Merge branch 'master' into for_paulus
[linux-drm-fsl-dcu.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
36
37 #define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
38
39
40 #ifdef CONFIG_EDAC_DEBUG
41 /* Values of 0 to 4 will generate output */
42 int edac_debug_level = 1;
43 EXPORT_SYMBOL_GPL(edac_debug_level);
44 #endif
45
46 /* EDAC Controls, setable by module parameter, and sysfs */
47 static int log_ue = 1;
48 static int log_ce = 1;
49 static int panic_on_ue;
50 static int poll_msec = 1000;
51
52 /* lock to memory controller's control array */
53 static DECLARE_MUTEX(mem_ctls_mutex);
54 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
55
56 static struct task_struct *edac_thread;
57
58 #ifdef CONFIG_PCI
59 static int check_pci_parity = 0;        /* default YES check PCI parity */
60 static int panic_on_pci_parity;         /* default no panic on PCI Parity */
61 static atomic_t pci_parity_count = ATOMIC_INIT(0);
62
63 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
64 static struct completion edac_pci_kobj_complete;
65 #endif  /* CONFIG_PCI */
66
67 /*  START sysfs data and methods */
68
69
70 static const char *mem_types[] = {
71         [MEM_EMPTY] = "Empty",
72         [MEM_RESERVED] = "Reserved",
73         [MEM_UNKNOWN] = "Unknown",
74         [MEM_FPM] = "FPM",
75         [MEM_EDO] = "EDO",
76         [MEM_BEDO] = "BEDO",
77         [MEM_SDR] = "Unbuffered-SDR",
78         [MEM_RDR] = "Registered-SDR",
79         [MEM_DDR] = "Unbuffered-DDR",
80         [MEM_RDDR] = "Registered-DDR",
81         [MEM_RMBS] = "RMBS"
82 };
83
84 static const char *dev_types[] = {
85         [DEV_UNKNOWN] = "Unknown",
86         [DEV_X1] = "x1",
87         [DEV_X2] = "x2",
88         [DEV_X4] = "x4",
89         [DEV_X8] = "x8",
90         [DEV_X16] = "x16",
91         [DEV_X32] = "x32",
92         [DEV_X64] = "x64"
93 };
94
95 static const char *edac_caps[] = {
96         [EDAC_UNKNOWN] = "Unknown",
97         [EDAC_NONE] = "None",
98         [EDAC_RESERVED] = "Reserved",
99         [EDAC_PARITY] = "PARITY",
100         [EDAC_EC] = "EC",
101         [EDAC_SECDED] = "SECDED",
102         [EDAC_S2ECD2ED] = "S2ECD2ED",
103         [EDAC_S4ECD4ED] = "S4ECD4ED",
104         [EDAC_S8ECD8ED] = "S8ECD8ED",
105         [EDAC_S16ECD16ED] = "S16ECD16ED"
106 };
107
108 /* sysfs object: /sys/devices/system/edac */
109 static struct sysdev_class edac_class = {
110         set_kset_name("edac"),
111 };
112
113 /* sysfs object:
114  *      /sys/devices/system/edac/mc
115  */
116 static struct kobject edac_memctrl_kobj;
117
118 /* We use these to wait for the reference counts on edac_memctrl_kobj and
119  * edac_pci_kobj to reach 0.
120  */
121 static struct completion edac_memctrl_kobj_complete;
122
123 /*
124  * /sys/devices/system/edac/mc;
125  *      data structures and methods
126  */
127 static ssize_t memctrl_int_show(void *ptr, char *buffer)
128 {
129         int *value = (int*) ptr;
130         return sprintf(buffer, "%u\n", *value);
131 }
132
133 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
134 {
135         int *value = (int*) ptr;
136
137         if (isdigit(*buffer))
138                 *value = simple_strtoul(buffer, NULL, 0);
139
140         return count;
141 }
142
143 struct memctrl_dev_attribute {
144         struct attribute attr;
145         void *value;
146         ssize_t (*show)(void *,char *);
147         ssize_t (*store)(void *, const char *, size_t);
148 };
149
150 /* Set of show/store abstract level functions for memory control object */
151 static ssize_t memctrl_dev_show(struct kobject *kobj,
152                 struct attribute *attr, char *buffer)
153 {
154         struct memctrl_dev_attribute *memctrl_dev;
155         memctrl_dev = (struct memctrl_dev_attribute*)attr;
156
157         if (memctrl_dev->show)
158                 return memctrl_dev->show(memctrl_dev->value, buffer);
159
160         return -EIO;
161 }
162
163 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
164                 const char *buffer, size_t count)
165 {
166         struct memctrl_dev_attribute *memctrl_dev;
167         memctrl_dev = (struct memctrl_dev_attribute*)attr;
168
169         if (memctrl_dev->store)
170                 return memctrl_dev->store(memctrl_dev->value, buffer, count);
171
172         return -EIO;
173 }
174
175 static struct sysfs_ops memctrlfs_ops = {
176         .show   = memctrl_dev_show,
177         .store  = memctrl_dev_store
178 };
179
180 #define MEMCTRL_ATTR(_name,_mode,_show,_store)                  \
181 struct memctrl_dev_attribute attr_##_name = {                   \
182         .attr = {.name = __stringify(_name), .mode = _mode },   \
183         .value  = &_name,                                       \
184         .show   = _show,                                        \
185         .store  = _store,                                       \
186 };
187
188 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)     \
189 struct memctrl_dev_attribute attr_##_name = {                   \
190         .attr = {.name = __stringify(_name), .mode = _mode },   \
191         .value  = _data,                                        \
192         .show   = _show,                                        \
193         .store  = _store,                                       \
194 };
195
196 /* csrow<id> control files */
197 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
201
202 /* Base Attributes of the memory ECC object */
203 static struct memctrl_dev_attribute *memctrl_attr[] = {
204         &attr_panic_on_ue,
205         &attr_log_ue,
206         &attr_log_ce,
207         &attr_poll_msec,
208         NULL,
209 };
210
211 /* Main MC kobject release() function */
212 static void edac_memctrl_master_release(struct kobject *kobj)
213 {
214         debugf1("%s()\n", __func__);
215         complete(&edac_memctrl_kobj_complete);
216 }
217
218 static struct kobj_type ktype_memctrl = {
219         .release = edac_memctrl_master_release,
220         .sysfs_ops = &memctrlfs_ops,
221         .default_attrs = (struct attribute **) memctrl_attr,
222 };
223
224 /* Initialize the main sysfs entries for edac:
225  *   /sys/devices/system/edac
226  *
227  * and children
228  *
229  * Return:  0 SUCCESS
230  *         !0 FAILURE
231  */
232 static int edac_sysfs_memctrl_setup(void)
233 {
234         int err = 0;
235
236         debugf1("%s()\n", __func__);
237
238         /* create the /sys/devices/system/edac directory */
239         err = sysdev_class_register(&edac_class);
240
241         if (err) {
242                 debugf1("%s() error=%d\n", __func__, err);
243                 return err;
244         }
245
246         /* Init the MC's kobject */
247         memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
248         edac_memctrl_kobj.parent = &edac_class.kset.kobj;
249         edac_memctrl_kobj.ktype = &ktype_memctrl;
250
251         /* generate sysfs "..../edac/mc"   */
252         err = kobject_set_name(&edac_memctrl_kobj,"mc");
253
254         if (err)
255                 goto fail;
256
257         /* FIXME: maybe new sysdev_create_subdir() */
258         err = kobject_register(&edac_memctrl_kobj);
259
260         if (err) {
261                 debugf1("Failed to register '.../edac/mc'\n");
262                 goto fail;
263         }
264
265         debugf1("Registered '.../edac/mc' kobject\n");
266
267         return 0;
268
269 fail:
270         sysdev_class_unregister(&edac_class);
271         return err;
272 }
273
274 /*
275  * MC teardown:
276  *      the '..../edac/mc' kobject followed by '..../edac' itself
277  */
278 static void edac_sysfs_memctrl_teardown(void)
279 {
280         debugf0("MC: " __FILE__ ": %s()\n", __func__);
281
282         /* Unregister the MC's kobject and wait for reference count to reach
283          * 0.
284          */
285         init_completion(&edac_memctrl_kobj_complete);
286         kobject_unregister(&edac_memctrl_kobj);
287         wait_for_completion(&edac_memctrl_kobj_complete);
288
289         /* Unregister the 'edac' object */
290         sysdev_class_unregister(&edac_class);
291 }
292
293 #ifdef CONFIG_PCI
294 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
295 {
296         int *value = ptr;
297         return sprintf(buffer,"%d\n",*value);
298 }
299
300 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
301 {
302         int *value = ptr;
303
304         if (isdigit(*buffer))
305                 *value = simple_strtoul(buffer,NULL,0);
306
307         return count;
308 }
309
310 struct edac_pci_dev_attribute {
311         struct attribute attr;
312         void *value;
313         ssize_t (*show)(void *,char *);
314         ssize_t (*store)(void *, const char *,size_t);
315 };
316
317 /* Set of show/store abstract level functions for PCI Parity object */
318 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
319                 char *buffer)
320 {
321         struct edac_pci_dev_attribute *edac_pci_dev;
322         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
323
324         if (edac_pci_dev->show)
325                 return edac_pci_dev->show(edac_pci_dev->value, buffer);
326         return -EIO;
327 }
328
329 static ssize_t edac_pci_dev_store(struct kobject *kobj,
330                 struct attribute *attr, const char *buffer, size_t count)
331 {
332         struct edac_pci_dev_attribute *edac_pci_dev;
333         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
334
335         if (edac_pci_dev->show)
336                 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
337         return -EIO;
338 }
339
340 static struct sysfs_ops edac_pci_sysfs_ops = {
341         .show   = edac_pci_dev_show,
342         .store  = edac_pci_dev_store
343 };
344
345 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)                 \
346 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
347         .attr = {.name = __stringify(_name), .mode = _mode },   \
348         .value  = &_name,                                       \
349         .show   = _show,                                        \
350         .store  = _store,                                       \
351 };
352
353 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)    \
354 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
355         .attr = {.name = __stringify(_name), .mode = _mode },   \
356         .value  = _data,                                        \
357         .show   = _show,                                        \
358         .store  = _store,                                       \
359 };
360
361 /* PCI Parity control files */
362 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
363         edac_pci_int_store);
364 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
365         edac_pci_int_store);
366 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
367
368 /* Base Attributes of the memory ECC object */
369 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
370         &edac_pci_attr_check_pci_parity,
371         &edac_pci_attr_panic_on_pci_parity,
372         &edac_pci_attr_pci_parity_count,
373         NULL,
374 };
375
376 /* No memory to release */
377 static void edac_pci_release(struct kobject *kobj)
378 {
379         debugf1("%s()\n", __func__);
380         complete(&edac_pci_kobj_complete);
381 }
382
383 static struct kobj_type ktype_edac_pci = {
384         .release = edac_pci_release,
385         .sysfs_ops = &edac_pci_sysfs_ops,
386         .default_attrs = (struct attribute **) edac_pci_attr,
387 };
388
389 /**
390  * edac_sysfs_pci_setup()
391  *
392  */
393 static int edac_sysfs_pci_setup(void)
394 {
395         int err;
396
397         debugf1("%s()\n", __func__);
398
399         memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
400         edac_pci_kobj.parent = &edac_class.kset.kobj;
401         edac_pci_kobj.ktype = &ktype_edac_pci;
402         err = kobject_set_name(&edac_pci_kobj, "pci");
403
404         if (!err) {
405                 /* Instanstiate the csrow object */
406                 /* FIXME: maybe new sysdev_create_subdir() */
407                 err = kobject_register(&edac_pci_kobj);
408
409                 if (err)
410                         debugf1("Failed to register '.../edac/pci'\n");
411                 else
412                         debugf1("Registered '.../edac/pci' kobject\n");
413         }
414
415         return err;
416 }
417
418 static void edac_sysfs_pci_teardown(void)
419 {
420         debugf0("%s()\n", __func__);
421         init_completion(&edac_pci_kobj_complete);
422         kobject_unregister(&edac_pci_kobj);
423         wait_for_completion(&edac_pci_kobj_complete);
424 }
425
426
427 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
428 {
429         int where;
430         u16 status;
431
432         where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
433         pci_read_config_word(dev, where, &status);
434
435         /* If we get back 0xFFFF then we must suspect that the card has been
436          * pulled but the Linux PCI layer has not yet finished cleaning up.
437          * We don't want to report on such devices
438          */
439
440         if (status == 0xFFFF) {
441                 u32 sanity;
442
443                 pci_read_config_dword(dev, 0, &sanity);
444
445                 if (sanity == 0xFFFFFFFF)
446                         return 0;
447         }
448
449         status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
450                 PCI_STATUS_PARITY;
451
452         if (status)
453                 /* reset only the bits we are interested in */
454                 pci_write_config_word(dev, where, status);
455
456         return status;
457 }
458
459 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
460
461 /* Clear any PCI parity errors logged by this device. */
462 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
463 {
464         u8 header_type;
465
466         get_pci_parity_status(dev, 0);
467
468         /* read the device TYPE, looking for bridges */
469         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
470
471         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
472                 get_pci_parity_status(dev, 1);
473 }
474
475 /*
476  *  PCI Parity polling
477  *
478  */
479 static void edac_pci_dev_parity_test(struct pci_dev *dev)
480 {
481         u16 status;
482         u8  header_type;
483
484         /* read the STATUS register on this device
485          */
486         status = get_pci_parity_status(dev, 0);
487
488         debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
489
490         /* check the status reg for errors */
491         if (status) {
492                 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
493                         edac_printk(KERN_CRIT, EDAC_PCI,
494                                 "Signaled System Error on %s\n",
495                                 pci_name(dev));
496
497                 if (status & (PCI_STATUS_PARITY)) {
498                         edac_printk(KERN_CRIT, EDAC_PCI,
499                                 "Master Data Parity Error on %s\n",
500                                 pci_name(dev));
501
502                         atomic_inc(&pci_parity_count);
503                 }
504
505                 if (status & (PCI_STATUS_DETECTED_PARITY)) {
506                         edac_printk(KERN_CRIT, EDAC_PCI,
507                                 "Detected Parity Error on %s\n",
508                                 pci_name(dev));
509
510                         atomic_inc(&pci_parity_count);
511                 }
512         }
513
514         /* read the device TYPE, looking for bridges */
515         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
516
517         debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
518
519         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
520                 /* On bridges, need to examine secondary status register  */
521                 status = get_pci_parity_status(dev, 1);
522
523                 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
524                                 status, dev->dev.bus_id );
525
526                 /* check the secondary status reg for errors */
527                 if (status) {
528                         if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
529                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
530                                         "Signaled System Error on %s\n",
531                                         pci_name(dev));
532
533                         if (status & (PCI_STATUS_PARITY)) {
534                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
535                                         "Master Data Parity Error on "
536                                         "%s\n", pci_name(dev));
537
538                                 atomic_inc(&pci_parity_count);
539                         }
540
541                         if (status & (PCI_STATUS_DETECTED_PARITY)) {
542                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
543                                         "Detected Parity Error on %s\n",
544                                         pci_name(dev));
545
546                                 atomic_inc(&pci_parity_count);
547                         }
548                 }
549         }
550 }
551
552 /*
553  * pci_dev parity list iterator
554  *      Scan the PCI device list for one iteration, looking for SERRORs
555  *      Master Parity ERRORS or Parity ERRORs on primary or secondary devices
556  */
557 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
558 {
559         struct pci_dev *dev = NULL;
560
561         /* request for kernel access to the next PCI device, if any,
562          * and while we are looking at it have its reference count
563          * bumped until we are done with it
564          */
565         while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
566                 fn(dev);
567         }
568 }
569
570 static void do_pci_parity_check(void)
571 {
572         unsigned long flags;
573         int before_count;
574
575         debugf3("%s()\n", __func__);
576
577         if (!check_pci_parity)
578                 return;
579
580         before_count = atomic_read(&pci_parity_count);
581
582         /* scan all PCI devices looking for a Parity Error on devices and
583          * bridges
584          */
585         local_irq_save(flags);
586         edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
587         local_irq_restore(flags);
588
589         /* Only if operator has selected panic on PCI Error */
590         if (panic_on_pci_parity) {
591                 /* If the count is different 'after' from 'before' */
592                 if (before_count != atomic_read(&pci_parity_count))
593                         panic("EDAC: PCI Parity Error");
594         }
595 }
596
597 static inline void clear_pci_parity_errors(void)
598 {
599         /* Clear any PCI bus parity errors that devices initially have logged
600          * in their registers.
601          */
602         edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
603 }
604
605 #else   /* CONFIG_PCI */
606
607 /* pre-process these away */
608 #define do_pci_parity_check()
609 #define clear_pci_parity_errors()
610 #define edac_sysfs_pci_teardown()
611 #define edac_sysfs_pci_setup()  (0)
612
613 #endif  /* CONFIG_PCI */
614
615 /* EDAC sysfs CSROW data structures and methods
616  */
617
618 /* Set of more default csrow<id> attribute show/store functions */
619 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
620 {
621         return sprintf(data,"%u\n", csrow->ue_count);
622 }
623
624 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
625 {
626         return sprintf(data,"%u\n", csrow->ce_count);
627 }
628
629 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
630 {
631         return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
632 }
633
634 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
635 {
636         return sprintf(data,"%s\n", mem_types[csrow->mtype]);
637 }
638
639 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
640 {
641         return sprintf(data,"%s\n", dev_types[csrow->dtype]);
642 }
643
644 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
645 {
646         return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
647 }
648
649 /* show/store functions for DIMM Label attributes */
650 static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
651                 char *data, int channel)
652 {
653         return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
654                         csrow->channels[channel].label);
655 }
656
657 static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
658                                 const char *data,
659                                 size_t count,
660                                 int channel)
661 {
662         ssize_t max_size = 0;
663
664         max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
665         strncpy(csrow->channels[channel].label, data, max_size);
666         csrow->channels[channel].label[max_size] = '\0';
667
668         return max_size;
669 }
670
671 /* show function for dynamic chX_ce_count attribute */
672 static ssize_t channel_ce_count_show(struct csrow_info *csrow,
673                                 char *data,
674                                 int channel)
675 {
676         return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
677 }
678
679 /* csrow specific attribute structure */
680 struct csrowdev_attribute {
681         struct attribute attr;
682         ssize_t (*show)(struct csrow_info *,char *,int);
683         ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
684         int    private;
685 };
686
687 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
688 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
689
690 /* Set of show/store higher level functions for default csrow attributes */
691 static ssize_t csrowdev_show(struct kobject *kobj,
692                         struct attribute *attr,
693                         char *buffer)
694 {
695         struct csrow_info *csrow = to_csrow(kobj);
696         struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
697
698         if (csrowdev_attr->show)
699                 return csrowdev_attr->show(csrow,
700                                         buffer,
701                                         csrowdev_attr->private);
702         return -EIO;
703 }
704
705 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
706                 const char *buffer, size_t count)
707 {
708         struct csrow_info *csrow = to_csrow(kobj);
709         struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
710
711         if (csrowdev_attr->store)
712                 return csrowdev_attr->store(csrow,
713                                         buffer,
714                                         count,
715                                         csrowdev_attr->private);
716         return -EIO;
717 }
718
719 static struct sysfs_ops csrowfs_ops = {
720         .show   = csrowdev_show,
721         .store  = csrowdev_store
722 };
723
724 #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private)        \
725 struct csrowdev_attribute attr_##_name = {                      \
726         .attr = {.name = __stringify(_name), .mode = _mode },   \
727         .show   = _show,                                        \
728         .store  = _store,                                       \
729         .private = _private,                                    \
730 };
731
732 /* default cwrow<id>/attribute files */
733 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
734 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
735 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
736 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
737 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
738 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
739
740 /* default attributes of the CSROW<id> object */
741 static struct csrowdev_attribute *default_csrow_attr[] = {
742         &attr_dev_type,
743         &attr_mem_type,
744         &attr_edac_mode,
745         &attr_size_mb,
746         &attr_ue_count,
747         &attr_ce_count,
748         NULL,
749 };
750
751
752 /* possible dynamic channel DIMM Label attribute files */
753 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
754                 channel_dimm_label_show,
755                 channel_dimm_label_store,
756                 0 );
757 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
758                 channel_dimm_label_show,
759                 channel_dimm_label_store,
760                 1 );
761 CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
762                 channel_dimm_label_show,
763                 channel_dimm_label_store,
764                 2 );
765 CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
766                 channel_dimm_label_show,
767                 channel_dimm_label_store,
768                 3 );
769 CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
770                 channel_dimm_label_show,
771                 channel_dimm_label_store,
772                 4 );
773 CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
774                 channel_dimm_label_show,
775                 channel_dimm_label_store,
776                 5 );
777
778 /* Total possible dynamic DIMM Label attribute file table */
779 static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
780                 &attr_ch0_dimm_label,
781                 &attr_ch1_dimm_label,
782                 &attr_ch2_dimm_label,
783                 &attr_ch3_dimm_label,
784                 &attr_ch4_dimm_label,
785                 &attr_ch5_dimm_label
786 };
787
788 /* possible dynamic channel ce_count attribute files */
789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
790                 channel_ce_count_show,
791                 NULL,
792                 0 );
793 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
794                 channel_ce_count_show,
795                 NULL,
796                 1 );
797 CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
798                 channel_ce_count_show,
799                 NULL,
800                 2 );
801 CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
802                 channel_ce_count_show,
803                 NULL,
804                 3 );
805 CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
806                 channel_ce_count_show,
807                 NULL,
808                 4 );
809 CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
810                 channel_ce_count_show,
811                 NULL,
812                 5 );
813
814 /* Total possible dynamic ce_count attribute file table */
815 static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
816                 &attr_ch0_ce_count,
817                 &attr_ch1_ce_count,
818                 &attr_ch2_ce_count,
819                 &attr_ch3_ce_count,
820                 &attr_ch4_ce_count,
821                 &attr_ch5_ce_count
822 };
823
824
825 #define EDAC_NR_CHANNELS        6
826
827 /* Create dynamic CHANNEL files, indexed by 'chan',  under specifed CSROW */
828 static int edac_create_channel_files(struct kobject *kobj, int chan)
829 {
830         int err=-ENODEV;
831
832         if (chan >= EDAC_NR_CHANNELS)
833                 return err;
834
835         /* create the DIMM label attribute file */
836         err = sysfs_create_file(kobj,
837                         (struct attribute *) dynamic_csrow_dimm_attr[chan]);
838
839         if (!err) {
840                 /* create the CE Count attribute file */
841                 err = sysfs_create_file(kobj,
842                         (struct attribute *) dynamic_csrow_ce_count_attr[chan]);
843         } else {
844                 debugf1("%s()  dimm labels and ce_count files created", __func__);
845         }
846
847         return err;
848 }
849
850 /* No memory to release for this kobj */
851 static void edac_csrow_instance_release(struct kobject *kobj)
852 {
853         struct csrow_info *cs;
854
855         cs = container_of(kobj, struct csrow_info, kobj);
856         complete(&cs->kobj_complete);
857 }
858
859 /* the kobj_type instance for a CSROW */
860 static struct kobj_type ktype_csrow = {
861         .release = edac_csrow_instance_release,
862         .sysfs_ops = &csrowfs_ops,
863         .default_attrs = (struct attribute **) default_csrow_attr,
864 };
865
866 /* Create a CSROW object under specifed edac_mc_device */
867 static int edac_create_csrow_object(
868                 struct kobject *edac_mci_kobj,
869                 struct csrow_info *csrow,
870                 int index)
871 {
872         int err = 0;
873         int chan;
874
875         memset(&csrow->kobj, 0, sizeof(csrow->kobj));
876
877         /* generate ..../edac/mc/mc<id>/csrow<index>   */
878
879         csrow->kobj.parent = edac_mci_kobj;
880         csrow->kobj.ktype = &ktype_csrow;
881
882         /* name this instance of csrow<id> */
883         err = kobject_set_name(&csrow->kobj,"csrow%d",index);
884         if (err)
885                 goto error_exit;
886
887         /* Instanstiate the csrow object */
888         err = kobject_register(&csrow->kobj);
889         if (!err) {
890                 /* Create the dyanmic attribute files on this csrow,
891                  * namely, the DIMM labels and the channel ce_count
892                  */
893                 for (chan = 0; chan < csrow->nr_channels; chan++) {
894                         err = edac_create_channel_files(&csrow->kobj,chan);
895                         if (err)
896                                 break;
897                 }
898         }
899
900 error_exit:
901         return err;
902 }
903
904 /* default sysfs methods and data structures for the main MCI kobject */
905
906 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
907                 const char *data, size_t count)
908 {
909         int row, chan;
910
911         mci->ue_noinfo_count = 0;
912         mci->ce_noinfo_count = 0;
913         mci->ue_count = 0;
914         mci->ce_count = 0;
915
916         for (row = 0; row < mci->nr_csrows; row++) {
917                 struct csrow_info *ri = &mci->csrows[row];
918
919                 ri->ue_count = 0;
920                 ri->ce_count = 0;
921
922                 for (chan = 0; chan < ri->nr_channels; chan++)
923                         ri->channels[chan].ce_count = 0;
924         }
925
926         mci->start_time = jiffies;
927         return count;
928 }
929
930 /* memory scrubbing */
931 static ssize_t mci_sdram_scrub_rate_store(struct mem_ctl_info *mci,
932                                         const char *data, size_t count)
933 {
934         u32 bandwidth = -1;
935
936         if (mci->set_sdram_scrub_rate) {
937
938                 memctrl_int_store(&bandwidth, data, count);
939
940                 if (!(*mci->set_sdram_scrub_rate)(mci, &bandwidth)) {
941                         edac_printk(KERN_DEBUG, EDAC_MC,
942                                 "Scrub rate set successfully, applied: %d\n",
943                                 bandwidth);
944                 } else {
945                         /* FIXME: error codes maybe? */
946                         edac_printk(KERN_DEBUG, EDAC_MC,
947                                 "Scrub rate set FAILED, could not apply: %d\n",
948                                 bandwidth);
949                 }
950         } else {
951                 /* FIXME: produce "not implemented" ERROR for user-side. */
952                 edac_printk(KERN_WARNING, EDAC_MC,
953                         "Memory scrubbing 'set'control is not implemented!\n");
954         }
955         return count;
956 }
957
958 static ssize_t mci_sdram_scrub_rate_show(struct mem_ctl_info *mci, char *data)
959 {
960         u32 bandwidth = -1;
961
962         if (mci->get_sdram_scrub_rate) {
963                 if (!(*mci->get_sdram_scrub_rate)(mci, &bandwidth)) {
964                         edac_printk(KERN_DEBUG, EDAC_MC,
965                                 "Scrub rate successfully, fetched: %d\n",
966                                 bandwidth);
967                 } else {
968                         /* FIXME: error codes maybe? */
969                         edac_printk(KERN_DEBUG, EDAC_MC,
970                                 "Scrub rate fetch FAILED, got: %d\n",
971                                 bandwidth);
972                 }
973         } else {
974                 /* FIXME: produce "not implemented" ERROR for user-side.  */
975                 edac_printk(KERN_WARNING, EDAC_MC,
976                         "Memory scrubbing 'get' control is not implemented!\n");
977         }
978         return sprintf(data, "%d\n", bandwidth);
979 }
980
981 /* default attribute files for the MCI object */
982 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
983 {
984         return sprintf(data,"%d\n", mci->ue_count);
985 }
986
987 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
988 {
989         return sprintf(data,"%d\n", mci->ce_count);
990 }
991
992 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
993 {
994         return sprintf(data,"%d\n", mci->ce_noinfo_count);
995 }
996
997 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
998 {
999         return sprintf(data,"%d\n", mci->ue_noinfo_count);
1000 }
1001
1002 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
1003 {
1004         return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
1005 }
1006
1007 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
1008 {
1009         return sprintf(data,"%s\n", mci->ctl_name);
1010 }
1011
1012 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
1013 {
1014         int total_pages, csrow_idx;
1015
1016         for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
1017                         csrow_idx++) {
1018                 struct csrow_info *csrow = &mci->csrows[csrow_idx];
1019
1020                 if (!csrow->nr_pages)
1021                         continue;
1022
1023                 total_pages += csrow->nr_pages;
1024         }
1025
1026         return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
1027 }
1028
1029 struct mcidev_attribute {
1030         struct attribute attr;
1031         ssize_t (*show)(struct mem_ctl_info *,char *);
1032         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
1033 };
1034
1035 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1036 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1037
1038 /* MCI show/store functions for top most object */
1039 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1040                 char *buffer)
1041 {
1042         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1043         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1044
1045         if (mcidev_attr->show)
1046                 return mcidev_attr->show(mem_ctl_info, buffer);
1047
1048         return -EIO;
1049 }
1050
1051 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1052                 const char *buffer, size_t count)
1053 {
1054         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1055         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1056
1057         if (mcidev_attr->store)
1058                 return mcidev_attr->store(mem_ctl_info, buffer, count);
1059
1060         return -EIO;
1061 }
1062
1063 static struct sysfs_ops mci_ops = {
1064         .show = mcidev_show,
1065         .store = mcidev_store
1066 };
1067
1068 #define MCIDEV_ATTR(_name,_mode,_show,_store)                   \
1069 struct mcidev_attribute mci_attr_##_name = {                    \
1070         .attr = {.name = __stringify(_name), .mode = _mode },   \
1071         .show   = _show,                                        \
1072         .store  = _store,                                       \
1073 };
1074
1075 /* default Control file */
1076 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1077
1078 /* default Attribute files */
1079 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1080 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1081 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1082 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1083 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1084 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1085 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1086
1087 /* memory scrubber attribute file */
1088 MCIDEV_ATTR(sdram_scrub_rate,S_IRUGO|S_IWUSR,mci_sdram_scrub_rate_show,mci_sdram_scrub_rate_store);
1089
1090 static struct mcidev_attribute *mci_attr[] = {
1091         &mci_attr_reset_counters,
1092         &mci_attr_mc_name,
1093         &mci_attr_size_mb,
1094         &mci_attr_seconds_since_reset,
1095         &mci_attr_ue_noinfo_count,
1096         &mci_attr_ce_noinfo_count,
1097         &mci_attr_ue_count,
1098         &mci_attr_ce_count,
1099         &mci_attr_sdram_scrub_rate,
1100         NULL
1101 };
1102
1103 /*
1104  * Release of a MC controlling instance
1105  */
1106 static void edac_mci_instance_release(struct kobject *kobj)
1107 {
1108         struct mem_ctl_info *mci;
1109
1110         mci = to_mci(kobj);
1111         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1112         complete(&mci->kobj_complete);
1113 }
1114
1115 static struct kobj_type ktype_mci = {
1116         .release = edac_mci_instance_release,
1117         .sysfs_ops = &mci_ops,
1118         .default_attrs = (struct attribute **) mci_attr,
1119 };
1120
1121
1122 #define EDAC_DEVICE_SYMLINK     "device"
1123
1124 /*
1125  * Create a new Memory Controller kobject instance,
1126  *      mc<id> under the 'mc' directory
1127  *
1128  * Return:
1129  *      0       Success
1130  *      !0      Failure
1131  */
1132 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1133 {
1134         int i;
1135         int err;
1136         struct csrow_info *csrow;
1137         struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1138
1139         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1140         memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1141
1142         /* set the name of the mc<id> object */
1143         err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1144         if (err)
1145                 return err;
1146
1147         /* link to our parent the '..../edac/mc' object */
1148         edac_mci_kobj->parent = &edac_memctrl_kobj;
1149         edac_mci_kobj->ktype = &ktype_mci;
1150
1151         /* register the mc<id> kobject */
1152         err = kobject_register(edac_mci_kobj);
1153         if (err)
1154                 return err;
1155
1156         /* create a symlink for the device */
1157         err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1158                                 EDAC_DEVICE_SYMLINK);
1159         if (err)
1160                 goto fail0;
1161
1162         /* Make directories for each CSROW object
1163          * under the mc<id> kobject
1164          */
1165         for (i = 0; i < mci->nr_csrows; i++) {
1166                 csrow = &mci->csrows[i];
1167
1168                 /* Only expose populated CSROWs */
1169                 if (csrow->nr_pages > 0) {
1170                         err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1171                         if (err)
1172                                 goto fail1;
1173                 }
1174         }
1175
1176         return 0;
1177
1178         /* CSROW error: backout what has already been registered,  */
1179 fail1:
1180         for ( i--; i >= 0; i--) {
1181                 if (csrow->nr_pages > 0) {
1182                         init_completion(&csrow->kobj_complete);
1183                         kobject_unregister(&mci->csrows[i].kobj);
1184                         wait_for_completion(&csrow->kobj_complete);
1185                 }
1186         }
1187
1188 fail0:
1189         init_completion(&mci->kobj_complete);
1190         kobject_unregister(edac_mci_kobj);
1191         wait_for_completion(&mci->kobj_complete);
1192         return err;
1193 }
1194
1195 /*
1196  * remove a Memory Controller instance
1197  */
1198 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1199 {
1200         int i;
1201
1202         debugf0("%s()\n", __func__);
1203
1204         /* remove all csrow kobjects */
1205         for (i = 0; i < mci->nr_csrows; i++) {
1206                 if (mci->csrows[i].nr_pages > 0) {
1207                         init_completion(&mci->csrows[i].kobj_complete);
1208                         kobject_unregister(&mci->csrows[i].kobj);
1209                         wait_for_completion(&mci->csrows[i].kobj_complete);
1210                 }
1211         }
1212
1213         sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1214         init_completion(&mci->kobj_complete);
1215         kobject_unregister(&mci->edac_mci_kobj);
1216         wait_for_completion(&mci->kobj_complete);
1217 }
1218
1219 /* END OF sysfs data and methods */
1220
1221 #ifdef CONFIG_EDAC_DEBUG
1222
1223 void edac_mc_dump_channel(struct channel_info *chan)
1224 {
1225         debugf4("\tchannel = %p\n", chan);
1226         debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1227         debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1228         debugf4("\tchannel->label = '%s'\n", chan->label);
1229         debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1230 }
1231 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1232
1233 void edac_mc_dump_csrow(struct csrow_info *csrow)
1234 {
1235         debugf4("\tcsrow = %p\n", csrow);
1236         debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1237         debugf4("\tcsrow->first_page = 0x%lx\n",
1238                 csrow->first_page);
1239         debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1240         debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1241         debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1242         debugf4("\tcsrow->nr_channels = %d\n",
1243                 csrow->nr_channels);
1244         debugf4("\tcsrow->channels = %p\n", csrow->channels);
1245         debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1246 }
1247 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1248
1249 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1250 {
1251         debugf3("\tmci = %p\n", mci);
1252         debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1253         debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1254         debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1255         debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1256         debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1257                 mci->nr_csrows, mci->csrows);
1258         debugf3("\tdev = %p\n", mci->dev);
1259         debugf3("\tmod_name:ctl_name = %s:%s\n",
1260                 mci->mod_name, mci->ctl_name);
1261         debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1262 }
1263 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1264
1265 #endif  /* CONFIG_EDAC_DEBUG */
1266
1267 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1268  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1269  * compiler would provide for X and return the aligned result.
1270  *
1271  * If 'size' is a constant, the compiler will optimize this whole function
1272  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1273  */
1274 static inline char * align_ptr(void *ptr, unsigned size)
1275 {
1276         unsigned align, r;
1277
1278         /* Here we assume that the alignment of a "long long" is the most
1279          * stringent alignment that the compiler will ever provide by default.
1280          * As far as I know, this is a reasonable assumption.
1281          */
1282         if (size > sizeof(long))
1283                 align = sizeof(long long);
1284         else if (size > sizeof(int))
1285                 align = sizeof(long);
1286         else if (size > sizeof(short))
1287                 align = sizeof(int);
1288         else if (size > sizeof(char))
1289                 align = sizeof(short);
1290         else
1291                 return (char *) ptr;
1292
1293         r = size % align;
1294
1295         if (r == 0)
1296                 return (char *) ptr;
1297
1298         return (char *) (((unsigned long) ptr) + align - r);
1299 }
1300
1301 /**
1302  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1303  * @size_pvt:   size of private storage needed
1304  * @nr_csrows:  Number of CWROWS needed for this MC
1305  * @nr_chans:   Number of channels for the MC
1306  *
1307  * Everything is kmalloc'ed as one big chunk - more efficient.
1308  * Only can be used if all structures have the same lifetime - otherwise
1309  * you have to allocate and initialize your own structures.
1310  *
1311  * Use edac_mc_free() to free mc structures allocated by this function.
1312  *
1313  * Returns:
1314  *      NULL allocation failed
1315  *      struct mem_ctl_info pointer
1316  */
1317 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1318                 unsigned nr_chans)
1319 {
1320         struct mem_ctl_info *mci;
1321         struct csrow_info *csi, *csrow;
1322         struct channel_info *chi, *chp, *chan;
1323         void *pvt;
1324         unsigned size;
1325         int row, chn;
1326
1327         /* Figure out the offsets of the various items from the start of an mc
1328          * structure.  We want the alignment of each item to be at least as
1329          * stringent as what the compiler would provide if we could simply
1330          * hardcode everything into a single struct.
1331          */
1332         mci = (struct mem_ctl_info *) 0;
1333         csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1334         chi = (struct channel_info *)
1335                         align_ptr(&csi[nr_csrows], sizeof(*chi));
1336         pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1337         size = ((unsigned long) pvt) + sz_pvt;
1338
1339         if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1340                 return NULL;
1341
1342         /* Adjust pointers so they point within the memory we just allocated
1343          * rather than an imaginary chunk of memory located at address 0.
1344          */
1345         csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1346         chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1347         pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1348
1349         memset(mci, 0, size);  /* clear all fields */
1350         mci->csrows = csi;
1351         mci->pvt_info = pvt;
1352         mci->nr_csrows = nr_csrows;
1353
1354         for (row = 0; row < nr_csrows; row++) {
1355                 csrow = &csi[row];
1356                 csrow->csrow_idx = row;
1357                 csrow->mci = mci;
1358                 csrow->nr_channels = nr_chans;
1359                 chp = &chi[row * nr_chans];
1360                 csrow->channels = chp;
1361
1362                 for (chn = 0; chn < nr_chans; chn++) {
1363                         chan = &chp[chn];
1364                         chan->chan_idx = chn;
1365                         chan->csrow = csrow;
1366                 }
1367         }
1368
1369         return mci;
1370 }
1371 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1372
1373 /**
1374  * edac_mc_free:  Free a previously allocated 'mci' structure
1375  * @mci: pointer to a struct mem_ctl_info structure
1376  */
1377 void edac_mc_free(struct mem_ctl_info *mci)
1378 {
1379         kfree(mci);
1380 }
1381 EXPORT_SYMBOL_GPL(edac_mc_free);
1382
1383 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1384 {
1385         struct mem_ctl_info *mci;
1386         struct list_head *item;
1387
1388         debugf3("%s()\n", __func__);
1389
1390         list_for_each(item, &mc_devices) {
1391                 mci = list_entry(item, struct mem_ctl_info, link);
1392
1393                 if (mci->dev == dev)
1394                         return mci;
1395         }
1396
1397         return NULL;
1398 }
1399
1400 /* Return 0 on success, 1 on failure.
1401  * Before calling this function, caller must
1402  * assign a unique value to mci->mc_idx.
1403  */
1404 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1405 {
1406         struct list_head *item, *insert_before;
1407         struct mem_ctl_info *p;
1408
1409         insert_before = &mc_devices;
1410
1411         if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1412                 goto fail0;
1413
1414         list_for_each(item, &mc_devices) {
1415                 p = list_entry(item, struct mem_ctl_info, link);
1416
1417                 if (p->mc_idx >= mci->mc_idx) {
1418                         if (unlikely(p->mc_idx == mci->mc_idx))
1419                                 goto fail1;
1420
1421                         insert_before = item;
1422                         break;
1423                 }
1424         }
1425
1426         list_add_tail_rcu(&mci->link, insert_before);
1427         return 0;
1428
1429 fail0:
1430         edac_printk(KERN_WARNING, EDAC_MC,
1431                     "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1432                     dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1433         return 1;
1434
1435 fail1:
1436         edac_printk(KERN_WARNING, EDAC_MC,
1437                     "bug in low-level driver: attempt to assign\n"
1438                     "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1439         return 1;
1440 }
1441
1442 static void complete_mc_list_del(struct rcu_head *head)
1443 {
1444         struct mem_ctl_info *mci;
1445
1446         mci = container_of(head, struct mem_ctl_info, rcu);
1447         INIT_LIST_HEAD(&mci->link);
1448         complete(&mci->complete);
1449 }
1450
1451 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1452 {
1453         list_del_rcu(&mci->link);
1454         init_completion(&mci->complete);
1455         call_rcu(&mci->rcu, complete_mc_list_del);
1456         wait_for_completion(&mci->complete);
1457 }
1458
1459 /**
1460  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1461  *                 create sysfs entries associated with mci structure
1462  * @mci: pointer to the mci structure to be added to the list
1463  * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1464  *
1465  * Return:
1466  *      0       Success
1467  *      !0      Failure
1468  */
1469
1470 /* FIXME - should a warning be printed if no error detection? correction? */
1471 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1472 {
1473         debugf0("%s()\n", __func__);
1474         mci->mc_idx = mc_idx;
1475 #ifdef CONFIG_EDAC_DEBUG
1476         if (edac_debug_level >= 3)
1477                 edac_mc_dump_mci(mci);
1478
1479         if (edac_debug_level >= 4) {
1480                 int i;
1481
1482                 for (i = 0; i < mci->nr_csrows; i++) {
1483                         int j;
1484
1485                         edac_mc_dump_csrow(&mci->csrows[i]);
1486                         for (j = 0; j < mci->csrows[i].nr_channels; j++)
1487                                 edac_mc_dump_channel(
1488                                         &mci->csrows[i].channels[j]);
1489                 }
1490         }
1491 #endif
1492         down(&mem_ctls_mutex);
1493
1494         if (add_mc_to_global_list(mci))
1495                 goto fail0;
1496
1497         /* set load time so that error rate can be tracked */
1498         mci->start_time = jiffies;
1499
1500         if (edac_create_sysfs_mci_device(mci)) {
1501                 edac_mc_printk(mci, KERN_WARNING,
1502                         "failed to create sysfs device\n");
1503                 goto fail1;
1504         }
1505
1506         /* Report action taken */
1507         edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1508                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1509
1510         up(&mem_ctls_mutex);
1511         return 0;
1512
1513 fail1:
1514         del_mc_from_global_list(mci);
1515
1516 fail0:
1517         up(&mem_ctls_mutex);
1518         return 1;
1519 }
1520 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1521
1522 /**
1523  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1524  *                 remove mci structure from global list
1525  * @pdev: Pointer to 'struct device' representing mci structure to remove.
1526  *
1527  * Return pointer to removed mci structure, or NULL if device not found.
1528  */
1529 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1530 {
1531         struct mem_ctl_info *mci;
1532
1533         debugf0("MC: %s()\n", __func__);
1534         down(&mem_ctls_mutex);
1535
1536         if ((mci = find_mci_by_dev(dev)) == NULL) {
1537                 up(&mem_ctls_mutex);
1538                 return NULL;
1539         }
1540
1541         edac_remove_sysfs_mci_device(mci);
1542         del_mc_from_global_list(mci);
1543         up(&mem_ctls_mutex);
1544         edac_printk(KERN_INFO, EDAC_MC,
1545                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1546                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1547         return mci;
1548 }
1549 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1550
1551 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1552 {
1553         struct page *pg;
1554         void *virt_addr;
1555         unsigned long flags = 0;
1556
1557         debugf3("%s()\n", __func__);
1558
1559         /* ECC error page was not in our memory. Ignore it. */
1560         if(!pfn_valid(page))
1561                 return;
1562
1563         /* Find the actual page structure then map it and fix */
1564         pg = pfn_to_page(page);
1565
1566         if (PageHighMem(pg))
1567                 local_irq_save(flags);
1568
1569         virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1570
1571         /* Perform architecture specific atomic scrub operation */
1572         atomic_scrub(virt_addr + offset, size);
1573
1574         /* Unmap and complete */
1575         kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1576
1577         if (PageHighMem(pg))
1578                 local_irq_restore(flags);
1579 }
1580 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1581
1582 /* FIXME - should return -1 */
1583 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1584 {
1585         struct csrow_info *csrows = mci->csrows;
1586         int row, i;
1587
1588         debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1589         row = -1;
1590
1591         for (i = 0; i < mci->nr_csrows; i++) {
1592                 struct csrow_info *csrow = &csrows[i];
1593
1594                 if (csrow->nr_pages == 0)
1595                         continue;
1596
1597                 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1598                         "mask(0x%lx)\n", mci->mc_idx, __func__,
1599                         csrow->first_page, page, csrow->last_page,
1600                         csrow->page_mask);
1601
1602                 if ((page >= csrow->first_page) &&
1603                     (page <= csrow->last_page) &&
1604                     ((page & csrow->page_mask) ==
1605                      (csrow->first_page & csrow->page_mask))) {
1606                         row = i;
1607                         break;
1608                 }
1609         }
1610
1611         if (row == -1)
1612                 edac_mc_printk(mci, KERN_ERR,
1613                         "could not look up page error address %lx\n",
1614                         (unsigned long) page);
1615
1616         return row;
1617 }
1618 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1619
1620 /* FIXME - setable log (warning/emerg) levels */
1621 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1622 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1623                 unsigned long page_frame_number, unsigned long offset_in_page,
1624                 unsigned long syndrome, int row, int channel, const char *msg)
1625 {
1626         unsigned long remapped_page;
1627
1628         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1629
1630         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1631         if (row >= mci->nr_csrows || row < 0) {
1632                 /* something is wrong */
1633                 edac_mc_printk(mci, KERN_ERR,
1634                         "INTERNAL ERROR: row out of range "
1635                         "(%d >= %d)\n", row, mci->nr_csrows);
1636                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1637                 return;
1638         }
1639
1640         if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1641                 /* something is wrong */
1642                 edac_mc_printk(mci, KERN_ERR,
1643                         "INTERNAL ERROR: channel out of range "
1644                         "(%d >= %d)\n", channel,
1645                         mci->csrows[row].nr_channels);
1646                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1647                 return;
1648         }
1649
1650         if (log_ce)
1651                 /* FIXME - put in DIMM location */
1652                 edac_mc_printk(mci, KERN_WARNING,
1653                         "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1654                         "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1655                         page_frame_number, offset_in_page,
1656                         mci->csrows[row].grain, syndrome, row, channel,
1657                         mci->csrows[row].channels[channel].label, msg);
1658
1659         mci->ce_count++;
1660         mci->csrows[row].ce_count++;
1661         mci->csrows[row].channels[channel].ce_count++;
1662
1663         if (mci->scrub_mode & SCRUB_SW_SRC) {
1664                 /*
1665                  * Some MC's can remap memory so that it is still available
1666                  * at a different address when PCI devices map into memory.
1667                  * MC's that can't do this lose the memory where PCI devices
1668                  * are mapped.  This mapping is MC dependant and so we call
1669                  * back into the MC driver for it to map the MC page to
1670                  * a physical (CPU) page which can then be mapped to a virtual
1671                  * page - which can then be scrubbed.
1672                  */
1673                 remapped_page = mci->ctl_page_to_phys ?
1674                     mci->ctl_page_to_phys(mci, page_frame_number) :
1675                     page_frame_number;
1676
1677                 edac_mc_scrub_block(remapped_page, offset_in_page,
1678                                         mci->csrows[row].grain);
1679         }
1680 }
1681 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1682
1683 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1684 {
1685         if (log_ce)
1686                 edac_mc_printk(mci, KERN_WARNING,
1687                         "CE - no information available: %s\n", msg);
1688
1689         mci->ce_noinfo_count++;
1690         mci->ce_count++;
1691 }
1692 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1693
1694 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1695                 unsigned long page_frame_number, unsigned long offset_in_page,
1696                 int row, const char *msg)
1697 {
1698         int len = EDAC_MC_LABEL_LEN * 4;
1699         char labels[len + 1];
1700         char *pos = labels;
1701         int chan;
1702         int chars;
1703
1704         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1705
1706         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1707         if (row >= mci->nr_csrows || row < 0) {
1708                 /* something is wrong */
1709                 edac_mc_printk(mci, KERN_ERR,
1710                         "INTERNAL ERROR: row out of range "
1711                         "(%d >= %d)\n", row, mci->nr_csrows);
1712                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1713                 return;
1714         }
1715
1716         chars = snprintf(pos, len + 1, "%s",
1717                         mci->csrows[row].channels[0].label);
1718         len -= chars;
1719         pos += chars;
1720
1721         for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1722              chan++) {
1723                 chars = snprintf(pos, len + 1, ":%s",
1724                                 mci->csrows[row].channels[chan].label);
1725                 len -= chars;
1726                 pos += chars;
1727         }
1728
1729         if (log_ue)
1730                 edac_mc_printk(mci, KERN_EMERG,
1731                         "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1732                         "labels \"%s\": %s\n", page_frame_number,
1733                         offset_in_page, mci->csrows[row].grain, row, labels,
1734                         msg);
1735
1736         if (panic_on_ue)
1737                 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1738                         "row %d, labels \"%s\": %s\n", mci->mc_idx,
1739                         page_frame_number, offset_in_page,
1740                         mci->csrows[row].grain, row, labels, msg);
1741
1742         mci->ue_count++;
1743         mci->csrows[row].ue_count++;
1744 }
1745 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1746
1747 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1748 {
1749         if (panic_on_ue)
1750                 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1751
1752         if (log_ue)
1753                 edac_mc_printk(mci, KERN_WARNING,
1754                         "UE - no information available: %s\n", msg);
1755         mci->ue_noinfo_count++;
1756         mci->ue_count++;
1757 }
1758 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1759
1760
1761 /*************************************************************
1762  * On Fully Buffered DIMM modules, this help function is
1763  * called to process UE events
1764  */
1765 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
1766                                 unsigned int csrow,
1767                                 unsigned int channela,
1768                                 unsigned int channelb,
1769                                 char *msg)
1770 {
1771         int len = EDAC_MC_LABEL_LEN * 4;
1772         char labels[len + 1];
1773         char *pos = labels;
1774         int chars;
1775
1776         if (csrow >= mci->nr_csrows) {
1777                 /* something is wrong */
1778                 edac_mc_printk(mci, KERN_ERR,
1779                         "INTERNAL ERROR: row out of range (%d >= %d)\n",
1780                         csrow, mci->nr_csrows);
1781                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1782                 return;
1783         }
1784
1785         if (channela >= mci->csrows[csrow].nr_channels) {
1786                 /* something is wrong */
1787                 edac_mc_printk(mci, KERN_ERR,
1788                         "INTERNAL ERROR: channel-a out of range "
1789                         "(%d >= %d)\n",
1790                         channela, mci->csrows[csrow].nr_channels);
1791                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1792                 return;
1793         }
1794
1795         if (channelb >= mci->csrows[csrow].nr_channels) {
1796                 /* something is wrong */
1797                 edac_mc_printk(mci, KERN_ERR,
1798                         "INTERNAL ERROR: channel-b out of range "
1799                         "(%d >= %d)\n",
1800                         channelb, mci->csrows[csrow].nr_channels);
1801                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1802                 return;
1803         }
1804
1805         mci->ue_count++;
1806         mci->csrows[csrow].ue_count++;
1807
1808         /* Generate the DIMM labels from the specified channels */
1809         chars = snprintf(pos, len + 1, "%s",
1810                          mci->csrows[csrow].channels[channela].label);
1811         len -= chars; pos += chars;
1812         chars = snprintf(pos, len + 1, "-%s",
1813                          mci->csrows[csrow].channels[channelb].label);
1814
1815         if (log_ue)
1816                 edac_mc_printk(mci, KERN_EMERG,
1817                         "UE row %d, channel-a= %d channel-b= %d "
1818                         "labels \"%s\": %s\n", csrow, channela, channelb,
1819                         labels, msg);
1820
1821         if (panic_on_ue)
1822                 panic("UE row %d, channel-a= %d channel-b= %d "
1823                                 "labels \"%s\": %s\n", csrow, channela,
1824                                 channelb, labels, msg);
1825 }
1826 EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
1827
1828 /*************************************************************
1829  * On Fully Buffered DIMM modules, this help function is
1830  * called to process CE events
1831  */
1832 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
1833                            unsigned int csrow,
1834                            unsigned int channel,
1835                            char *msg)
1836 {
1837
1838         /* Ensure boundary values */
1839         if (csrow >= mci->nr_csrows) {
1840                 /* something is wrong */
1841                 edac_mc_printk(mci, KERN_ERR,
1842                         "INTERNAL ERROR: row out of range (%d >= %d)\n",
1843                         csrow, mci->nr_csrows);
1844                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1845                 return;
1846         }
1847         if (channel >= mci->csrows[csrow].nr_channels) {
1848                 /* something is wrong */
1849                 edac_mc_printk(mci, KERN_ERR,
1850                         "INTERNAL ERROR: channel out of range (%d >= %d)\n",
1851                         channel, mci->csrows[csrow].nr_channels);
1852                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1853                 return;
1854         }
1855
1856         if (log_ce)
1857                 /* FIXME - put in DIMM location */
1858                 edac_mc_printk(mci, KERN_WARNING,
1859                         "CE row %d, channel %d, label \"%s\": %s\n",
1860                         csrow, channel,
1861                         mci->csrows[csrow].channels[channel].label,
1862                         msg);
1863
1864         mci->ce_count++;
1865         mci->csrows[csrow].ce_count++;
1866         mci->csrows[csrow].channels[channel].ce_count++;
1867 }
1868 EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
1869
1870
1871 /*
1872  * Iterate over all MC instances and check for ECC, et al, errors
1873  */
1874 static inline void check_mc_devices(void)
1875 {
1876         struct list_head *item;
1877         struct mem_ctl_info *mci;
1878
1879         debugf3("%s()\n", __func__);
1880         down(&mem_ctls_mutex);
1881
1882         list_for_each(item, &mc_devices) {
1883                 mci = list_entry(item, struct mem_ctl_info, link);
1884
1885                 if (mci->edac_check != NULL)
1886                         mci->edac_check(mci);
1887         }
1888
1889         up(&mem_ctls_mutex);
1890 }
1891
1892 /*
1893  * Check MC status every poll_msec.
1894  * Check PCI status every poll_msec as well.
1895  *
1896  * This where the work gets done for edac.
1897  *
1898  * SMP safe, doesn't use NMI, and auto-rate-limits.
1899  */
1900 static void do_edac_check(void)
1901 {
1902         debugf3("%s()\n", __func__);
1903         check_mc_devices();
1904         do_pci_parity_check();
1905 }
1906
1907 static int edac_kernel_thread(void *arg)
1908 {
1909         while (!kthread_should_stop()) {
1910                 do_edac_check();
1911
1912                 /* goto sleep for the interval */
1913                 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1914                 try_to_freeze();
1915         }
1916
1917         return 0;
1918 }
1919
1920 /*
1921  * edac_mc_init
1922  *      module initialization entry point
1923  */
1924 static int __init edac_mc_init(void)
1925 {
1926         edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1927
1928         /*
1929          * Harvest and clear any boot/initialization PCI parity errors
1930          *
1931          * FIXME: This only clears errors logged by devices present at time of
1932          *      module initialization.  We should also do an initial clear
1933          *      of each newly hotplugged device.
1934          */
1935         clear_pci_parity_errors();
1936
1937         /* Create the MC sysfs entries */
1938         if (edac_sysfs_memctrl_setup()) {
1939                 edac_printk(KERN_ERR, EDAC_MC,
1940                         "Error initializing sysfs code\n");
1941                 return -ENODEV;
1942         }
1943
1944         /* Create the PCI parity sysfs entries */
1945         if (edac_sysfs_pci_setup()) {
1946                 edac_sysfs_memctrl_teardown();
1947                 edac_printk(KERN_ERR, EDAC_MC,
1948                         "EDAC PCI: Error initializing sysfs code\n");
1949                 return -ENODEV;
1950         }
1951
1952         /* create our kernel thread */
1953         edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1954
1955         if (IS_ERR(edac_thread)) {
1956                 /* remove the sysfs entries */
1957                 edac_sysfs_memctrl_teardown();
1958                 edac_sysfs_pci_teardown();
1959                 return PTR_ERR(edac_thread);
1960         }
1961
1962         return 0;
1963 }
1964
1965 /*
1966  * edac_mc_exit()
1967  *      module exit/termination functioni
1968  */
1969 static void __exit edac_mc_exit(void)
1970 {
1971         debugf0("%s()\n", __func__);
1972         kthread_stop(edac_thread);
1973
1974         /* tear down the sysfs device */
1975         edac_sysfs_memctrl_teardown();
1976         edac_sysfs_pci_teardown();
1977 }
1978
1979 module_init(edac_mc_init);
1980 module_exit(edac_mc_exit);
1981
1982 MODULE_LICENSE("GPL");
1983 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1984         "Based on work by Dan Hollis et al");
1985 MODULE_DESCRIPTION("Core library routines for MC reporting");
1986
1987 module_param(panic_on_ue, int, 0644);
1988 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1989 #ifdef CONFIG_PCI
1990 module_param(check_pci_parity, int, 0644);
1991 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1992 module_param(panic_on_pci_parity, int, 0644);
1993 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1994 #endif
1995 module_param(log_ue, int, 0644);
1996 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1997 module_param(log_ce, int, 0644);
1998 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1999 module_param(poll_msec, int, 0644);
2000 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2001 #ifdef CONFIG_EDAC_DEBUG
2002 module_param(edac_debug_level, int, 0644);
2003 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2004 #endif