock_interruptible(&dev->struct_mutex);
1097         if (ret)
1098                 return ret;
1099
1100         *val = dev_priv->next_seqno;
1101         mutex_unlock(&dev->struct_mutex);
1102
1103         return 0;
1104 }
1105
1106 static int
1107 i915_next_seqno_set(void *data, u64 val)
1108 {
1109         struct drm_device *dev = data;
1110         int ret;
1111
1112         ret = mutex_lock_interruptible(&dev->struct_mutex);
1113         if (ret)
1114                 return ret;
1115
1116         ret = i915_gem_set_seqno(dev, val);
1117         mutex_unlock(&dev->struct_mutex);
1118
1119         return ret;
1120 }
1121
1122 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1123                         i915_next_seqno_get, i915_next_seqno_set,
1124                         "0x%llx\n");
1125
1126 static int i915_frequency_info(struct seq_file *m, void *unused)
1127 {
1128         struct drm_info_node *node = m->private;
1129         struct drm_device *dev = node->minor->dev;
1130         struct drm_i915_private *dev_priv = dev->dev_private;
1131         int ret = 0;
1132
1133         intel_runtime_pm_get(dev_priv);
1134
1135         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1136
1137         if (IS_GEN5(dev)) {
1138                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1139                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1140
1141                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1142                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1143                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1144                            MEMSTAT_VID_SHIFT);
1145                 seq_printf(m, "Current P-state: %d\n",
1146                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1147         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1148                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1149                 u32 rp_state_limits;
1150                 u32 gt_perf_status;
1151                 u32 rp_state_cap;
1152                 u32 rpmodectl, rpinclimit, rpdeclimit;
1153                 u32 rpstat, cagf, reqf;
1154                 u32 rpupei, rpcurup, rpprevup;
1155                 u32 rpdownei, rpcurdown, rpprevdown;
1156                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1157                 int max_freq;
1158
1159                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1160                 if (IS_BROXTON(dev)) {
1161                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1162                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1163                 } else {
1164                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1165                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1166                 }
1167
1168                 /* RPSTAT1 is in the GT power well */
1169                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1170                 if (ret)
1171                         goto out;
1172
1173                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1174
1175                 reqf = I915_READ(GEN6_RPNSWREQ);
1176                 if (IS_GEN9(dev))
1177                         reqf >>= 23;
1178                 else {
1179                         reqf &= ~GEN6_TURBO_DISABLE;
1180                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1181                                 reqf >>= 24;
1182                         else
1183                                 reqf >>= 25;
1184                 }
1185                 reqf = intel_gpu_freq(dev_priv, reqf);
1186
1187                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1188                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1189                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1190
1191                 rpstat = I915_READ(GEN6_RPSTAT1);
1192                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1193                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1194                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1195                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1196                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1197                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1198                 if (IS_GEN9(dev))
1199                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1200                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1201                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1202                 else
1203                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1204                 cagf = intel_gpu_freq(dev_priv, cagf);
1205
1206                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1207                 mutex_unlock(&dev->struct_mutex);
1208
1209                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1210                         pm_ier = I915_READ(GEN6_PMIER);
1211                         pm_imr = I915_READ(GEN6_PMIMR);
1212                         pm_isr = I915_READ(GEN6_PMISR);
1213                         pm_iir = I915_READ(GEN6_PMIIR);
1214                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1215                 } else {
1216                         pm_ier = I915_READ(GEN8_GT_IER(2));
1217                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1218                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1219                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1220                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1221                 }
1222                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1223                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1224                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1225                 seq_printf(m, "Render p-state ratio: %d\n",
1226                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1227                 seq_printf(m, "Render p-state VID: %d\n",
1228                            gt_perf_status & 0xff);
1229                 seq_printf(m, "Render p-state limit: %d\n",
1230                            rp_state_limits & 0xff);
1231                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1232                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1233                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1234                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1235                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1236                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1237                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1238                            GEN6_CURICONT_MASK);
1239                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1240                            GEN6_CURBSYTAVG_MASK);
1241                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1242                            GEN6_CURBSYTAVG_MASK);
1243                 seq_printf(m, "Up threshold: %d%%\n",
1244                            dev_priv->rps.up_threshold);
1245
1246                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1247                            GEN6_CURIAVG_MASK);
1248                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1249                            GEN6_CURBSYTAVG_MASK);
1250                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1251                            GEN6_CURBSYTAVG_MASK);
1252                 seq_printf(m, "Down threshold: %d%%\n",
1253                            dev_priv->rps.down_threshold);
1254
1255                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1256                             rp_state_cap >> 16) & 0xff;
1257                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1258                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1259                            intel_gpu_freq(dev_priv, max_freq));
1260
1261                 max_freq = (rp_state_cap & 0xff00) >> 8;
1262                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1263                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1264                            intel_gpu_freq(dev_priv, max_freq));
1265
1266                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1267                             rp_state_cap >> 0) & 0xff;
1268                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1269                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1270                            intel_gpu_freq(dev_priv, max_freq));
1271                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1272                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1273
1274                 seq_printf(m, "Current freq: %d MHz\n",
1275                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1276                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1277                 seq_printf(m, "Idle freq: %d MHz\n",
1278                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1279                 seq_printf(m, "Min freq: %d MHz\n",
1280                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1281                 seq_printf(m, "Max freq: %d MHz\n",
1282                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1283                 seq_printf(m,
1284                            "efficient (RPe) frequency: %d MHz\n",
1285                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1286         } else if (IS_VALLEYVIEW(dev)) {
1287                 u32 freq_sts;
1288
1289                 mutex_lock(&dev_priv->rps.hw_lock);
1290                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1291                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1292                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1293
1294                 seq_printf(m, "actual GPU freq: %d MHz\n",
1295                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1296
1297                 seq_printf(m, "current GPU freq: %d MHz\n",
1298                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1299
1300                 seq_printf(m, "max GPU freq: %d MHz\n",
1301                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1302
1303                 seq_printf(m, "min GPU freq: %d MHz\n",
1304                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1305
1306                 seq_printf(m, "idle GPU freq: %d MHz\n",
1307                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1308
1309                 seq_printf(m,
1310                            "efficient (RPe) frequency: %d MHz\n",
1311                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1312                 mutex_unlock(&dev_priv->rps.hw_lock);
1313         } else {
1314                 seq_puts(m, "no P-state info available\n");
1315         }
1316
1317 out:
1318         intel_runtime_pm_put(dev_priv);
1319         return ret;
1320 }
1321
1322 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1323 {
1324         struct drm_info_node *node = m->private;
1325         struct drm_device *dev = node->minor->dev;
1326         struct drm_i915_private *dev_priv = dev->dev_private;
1327         struct intel_engine_cs *ring;
1328         u64 acthd[I915_NUM_RINGS];
1329         u32 seqno[I915_NUM_RINGS];
1330         int i;
1331
1332         if (!i915.enable_hangcheck) {
1333                 seq_printf(m, "Hangcheck disabled\n");
1334                 return 0;
1335         }
1336
1337         intel_runtime_pm_get(dev_priv);
1338
1339         for_each_ring(ring, dev_priv, i) {
1340                 seqno[i] = ring->get_seqno(ring, false);
1341                 acthd[i] = intel_ring_get_active_head(ring);
1342         }
1343
1344         intel_runtime_pm_put(dev_priv);
1345
1346         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1347                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1348                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1349                                             jiffies));
1350         } else
1351                 seq_printf(m, "Hangcheck inactive\n");
1352
1353         for_each_ring(ring, dev_priv, i) {
1354                 seq_printf(m, "%s:\n", ring->name);
1355                 seq_printf(m, "\tseqno = %x [current %x]\n",
1356                            ring->hangcheck.seqno, seqno[i]);
1357                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1358                            (long long)ring->hangcheck.acthd,
1359                            (long long)acthd[i]);
1360                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1361                            (long long)ring->hangcheck.max_acthd);
1362                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1363                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1364         }
1365
1366         return 0;
1367 }
1368
1369 static int ironlake_drpc_info(struct seq_file *m)
1370 {
1371         struct drm_info_node *node = m->private;
1372         struct drm_device *dev = node->minor->dev;
1373         struct drm_i915_private *dev_priv = dev->dev_private;
1374         u32 rgvmodectl, rstdbyctl;
1375         u16 crstandvid;
1376         int ret;
1377
1378         ret = mutex_lock_interruptible(&dev->struct_mutex);
1379         if (ret)
1380                 return ret;
1381         intel_runtime_pm_get(dev_priv);
1382
1383         rgvmodectl = I915_READ(MEMMODECTL);
1384         rstdbyctl = I915_READ(RSTDBYCTL);
1385         crstandvid = I915_READ16(CRSTANDVID);
1386
1387         intel_runtime_pm_put(dev_priv);
1388         mutex_unlock(&dev->struct_mutex);
1389
1390         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1391                    "yes" : "no");
1392         seq_printf(m, "Boost freq: %d\n",
1393                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1394                    MEMMODE_BOOST_FREQ_SHIFT);
1395         seq_printf(m, "HW control enabled: %s\n",
1396                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1397         seq_printf(m, "SW control enabled: %s\n",
1398                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1399         seq_printf(m, "Gated voltage change: %s\n",
1400                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1401         seq_printf(m, "Starting frequency: P%d\n",
1402                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1403         seq_printf(m, "Max P-state: P%d\n",
1404                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1405         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1406         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1407         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1408         seq_printf(m, "Render standby enabled: %s\n",
1409                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1410         seq_puts(m, "Current RS state: ");
1411         switch (rstdbyctl & RSX_STATUS_MASK) {
1412         case RSX_STATUS_ON:
1413                 seq_puts(m, "on\n");
1414                 break;
1415         case RSX_STATUS_RC1:
1416                 seq_puts(m, "RC1\n");
1417                 break;
1418         case RSX_STATUS_RC1E:
1419                 seq_puts(m, "RC1E\n");
1420                 break;
1421         case RSX_STATUS_RS1:
1422                 seq_puts(m, "RS1\n");
1423                 break;
1424         case RSX_STATUS_RS2:
1425                 seq_puts(m, "RS2 (RC6)\n");
1426                 break;
1427         case RSX_STATUS_RS3:
1428                 seq_puts(m, "RC3 (RC6+)\n");
1429                 break;
1430         default:
1431                 seq_puts(m, "unknown\n");
1432                 break;
1433         }
1434
1435         return 0;
1436 }
1437
1438 static int i915_forcewake_domains(struct seq_file *m, void *data)
1439 {
1440         struct drm_info_node *node = m->private;
1441         struct drm_device *dev = node->minor->dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         struct intel_uncore_forcewake_domain *fw_domain;
1444         int i;
1445
1446         spin_lock_irq(&dev_priv->uncore.lock);
1447         for_each_fw_domain(fw_domain, dev_priv, i) {
1448                 seq_printf(m, "%s.wake_count = %u\n",
1449                            intel_uncore_forcewake_domain_to_str(i),
1450                            fw_domain->wake_count);
1451         }
1452         spin_unlock_irq(&dev_priv->uncore.lock);
1453
1454         return 0;
1455 }
1456
1457 static int vlv_drpc_info(struct seq_file *m)
1458 {
1459         struct drm_info_node *node = m->private;
1460         struct drm_device *dev = node->minor->dev;
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         u32 rpmodectl1, rcctl1, pw_status;
1463
1464         intel_runtime_pm_get(dev_priv);
1465
1466         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1467         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1468         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1469
1470         intel_runtime_pm_put(dev_priv);
1471
1472         seq_printf(m, "Video Turbo Mode: %s\n",
1473                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1474         seq_printf(m, "Turbo enabled: %s\n",
1475                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1476         seq_printf(m, "HW control enabled: %s\n",
1477                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1478         seq_printf(m, "SW control enabled: %s\n",
1479                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1480                           GEN6_RP_MEDIA_SW_MODE));
1481         seq_printf(m, "RC6 Enabled: %s\n",
1482                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1483                                         GEN6_RC_CTL_EI_MODE(1))));
1484         seq_printf(m, "Render Power Well: %s\n",
1485                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1486         seq_printf(m, "Media Power Well: %s\n",
1487                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1488
1489         seq_printf(m, "Render RC6 residency since boot: %u\n",
1490                    I915_READ(VLV_GT_RENDER_RC6));
1491         seq_printf(m, "Media RC6 residency since boot: %u\n",
1492                    I915_READ(VLV_GT_MEDIA_RC6));
1493
1494         return i915_forcewake_domains(m, NULL);
1495 }
1496
1497 static int gen6_drpc_info(struct seq_file *m)
1498 {
1499         struct drm_info_node *node = m->private;
1500         struct drm_device *dev = node->minor->dev;
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1503         unsigned forcewake_count;
1504         int count = 0, ret;
1505
1506         ret = mutex_lock_interruptible(&dev->struct_mutex);
1507         if (ret)
1508                 return ret;
1509         intel_runtime_pm_get(dev_priv);
1510
1511         spin_lock_irq(&dev_priv->uncore.lock);
1512         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1513         spin_unlock_irq(&dev_priv->uncore.lock);
1514
1515         if (forcewake_count) {
1516                 seq_puts(m, "RC information inaccurate because somebody "
1517                             "holds a forcewake reference \n");
1518         } else {
1519                 /* NB: we cannot use forcewake, else we read the wrong values */
1520                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1521                         udelay(10);
1522                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1523         }
1524
1525         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1526         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1527
1528         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1529         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1530         mutex_unlock(&dev->struct_mutex);
1531         mutex_lock(&dev_priv->rps.hw_lock);
1532         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1533         mutex_unlock(&dev_priv->rps.hw_lock);
1534
1535         intel_runtime_pm_put(dev_priv);
1536
1537         seq_printf(m, "Video Turbo Mode: %s\n",
1538                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1539         seq_printf(m, "HW control enabled: %s\n",
1540                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1541         seq_printf(m, "SW control enabled: %s\n",
1542                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1543                           GEN6_RP_MEDIA_SW_MODE));
1544         seq_printf(m, "RC1e Enabled: %s\n",
1545                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1546         seq_printf(m, "RC6 Enabled: %s\n",
1547                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1548         seq_printf(m, "Deep RC6 Enabled: %s\n",
1549                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1550         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1551                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1552         seq_puts(m, "Current RC state: ");
1553         switch (gt_core_status & GEN6_RCn_MASK) {
1554         case GEN6_RC0:
1555                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1556                         seq_puts(m, "Core Power Down\n");
1557                 else
1558                         seq_puts(m, "on\n");
1559                 break;
1560         case GEN6_RC3:
1561                 seq_puts(m, "RC3\n");
1562                 break;
1563         case GEN6_RC6:
1564                 seq_puts(m, "RC6\n");
1565                 break;
1566         case GEN6_RC7:
1567                 seq_puts(m, "RC7\n");
1568                 break;
1569         default:
1570                 seq_puts(m, "Unknown\n");
1571                 break;
1572         }
1573
1574         seq_printf(m, "Core Power Down: %s\n",
1575                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1576
1577         /* Not exactly sure what this is */
1578         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1579                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1580         seq_printf(m, "RC6 residency since boot: %u\n",
1581                    I915_READ(GEN6_GT_GFX_RC6));
1582         seq_printf(m, "RC6+ residency since boot: %u\n",
1583                    I915_READ(GEN6_GT_GFX_RC6p));
1584         seq_printf(m, "RC6++ residency since boot: %u\n",
1585                    I915_READ(GEN6_GT_GFX_RC6pp));
1586
1587         seq_printf(m, "RC6   voltage: %dmV\n",
1588                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1589         seq_printf(m, "RC6+  voltage: %dmV\n",
1590                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1591         seq_printf(m, "RC6++ voltage: %dmV\n",
1592                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1593         return 0;
1594 }
1595
1596 static int i915_drpc_info(struct seq_file *m, void *unused)
1597 {
1598         struct drm_info_node *node = m->private;
1599         struct drm_device *dev = node->minor->dev;
1600
1601         if (IS_VALLEYVIEW(dev))
1602                 return vlv_drpc_info(m);
1603         else if (INTEL_INFO(dev)->gen >= 6)
1604                 return gen6_drpc_info(m);
1605         else
1606                 return ironlake_drpc_info(m);
1607 }
1608
1609 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1610 {
1611         struct drm_info_node *node = m->private;
1612         struct drm_device *dev = node->minor->dev;
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614
1615         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1616                    dev_priv->fb_tracking.busy_bits);
1617
1618         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1619                    dev_priv->fb_tracking.flip_bits);
1620
1621         return 0;
1622 }
1623
1624 static int i915_fbc_status(struct seq_file *m, void *unused)
1625 {
1626         struct drm_info_node *node = m->private;
1627         struct drm_device *dev = node->minor->dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630         if (!HAS_FBC(dev)) {
1631                 seq_puts(m, "FBC unsupported on this chipset\n");
1632                 return 0;
1633         }
1634
1635         intel_runtime_pm_get(dev_priv);
1636         mutex_lock(&dev_priv->fbc.lock);
1637
1638         if (intel_fbc_enabled(dev_priv))
1639                 seq_puts(m, "FBC enabled\n");
1640         else
1641                 seq_printf(m, "FBC disabled: %s\n",
1642                           intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
1643
1644         if (INTEL_INFO(dev_priv)->gen >= 7)
1645                 seq_printf(m, "Compressing: %s\n",
1646                            yesno(I915_READ(FBC_STATUS2) &
1647                                  FBC_COMPRESSION_MASK));
1648
1649         mutex_unlock(&dev_priv->fbc.lock);
1650         intel_runtime_pm_put(dev_priv);
1651
1652         return 0;
1653 }
1654
1655 static int i915_fbc_fc_get(void *data, u64 *val)
1656 {
1657         struct drm_device *dev = data;
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659
1660         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1661                 return -ENODEV;
1662
1663         *val = dev_priv->fbc.false_color;
1664
1665         return 0;
1666 }
1667
1668 static int i915_fbc_fc_set(void *data, u64 val)
1669 {
1670         struct drm_device *dev = data;
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672         u32 reg;
1673
1674         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1675                 return -ENODEV;
1676
1677         mutex_lock(&dev_priv->fbc.lock);
1678
1679         reg = I915_READ(ILK_DPFC_CONTROL);
1680         dev_priv->fbc.false_color = val;
1681
1682         I915_WRITE(ILK_DPFC_CONTROL, val ?
1683                    (reg | FBC_CTL_FALSE_COLOR) :
1684                    (reg & ~FBC_CTL_FALSE_COLOR));
1685
1686         mutex_unlock(&dev_priv->fbc.lock);
1687         return 0;
1688 }
1689
1690 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1691                         i915_fbc_fc_get, i915_fbc_fc_set,
1692                         "%llu\n");
1693
1694 static int i915_ips_status(struct seq_file *m, void *unused)
1695 {
1696         struct drm_info_node *node = m->private;
1697         struct drm_device *dev = node->minor->dev;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700         if (!HAS_IPS(dev)) {
1701                 seq_puts(m, "not supported\n");
1702                 return 0;
1703         }
1704
1705         intel_runtime_pm_get(dev_priv);
1706
1707         seq_printf(m, "Enabled by kernel parameter: %s\n",
1708                    yesno(i915.enable_ips));
1709
1710         if (INTEL_INFO(dev)->gen >= 8) {
1711                 seq_puts(m, "Currently: unknown\n");
1712         } else {
1713                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1714                         seq_puts(m, "Currently: enabled\n");
1715                 else
1716                         seq_puts(m, "Currently: disabled\n");
1717         }
1718
1719         intel_runtime_pm_put(dev_priv);
1720
1721         return 0;
1722 }
1723
1724 static int i915_sr_status(struct seq_file *m, void *unused)
1725 {
1726         struct drm_info_node *node = m->private;
1727         struct drm_device *dev = node->minor->dev;
1728         struct drm_i915_private *dev_priv = dev->dev_private;
1729         bool sr_enabled = false;
1730
1731         intel_runtime_pm_get(dev_priv);
1732
1733         if (HAS_PCH_SPLIT(dev))
1734                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1735         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1736                  IS_I945G(dev) || IS_I945GM(dev))
1737                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1738         else if (IS_I915GM(dev))
1739                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1740         else if (IS_PINEVIEW(dev))
1741                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1742         else if (IS_VALLEYVIEW(dev))
1743                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1744
1745         intel_runtime_pm_put(dev_priv);
1746
1747         seq_printf(m, "self-refresh: %s\n",
1748                    sr_enabled ? "enabled" : "disabled");
1749
1750         return 0;
1751 }
1752
1753 static int i915_emon_status(struct seq_file *m, void *unused)
1754 {
1755         struct drm_info_node *node = m->private;
1756         struct drm_device *dev = node->minor->dev;
1757         struct drm_i915_private *dev_priv = dev->dev_private;
1758         unsigned long temp, chipset, gfx;
1759         int ret;
1760
1761         if (!IS_GEN5(dev))
1762                 return -ENODEV;
1763
1764         ret = mutex_lock_interruptible(&dev->struct_mutex);
1765         if (ret)
1766                 return ret;
1767
1768         temp = i915_mch_val(dev_priv);
1769         chipset = i915_chipset_val(dev_priv);
1770         gfx = i915_gfx_val(dev_priv);
1771         mutex_unlock(&dev->struct_mutex);
1772
1773         seq_printf(m, "GMCH temp: %ld\n", temp);
1774         seq_printf(m, "Chipset power: %ld\n", chipset);
1775         seq_printf(m, "GFX power: %ld\n", gfx);
1776         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1777
1778         return 0;
1779 }
1780
1781 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1782 {
1783         struct drm_info_node *node = m->private;
1784         struct drm_device *dev = node->minor->dev;
1785         struct drm_i915_private *dev_priv = dev->dev_private;
1786         int ret = 0;
1787         int gpu_freq, ia_freq;
1788         unsigned int max_gpu_freq, min_gpu_freq;
1789
1790         if (!HAS_CORE_RING_FREQ(dev)) {
1791                 seq_puts(m, "unsupported on this chipset\n");
1792                 return 0;
1793         }
1794
1795         intel_runtime_pm_get(dev_priv);
1796
1797         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1798
1799         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1800         if (ret)
1801                 goto out;
1802
1803         if (IS_SKYLAKE(dev)) {
1804                 /* Convert GT frequency to 50 HZ units */
1805                 min_gpu_freq =
1806                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1807                 max_gpu_freq =
1808                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1809         } else {
1810                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1811                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1812         }
1813
1814         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1815
1816         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1817                 ia_freq = gpu_freq;
1818                 sandybridge_pcode_read(dev_priv,
1819                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1820                                        &ia_freq);
1821                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1822                            intel_gpu_freq(dev_priv, (gpu_freq *
1823                                 (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
1824                            ((ia_freq >> 0) & 0xff) * 100,
1825                            ((ia_freq >> 8) & 0xff) * 100);
1826         }
1827
1828         mutex_unlock(&dev_priv->rps.hw_lock);
1829
1830 out:
1831         intel_runtime_pm_put(dev_priv);
1832         return ret;
1833 }
1834
1835 static int i915_opregion(struct seq_file *m, void *unused)
1836 {
1837         struct drm_info_node *node = m->private;
1838         struct drm_device *dev = node->minor->dev;
1839         struct drm_i915_private *dev_priv = dev->dev_private;
1840         struct intel_opregion *opregion = &dev_priv->opregion;
1841         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1842         int ret;
1843
1844         if (data == NULL)
1845                 return -ENOMEM;
1846
1847         ret = mutex_lock_interruptible(&dev->struct_mutex);
1848         if (ret)
1849                 goto out;
1850
1851         if (opregion->header) {
1852                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1853                 seq_write(m, data, OPREGION_SIZE);
1854         }
1855
1856         mutex_unlock(&dev->struct_mutex);
1857
1858 out:
1859         kfree(data);
1860         return 0;
1861 }
1862
1863 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1864 {
1865         struct drm_info_node *node = m->private;
1866         struct drm_device *dev = node->minor->dev;
1867         struct intel_fbdev *ifbdev = NULL;
1868         struct intel_framebuffer *fb;
1869
1870 #ifdef CONFIG_DRM_I915_FBDEV
1871         struct drm_i915_private *dev_priv = dev->dev_private;
1872
1873         ifbdev = dev_priv->fbdev;
1874         fb = to_intel_framebuffer(ifbdev->helper.fb);
1875
1876         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1877                    fb->base.width,
1878                    fb->base.height,
1879                    fb->base.depth,
1880                    fb->base.bits_per_pixel,
1881                    fb->base.modifier[0],
1882                    atomic_read(&fb->base.refcount.refcount));
1883         describe_obj(m, fb->obj);
1884         seq_putc(m, '\n');
1885 #endif
1886
1887         mutex_lock(&dev->mode_config.fb_lock);
1888         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1889                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1890                         continue;
1891
1892                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1893                            fb->base.width,
1894                            fb->base.height,
1895                            fb->base.depth,
1896                            fb->base.bits_per_pixel,
1897                            fb->base.modifier[0],
1898                            atomic_read(&fb->base.refcount.refcount));
1899                 describe_obj(m, fb->obj);
1900                 seq_putc(m, '\n');
1901         }
1902         mutex_unlock(&dev->mode_config.fb_lock);
1903
1904         return 0;
1905 }
1906
1907 static void describe_ctx_ringbuf(struct seq_file *m,
1908                                  struct intel_ringbuffer *ringbuf)
1909 {
1910         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1911                    ringbuf->space, ringbuf->head, ringbuf->tail,
1912                    ringbuf->last_retired_head);
1913 }
1914
1915 static int i915_context_status(struct seq_file *m, void *unused)
1916 {
1917         struct drm_info_node *node = m->private;
1918         struct drm_device *dev = node->minor->dev;
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         struct intel_engine_cs *ring;
1921         struct intel_context *ctx;
1922         int ret, i;
1923
1924         ret = mutex_lock_interruptible(&dev->struct_mutex);
1925         if (ret)
1926                 return ret;
1927
1928         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1929                 if (!i915.enable_execlists &&
1930                     ctx->legacy_hw_ctx.rcs_state == NULL)
1931                         continue;
1932
1933                 seq_puts(m, "HW context ");
1934                 describe_ctx(m, ctx);
1935                 for_each_ring(ring, dev_priv, i) {
1936                         if (ring->default_context == ctx)
1937                                 seq_printf(m, "(default context %s) ",
1938                                            ring->name);
1939                 }
1940
1941                 if (i915.enable_execlists) {
1942                         seq_putc(m, '\n');
1943                         for_each_ring(ring, dev_priv, i) {
1944                                 struct drm_i915_gem_object *ctx_obj =
1945                                         ctx->engine[i].state;
1946                                 struct intel_ringbuffer *ringbuf =
1947                                         ctx->engine[i].ringbuf;
1948
1949                                 seq_printf(m, "%s: ", ring->name);
1950                                 if (ctx_obj)
1951                                         describe_obj(m, ctx_obj);
1952                                 if (ringbuf)
1953                                         describe_ctx_ringbuf(m, ringbuf);
1954                                 seq_putc(m, '\n');
1955                         }
1956                 } else {
1957                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1958                 }
1959
1960                 seq_putc(m, '\n');
1961         }
1962
1963         mutex_unlock(&dev->struct_mutex);
1964
1965         return 0;
1966 }
1967
1968 static void i915_dump_lrc_obj(struct seq_file *m,
1969                               struct intel_engine_cs *ring,
1970                               struct drm_i915_gem_object *ctx_obj)
1971 {
1972         struct page *page;
1973         uint32_t *reg_state;
1974         int j;
1975         unsigned long ggtt_offset = 0;
1976
1977         if (ctx_obj == NULL) {
1978                 seq_printf(m, "Context on %s with no gem object\n",
1979                            ring->name);
1980                 return;
1981         }
1982
1983         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1984                    intel_execlists_ctx_id(ctx_obj));
1985
1986         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1987                 seq_puts(m, "\tNot bound in GGTT\n");
1988         else
1989                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1990
1991         if (i915_gem_object_get_pages(ctx_obj)) {
1992                 seq_puts(m, "\tFailed to get pages for context object\n");
1993                 return;
1994         }
1995
1996         page = i915_gem_object_get_page(ctx_obj, 1);
1997         if (!WARN_ON(page == NULL)) {
1998                 reg_state = kmap_atomic(page);
1999
2000                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2001                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2002                                    ggtt_offset + 4096 + (j * 4),
2003                                    reg_state[j], reg_state[j + 1],
2004                                    reg_state[j + 2], reg_state[j + 3]);
2005                 }
2006                 kunmap_atomic(reg_state);
2007         }
2008
2009         seq_putc(m, '\n');
2010 }
2011
2012 static int i915_dump_lrc(struct seq_file *m, void *unused)
2013 {
2014         struct drm_info_node *node = (struct drm_info_node *) m->private;
2015         struct drm_device *dev = node->minor->dev;
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         struct intel_engine_cs *ring;
2018         struct intel_context *ctx;
2019         int ret, i;
2020
2021         if (!i915.enable_execlists) {
2022                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2023                 return 0;
2024         }
2025
2026         ret = mutex_lock_interruptible(&dev->struct_mutex);
2027         if (ret)
2028                 return ret;
2029
2030         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2031                 for_each_ring(ring, dev_priv, i) {
2032                         if (ring->default_context != ctx)
2033                                 i915_dump_lrc_obj(m, ring,
2034                                                   ctx->engine[i].state);
2035                 }
2036         }
2037
2038         mutex_unlock(&dev->struct_mutex);
2039
2040         return 0;
2041 }
2042
2043 static int i915_execlists(struct seq_file *m, void *data)
2044 {
2045         struct drm_info_node *node = (struct drm_info_node *)m->private;
2046         struct drm_device *dev = node->minor->dev;
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         struct intel_engine_cs *ring;
2049         u32 status_pointer;
2050         u8 read_pointer;
2051         u8 write_pointer;
2052         u32 status;
2053         u32 ctx_id;
2054         struct list_head *cursor;
2055         int ring_id, i;
2056         int ret;
2057
2058         if (!i915.enable_execlists) {
2059                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2060                 return 0;
2061         }
2062
2063         ret = mutex_lock_interruptible(&dev->struct_mutex);
2064         if (ret)
2065                 return ret;
2066
2067         intel_runtime_pm_get(dev_priv);
2068
2069         for_each_ring(ring, dev_priv, ring_id) {
2070                 struct drm_i915_gem_request *head_req = NULL;
2071                 int count = 0;
2072                 unsigned long flags;
2073
2074                 seq_printf(m, "%s\n", ring->name);
2075
2076                 status = I915_READ(RING_EXECLIST_STATUS(ring));
2077                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2078                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2079                            status, ctx_id);
2080
2081                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2082                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2083
2084                 read_pointer = ring->next_context_status_buffer;
2085                 write_pointer = status_pointer & 0x07;
2086                 if (read_pointer > write_pointer)
2087                         write_pointer += 6;
2088                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2089                            read_pointer, write_pointer);
2090
2091                 for (i = 0; i < 6; i++) {
2092                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2093                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2094
2095                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2096                                    i, status, ctx_id);
2097                 }
2098
2099                 spin_lock_irqsave(&ring->execlist_lock, flags);
2100                 list_for_each(cursor, &ring->execlist_queue)
2101                         count++;
2102                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2103                                 struct drm_i915_gem_request, execlist_link);
2104                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2105
2106                 seq_printf(m, "\t%d requests in queue\n", count);
2107                 if (head_req) {
2108                         struct drm_i915_gem_object *ctx_obj;
2109
2110                         ctx_obj = head_req->ctx->engine[ring_id].state;
2111                         seq_printf(m, "\tHead request id: %u\n",
2112                                    intel_execlists_ctx_id(ctx_obj));
2113                         seq_printf(m, "\tHead request tail: %u\n",
2114                                    head_req->tail);
2115                 }
2116
2117                 seq_putc(m, '\n');
2118         }
2119
2120         intel_runtime_pm_put(dev_priv);
2121         mutex_unlock(&dev->struct_mutex);
2122
2123         return 0;
2124 }
2125
2126 static const char *swizzle_string(unsigned swizzle)
2127 {
2128         switch (swizzle) {
2129         case I915_BIT_6_SWIZZLE_NONE:
2130                 return "none";
2131         case I915_BIT_6_SWIZZLE_9:
2132                 return "bit9";
2133         case I915_BIT_6_SWIZZLE_9_10:
2134                 return "bit9/bit10";
2135         case I915_BIT_6_SWIZZLE_9_11:
2136                 return "bit9/bit11";
2137         case I915_BIT_6_SWIZZLE_9_10_11:
2138                 return "bit9/bit10/bit11";
2139         case I915_BIT_6_SWIZZLE_9_17:
2140                 return "bit9/bit17";
2141         case I915_BIT_6_SWIZZLE_9_10_17:
2142                 return "bit9/bit10/bit17";
2143         case I915_BIT_6_SWIZZLE_UNKNOWN:
2144                 return "unknown";
2145         }
2146
2147         return "bug";
2148 }
2149
2150 static int i915_swizzle_info(struct seq_file *m, void *data)
2151 {
2152         struct drm_info_node *node = m->private;
2153         struct drm_device *dev = node->minor->dev;
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         int ret;
2156
2157         ret = mutex_lock_interruptible(&dev->struct_mutex);
2158         if (ret)
2159                 return ret;
2160         intel_runtime_pm_get(dev_priv);
2161
2162         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2163                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2164         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2165                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2166
2167         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2168                 seq_printf(m, "DDC = 0x%08x\n",
2169                            I915_READ(DCC));
2170                 seq_printf(m, "DDC2 = 0x%08x\n",
2171                            I915_READ(DCC2));
2172                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2173                            I915_READ16(C0DRB3));
2174                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2175                            I915_READ16(C1DRB3));
2176         } else if (INTEL_INFO(dev)->gen >= 6) {
2177                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2178                            I915_READ(MAD_DIMM_C0));
2179                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2180                            I915_READ(MAD_DIMM_C1));
2181                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2182                            I915_READ(MAD_DIMM_C2));
2183                 seq_printf(m, "TILECTL = 0x%08x\n",
2184                            I915_READ(TILECTL));
2185                 if (INTEL_INFO(dev)->gen >= 8)
2186                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2187                                    I915_READ(GAMTARBMODE));
2188                 else
2189                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2190                                    I915_READ(ARB_MODE));
2191                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2192                            I915_READ(DISP_ARB_CTL));
2193         }
2194
2195         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2196                 seq_puts(m, "L-shaped memory detected\n");
2197
2198         intel_runtime_pm_put(dev_priv);
2199         mutex_unlock(&dev->struct_mutex);
2200
2201         return 0;
2202 }
2203
2204 static int per_file_ctx(int id, void *ptr, void *data)
2205 {
2206         struct intel_context *ctx = ptr;
2207         struct seq_file *m = data;
2208         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2209
2210         if (!ppgtt) {
2211                 seq_printf(m, "  no ppgtt for context %d\n",
2212                            ctx->user_handle);
2213                 return 0;
2214         }
2215
2216         if (i915_gem_context_is_default(ctx))
2217                 seq_puts(m, "  default context:\n");
2218         else
2219                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2220         ppgtt->debug_dump(ppgtt, m);
2221
2222         return 0;
2223 }
2224
2225 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2226 {
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228         struct intel_engine_cs *ring;
2229         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2230         int unused, i;
2231
2232         if (!ppgtt)
2233                 return;
2234
2235         for_each_ring(ring, dev_priv, unused) {
2236                 seq_printf(m, "%s\n", ring->name);
2237                 for (i = 0; i < 4; i++) {
2238                         u32 offset = 0x270 + i * 8;
2239                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2240                         pdp <<= 32;
2241                         pdp |= I915_READ(ring->mmio_base + offset);
2242                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2243                 }
2244         }
2245 }
2246
2247 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2248 {
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         struct intel_engine_cs *ring;
2251         struct drm_file *file;
2252         int i;
2253
2254         if (INTEL_INFO(dev)->gen == 6)
2255                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2256
2257         for_each_ring(ring, dev_priv, i) {
2258                 seq_printf(m, "%s\n", ring->name);
2259                 if (INTEL_INFO(dev)->gen == 7)
2260                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2261                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2262                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2263                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2264         }
2265         if (dev_priv->mm.aliasing_ppgtt) {
2266                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2267
2268                 seq_puts(m, "aliasing PPGTT:\n");
2269                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2270
2271                 ppgtt->debug_dump(ppgtt, m);
2272         }
2273
2274         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2275                 struct drm_i915_file_private *file_priv = file->driver_priv;
2276
2277                 seq_printf(m, "proc: %s\n",
2278                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2279                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2280         }
2281         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2282 }
2283
2284 static int i915_ppgtt_info(struct seq_file *m, void *data)
2285 {
2286         struct drm_info_node *node = m->private;
2287         struct drm_device *dev = node->minor->dev;
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289
2290         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2291         if (ret)
2292                 return ret;
2293         intel_runtime_pm_get(dev_priv);
2294
2295         if (INTEL_INFO(dev)->gen >= 8)
2296                 gen8_ppgtt_info(m, dev);
2297         else if (INTEL_INFO(dev)->gen >= 6)
2298                 gen6_ppgtt_info(m, dev);
2299
2300         intel_runtime_pm_put(dev_priv);
2301         mutex_unlock(&dev->struct_mutex);
2302
2303         return 0;
2304 }
2305
2306 static int count_irq_waiters(struct drm_i915_private *i915)
2307 {
2308         struct intel_engine_cs *ring;
2309         int count = 0;
2310         int i;
2311
2312         for_each_ring(ring, i915, i)
2313                 count += ring->irq_refcount;
2314
2315         return count;
2316 }
2317
2318 static int i915_rps_boost_info(struct seq_file *m, void *data)
2319 {
2320         struct drm_info_node *node = m->private;
2321         struct drm_device *dev = node->minor->dev;
2322         struct drm_i915_private *dev_priv = dev->dev_private;
2323         struct drm_file *file;
2324
2325         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2326         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2327         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2328         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2329                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2330                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2331                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2332                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2333                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2334         spin_lock(&dev_priv->rps.client_lock);
2335         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2336                 struct drm_i915_file_private *file_priv = file->driver_priv;
2337                 struct task_struct *task;
2338
2339                 rcu_read_lock();
2340                 task = pid_task(file->pid, PIDTYPE_PID);
2341                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2342                            task ? task->comm : "<unknown>",
2343                            task ? task->pid : -1,
2344                            file_priv->rps.boosts,
2345                            list_empty(&file_priv->rps.link) ? "" : ", active");
2346                 rcu_read_unlock();
2347         }
2348         seq_printf(m, "Semaphore boosts: %d%s\n",
2349                    dev_priv->rps.semaphores.boosts,
2350                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2351         seq_printf(m, "MMIO flip boosts: %d%s\n",
2352                    dev_priv->rps.mmioflips.boosts,
2353                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2354         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2355         spin_unlock(&dev_priv->rps.client_lock);
2356
2357         return 0;
2358 }
2359
2360 static int i915_llc(struct seq_file *m, void *data)
2361 {
2362         struct drm_info_node *node = m->private;
2363         struct drm_device *dev = node->minor->dev;
2364         struct drm_i915_private *dev_priv = dev->dev_private;
2365
2366         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2367         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2368         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2369
2370         return 0;
2371 }
2372
2373 static int i915_edp_psr_status(struct seq_file *m, void *data)
2374 {
2375         struct drm_info_node *node = m->private;
2376         struct drm_device *dev = node->minor->dev;
2377         struct drm_i915_private *dev_priv = dev->dev_private;
2378         u32 psrperf = 0;
2379         u32 stat[3];
2380         enum pipe pipe;
2381         bool enabled = false;
2382
2383         if (!HAS_PSR(dev)) {
2384                 seq_puts(m, "PSR not supported\n");
2385                 return 0;
2386         }
2387
2388         intel_runtime_pm_get(dev_priv);
2389
2390         mutex_lock(&dev_priv->psr.lock);
2391         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2392         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2393         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2394         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2395         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2396                    dev_priv->psr.busy_frontbuffer_bits);
2397         seq_printf(m, "Re-enable work scheduled: %s\n",
2398                    yesno(work_busy(&dev_priv->psr.work.work)));
2399
2400         if (HAS_DDI(dev))
2401                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2402         else {
2403                 for_each_pipe(dev_priv, pipe) {
2404                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2405                                 VLV_EDP_PSR_CURR_STATE_MASK;
2406                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2407                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2408                                 enabled = true;
2409                 }
2410         }
2411         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2412
2413         if (!HAS_DDI(dev))
2414                 for_each_pipe(dev_priv, pipe) {
2415                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2416                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2417                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2418                 }
2419         seq_puts(m, "\n");
2420
2421         /* CHV PSR has no kind of performance counter */
2422         if (HAS_DDI(dev)) {
2423                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2424                         EDP_PSR_PERF_CNT_MASK;
2425
2426                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2427         }
2428         mutex_unlock(&dev_priv->psr.lock);
2429
2430         intel_runtime_pm_put(dev_priv);
2431         return 0;
2432 }
2433
2434 static int i915_sink_crc(struct seq_file *m, void *data)
2435 {
2436         struct drm_info_node *node = m->private;
2437         struct drm_device *dev = node->minor->dev;
2438         struct intel_encoder *encoder;
2439         struct intel_connector *connector;
2440         struct intel_dp *intel_dp = NULL;
2441         int ret;
2442         u8 crc[6];
2443
2444         drm_modeset_lock_all(dev);
2445         for_each_intel_connector(dev, connector) {
2446
2447                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2448                         continue;
2449
2450                 if (!connector->base.encoder)
2451                         continue;
2452
2453                 encoder = to_intel_encoder(connector->base.encoder);
2454                 if (encoder->type != INTEL_OUTPUT_EDP)
2455                         continue;
2456
2457                 intel_dp = enc_to_intel_dp(&encoder->base);
2458
2459                 ret = intel_dp_sink_crc(intel_dp, crc);
2460                 if (ret)
2461                         goto out;
2462
2463                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2464                            crc[0], crc[1], crc[2],
2465                            crc[3], crc[4], crc[5]);
2466                 goto out;
2467         }
2468         ret = -ENODEV;
2469 out:
2470         drm_modeset_unlock_all(dev);
2471         return ret;
2472 }
2473
2474 static int i915_energy_uJ(struct seq_file *m, void *data)
2475 {
2476         struct drm_info_node *node = m->private;
2477         struct drm_device *dev = node->minor->dev;
2478         struct drm_i915_private *dev_priv = dev->dev_private;
2479         u64 power;
2480         u32 units;
2481
2482         if (INTEL_INFO(dev)->gen < 6)
2483                 return -ENODEV;
2484
2485         intel_runtime_pm_get(dev_priv);
2486
2487         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2488         power = (power & 0x1f00) >> 8;
2489         units = 1000000 / (1 << power); /* convert to uJ */
2490         power = I915_READ(MCH_SECP_NRG_STTS);
2491         power *= units;
2492
2493         intel_runtime_pm_put(dev_priv);
2494
2495         seq_printf(m, "%llu", (long long unsigned)power);
2496
2497         return 0;
2498 }
2499
2500 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2501 {
2502         struct drm_info_node *node = m->private;
2503         struct drm_device *dev = node->minor->dev;
2504         struct drm_i915_private *dev_priv = dev->dev_private;
2505
2506         if (!HAS_RUNTIME_PM(dev)) {
2507                 seq_puts(m, "not supported\n");
2508                 return 0;
2509         }
2510
2511         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2512         seq_printf(m, "IRQs disabled: %s\n",
2513                    yesno(!intel_irqs_enabled(dev_priv)));
2514 #ifdef CONFIG_PM
2515         seq_printf(m, "Usage count: %d\n",
2516                    atomic_read(&dev->dev->power.usage_count));
2517 #else
2518         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2519 #endif
2520
2521         return 0;
2522 }
2523
2524 static const char *power_domain_str(enum intel_display_power_domain domain)
2525 {
2526         switch (domain) {
2527         case POWER_DOMAIN_PIPE_A:
2528                 return "PIPE_A";
2529         case POWER_DOMAIN_PIPE_B:
2530                 return "PIPE_B";
2531         case POWER_DOMAIN_PIPE_C:
2532                 return "PIPE_C";
2533         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2534                 return "PIPE_A_PANEL_FITTER";
2535         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2536                 return "PIPE_B_PANEL_FITTER";
2537         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2538                 return "PIPE_C_PANEL_FITTER";
2539         case POWER_DOMAIN_TRANSCODER_A:
2540                 return "TRANSCODER_A";
2541         case POWER_DOMAIN_TRANSCODER_B:
2542                 return "TRANSCODER_B";
2543         case POWER_DOMAIN_TRANSCODER_C:
2544                 return "TRANSCODER_C";
2545         case POWER_DOMAIN_TRANSCODER_EDP:
2546                 return "TRANSCODER_EDP";
2547         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2548                 return "PORT_DDI_A_2_LANES";
2549         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2550                 return "PORT_DDI_A_4_LANES";
2551         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2552                 return "PORT_DDI_B_2_LANES";
2553         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2554                 return "PORT_DDI_B_4_LANES";
2555         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2556                 return "PORT_DDI_C_2_LANES";
2557         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2558                 return "PORT_DDI_C_4_LANES";
2559         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2560                 return "PORT_DDI_D_2_LANES";
2561         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2562                 return "PORT_DDI_D_4_LANES";
2563         case POWER_DOMAIN_PORT_DSI:
2564                 return "PORT_DSI";
2565         case POWER_DOMAIN_PORT_CRT:
2566                 return "PORT_CRT";
2567         case POWER_DOMAIN_PORT_OTHER:
2568                 return "PORT_OTHER";
2569         case POWER_DOMAIN_VGA:
2570                 return "VGA";
2571         case POWER_DOMAIN_AUDIO:
2572                 return "AUDIO";
2573         case POWER_DOMAIN_PLLS:
2574                 return "PLLS";
2575         case POWER_DOMAIN_AUX_A:
2576                 return "AUX_A";
2577         case POWER_DOMAIN_AUX_B:
2578                 return "AUX_B";
2579         case POWER_DOMAIN_AUX_C:
2580                 return "AUX_C";
2581         case POWER_DOMAIN_AUX_D:
2582                 return "AUX_D";
2583         case POWER_DOMAIN_INIT:
2584                 return "INIT";
2585         default:
2586                 MISSING_CASE(domain);
2587                 return "?";
2588         }
2589 }
2590
2591 static int i915_power_domain_info(struct seq_file *m, void *unused)
2592 {
2593         struct drm_info_node *node = m->private;
2594         struct drm_device *dev = node->minor->dev;
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2597         int i;
2598
2599         mutex_lock(&power_domains->lock);
2600
2601         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2602         for (i = 0; i < power_domains->power_well_count; i++) {
2603                 struct i915_power_well *power_well;
2604                 enum intel_display_power_domain power_domain;
2605
2606                 power_well = &power_domains->power_wells[i];
2607                 seq_printf(m, "%-25s %d\n", power_well->name,
2608                            power_well->count);
2609
2610                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2611                      power_domain++) {
2612                         if (!(BIT(power_domain) & power_well->domains))
2613                                 continue;
2614
2615                         seq_printf(m, "  %-23s %d\n",
2616                                  power_domain_str(power_domain),
2617                                  power_domains->domain_use_count[power_domain]);
2618                 }
2619         }
2620
2621         mutex_unlock(&power_domains->lock);
2622
2623         return 0;
2624 }
2625
2626 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2627                                  struct drm_display_mode *mode)
2628 {
2629         int i;
2630
2631         for (i = 0; i < tabs; i++)
2632                 seq_putc(m, '\t');
2633
2634         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2635                    mode->base.id, mode->name,
2636                    mode->vrefresh, mode->clock,
2637                    mode->hdisplay, mode->hsync_start,
2638                    mode->hsync_end, mode->htotal,
2639                    mode->vdisplay, mode->vsync_start,
2640                    mode->vsync_end, mode->vtotal,
2641                    mode->type, mode->flags);
2642 }
2643
2644 static void intel_encoder_info(struct seq_file *m,
2645                                struct intel_crtc *intel_crtc,
2646                                struct intel_encoder *intel_encoder)
2647 {
2648         struct drm_info_node *node = m->private;
2649         struct drm_device *dev = node->minor->dev;
2650         struct drm_crtc *crtc = &intel_crtc->base;
2651         struct intel_connector *intel_connector;
2652         struct drm_encoder *encoder;
2653
2654         encoder = &intel_encoder->base;
2655         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2656                    encoder->base.id, encoder->name);
2657         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2658                 struct drm_connector *connector = &intel_connector->base;
2659                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2660                            connector->base.id,
2661                            connector->name,
2662                            drm_get_connector_status_name(connector->status));
2663                 if (connector->status == connector_status_connected) {
2664                         struct drm_display_mode *mode = &crtc->mode;
2665                         seq_printf(m, ", mode:\n");
2666                         intel_seq_print_mode(m, 2, mode);
2667                 } else {
2668                         seq_putc(m, '\n');
2669                 }
2670         }
2671 }
2672
2673 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2674 {
2675         struct drm_info_node *node = m->private;
2676         struct drm_device *dev = node->minor->dev;
2677         struct drm_crtc *crtc = &intel_crtc->base;
2678         struct intel_encoder *intel_encoder;
2679
2680         if (crtc->primary->fb)
2681                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2682                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2683                            crtc->primary->fb->width, crtc->primary->fb->height);
2684         else
2685                 seq_puts(m, "\tprimary plane disabled\n");
2686         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2687                 intel_encoder_info(m, intel_crtc, intel_encoder);
2688 }
2689
2690 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2691 {
2692         struct drm_display_mode *mode = panel->fixed_mode;
2693
2694         seq_printf(m, "\tfixed mode:\n");
2695         intel_seq_print_mode(m, 2, mode);
2696 }
2697
2698 static void intel_dp_info(struct seq_file *m,
2699                           struct intel_connector *intel_connector)
2700 {
2701         struct intel_encoder *intel_encoder = intel_connector->encoder;
2702         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2703
2704         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2705         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2706                    "no");
2707         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2708                 intel_panel_info(m, &intel_connector->panel);
2709 }
2710
2711 static void intel_hdmi_info(struct seq_file *m,
2712                             struct intel_connector *intel_connector)
2713 {
2714         struct intel_encoder *intel_encoder = intel_connector->encoder;
2715         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2716
2717         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2718                    "no");
2719 }
2720
2721 static void intel_lvds_info(struct seq_file *m,
2722                             struct intel_connector *intel_connector)
2723 {
2724         intel_panel_info(m, &intel_connector->panel);
2725 }
2726
2727 static void intel_connector_info(struct seq_file *m,
2728                                  struct drm_connector *connector)
2729 {
2730         struct intel_connector *intel_connector = to_intel_connector(connector);
2731         struct intel_encoder *intel_encoder = intel_connector->encoder;
2732         struct drm_display_mode *mode;
2733
2734         seq_printf(m, "connector %d: type %s, status: %s\n",
2735                    connector->base.id, connector->name,
2736                    drm_get_connector_status_name(connector->status));
2737         if (connector->status == connector_status_connected) {
2738                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2739                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2740                            connector->display_info.width_mm,
2741                            connector->display_info.height_mm);
2742                 seq_printf(m, "\tsubpixel order: %s\n",
2743                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2744                 seq_printf(m, "\tCEA rev: %d\n",
2745                            connector->display_info.cea_rev);
2746         }
2747         if (intel_encoder) {
2748                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2749                     intel_encoder->type == INTEL_OUTPUT_EDP)
2750                         intel_dp_info(m, intel_connector);
2751                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2752                         intel_hdmi_info(m, intel_connector);
2753                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2754                         intel_lvds_info(m, intel_connector);
2755         }
2756
2757         seq_printf(m, "\tmodes:\n");
2758         list_for_each_entry(mode, &connector->modes, head)
2759                 intel_seq_print_mode(m, 2, mode);
2760 }
2761
2762 static bool cursor_active(struct drm_device *dev, int pipe)
2763 {
2764         struct drm_i915_private *dev_priv = dev->dev_private;
2765         u32 state;
2766
2767         if (IS_845G(dev) || IS_I865G(dev))
2768                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2769         else
2770                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2771
2772         return state;
2773 }
2774
2775 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2776 {
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         u32 pos;
2779
2780         pos = I915_READ(CURPOS(pipe));
2781
2782         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2783         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2784                 *x = -*x;
2785
2786         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2787         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2788                 *y = -*y;
2789
2790         return cursor_active(dev, pipe);
2791 }
2792
2793 static int i915_display_info(struct seq_file *m, void *unused)
2794 {
2795         struct drm_info_node *node = m->private;
2796         struct drm_device *dev = node->minor->dev;
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         struct intel_crtc *crtc;
2799         struct drm_connector *connector;
2800
2801         intel_runtime_pm_get(dev_priv);
2802         drm_modeset_lock_all(dev);
2803         seq_printf(m, "CRTC info\n");
2804         seq_printf(m, "---------\n");
2805         for_each_intel_crtc(dev, crtc) {
2806                 bool active;
2807                 struct intel_crtc_state *pipe_config;
2808                 int x, y;
2809
2810                 pipe_config = to_intel_crtc_state(crtc->base.state);
2811
2812                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2813                            crtc->base.base.id, pipe_name(crtc->pipe),
2814                            yesno(pipe_config->base.active),
2815                            pipe_config->pipe_src_w, pipe_config->pipe_src_h);
2816                 if (pipe_config->base.active) {
2817                         intel_crtc_info(m, crtc);
2818
2819                         active = cursor_position(dev, crtc->pipe, &x, &y);
2820                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2821                                    yesno(crtc->cursor_base),
2822                                    x, y, crtc->base.cursor->state->crtc_w,
2823                                    crtc->base.cursor->state->crtc_h,
2824                                    crtc->cursor_addr, yesno(active));
2825                 }
2826
2827                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2828                            yesno(!crtc->cpu_fifo_underrun_disabled),
2829                            yesno(!crtc->pch_fifo_underrun_disabled));
2830         }
2831
2832         seq_printf(m, "\n");
2833         seq_printf(m, "Connector info\n");
2834         seq_printf(m, "--------------\n");
2835         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2836                 intel_connector_info(m, connector);
2837         }
2838         drm_modeset_unlock_all(dev);
2839         intel_runtime_pm_put(dev_priv);
2840
2841         return 0;
2842 }
2843
2844 static int i915_semaphore_status(struct seq_file *m, void *unused)
2845 {
2846         struct drm_info_node *node = (struct drm_info_node *) m->private;
2847         struct drm_device *dev = node->minor->dev;
2848         struct drm_i915_private *dev_priv = dev->dev_private;
2849         struct intel_engine_cs *ring;
2850         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2851         int i, j, ret;
2852
2853         if (!i915_semaphore_is_enabled(dev)) {
2854                 seq_puts(m, "Semaphores are disabled\n");
2855                 return 0;
2856         }
2857
2858         ret = mutex_lock_interruptible(&dev->struct_mutex);
2859         if (ret)
2860                 return ret;
2861         intel_runtime_pm_get(dev_priv);
2862
2863         if (IS_BROADWELL(dev)) {
2864                 struct page *page;
2865                 uint64_t *seqno;
2866
2867                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2868
2869                 seqno = (uint64_t *)kmap_atomic(page);
2870                 for_each_ring(ring, dev_priv, i) {
2871                         uint64_t offset;
2872
2873                         seq_printf(m, "%s\n", ring->name);
2874
2875                         seq_puts(m, "  Last signal:");
2876                         for (j = 0; j < num_rings; j++) {
2877                                 offset = i * I915_NUM_RINGS + j;
2878                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2879                                            seqno[offset], offset * 8);
2880                         }
2881                         seq_putc(m, '\n');
2882
2883                         seq_puts(m, "  Last wait:  ");
2884                         for (j = 0; j < num_rings; j++) {
2885                                 offset = i + (j * I915_NUM_RINGS);
2886                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2887                                            seqno[offset], offset * 8);
2888                         }
2889                         seq_putc(m, '\n');
2890
2891                 }
2892                 kunmap_atomic(seqno);
2893         } else {
2894                 seq_puts(m, "  Last signal:");
2895                 for_each_ring(ring, dev_priv, i)
2896                         for (j = 0; j < num_rings; j++)
2897                                 seq_printf(m, "0x%08x\n",
2898                                            I915_READ(ring->semaphore.mbox.signal[j]));
2899                 seq_putc(m, '\n');
2900         }
2901
2902         seq_puts(m, "\nSync seqno:\n");
2903         for_each_ring(ring, dev_priv, i) {
2904                 for (j = 0; j < num_rings; j++) {
2905                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2906                 }
2907                 seq_putc(m, '\n');
2908         }
2909         seq_putc(m, '\n');
2910
2911         intel_runtime_pm_put(dev_priv);
2912         mutex_unlock(&dev->struct_mutex);
2913         return 0;
2914 }
2915
2916 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2917 {
2918         struct drm_info_node *node = (struct drm_info_node *) m->private;
2919         struct drm_device *dev = node->minor->dev;
2920         struct drm_i915_private *dev_priv = dev->dev_private;
2921         int i;
2922
2923         drm_modeset_lock_all(dev);
2924         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2925                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2926
2927                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2928                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2929                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2930                 seq_printf(m, " tracked hardware state:\n");
2931                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2932                 seq_printf(m, " dpll_md: 0x%08x\n",
2933                            pll->config.hw_state.dpll_md);
2934                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2935                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2936                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2937         }
2938         drm_modeset_unlock_all(dev);
2939
2940         return 0;
2941 }
2942
2943 static int i915_wa_registers(struct seq_file *m, void *unused)
2944 {
2945         int i;
2946         int ret;
2947         struct drm_info_node *node = (struct drm_info_node *) m->private;
2948         struct drm_device *dev = node->minor->dev;
2949         struct drm_i915_private *dev_priv = dev->dev_private;
2950
2951         ret = mutex_lock_interruptible(&dev->struct_mutex);
2952         if (ret)
2953                 return ret;
2954
2955         intel_runtime_pm_get(dev_priv);
2956
2957         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2958         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2959                 u32 addr, mask, value, read;
2960                 bool ok;
2961
2962                 addr = dev_priv->workarounds.reg[i].addr;
2963                 mask = dev_priv->workarounds.reg[i].mask;
2964                 value = dev_priv->workarounds.reg[i].value;
2965                 read = I915_READ(addr);
2966                 ok = (value & mask) == (read & mask);
2967                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2968                            addr, value, mask, read, ok ? "OK" : "FAIL");
2969         }
2970
2971         intel_runtime_pm_put(dev_priv);
2972         mutex_unlock(&dev->struct_mutex);
2973
2974         return 0;
2975 }
2976
2977 static int i915_ddb_info(struct seq_file *m, void *unused)
2978 {
2979         struct drm_info_node *node = m->private;
2980         struct drm_device *dev = node->minor->dev;
2981         struct drm_i915_private *dev_priv = dev->dev_private;
2982         struct skl_ddb_allocation *ddb;
2983         struct skl_ddb_entry *entry;
2984         enum pipe pipe;
2985         int plane;
2986
2987         if (INTEL_INFO(dev)->gen < 9)
2988                 return 0;
2989
2990         drm_modeset_lock_all(dev);
2991
2992         ddb = &dev_priv->wm.skl_hw.ddb;
2993
2994         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2995
2996         for_each_pipe(dev_priv, pipe) {
2997                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2998
2999                 for_each_plane(dev_priv, pipe, plane) {
3000                         entry = &ddb->plane[pipe][plane];
3001                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3002                                    entry->start, entry->end,
3003                                    skl_ddb_entry_size(entry));
3004                 }
3005
3006                 entry = &ddb->cursor[pipe];
3007                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3008                            entry->end, skl_ddb_entry_size(entry));
3009         }
3010
3011         drm_modeset_unlock_all(dev);
3012
3013         return 0;
3014 }
3015
3016 static void drrs_status_per_crtc(struct seq_file *m,
3017                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3018 {
3019         struct intel_encoder *intel_encoder;
3020         struct drm_i915_private *dev_priv = dev->dev_private;
3021         struct i915_drrs *drrs = &dev_priv->drrs;
3022         int vrefresh = 0;
3023
3024         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3025                 /* Encoder connected on this CRTC */
3026                 switch (intel_encoder->type) {
3027                 case INTEL_OUTPUT_EDP:
3028                         seq_puts(m, "eDP:\n");
3029                         break;
3030                 case INTEL_OUTPUT_DSI:
3031                         seq_puts(m, "DSI:\n");
3032                         break;
3033                 case INTEL_OUTPUT_HDMI:
3034                         seq_puts(m, "HDMI:\n");
3035                         break;
3036                 case INTEL_OUTPUT_DISPLAYPORT:
3037                         seq_puts(m, "DP:\n");
3038                         break;
3039                 default:
3040                         seq_printf(m, "Other encoder (id=%d).\n",
3041                                                 intel_encoder->type);
3042                         return;
3043                 }
3044         }
3045
3046         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3047                 seq_puts(m, "\tVBT: DRRS_type: Static");
3048         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3049                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3050         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3051                 seq_puts(m, "\tVBT: DRRS_type: None");
3052         else
3053                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3054
3055         seq_puts(m, "\n\n");
3056
3057         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3058                 struct intel_panel *panel;
3059
3060                 mutex_lock(&drrs->mutex);
3061                 /* DRRS Supported */
3062                 seq_puts(m, "\tDRRS Supported: Yes\n");
3063
3064                 /* disable_drrs() will make drrs->dp NULL */
3065                 if (!drrs->dp) {
3066                         seq_puts(m, "Idleness DRRS: Disabled");
3067                         mutex_unlock(&drrs->mutex);
3068                         return;
3069                 }
3070
3071                 panel = &drrs->dp->attached_connector->panel;
3072                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3073                                         drrs->busy_frontbuffer_bits);
3074
3075                 seq_puts(m, "\n\t\t");
3076                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3077                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3078                         vrefresh = panel->fixed_mode->vrefresh;
3079                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3080                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3081                         vrefresh = panel->downclock_mode->vrefresh;
3082                 } else {
3083                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3084                                                 drrs->refresh_rate_type);
3085                         mutex_unlock(&drrs->mutex);
3086                         return;
3087                 }
3088                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3089
3090                 seq_puts(m, "\n\t\t");
3091                 mutex_unlock(&drrs->mutex);
3092         } else {
3093                 /* DRRS not supported. Print the VBT parameter*/
3094                 seq_puts(m, "\tDRRS Supported : No");
3095         }
3096         seq_puts(m, "\n");
3097 }
3098
3099 static int i915_drrs_status(struct seq_file *m, void *unused)
3100 {
3101         struct drm_info_node *node = m->private;
3102         struct drm_device *dev = node->minor->dev;
3103         struct intel_crtc *intel_crtc;
3104         int active_crtc_cnt = 0;
3105
3106         for_each_intel_crtc(dev, intel_crtc) {
3107                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3108
3109                 if (intel_crtc->base.state->active) {
3110                         active_crtc_cnt++;
3111                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3112
3113                         drrs_status_per_crtc(m, dev, intel_crtc);
3114                 }
3115
3116                 drm_modeset_unlock(&intel_crtc->base.mutex);
3117         }
3118
3119         if (!active_crtc_cnt)
3120                 seq_puts(m, "No active crtc found\n");
3121
3122         return 0;
3123 }
3124
3125 struct pipe_crc_info {
3126         const char *name;
3127         struct drm_device *dev;
3128         enum pipe pipe;
3129 };
3130
3131 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3132 {
3133         struct drm_info_node *node = (struct drm_info_node *) m->private;
3134         struct drm_device *dev = node->minor->dev;
3135         struct drm_encoder *encoder;
3136         struct intel_encoder *intel_encoder;
3137         struct intel_digital_port *intel_dig_port;
3138         drm_modeset_lock_all(dev);
3139         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3140                 intel_encoder = to_intel_encoder(encoder);
3141                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3142                         continue;
3143                 intel_dig_port = enc_to_dig_port(encoder);
3144                 if (!intel_dig_port->dp.can_mst)
3145                         continue;
3146
3147                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3148         }
3149         drm_modeset_unlock_all(dev);
3150         return 0;
3151 }
3152
3153 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3154 {
3155         struct pipe_crc_info *info = inode->i_private;
3156         struct drm_i915_private *dev_priv = info->dev->dev_private;
3157         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3158
3159         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3160                 return -ENODEV;
3161
3162         spin_lock_irq(&pipe_crc->lock);
3163
3164         if (pipe_crc->opened) {
3165                 spin_unlock_irq(&pipe_crc->lock);
3166                 return -EBUSY; /* already open */
3167         }
3168
3169         pipe_crc->opened = true;
3170         filep->private_data = inode->i_private;
3171
3172         spin_unlock_irq(&pipe_crc->lock);
3173
3174         return 0;
3175 }
3176
3177 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3178 {
3179         struct pipe_crc_info *info = inode->i_private;
3180         struct drm_i915_private *dev_priv = info->dev->dev_private;
3181         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3182
3183         spin_lock_irq(&pipe_crc->lock);
3184         pipe_crc->opened = false;
3185         spin_unlock_irq(&pipe_crc->lock);
3186
3187         return 0;
3188 }
3189
3190 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3191 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3192 /* account for \'0' */
3193 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3194
3195 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3196 {
3197         assert_spin_locked(&pipe_crc->lock);
3198         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3199                         INTEL_PIPE_CRC_ENTRIES_NR);
3200 }
3201
3202 static ssize_t
3203 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3204                    loff_t *pos)
3205 {
3206         struct pipe_crc_info *info = filep->private_data;
3207         struct drm_device *dev = info->dev;
3208         struct drm_i915_private *dev_priv = dev->dev_private;
3209         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3210         char buf[PIPE_CRC_BUFFER_LEN];
3211         int n_entries;
3212         ssize_t bytes_read;
3213
3214         /*
3215          * Don't allow user space to provide buffers not big enough to hold
3216          * a line of data.
3217          */
3218         if (count < PIPE_CRC_LINE_LEN)
3219                 return -EINVAL;
3220
3221         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3222                 return 0;
3223
3224         /* nothing to read */
3225         spin_lock_irq(&pipe_crc->lock);
3226         while (pipe_crc_data_count(pipe_crc) == 0) {
3227                 int ret;
3228
3229                 if (filep->f_flags & O_NONBLOCK) {
3230                         spin_unlock_irq(&pipe_crc->lock);
3231                         return -EAGAIN;
3232                 }
3233
3234                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3235                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3236                 if (ret) {
3237                         spin_unlock_irq(&pipe_crc->lock);
3238                         return ret;
3239                 }
3240         }
3241
3242         /* We now have one or more entries to read */
3243         n_entries = count / PIPE_CRC_LINE_LEN;
3244
3245         bytes_read = 0;
3246         while (n_entries > 0) {
3247                 struct intel_pipe_crc_entry *entry =
3248                         &pipe_crc->entries[pipe_crc->tail];
3249                 int ret;
3250
3251                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3252                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3253                         break;
3254
3255                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3256                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3257
3258                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3259                                        "%8u %8x %8x %8x %8x %8x\n",
3260                                        entry->frame, entry->crc[0],
3261                                        entry->crc[1], entry->crc[2],
3262                                        entry->crc[3], entry->crc[4]);
3263
3264                 spin_unlock_irq(&pipe_crc->lock);
3265
3266                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3267                 if (ret == PIPE_CRC_LINE_LEN)
3268                         return -EFAULT;
3269
3270                 user_buf += PIPE_CRC_LINE_LEN;
3271                 n_entries--;
3272
3273                 spin_lock_irq(&pipe_crc->lock);
3274         }
3275
3276         spin_unlock_irq(&pipe_crc->lock);
3277
3278         return bytes_read;
3279 }
3280
3281 static const struct file_operations i915_pipe_crc_fops = {
3282         .owner = THIS_MODULE,
3283         .open = i915_pipe_crc_open,
3284         .read = i915_pipe_crc_read,
3285         .release = i915_pipe_crc_release,
3286 };
3287
3288 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3289         {
3290                 .name = "i915_pipe_A_crc",
3291                 .pipe = PIPE_A,
3292         },
3293         {
3294                 .name = "i915_pipe_B_crc",
3295                 .pipe = PIPE_B,
3296         },
3297         {
3298                 .name = "i915_pipe_C_crc",
3299                 .pipe = PIPE_C,
3300         },
3301 };
3302
3303 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3304                                 enum pipe pipe)
3305 {
3306         struct drm_device *dev = minor->dev;
3307         struct dentry *ent;
3308         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3309
3310         info->dev = dev;
3311         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3312                                   &i915_pipe_crc_fops);
3313         if (!ent)
3314                 return -ENOMEM;
3315
3316         return drm_add_fake_info_node(minor, ent, info);
3317 }
3318
3319 static const char * const pipe_crc_sources[] = {
3320         "none",
3321         "plane1",
3322         "plane2",
3323         "pf",
3324         "pipe",
3325         "TV",
3326         "DP-B",
3327         "DP-C",
3328         "DP-D",
3329         "auto",
3330 };
3331
3332 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3333 {
3334         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3335         return pipe_crc_sources[source];
3336 }
3337
3338 static int display_crc_ctl_show(struct seq_file *m, void *data)
3339 {
3340         struct drm_device *dev = m->private;
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         int i;
3343
3344         for (i = 0; i < I915_MAX_PIPES; i++)
3345                 seq_printf(m, "%c %s\n", pipe_name(i),
3346                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3347
3348         return 0;
3349 }
3350
3351 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3352 {
3353         struct drm_device *dev = inode->i_private;
3354
3355         return single_open(file, display_crc_ctl_show, dev);
3356 }
3357
3358 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3359                                  uint32_t *val)
3360 {
3361         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3362                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3363
3364         switch (*source) {
3365         case INTEL_PIPE_CRC_SOURCE_PIPE:
3366                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3367                 break;
3368         case INTEL_PIPE_CRC_SOURCE_NONE:
3369                 *val = 0;
3370                 break;
3371         default:
3372                 return -EINVAL;
3373         }
3374
3375         return 0;
3376 }
3377
3378 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3379                                      enum intel_pipe_crc_source *source)
3380 {
3381         struct intel_encoder *encoder;
3382         struct intel_crtc *crtc;
3383         struct intel_digital_port *dig_port;
3384         int ret = 0;
3385
3386         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3387
3388         drm_modeset_lock_all(dev);
3389         for_each_intel_encoder(dev, encoder) {
3390                 if (!encoder->base.crtc)
3391                         continue;
3392
3393                 crtc = to_intel_crtc(encoder->base.crtc);
3394
3395                 if (crtc->pipe != pipe)
3396                         continue;
3397
3398                 switch (encoder->type) {
3399                 case INTEL_OUTPUT_TVOUT:
3400                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3401                         break;
3402                 case INTEL_OUTPUT_DISPLAYPORT:
3403                 case INTEL_OUTPUT_EDP:
3404                         dig_port = enc_to_dig_port(&encoder->base);
3405                         switch (dig_port->port) {
3406                         case PORT_B:
3407                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3408                                 break;
3409                         case PORT_C:
3410                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3411                                 break;
3412                         case PORT_D:
3413                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3414                                 break;
3415                         default:
3416                                 WARN(1, "nonexisting DP port %c\n",
3417                                      port_name(dig_port->port));
3418                                 break;
3419                         }
3420                         break;
3421                 default:
3422                         break;
3423                 }
3424         }
3425         drm_modeset_unlock_all(dev);
3426
3427         return ret;
3428 }
3429
3430 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3431                                 enum pipe pipe,
3432                                 enum intel_pipe_crc_source *source,
3433                                 uint32_t *val)
3434 {
3435         struct drm_i915_private *dev_priv = dev->dev_private;
3436         bool need_stable_symbols = false;
3437
3438         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3439                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3440                 if (ret)
3441                         return ret;
3442         }
3443
3444         switch (*source) {
3445         case INTEL_PIPE_CRC_SOURCE_PIPE:
3446                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3447                 break;
3448         case INTEL_PIPE_CRC_SOURCE_DP_B:
3449                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3450                 need_stable_symbols = true;
3451                 break;
3452         case INTEL_PIPE_CRC_SOURCE_DP_C:
3453                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3454                 need_stable_symbols = true;
3455                 break;
3456         case INTEL_PIPE_CRC_SOURCE_DP_D:
3457                 if (!IS_CHERRYVIEW(dev))
3458                         return -EINVAL;
3459                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3460                 need_stable_symbols = true;
3461                 break;
3462         case INTEL_PIPE_CRC_SOURCE_NONE:
3463                 *val = 0;
3464                 break;
3465         default:
3466                 return -EINVAL;
3467         }
3468
3469         /*
3470          * When the pipe CRC tap point is after the transcoders we need
3471          * to tweak symbol-level features to produce a deterministic series of
3472          * symbols for a given frame. We need to reset those features only once
3473          * a frame (instead of every nth symbol):
3474          *   - DC-balance: used to ensure a better clock recovery from the data
3475          *     link (SDVO)
3476          *   - DisplayPort scrambling: used for EMI reduction
3477          */
3478         if (need_stable_symbols) {
3479                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3480
3481                 tmp |= DC_BALANCE_RESET_VLV;
3482                 switch (pipe) {
3483                 case PIPE_A:
3484                         tmp |= PIPE_A_SCRAMBLE_RESET;
3485                         break;
3486                 case PIPE_B:
3487                         tmp |= PIPE_B_SCRAMBLE_RESET;
3488                         break;
3489                 case PIPE_C:
3490                         tmp |= PIPE_C_SCRAMBLE_RESET;
3491                         break;
3492                 default:
3493                         return -EINVAL;
3494                 }
3495                 I915_WRITE(PORT_DFT2_G4X, tmp);
3496         }
3497
3498         return 0;
3499 }
3500
3501 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3502                                  enum pipe pipe,
3503                                  enum intel_pipe_crc_source *source,
3504                                  uint32_t *val)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507         bool need_stable_symbols = false;
3508
3509         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3510                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3511                 if (ret)
3512                         return ret;
3513         }
3514
3515         switch (*source) {
3516         case INTEL_PIPE_CRC_SOURCE_PIPE:
3517                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3518                 break;
3519         case INTEL_PIPE_CRC_SOURCE_TV:
3520                 if (!SUPPORTS_TV(dev))
3521                         return -EINVAL;
3522                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3523                 break;
3524         case INTEL_PIPE_CRC_SOURCE_DP_B:
3525                 if (!IS_G4X(dev))
3526                         return -EINVAL;
3527                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3528                 need_stable_symbols = true;
3529                 break;
3530         case INTEL_PIPE_CRC_SOURCE_DP_C:
3531                 if (!IS_G4X(dev))
3532                         return -EINVAL;
3533                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3534                 need_stable_symbols = true;
3535                 break;
3536         case INTEL_PIPE_CRC_SOURCE_DP_D:
3537                 if (!IS_G4X(dev))
3538                         return -EINVAL;
3539                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3540                 need_stable_symbols = true;
3541                 break;
3542         case INTEL_PIPE_CRC_SOURCE_NONE:
3543                 *val = 0;
3544                 break;
3545         default:
3546                 return -EINVAL;
3547         }
3548
3549         /*
3550          * When the pipe CRC tap point is after the transcoders we need
3551          * to tweak symbol-level features to produce a deterministic series of
3552          * symbols for a given frame. We need to reset those features only once
3553          * a frame (instead of every nth symbol):
3554          *   - DC-balance: used to ensure a better clock recovery from the data
3555          *     link (SDVO)
3556          *   - DisplayPort scrambling: used for EMI reduction
3557          */
3558         if (need_stable_symbols) {
3559                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3560
3561                 WARN_ON(!IS_G4X(dev));
3562
3563                 I915_WRITE(PORT_DFT_I9XX,
3564                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3565
3566                 if (pipe == PIPE_A)
3567                         tmp |= PIPE_A_SCRAMBLE_RESET;
3568                 else
3569                         tmp |= PIPE_B_SCRAMBLE_RESET;
3570
3571                 I915_WRITE(PORT_DFT2_G4X, tmp);
3572         }
3573
3574         return 0;
3575 }
3576
3577 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3578                                          enum pipe pipe)
3579 {
3580         struct drm_i915_private *dev_priv = dev->dev_private;
3581         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3582
3583         switch (pipe) {
3584         case PIPE_A:
3585                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3586                 break;
3587         case PIPE_B:
3588                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3589                 break;
3590         case PIPE_C:
3591                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3592                 break;
3593         default:
3594                 return;
3595         }
3596         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3597                 tmp &= ~DC_BALANCE_RESET_VLV;
3598         I915_WRITE(PORT_DFT2_G4X, tmp);
3599
3600 }
3601
3602 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3603                                          enum pipe pipe)
3604 {
3605         struct drm_i915_private *dev_priv = dev->dev_private;
3606         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3607
3608         if (pipe == PIPE_A)
3609                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3610         else
3611                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3612         I915_WRITE(PORT_DFT2_G4X, tmp);
3613
3614         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3615                 I915_WRITE(PORT_DFT_I9XX,
3616                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3617         }
3618 }
3619
3620 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3621                                 uint32_t *val)
3622 {
3623         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3624                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3625
3626         switch (*source) {
3627         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3628                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3629                 break;
3630         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3631                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3632                 break;
3633         case INTEL_PIPE_CRC_SOURCE_PIPE:
3634                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3635                 break;
3636         case INTEL_PIPE_CRC_SOURCE_NONE:
3637                 *val = 0;
3638                 break;
3639         default:
3640                 return -EINVAL;
3641         }
3642
3643         return 0;
3644 }
3645
3646 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3647 {
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         struct intel_crtc *crtc =
3650                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3651         struct intel_crtc_state *pipe_config;
3652
3653         drm_modeset_lock_all(dev);
3654         pipe_config = to_intel_crtc_state(crtc->base.state);
3655
3656         /*
3657          * If we use the eDP transcoder we need to make sure that we don't
3658          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3659          * relevant on hsw with pipe A when using the always-on power well
3660          * routing.
3661          */
3662         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3663             !pipe_config->pch_pfit.enabled) {
3664                 bool active = pipe_config->base.active;
3665
3666                 if (active) {
3667                         intel_crtc_control(&crtc->base, false);
3668                         pipe_config = to_intel_crtc_state(crtc->base.state);
3669                 }
3670
3671                 pipe_config->pch_pfit.force_thru = true;
3672
3673                 intel_display_power_get(dev_priv,
3674                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3675
3676                 if (active)
3677                         intel_crtc_control(&crtc->base, true);
3678         }
3679         drm_modeset_unlock_all(dev);
3680 }
3681
3682 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3683 {
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         struct intel_crtc *crtc =
3686                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3687         struct intel_crtc_state *pipe_config;
3688
3689         drm_modeset_lock_all(dev);
3690         /*
3691          * If we use the eDP transcoder we need to make sure that we don't
3692          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3693          * relevant on hsw with pipe A when using the always-on power well
3694          * routing.
3695          */
3696         pipe_config = to_intel_crtc_state(crtc->base.state);
3697         if (pipe_config->pch_pfit.force_thru) {
3698                 bool active = pipe_config->base.active;
3699
3700                 if (active) {
3701                         intel_crtc_control(&crtc->base, false);
3702                         pipe_config = to_intel_crtc_state(crtc->base.state);
3703                 }
3704
3705                 pipe_config->pch_pfit.force_thru = false;
3706
3707                 intel_display_power_put(dev_priv,
3708                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3709
3710                 if (active)
3711                         intel_crtc_control(&crtc->base, true);
3712         }
3713         drm_modeset_unlock_all(dev);
3714 }
3715
3716 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3717                                 enum pipe pipe,
3718                                 enum intel_pipe_crc_source *source,
3719                                 uint32_t *val)
3720 {
3721         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3722                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3723
3724         switch (*source) {
3725         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3726                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3727                 break;
3728         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3729                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3730                 break;
3731         case INTEL_PIPE_CRC_SOURCE_PF:
3732                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3733                         hsw_trans_edp_pipe_A_crc_wa(dev);
3734
3735                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3736                 break;
3737         case INTEL_PIPE_CRC_SOURCE_NONE:
3738                 *val = 0;
3739                 break;
3740         default:
3741                 return -EINVAL;
3742         }
3743
3744         return 0;
3745 }
3746
3747 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3748                                enum intel_pipe_crc_source source)
3749 {
3750         struct drm_i915_private *dev_priv = dev->dev_private;
3751         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3752         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3753                                                                         pipe));
3754         u32 val = 0; /* shut up gcc */
3755         int ret;
3756
3757         if (pipe_crc->source == source)
3758                 return 0;
3759
3760         /* forbid changing the source without going back to 'none' */
3761         if (pipe_crc->source && source)
3762                 return -EINVAL;
3763
3764         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3765                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3766                 return -EIO;
3767         }
3768
3769         if (IS_GEN2(dev))
3770                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3771         else if (INTEL_INFO(dev)->gen < 5)
3772                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3773         else if (IS_VALLEYVIEW(dev))
3774                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3775         else if (IS_GEN5(dev) || IS_GEN6(dev))
3776                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3777         else
3778                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3779
3780         if (ret != 0)
3781                 return ret;
3782
3783         /* none -> real source transition */
3784         if (source) {
3785                 struct intel_pipe_crc_entry *entries;
3786
3787                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3788                                  pipe_name(pipe), pipe_crc_source_name(source));
3789
3790                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3791                                   sizeof(pipe_crc->entries[0]),
3792                                   GFP_KERNEL);
3793                 if (!entries)
3794                         return -ENOMEM;
3795
3796                 /*
3797                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3798                  * enabled and disabled dynamically based on package C states,
3799                  * user space can't make reliable use of the CRCs, so let's just
3800                  * completely disable it.
3801                  */
3802                 hsw_disable_ips(crtc);
3803
3804                 spin_lock_irq(&pipe_crc->lock);
3805                 kfree(pipe_crc->entries);
3806                 pipe_crc->entries = entries;
3807                 pipe_crc->head = 0;
3808                 pipe_crc->tail = 0;
3809                 spin_unlock_irq(&pipe_crc->lock);
3810         }
3811
3812         pipe_crc->source = source;
3813
3814         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3815         POSTING_READ(PIPE_CRC_CTL(pipe));
3816
3817         /* real source -> none transition */
3818         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3819                 struct intel_pipe_crc_entry *entries;
3820                 struct intel_crtc *crtc =
3821                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3822
3823                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3824                                  pipe_name(pipe));
3825
3826                 drm_modeset_lock(&crtc->base.mutex, NULL);
3827                 if (crtc->base.state->active)
3828                         intel_wait_for_vblank(dev, pipe);
3829                 drm_modeset_unlock(&crtc->base.mutex);
3830
3831                 spin_lock_irq(&pipe_crc->lock);
3832                 entries = pipe_crc->entries;
3833                 pipe_crc->entries = NULL;
3834                 pipe_crc->head = 0;
3835                 pipe_crc->tail = 0;
3836                 spin_unlock_irq(&pipe_crc->lock);
3837
3838                 kfree(entries);
3839
3840                 if (IS_G4X(dev))
3841                         g4x_undo_pipe_scramble_reset(dev, pipe);
3842                 else if (IS_VALLEYVIEW(dev))
3843                         vlv_undo_pipe_scramble_reset(dev, pipe);
3844                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3845                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3846
3847                 hsw_enable_ips(crtc);
3848         }
3849
3850         return 0;
3851 }
3852
3853 /*
3854  * Parse pipe CRC command strings:
3855  *   command: wsp* object wsp+ name wsp+ source wsp*
3856  *   object: 'pipe'
3857  *   name: (A | B | C)
3858  *   source: (none | plane1 | plane2 | pf)
3859  *   wsp: (#0x20 | #0x9 | #0xA)+
3860  *
3861  * eg.:
3862  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3863  *  "pipe A none"    ->  Stop CRC
3864  */
3865 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3866 {
3867         int n_words = 0;
3868
3869         while (*buf) {
3870                 char *end;
3871
3872                 /* skip leading white space */
3873                 buf = skip_spaces(buf);
3874                 if (!*buf)
3875                         break;  /* end of buffer */
3876
3877                 /* find end of word */
3878                 for (end = buf; *end && !isspace(*end); end++)
3879                         ;
3880
3881                 if (n_words == max_words) {
3882                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3883                                          max_words);
3884                         return -EINVAL; /* ran out of words[] before bytes */
3885                 }
3886
3887                 if (*end)
3888                         *end++ = '\0';
3889                 words[n_words++] = buf;
3890                 buf = end;
3891         }
3892
3893         return n_words;
3894 }
3895
3896 enum intel_pipe_crc_object {
3897         PIPE_CRC_OBJECT_PIPE,
3898 };
3899
3900 static const char * const pipe_crc_objects[] = {
3901         "pipe",
3902 };
3903
3904 static int
3905 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3906 {
3907         int i;
3908
3909         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3910                 if (!strcmp(buf, pipe_crc_objects[i])) {
3911                         *o = i;
3912                         return 0;
3913                     }
3914
3915         return -EINVAL;
3916 }
3917
3918 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3919 {
3920         const char name = buf[0];
3921
3922         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3923                 return -EINVAL;
3924
3925         *pipe = name - 'A';
3926
3927         return 0;
3928 }
3929
3930 static int
3931 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3932 {
3933         int i;
3934
3935         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3936                 if (!strcmp(buf, pipe_crc_sources[i])) {
3937                         *s = i;
3938                         return 0;
3939                     }
3940
3941         return -EINVAL;
3942 }
3943
3944 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3945 {
3946 #define N_WORDS 3
3947         int n_words;
3948         char *words[N_WORDS];
3949         enum pipe pipe;
3950         enum intel_pipe_crc_object object;
3951         enum intel_pipe_crc_source source;
3952
3953         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3954         if (n_words != N_WORDS) {
3955                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3956                                  N_WORDS);
3957                 return -EINVAL;
3958         }
3959
3960         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3961                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3962                 return -EINVAL;
3963         }
3964
3965         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3966                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3967                 return -EINVAL;
3968         }
3969
3970         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3971                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3972                 return -EINVAL;
3973         }
3974
3975         return pipe_crc_set_source(dev, pipe, source);
3976 }
3977
3978 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3979                                      size_t len, loff_t *offp)
3980 {
3981         struct seq_file *m = file->private_data;
3982         struct drm_device *dev = m->private;
3983         char *tmpbuf;
3984         int ret;
3985
3986         if (len == 0)
3987                 return 0;
3988
3989         if (len > PAGE_SIZE - 1) {
3990                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3991                                  PAGE_SIZE);
3992                 return -E2BIG;
3993         }
3994
3995         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3996         if (!tmpbuf)
3997                 return -ENOMEM;
3998
3999         if (copy_from_user(tmpbuf, ubuf, len)) {
4000                 ret = -EFAULT;
4001                 goto out;
4002         }
4003         tmpbuf[len] = '\0';
4004
4005         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4006
4007 out:
4008         kfree(tmpbuf);
4009         if (ret < 0)
4010                 return ret;
4011
4012         *offp += len;
4013         return len;
4014 }
4015
4016 static const struct file_operations i915_display_crc_ctl_fops = {
4017         .owner = THIS_MODULE,
4018         .open = display_crc_ctl_open,
4019         .read = seq_read,
4020         .llseek = seq_lseek,
4021         .release = single_release,
4022         .write = display_crc_ctl_write
4023 };
4024
4025 static ssize_t i915_displayport_test_active_write(struct file *file,
4026                                             const char __user *ubuf,
4027                                             size_t len, loff_t *offp)
4028 {
4029         char *input_buffer;
4030         int status = 0;
4031         struct seq_file *m;
4032         struct drm_device *dev;
4033         struct drm_connector *connector;
4034         struct list_head *connector_list;
4035         struct intel_dp *intel_dp;
4036         int val = 0;
4037
4038         m = file->private_data;
4039         if (!m) {
4040                 status = -ENODEV;
4041                 return status;
4042         }
4043         dev = m->private;
4044
4045         if (!dev) {
4046                 status = -ENODEV;
4047                 return status;
4048         }
4049         connector_list = &dev->mode_config.connector_list;
4050
4051         if (len == 0)
4052                 return 0;
4053
4054         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4055         if (!input_buffer)
4056                 return -ENOMEM;
4057
4058         if (copy_from_user(input_buffer, ubuf, len)) {
4059                 status = -EFAULT;
4060                 goto out;
4061         }
4062
4063         input_buffer[len] = '\0';
4064         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4065
4066         list_for_each_entry(connector, connector_list, head) {
4067
4068                 if (connector->connector_type !=
4069                     DRM_MODE_CONNECTOR_DisplayPort)
4070                         continue;
4071
4072                 if (connector->connector_type ==
4073                     DRM_MODE_CONNECTOR_DisplayPort &&
4074                     connector->status == connector_status_connected &&
4075                     connector->encoder != NULL) {
4076                         intel_dp = enc_to_intel_dp(connector->encoder);
4077                         status = kstrtoint(input_buffer, 10, &val);
4078                         if (status < 0)
4079                                 goto out;
4080                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4081                         /* To prevent erroneous activation of the compliance
4082                          * testing code, only accept an actual value of 1 here
4083                          */
4084                         if (val == 1)
4085                                 intel_dp->compliance_test_active = 1;
4086                         else
4087                                 intel_dp->compliance_test_active = 0;
4088                 }
4089         }
4090 out:
4091         kfree(input_buffer);
4092         if (status < 0)
4093                 return status;
4094
4095         *offp += len;
4096         return len;
4097 }
4098
4099 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4100 {
4101         struct drm_device *dev = m->private;
4102         struct drm_connector *connector;
4103         struct list_head *connector_list = &dev->mode_config.connector_list;
4104         struct intel_dp *intel_dp;
4105
4106         if (!dev)
4107                 return -ENODEV;
4108
4109         list_for_each_entry(connector, connector_list, head) {
4110
4111                 if (connector->connector_type !=
4112                     DRM_MODE_CONNECTOR_DisplayPort)
4113                         continue;
4114
4115                 if (connector->status == connector_status_connected &&
4116                     connector->encoder != NULL) {
4117                         intel_dp = enc_to_intel_dp(connector->encoder);
4118                         if (intel_dp->compliance_test_active)
4119                                 seq_puts(m, "1");
4120                         else
4121                                 seq_puts(m, "0");
4122                 } else
4123                         seq_puts(m, "0");
4124         }
4125
4126         return 0;
4127 }
4128
4129 static int i915_displayport_test_active_open(struct inode *inode,
4130                                        struct file *file)
4131 {
4132         struct drm_device *dev = inode->i_private;
4133
4134         return single_open(file, i915_displayport_test_active_show, dev);
4135 }
4136
4137 static const struct file_operations i915_displayport_test_active_fops = {
4138         .owner = THIS_MODULE,
4139         .open = i915_displayport_test_active_open,
4140         .read = seq_read,
4141         .llseek = seq_lseek,
4142         .release = single_release,
4143         .write = i915_displayport_test_active_write
4144 };
4145
4146 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4147 {
4148         struct drm_device *dev = m->private;
4149         struct drm_connector *connector;
4150         struct list_head *connector_list = &dev->mode_config.connector_list;
4151         struct intel_dp *intel_dp;
4152
4153         if (!dev)
4154                 return -ENODEV;
4155
4156         list_for_each_entry(connector, connector_list, head) {
4157
4158                 if (connector->connector_type !=
4159                     DRM_MODE_CONNECTOR_DisplayPort)
4160                         continue;
4161
4162                 if (connector->status == connector_status_connected &&
4163                     connector->encoder != NULL) {
4164                         intel_dp = enc_to_intel_dp(connector->encoder);
4165                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4166                 } else
4167                         seq_puts(m, "0");
4168         }
4169
4170         return 0;
4171 }
4172 static int i915_displayport_test_data_open(struct inode *inode,
4173                                        struct file *file)
4174 {
4175         struct drm_device *dev = inode->i_private;
4176
4177         return single_open(file, i915_displayport_test_data_show, dev);
4178 }
4179
4180 static const struct file_operations i915_displayport_test_data_fops = {
4181         .owner = THIS_MODULE,
4182         .open = i915_displayport_test_data_open,
4183         .read = seq_read,
4184         .llseek = seq_lseek,
4185         .release = single_release
4186 };
4187
4188 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4189 {
4190         struct drm_device *dev = m->private;
4191         struct drm_connector *connector;
4192         struct list_head *connector_list = &dev->mode_config.connector_list;
4193         struct intel_dp *intel_dp;
4194
4195         if (!dev)
4196                 return -ENODEV;
4197
4198         list_for_each_entry(connector, connector_list, head) {
4199
4200                 if (connector->connector_type !=
4201                     DRM_MODE_CONNECTOR_DisplayPort)
4202                         continue;
4203
4204                 if (connector->status == connector_status_connected &&
4205                     connector->encoder != NULL) {
4206                         intel_dp = enc_to_intel_dp(connector->encoder);
4207                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4208                 } else
4209                         seq_puts(m, "0");
4210         }
4211
4212         return 0;
4213 }
4214
4215 static int i915_displayport_test_type_open(struct inode *inode,
4216                                        struct file *file)
4217 {
4218         struct drm_device *dev = inode->i_private;
4219
4220         return single_open(file, i915_displayport_test_type_show, dev);
4221 }
4222
4223 static const struct file_operations i915_displayport_test_type_fops = {
4224         .owner = THIS_MODULE,
4225         .open = i915_displayport_test_type_open,
4226         .read = seq_read,
4227         .llseek = seq_lseek,
4228         .release = single_release
4229 };
4230
4231 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4232 {
4233         struct drm_device *dev = m->private;
4234         int level;
4235         int num_levels;
4236
4237         if (IS_CHERRYVIEW(dev))
4238                 num_levels = 3;
4239         else if (IS_VALLEYVIEW(dev))
4240                 num_levels = 1;
4241         else
4242                 num_levels = ilk_wm_max_level(dev) + 1;
4243
4244         drm_modeset_lock_all(dev);
4245
4246         for (level = 0; level < num_levels; level++) {
4247                 unsigned int latency = wm[level];
4248
4249                 /*
4250                  * - WM1+ latency values in 0.5us units
4251                  * - latencies are in us on gen9/vlv/chv
4252                  */
4253                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4254                         latency *= 10;
4255                 else if (level > 0)
4256                         latency *= 5;
4257
4258                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4259                            level, wm[level], latency / 10, latency % 10);
4260         }
4261
4262         drm_modeset_unlock_all(dev);
4263 }
4264
4265 static int pri_wm_latency_show(struct seq_file *m, void *data)
4266 {
4267         struct drm_device *dev = m->private;
4268         struct drm_i915_private *dev_priv = dev->dev_private;
4269         const uint16_t *latencies;
4270
4271         if (INTEL_INFO(dev)->gen >= 9)
4272                 latencies = dev_priv->wm.skl_latency;
4273         else
4274                 latencies = to_i915(dev)->wm.pri_latency;
4275
4276         wm_latency_show(m, latencies);
4277
4278         return 0;
4279 }
4280
4281 static int spr_wm_latency_show(struct seq_file *m, void *data)
4282 {
4283         struct drm_device *dev = m->private;
4284         struct drm_i915_private *dev_priv = dev->dev_private;
4285         const uint16_t *latencies;
4286
4287         if (INTEL_INFO(dev)->gen >= 9)
4288                 latencies = dev_priv->wm.skl_latency;
4289         else
4290                 latencies = to_i915(dev)->wm.spr_latency;
4291
4292         wm_latency_show(m, latencies);
4293
4294         return 0;
4295 }
4296
4297 static int cur_wm_latency_show(struct seq_file *m, void *data)
4298 {
4299         struct drm_device *dev = m->private;
4300         struct drm_i915_private *dev_priv = dev->dev_private;
4301         const uint16_t *latencies;
4302
4303         if (INTEL_INFO(dev)->gen >= 9)
4304                 latencies = dev_priv->wm.skl_latency;
4305         else
4306                 latencies = to_i915(dev)->wm.cur_latency;
4307
4308         wm_latency_show(m, latencies);
4309
4310         return 0;
4311 }
4312
4313 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4314 {
4315         struct drm_device *dev = inode->i_private;
4316
4317         if (INTEL_INFO(dev)->gen < 5)
4318                 return -ENODEV;
4319
4320         return single_open(file, pri_wm_latency_show, dev);
4321 }
4322
4323 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4324 {
4325         struct drm_device *dev = inode->i_private;
4326
4327         if (HAS_GMCH_DISPLAY(dev))
4328                 return -ENODEV;
4329
4330         return single_open(file, spr_wm_latency_show, dev);
4331 }
4332
4333 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4334 {
4335         struct drm_device *dev = inode->i_private;
4336
4337         if (HAS_GMCH_DISPLAY(dev))
4338                 return -ENODEV;
4339
4340         return single_open(file, cur_wm_latency_show, dev);
4341 }
4342
4343 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4344                                 size_t len, loff_t *offp, uint16_t wm[8])
4345 {
4346         struct seq_file *m = file->private_data;
4347         struct drm_device *dev = m->private;
4348         uint16_t new[8] = { 0 };
4349         int num_levels;
4350         int level;
4351         int ret;
4352         char tmp[32];
4353
4354         if (IS_CHERRYVIEW(dev))
4355                 num_levels = 3;
4356         else if (IS_VALLEYVIEW(dev))
4357                 num_levels = 1;
4358         else
4359                 num_levels = ilk_wm_max_level(dev) + 1;
4360
4361         if (len >= sizeof(tmp))
4362                 return -EINVAL;
4363
4364         if (copy_from_user(tmp, ubuf, len))
4365                 return -EFAULT;
4366
4367         tmp[len] = '\0';
4368
4369         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4370                      &new[0], &new[1], &new[2], &new[3],
4371                      &new[4], &new[5], &new[6], &new[7]);
4372         if (ret != num_levels)
4373                 return -EINVAL;
4374
4375         drm_modeset_lock_all(dev);
4376
4377         for (level = 0; level < num_levels; level++)
4378                 wm[level] = new[level];
4379
4380         drm_modeset_unlock_all(dev);
4381
4382         return len;
4383 }
4384
4385
4386 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4387                                     size_t len, loff_t *offp)
4388 {
4389         struct seq_file *m = file->private_data;
4390         struct drm_device *dev = m->private;
4391         struct drm_i915_private *dev_priv = dev->dev_private;
4392         uint16_t *latencies;
4393
4394         if (INTEL_INFO(dev)->gen >= 9)
4395                 latencies = dev_priv->wm.skl_latency;
4396         else
4397                 latencies = to_i915(dev)->wm.pri_latency;
4398
4399         return wm_latency_write(file, ubuf, len, offp, latencies);
4400 }
4401
4402 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4403                                     size_t len, loff_t *offp)
4404 {
4405         struct seq_file *m = file->private_data;
4406         struct drm_device *dev = m->private;
4407         struct drm_i915_private *dev_priv = dev->dev_private;
4408         uint16_t *latencies;
4409
4410         if (INTEL_INFO(dev)->gen >= 9)
4411                 latencies = dev_priv->wm.skl_latency;
4412         else
4413                 latencies = to_i915(dev)->wm.spr_latency;
4414
4415         return wm_latency_write(file, ubuf, len, offp, latencies);
4416 }
4417
4418 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4419                                     size_t len, loff_t *offp)
4420 {
4421         struct seq_file *m = file->private_data;
4422         struct drm_device *dev = m->private;
4423         struct drm_i915_private *dev_priv = dev->dev_private;
4424         uint16_t *latencies;
4425
4426         if (INTEL_INFO(dev)->gen >= 9)
4427                 latencies = dev_priv->wm.skl_latency;
4428         else
4429                 latencies = to_i915(dev)->wm.cur_latency;
4430
4431         return wm_latency_write(file, ubuf, len, offp, latencies);
4432 }
4433
4434 static const struct file_operations i915_pri_wm_latency_fops = {
4435         .owner = THIS_MODULE,
4436         .open = pri_wm_latency_open,
4437         .read = seq_read,
4438         .llseek = seq_lseek,
4439         .release = single_release,
4440         .write = pri_wm_latency_write
4441 };
4442
4443 static const struct file_operations i915_spr_wm_latency_fops = {
4444         .owner = THIS_MODULE,
4445         .open = spr_wm_latency_open,
4446         .read = seq_read,
4447         .llseek = seq_lseek,
4448         .release = single_release,
4449         .write = spr_wm_latency_write
4450 };
4451
4452 static const struct file_operations i915_cur_wm_latency_fops = {
4453         .owner = THIS_MODULE,
4454         .open = cur_wm_latency_open,
4455         .read = seq_read,
4456         .llseek = seq_lseek,
4457         .release = single_release,
4458         .write = cur_wm_latency_write
4459 };
4460
4461 static int
4462 i915_wedged_get(void *data, u64 *val)
4463 {
4464         struct drm_device *dev = data;
4465         struct drm_i915_private *dev_priv = dev->dev_private;
4466
4467         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4468
4469         return 0;
4470 }
4471
4472 static int
4473 i915_wedged_set(void *data, u64 val)
4474 {
4475         struct drm_device *dev = data;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477
4478         /*
4479          * There is no safeguard against this debugfs entry colliding
4480          * with the hangcheck calling same i915_handle_error() in
4481          * parallel, causing an explosion. For now we assume that the
4482          * test harness is responsible enough not to inject gpu hangs
4483          * while it is writing to 'i915_wedged'
4484          */
4485
4486         if (i915_reset_in_progress(&dev_priv->gpu_error))
4487                 return -EAGAIN;
4488
4489         intel_runtime_pm_get(dev_priv);
4490
4491         i915_handle_error(dev, val,
4492                           "Manually setting wedged to %llu", val);
4493
4494         intel_runtime_pm_put(dev_priv);
4495
4496         return 0;
4497 }
4498
4499 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4500                         i915_wedged_get, i915_wedged_set,
4501                         "%llu\n");
4502
4503 static int
4504 i915_ring_stop_get(void *data, u64 *val)
4505 {
4506         struct drm_device *dev = data;
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508
4509         *val = dev_priv->gpu_error.stop_rings;
4510
4511         return 0;
4512 }
4513
4514 static int
4515 i915_ring_stop_set(void *data, u64 val)
4516 {
4517         struct drm_device *dev = data;
4518         struct drm_i915_private *dev_priv = dev->dev_private;
4519         int ret;
4520
4521         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4522
4523         ret = mutex_lock_interruptible(&dev->struct_mutex);
4524         if (ret)
4525                 return ret;
4526
4527         dev_priv->gpu_error.stop_rings = val;
4528         mutex_unlock(&dev->struct_mutex);
4529
4530         return 0;
4531 }
4532
4533 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4534                         i915_ring_stop_get, i915_ring_stop_set,
4535                         "0x%08llx\n");
4536
4537 static int
4538 i915_ring_missed_irq_get(void *data, u64 *val)
4539 {
4540         struct drm_device *dev = data;
4541         struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543         *val = dev_priv->gpu_error.missed_irq_rings;
4544         return 0;
4545 }
4546
4547 static int
4548 i915_ring_missed_irq_set(void *data, u64 val)
4549 {
4550         struct drm_device *dev = data;
4551         struct drm_i915_private *dev_priv = dev->dev_private;
4552         int ret;
4553
4554         /* Lock against concurrent debugfs callers */
4555         ret = mutex_lock_interruptible(&dev->struct_mutex);
4556         if (ret)
4557                 return ret;
4558         dev_priv->gpu_error.missed_irq_rings = val;
4559         mutex_unlock(&dev->struct_mutex);
4560
4561         return 0;
4562 }
4563
4564 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4565                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4566                         "0x%08llx\n");
4567
4568 static int
4569 i915_ring_test_irq_get(void *data, u64 *val)
4570 {
4571         struct drm_device *dev = data;
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573
4574         *val = dev_priv->gpu_error.test_irq_rings;
4575
4576         return 0;
4577 }
4578
4579 static int
4580 i915_ring_test_irq_set(void *data, u64 val)
4581 {
4582         struct drm_device *dev = data;
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584         int ret;
4585
4586         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4587
4588         /* Lock against concurrent debugfs callers */
4589         ret = mutex_lock_interruptible(&dev->struct_mutex);
4590         if (ret)
4591                 return ret;
4592
4593         dev_priv->gpu_error.test_irq_rings = val;
4594         mutex_unlock(&dev->struct_mutex);
4595
4596         return 0;
4597 }
4598
4599 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4600                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4601                         "0x%08llx\n");
4602
4603 #define DROP_UNBOUND 0x1
4604 #define DROP_BOUND 0x2
4605 #define DROP_RETIRE 0x4
4606 #define DROP_ACTIVE 0x8
4607 #define DROP_ALL (DROP_UNBOUND | \
4608                   DROP_BOUND | \
4609                   DROP_RETIRE | \
4610                   DROP_ACTIVE)
4611 static int
4612 i915_drop_caches_get(void *data, u64 *val)
4613 {
4614         *val = DROP_ALL;
4615
4616         return 0;
4617 }
4618
4619 static int
4620 i915_drop_caches_set(void *data, u64 val)
4621 {
4622         struct drm_device *dev = data;
4623         struct drm_i915_private *dev_priv = dev->dev_private;
4624         int ret;
4625
4626         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4627
4628         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4629          * on ioctls on -EAGAIN. */
4630         ret = mutex_lock_interruptible(&dev->struct_mutex);
4631         if (ret)
4632                 return ret;
4633
4634         if (val & DROP_ACTIVE) {
4635                 ret = i915_gpu_idle(dev);
4636                 if (ret)
4637                         goto unlock;
4638         }
4639
4640         if (val & (DROP_RETIRE | DROP_ACTIVE))
4641                 i915_gem_retire_requests(dev);
4642
4643         if (val & DROP_BOUND)
4644                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4645
4646         if (val & DROP_UNBOUND)
4647                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4648
4649 unlock:
4650         mutex_unlock(&dev->struct_mutex);
4651
4652         return ret;
4653 }
4654
4655 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4656                         i915_drop_caches_get, i915_drop_caches_set,
4657                         "0x%08llx\n");
4658
4659 static int
4660 i915_max_freq_get(void *data, u64 *val)
4661 {
4662         struct drm_device *dev = data;
4663         struct drm_i915_private *dev_priv = dev->dev_private;
4664         int ret;
4665
4666         if (INTEL_INFO(dev)->gen < 6)
4667                 return -ENODEV;
4668
4669         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4670
4671         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4672         if (ret)
4673                 return ret;
4674
4675         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4676         mutex_unlock(&dev_priv->rps.hw_lock);
4677
4678         return 0;
4679 }
4680
4681 static int
4682 i915_max_freq_set(void *data, u64 val)
4683 {
4684         struct drm_device *dev = data;
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686         u32 hw_max, hw_min;
4687         int ret;
4688
4689         if (INTEL_INFO(dev)->gen < 6)
4690                 return -ENODEV;
4691
4692         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4693
4694         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4695
4696         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4697         if (ret)
4698                 return ret;
4699
4700         /*
4701          * Turbo will still be enabled, but won't go above the set value.
4702          */
4703         val = intel_freq_opcode(dev_priv, val);
4704
4705         hw_max = dev_priv->rps.max_freq;
4706         hw_min = dev_priv->rps.min_freq;
4707
4708         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4709                 mutex_unlock(&dev_priv->rps.hw_lock);
4710                 return -EINVAL;
4711         }
4712
4713         dev_priv->rps.max_freq_softlimit = val;
4714
4715         intel_set_rps(dev, val);
4716
4717         mutex_unlock(&dev_priv->rps.hw_lock);
4718
4719         return 0;
4720 }
4721
4722 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4723                         i915_max_freq_get, i915_max_freq_set,
4724                         "%llu\n");
4725
4726 static int
4727 i915_min_freq_get(void *data, u64 *val)
4728 {
4729         struct drm_device *dev = data;
4730         struct drm_i915_private *dev_priv = dev->dev_private;
4731         int ret;
4732
4733         if (INTEL_INFO(dev)->gen < 6)
4734                 return -ENODEV;
4735
4736         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4737
4738         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4739         if (ret)
4740                 return ret;
4741
4742         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4743         mutex_unlock(&dev_priv->rps.hw_lock);
4744
4745         return 0;
4746 }
4747
4748 static int
4749 i915_min_freq_set(void *data, u64 val)
4750 {
4751         struct drm_device *dev = data;
4752         struct drm_i915_private *dev_priv = dev->dev_private;
4753         u32 hw_max, hw_min;
4754         int ret;
4755
4756         if (INTEL_INFO(dev)->gen < 6)
4757                 return -ENODEV;
4758
4759         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4760
4761         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4762
4763         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4764         if (ret)
4765                 return ret;
4766
4767         /*
4768          * Turbo will still be enabled, but won't go below the set value.
4769          */
4770         val = intel_freq_opcode(dev_priv, val);
4771
4772         hw_max = dev_priv->rps.max_freq;
4773         hw_min = dev_priv->rps.min_freq;
4774
4775         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4776                 mutex_unlock(&dev_priv->rps.hw_lock);
4777                 return -EINVAL;
4778         }
4779
4780         dev_priv->rps.min_freq_softlimit = val;
4781
4782         intel_set_rps(dev, val);
4783
4784         mutex_unlock(&dev_priv->rps.hw_lock);
4785
4786         return 0;
4787 }
4788
4789 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4790                         i915_min_freq_get, i915_min_freq_set,
4791                         "%llu\n");
4792
4793 static int
4794 i915_cache_sharing_get(void *data, u64 *val)
4795 {
4796         struct drm_device *dev = data;
4797         struct drm_i915_private *dev_priv = dev->dev_private;
4798         u32 snpcr;
4799         int ret;
4800
4801         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4802                 return -ENODEV;
4803
4804         ret = mutex_lock_interruptible(&dev->struct_mutex);
4805         if (ret)
4806                 return ret;
4807         intel_runtime_pm_get(dev_priv);
4808
4809         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4810
4811         intel_runtime_pm_put(dev_priv);
4812         mutex_unlock(&dev_priv->dev->struct_mutex);
4813
4814         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4815
4816         return 0;
4817 }
4818
4819 static int
4820 i915_cache_sharing_set(void *data, u64 val)
4821 {
4822         struct drm_device *dev = data;
4823         struct drm_i915_private *dev_priv = dev->dev_private;
4824         u32 snpcr;
4825
4826         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4827                 return -ENODEV;
4828
4829         if (val > 3)
4830                 return -EINVAL;
4831
4832         intel_runtime_pm_get(dev_priv);
4833         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4834
4835         /* Update the cache sharing policy here as well */
4836         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4837         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4838         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4839         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4840
4841         intel_runtime_pm_put(dev_priv);
4842         return 0;
4843 }
4844
4845 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4846                         i915_cache_sharing_get, i915_cache_sharing_set,
4847                         "%llu\n");
4848
4849 struct sseu_dev_status {
4850         unsigned int slice_total;
4851         unsigned int subslice_total;
4852         unsigned int subslice_per_slice;
4853         unsigned int eu_total;
4854         unsigned int eu_per_subslice;
4855 };
4856
4857 static void cherryview_sseu_device_status(struct drm_device *dev,
4858                                           struct sseu_dev_status *stat)
4859 {
4860         struct drm_i915_private *dev_priv = dev->dev_private;
4861         const int ss_max = 2;
4862         int ss;
4863         u32 sig1[ss_max], sig2[ss_max];
4864
4865         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4866         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4867         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4868         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4869
4870         for (ss = 0; ss < ss_max; ss++) {
4871                 unsigned int eu_cnt;
4872
4873                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4874                         /* skip disabled subslice */
4875                         continue;
4876
4877                 stat->slice_total = 1;
4878                 stat->subslice_per_slice++;
4879                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4880                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4881                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4882                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4883                 stat->eu_total += eu_cnt;
4884                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4885         }
4886         stat->subslice_total = stat->subslice_per_slice;
4887 }
4888
4889 static void gen9_sseu_device_status(struct drm_device *dev,
4890                                     struct sseu_dev_status *stat)
4891 {
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893         int s_max = 3, ss_max = 4;
4894         int s, ss;
4895         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4896
4897         /* BXT has a single slice and at most 3 subslices. */
4898         if (IS_BROXTON(dev)) {
4899                 s_max = 1;
4900                 ss_max = 3;
4901         }
4902
4903         for (s = 0; s < s_max; s++) {
4904                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4905                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4906                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4907         }
4908
4909         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4910                      GEN9_PGCTL_SSA_EU19_ACK |
4911                      GEN9_PGCTL_SSA_EU210_ACK |
4912                      GEN9_PGCTL_SSA_EU311_ACK;
4913         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4914                      GEN9_PGCTL_SSB_EU19_ACK |
4915                      GEN9_PGCTL_SSB_EU210_ACK |
4916                      GEN9_PGCTL_SSB_EU311_ACK;
4917
4918         for (s = 0; s < s_max; s++) {
4919                 unsigned int ss_cnt = 0;
4920
4921                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4922                         /* skip disabled slice */
4923                         continue;
4924
4925                 stat->slice_total++;
4926
4927                 if (IS_SKYLAKE(dev))
4928                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
4929
4930                 for (ss = 0; ss < ss_max; ss++) {
4931                         unsigned int eu_cnt;
4932
4933                         if (IS_BROXTON(dev) &&
4934                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4935                                 /* skip disabled subslice */
4936                                 continue;
4937
4938                         if (IS_BROXTON(dev))
4939                                 ss_cnt++;
4940
4941                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4942                                                eu_mask[ss%2]);
4943                         stat->eu_total += eu_cnt;
4944                         stat->eu_per_subslice = max(stat->eu_per_subslice,
4945                                                     eu_cnt);
4946                 }
4947
4948                 stat->subslice_total += ss_cnt;
4949                 stat->subslice_per_slice = max(stat->subslice_per_slice,
4950                                                ss_cnt);
4951         }
4952 }
4953
4954 static int i915_sseu_status(struct seq_file *m, void *unused)
4955 {
4956         struct drm_info_node *node = (struct drm_info_node *) m->private;
4957         struct drm_device *dev = node->minor->dev;
4958         struct sseu_dev_status stat;
4959
4960         if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4961                 return -ENODEV;
4962
4963         seq_puts(m, "SSEU Device Info\n");
4964         seq_printf(m, "  Available Slice Total: %u\n",
4965                    INTEL_INFO(dev)->slice_total);
4966         seq_printf(m, "  Available Subslice Total: %u\n",
4967                    INTEL_INFO(dev)->subslice_total);
4968         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4969                    INTEL_INFO(dev)->subslice_per_slice);
4970         seq_printf(m, "  Available EU Total: %u\n",
4971                    INTEL_INFO(dev)->eu_total);
4972         seq_printf(m, "  Available EU Per Subslice: %u\n",
4973                    INTEL_INFO(dev)->eu_per_subslice);
4974         seq_printf(m, "  Has Slice Power Gating: %s\n",
4975                    yesno(INTEL_INFO(dev)->has_slice_pg));
4976         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4977                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4978         seq_printf(m, "  Has EU Power Gating: %s\n",
4979                    yesno(INTEL_INFO(dev)->has_eu_pg));
4980
4981         seq_puts(m, "SSEU Device Status\n");
4982         memset(&stat, 0, sizeof(stat));
4983         if (IS_CHERRYVIEW(dev)) {
4984                 cherryview_sseu_device_status(dev, &stat);
4985         } else if (INTEL_INFO(dev)->gen >= 9) {
4986                 gen9_sseu_device_status(dev, &stat);
4987         }
4988         seq_printf(m, "  Enabled Slice Total: %u\n",
4989                    stat.slice_total);
4990         seq_printf(m, "  Enabled Subslice Total: %u\n",
4991                    stat.subslice_total);
4992         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
4993                    stat.subslice_per_slice);
4994         seq_printf(m, "  Enabled EU Total: %u\n",
4995                    stat.eu_total);
4996         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
4997                    stat.eu_per_subslice);
4998
4999         return 0;
5000 }
5001
5002 static int i915_forcewake_open(struct inode *inode, struct file *file)
5003 {
5004         struct drm_device *dev = inode->i_private;
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006
5007         if (INTEL_INFO(dev)->gen < 6)
5008                 return 0;
5009
5010         intel_runtime_pm_get(dev_priv);
5011         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5012
5013         return 0;
5014 }
5015
5016 static int i915_forcewake_release(struct inode *inode, struct file *file)
5017 {
5018         struct drm_device *dev = inode->i_private;
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020
5021         if (INTEL_INFO(dev)->gen < 6)
5022                 return 0;
5023
5024         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5025         intel_runtime_pm_put(dev_priv);
5026
5027         return 0;
5028 }
5029
5030 static const struct file_operations i915_forcewake_fops = {
5031         .owner = THIS_MODULE,
5032         .open = i915_forcewake_open,
5033         .release = i915_forcewake_release,
5034 };
5035
5036 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5037 {
5038         struct drm_device *dev = minor->dev;
5039         struct dentry *ent;
5040
5041         ent = debugfs_create_file("i915_forcewake_user",
5042                                   S_IRUSR,
5043                                   root, dev,
5044                                   &i915_forcewake_fops);
5045         if (!ent)
5046                 return -ENOMEM;
5047
5048         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5049 }
5050
5051 static int i915_debugfs_create(struct dentry *root,
5052                                struct drm_minor *minor,
5053                                const char *name,
5054                                const struct file_operations *fops)
5055 {
5056         struct drm_device *dev = minor->dev;
5057         struct dentry *ent;
5058
5059         ent = debugfs_create_file(name,
5060                                   S_IRUGO | S_IWUSR,
5061                                   root, dev,
5062                                   fops);
5063         if (!ent)
5064                 return -ENOMEM;
5065
5066         return drm_add_fake_info_node(minor, ent, fops);
5067 }
5068
5069 static const struct drm_info_list i915_debugfs_list[] = {
5070         {"i915_capabilities", i915_capabilities, 0},
5071         {"i915_gem_objects", i915_gem_object_info, 0},
5072         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5073         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5074         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5075         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5076         {"i915_gem_stolen", i915_gem_stolen_list_info },
5077         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5078         {"i915_gem_request", i915_gem_request_info, 0},
5079         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5080         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5081         {"i915_gem_interrupt", i915_interrupt_info, 0},
5082         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5083         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5084         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5085         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5086         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5087         {"i915_frequency_info", i915_frequency_info, 0},
5088         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5089         {"i915_drpc_info", i915_drpc_info, 0},
5090         {"i915_emon_status", i915_emon_status, 0},
5091         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5092         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5093         {"i915_fbc_status", i915_fbc_status, 0},
5094         {"i915_ips_status", i915_ips_status, 0},
5095         {"i915_sr_status", i915_sr_status, 0},
5096         {"i915_opregion", i915_opregion, 0},
5097         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5098         {"i915_context_status", i915_context_status, 0},
5099         {"i915_dump_lrc", i915_dump_lrc, 0},
5100         {"i915_execlists", i915_execlists, 0},
5101         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5102         {"i915_swizzle_info", i915_swizzle_info, 0},
5103         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5104         {"i915_llc", i915_llc, 0},
5105         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5106         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5107         {"i915_energy_uJ", i915_energy_uJ, 0},
5108         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5109         {"i915_power_domain_info", i915_power_domain_info, 0},
5110         {"i915_display_info", i915_display_info, 0},
5111         {"i915_semaphore_status", i915_semaphore_status, 0},
5112         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5113         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5114         {"i915_wa_registers", i915_wa_registers, 0},
5115         {"i915_ddb_info", i915_ddb_info, 0},
5116         {"i915_sseu_status", i915_sseu_status, 0},
5117         {"i915_drrs_status", i915_drrs_status, 0},
5118         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5119 };
5120 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5121
5122 static const struct i915_debugfs_files {
5123         const char *name;
5124         const struct file_operations *fops;
5125 } i915_debugfs_files[] = {
5126         {"i915_wedged", &i915_wedged_fops},
5127         {"i915_max_freq", &i915_max_freq_fops},
5128         {"i915_min_freq", &i915_min_freq_fops},
5129         {"i915_cache_sharing", &i915_cache_sharing_fops},
5130         {"i915_ring_stop", &i915_ring_stop_fops},
5131         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5132         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5133         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5134         {"i915_error_state", &i915_error_state_fops},
5135         {"i915_next_seqno", &i915_next_seqno_fops},
5136         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5137         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5138         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5139         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5140         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5141         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5142         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5143         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5144 };
5145
5146 void intel_display_crc_init(struct drm_device *dev)
5147 {
5148         struct drm_i915_private *dev_priv = dev->dev_private;
5149         enum pipe pipe;
5150
5151         for_each_pipe(dev_priv, pipe) {
5152                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5153
5154                 pipe_crc->opened = false;
5155                 spin_lock_init(&pipe_crc->lock);
5156                 init_waitqueue_head(&pipe_crc->wq);
5157         }
5158 }
5159
5160 int i915_debugfs_init(struct drm_minor *minor)
5161 {
5162         int ret, i;
5163
5164         ret = i915_forcewake_create(minor->debugfs_root, minor);
5165         if (ret)
5166                 return ret;
5167
5168         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5169                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5170                 if (ret)
5171                         return ret;
5172         }
5173
5174         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5175                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5176                                           i915_debugfs_files[i].name,
5177                                           i915_debugfs_files[i].fops);
5178                 if (ret)
5179                         return ret;
5180         }
5181
5182         return drm_debugfs_create_files(i915_debugfs_list,
5183                                         I915_DEBUGFS_ENTRIES,
5184                                         minor->debugfs_root, minor);
5185 }
5186
5187 void i915_debugfs_cleanup(struct drm_minor *minor)
5188 {
5189         int i;
5190
5191         drm_debugfs_remove_files(i915_debugfs_list,
5192                                  I915_DEBUGFS_ENTRIES, minor);
5193
5194         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5195                                  1, minor);
5196
5197         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5198                 struct drm_info_list *info_list =
5199                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5200
5201                 drm_debugfs_remove_files(info_list, 1, minor);
5202         }
5203
5204         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5205                 struct drm_info_list *info_list =
5206                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5207
5208                 drm_debugfs_remove_files(info_list, 1, minor);
5209         }
5210 }
5211
5212 struct dpcd_block {
5213         /* DPCD dump start address. */
5214         unsigned int offset;
5215         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5216         unsigned int end;
5217         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5218         size_t size;
5219         /* Only valid for eDP. */
5220         bool edp;
5221 };
5222
5223 static const struct dpcd_block i915_dpcd_debug[] = {
5224         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5225         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5226         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5227         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5228         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5229         { .offset = DP_SET_POWER },
5230         { .offset = DP_EDP_DPCD_REV },
5231         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5232         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5233         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5234 };
5235
5236 static int i915_dpcd_show(struct seq_file *m, void *data)
5237 {
5238         struct drm_connector *connector = m->private;
5239         struct intel_dp *intel_dp =
5240                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5241         uint8_t buf[16];
5242         ssize_t err;
5243         int i;
5244
5245         if (connector->status != connector_status_connected)
5246                 return -ENODEV;
5247
5248         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5249                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5250                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5251
5252                 if (b->edp &&
5253                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5254                         continue;
5255
5256                 /* low tech for now */
5257                 if (WARN_ON(size > sizeof(buf)))
5258                         continue;
5259
5260                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5261                 if (err <= 0) {
5262                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5263                                   size, b->offset, err);
5264                         continue;
5265                 }
5266
5267                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5268         }
5269
5270         return 0;
5271 }
5272
5273 static int i915_dpcd_open(struct inode *inode, struct file *file)
5274 {
5275         return single_open(file, i915_dpcd_show, inode->i_private);
5276 }
5277
5278 static const struct file_operations i915_dpcd_fops = {
5279         .owner = THIS_MODULE,
5280         .open = i915_dpcd_open,
5281         .read = seq_read,
5282         .llseek = seq_lseek,
5283         .release = single_release,
5284 };
5285
5286 /**
5287  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5288  * @connector: pointer to a registered drm_connector
5289  *
5290  * Cleanup will be done by drm_connector_unregister() through a call to
5291  * drm_debugfs_connector_remove().
5292  *
5293  * Returns 0 on success, negative error codes on error.
5294  */
5295 int i915_debugfs_connector_add(struct drm_connector *connector)
5296 {
5297         struct dentry *root = connector->debugfs_entry;
5298
5299         /* The connector must have been registered beforehands. */
5300         if (!root)
5301                 return -ENODEV;
5302
5303         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5304             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5305                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5306                                     &i915_dpcd_fops);
5307
5308         return 0;
5309 }