Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <linux/platform_data/edma.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * This will go away when the private EDMA API is folded
34  * into this driver and the platform device(s) are
35  * instantiated in the arch code. We can only get away
36  * with this simplification because DA8XX may not be built
37  * in the same kernel image with other DaVinci parts. This
38  * avoids having to sprinkle dmaengine driver platform devices
39  * and data throughout all the existing board files.
40  */
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS      2
43 #define EDMA_CHANS      32
44 #else
45 #define EDMA_CTLRS      1
46 #define EDMA_CHANS      64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
48
49 /*
50  * Max of 20 segments per channel to conserve PaRAM slots
51  * Also note that MAX_NR_SG should be atleast the no.of periods
52  * that are required for ASoC, otherwise DMA prep calls will
53  * fail. Today davinci-pcm is the only user of this driver and
54  * requires atleast 17 slots, so we setup the default to 20.
55  */
56 #define MAX_NR_SG               20
57 #define EDMA_MAX_SLOTS          MAX_NR_SG
58 #define EDMA_DESCRIPTORS        16
59
60 struct edma_desc {
61         struct virt_dma_desc            vdesc;
62         struct list_head                node;
63         int                             cyclic;
64         int                             absync;
65         int                             pset_nr;
66         int                             processed;
67         struct edmacc_param             pset[0];
68 };
69
70 struct edma_cc;
71
72 struct edma_chan {
73         struct virt_dma_chan            vchan;
74         struct list_head                node;
75         struct edma_desc                *edesc;
76         struct edma_cc                  *ecc;
77         int                             ch_num;
78         bool                            alloced;
79         int                             slot[EDMA_MAX_SLOTS];
80         int                             missed;
81         struct dma_slave_config         cfg;
82 };
83
84 struct edma_cc {
85         int                             ctlr;
86         struct dma_device               dma_slave;
87         struct edma_chan                slave_chans[EDMA_CHANS];
88         int                             num_slave_chans;
89         int                             dummy_slot;
90 };
91
92 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
93 {
94         return container_of(d, struct edma_cc, dma_slave);
95 }
96
97 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
98 {
99         return container_of(c, struct edma_chan, vchan.chan);
100 }
101
102 static inline struct edma_desc
103 *to_edma_desc(struct dma_async_tx_descriptor *tx)
104 {
105         return container_of(tx, struct edma_desc, vdesc.tx);
106 }
107
108 static void edma_desc_free(struct virt_dma_desc *vdesc)
109 {
110         kfree(container_of(vdesc, struct edma_desc, vdesc));
111 }
112
113 /* Dispatch a queued descriptor to the controller (caller holds lock) */
114 static void edma_execute(struct edma_chan *echan)
115 {
116         struct virt_dma_desc *vdesc;
117         struct edma_desc *edesc;
118         struct device *dev = echan->vchan.chan.device->dev;
119         int i, j, left, nslots;
120
121         /* If either we processed all psets or we're still not started */
122         if (!echan->edesc ||
123             echan->edesc->pset_nr == echan->edesc->processed) {
124                 /* Get next vdesc */
125                 vdesc = vchan_next_desc(&echan->vchan);
126                 if (!vdesc) {
127                         echan->edesc = NULL;
128                         return;
129                 }
130                 list_del(&vdesc->node);
131                 echan->edesc = to_edma_desc(&vdesc->tx);
132         }
133
134         edesc = echan->edesc;
135
136         /* Find out how many left */
137         left = edesc->pset_nr - edesc->processed;
138         nslots = min(MAX_NR_SG, left);
139
140         /* Write descriptor PaRAM set(s) */
141         for (i = 0; i < nslots; i++) {
142                 j = i + edesc->processed;
143                 edma_write_slot(echan->slot[i], &edesc->pset[j]);
144                 dev_dbg(echan->vchan.chan.device->dev,
145                         "\n pset[%d]:\n"
146                         "  chnum\t%d\n"
147                         "  slot\t%d\n"
148                         "  opt\t%08x\n"
149                         "  src\t%08x\n"
150                         "  dst\t%08x\n"
151                         "  abcnt\t%08x\n"
152                         "  ccnt\t%08x\n"
153                         "  bidx\t%08x\n"
154                         "  cidx\t%08x\n"
155                         "  lkrld\t%08x\n",
156                         j, echan->ch_num, echan->slot[i],
157                         edesc->pset[j].opt,
158                         edesc->pset[j].src,
159                         edesc->pset[j].dst,
160                         edesc->pset[j].a_b_cnt,
161                         edesc->pset[j].ccnt,
162                         edesc->pset[j].src_dst_bidx,
163                         edesc->pset[j].src_dst_cidx,
164                         edesc->pset[j].link_bcntrld);
165                 /* Link to the previous slot if not the last set */
166                 if (i != (nslots - 1))
167                         edma_link(echan->slot[i], echan->slot[i+1]);
168         }
169
170         edesc->processed += nslots;
171
172         /*
173          * If this is either the last set in a set of SG-list transactions
174          * then setup a link to the dummy slot, this results in all future
175          * events being absorbed and that's OK because we're done
176          */
177         if (edesc->processed == edesc->pset_nr) {
178                 if (edesc->cyclic)
179                         edma_link(echan->slot[nslots-1], echan->slot[1]);
180                 else
181                         edma_link(echan->slot[nslots-1],
182                                   echan->ecc->dummy_slot);
183         }
184
185         edma_resume(echan->ch_num);
186
187         if (edesc->processed <= MAX_NR_SG) {
188                 dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
189                 edma_start(echan->ch_num);
190         }
191
192         /*
193          * This happens due to setup times between intermediate transfers
194          * in long SG lists which have to be broken up into transfers of
195          * MAX_NR_SG
196          */
197         if (echan->missed) {
198                 dev_dbg(dev, "missed event in execute detected\n");
199                 edma_clean_channel(echan->ch_num);
200                 edma_stop(echan->ch_num);
201                 edma_start(echan->ch_num);
202                 edma_trigger_channel(echan->ch_num);
203                 echan->missed = 0;
204         }
205 }
206
207 static int edma_terminate_all(struct edma_chan *echan)
208 {
209         unsigned long flags;
210         LIST_HEAD(head);
211
212         spin_lock_irqsave(&echan->vchan.lock, flags);
213
214         /*
215          * Stop DMA activity: we assume the callback will not be called
216          * after edma_dma() returns (even if it does, it will see
217          * echan->edesc is NULL and exit.)
218          */
219         if (echan->edesc) {
220                 echan->edesc = NULL;
221                 edma_stop(echan->ch_num);
222         }
223
224         vchan_get_all_descriptors(&echan->vchan, &head);
225         spin_unlock_irqrestore(&echan->vchan.lock, flags);
226         vchan_dma_desc_free_list(&echan->vchan, &head);
227
228         return 0;
229 }
230
231 static int edma_slave_config(struct edma_chan *echan,
232         struct dma_slave_config *cfg)
233 {
234         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
235             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
236                 return -EINVAL;
237
238         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
239
240         return 0;
241 }
242
243 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
244                         unsigned long arg)
245 {
246         int ret = 0;
247         struct dma_slave_config *config;
248         struct edma_chan *echan = to_edma_chan(chan);
249
250         switch (cmd) {
251         case DMA_TERMINATE_ALL:
252                 edma_terminate_all(echan);
253                 break;
254         case DMA_SLAVE_CONFIG:
255                 config = (struct dma_slave_config *)arg;
256                 ret = edma_slave_config(echan, config);
257                 break;
258         default:
259                 ret = -ENOSYS;
260         }
261
262         return ret;
263 }
264
265 /*
266  * A PaRAM set configuration abstraction used by other modes
267  * @chan: Channel who's PaRAM set we're configuring
268  * @pset: PaRAM set to initialize and setup.
269  * @src_addr: Source address of the DMA
270  * @dst_addr: Destination address of the DMA
271  * @burst: In units of dev_width, how much to send
272  * @dev_width: How much is the dev_width
273  * @dma_length: Total length of the DMA transfer
274  * @direction: Direction of the transfer
275  */
276 static int edma_config_pset(struct dma_chan *chan, struct edmacc_param *pset,
277         dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
278         enum dma_slave_buswidth dev_width, unsigned int dma_length,
279         enum dma_transfer_direction direction)
280 {
281         struct edma_chan *echan = to_edma_chan(chan);
282         struct device *dev = chan->device->dev;
283         int acnt, bcnt, ccnt, cidx;
284         int src_bidx, dst_bidx, src_cidx, dst_cidx;
285         int absync;
286
287         acnt = dev_width;
288         /*
289          * If the maxburst is equal to the fifo width, use
290          * A-synced transfers. This allows for large contiguous
291          * buffer transfers using only one PaRAM set.
292          */
293         if (burst == 1) {
294                 /*
295                  * For the A-sync case, bcnt and ccnt are the remainder
296                  * and quotient respectively of the division of:
297                  * (dma_length / acnt) by (SZ_64K -1). This is so
298                  * that in case bcnt over flows, we have ccnt to use.
299                  * Note: In A-sync tranfer only, bcntrld is used, but it
300                  * only applies for sg_dma_len(sg) >= SZ_64K.
301                  * In this case, the best way adopted is- bccnt for the
302                  * first frame will be the remainder below. Then for
303                  * every successive frame, bcnt will be SZ_64K-1. This
304                  * is assured as bcntrld = 0xffff in end of function.
305                  */
306                 absync = false;
307                 ccnt = dma_length / acnt / (SZ_64K - 1);
308                 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
309                 /*
310                  * If bcnt is non-zero, we have a remainder and hence an
311                  * extra frame to transfer, so increment ccnt.
312                  */
313                 if (bcnt)
314                         ccnt++;
315                 else
316                         bcnt = SZ_64K - 1;
317                 cidx = acnt;
318         } else {
319                 /*
320                  * If maxburst is greater than the fifo address_width,
321                  * use AB-synced transfers where A count is the fifo
322                  * address_width and B count is the maxburst. In this
323                  * case, we are limited to transfers of C count frames
324                  * of (address_width * maxburst) where C count is limited
325                  * to SZ_64K-1. This places an upper bound on the length
326                  * of an SG segment that can be handled.
327                  */
328                 absync = true;
329                 bcnt = burst;
330                 ccnt = dma_length / (acnt * bcnt);
331                 if (ccnt > (SZ_64K - 1)) {
332                         dev_err(dev, "Exceeded max SG segment size\n");
333                         return -EINVAL;
334                 }
335                 cidx = acnt * bcnt;
336         }
337
338         if (direction == DMA_MEM_TO_DEV) {
339                 src_bidx = acnt;
340                 src_cidx = cidx;
341                 dst_bidx = 0;
342                 dst_cidx = 0;
343         } else if (direction == DMA_DEV_TO_MEM)  {
344                 src_bidx = 0;
345                 src_cidx = 0;
346                 dst_bidx = acnt;
347                 dst_cidx = cidx;
348         } else {
349                 dev_err(dev, "%s: direction not implemented yet\n", __func__);
350                 return -EINVAL;
351         }
352
353         pset->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
354         /* Configure A or AB synchronized transfers */
355         if (absync)
356                 pset->opt |= SYNCDIM;
357
358         pset->src = src_addr;
359         pset->dst = dst_addr;
360
361         pset->src_dst_bidx = (dst_bidx << 16) | src_bidx;
362         pset->src_dst_cidx = (dst_cidx << 16) | src_cidx;
363
364         pset->a_b_cnt = bcnt << 16 | acnt;
365         pset->ccnt = ccnt;
366         /*
367          * Only time when (bcntrld) auto reload is required is for
368          * A-sync case, and in this case, a requirement of reload value
369          * of SZ_64K-1 only is assured. 'link' is initially set to NULL
370          * and then later will be populated by edma_execute.
371          */
372         pset->link_bcntrld = 0xffffffff;
373         return absync;
374 }
375
376 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
377         struct dma_chan *chan, struct scatterlist *sgl,
378         unsigned int sg_len, enum dma_transfer_direction direction,
379         unsigned long tx_flags, void *context)
380 {
381         struct edma_chan *echan = to_edma_chan(chan);
382         struct device *dev = chan->device->dev;
383         struct edma_desc *edesc;
384         dma_addr_t src_addr = 0, dst_addr = 0;
385         enum dma_slave_buswidth dev_width;
386         u32 burst;
387         struct scatterlist *sg;
388         int i, nslots, ret;
389
390         if (unlikely(!echan || !sgl || !sg_len))
391                 return NULL;
392
393         if (direction == DMA_DEV_TO_MEM) {
394                 src_addr = echan->cfg.src_addr;
395                 dev_width = echan->cfg.src_addr_width;
396                 burst = echan->cfg.src_maxburst;
397         } else if (direction == DMA_MEM_TO_DEV) {
398                 dst_addr = echan->cfg.dst_addr;
399                 dev_width = echan->cfg.dst_addr_width;
400                 burst = echan->cfg.dst_maxburst;
401         } else {
402                 dev_err(dev, "%s: bad direction?\n", __func__);
403                 return NULL;
404         }
405
406         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
407                 dev_err(dev, "Undefined slave buswidth\n");
408                 return NULL;
409         }
410
411         edesc = kzalloc(sizeof(*edesc) + sg_len *
412                 sizeof(edesc->pset[0]), GFP_ATOMIC);
413         if (!edesc) {
414                 dev_dbg(dev, "Failed to allocate a descriptor\n");
415                 return NULL;
416         }
417
418         edesc->pset_nr = sg_len;
419
420         /* Allocate a PaRAM slot, if needed */
421         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
422
423         for (i = 0; i < nslots; i++) {
424                 if (echan->slot[i] < 0) {
425                         echan->slot[i] =
426                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
427                                                 EDMA_SLOT_ANY);
428                         if (echan->slot[i] < 0) {
429                                 kfree(edesc);
430                                 dev_err(dev, "Failed to allocate slot\n");
431                                 return NULL;
432                         }
433                 }
434         }
435
436         /* Configure PaRAM sets for each SG */
437         for_each_sg(sgl, sg, sg_len, i) {
438                 /* Get address for each SG */
439                 if (direction == DMA_DEV_TO_MEM)
440                         dst_addr = sg_dma_address(sg);
441                 else
442                         src_addr = sg_dma_address(sg);
443
444                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
445                                        dst_addr, burst, dev_width,
446                                        sg_dma_len(sg), direction);
447                 if (ret < 0) {
448                         kfree(edesc);
449                         return NULL;
450                 }
451
452                 edesc->absync = ret;
453
454                 /* If this is the last in a current SG set of transactions,
455                    enable interrupts so that next set is processed */
456                 if (!((i+1) % MAX_NR_SG))
457                         edesc->pset[i].opt |= TCINTEN;
458
459                 /* If this is the last set, enable completion interrupt flag */
460                 if (i == sg_len - 1)
461                         edesc->pset[i].opt |= TCINTEN;
462         }
463
464         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
465 }
466
467 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
468         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
469         size_t period_len, enum dma_transfer_direction direction,
470         unsigned long tx_flags, void *context)
471 {
472         struct edma_chan *echan = to_edma_chan(chan);
473         struct device *dev = chan->device->dev;
474         struct edma_desc *edesc;
475         dma_addr_t src_addr, dst_addr;
476         enum dma_slave_buswidth dev_width;
477         u32 burst;
478         int i, ret, nslots;
479
480         if (unlikely(!echan || !buf_len || !period_len))
481                 return NULL;
482
483         if (direction == DMA_DEV_TO_MEM) {
484                 src_addr = echan->cfg.src_addr;
485                 dst_addr = buf_addr;
486                 dev_width = echan->cfg.src_addr_width;
487                 burst = echan->cfg.src_maxburst;
488         } else if (direction == DMA_MEM_TO_DEV) {
489                 src_addr = buf_addr;
490                 dst_addr = echan->cfg.dst_addr;
491                 dev_width = echan->cfg.dst_addr_width;
492                 burst = echan->cfg.dst_maxburst;
493         } else {
494                 dev_err(dev, "%s: bad direction?\n", __func__);
495                 return NULL;
496         }
497
498         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
499                 dev_err(dev, "Undefined slave buswidth\n");
500                 return NULL;
501         }
502
503         if (unlikely(buf_len % period_len)) {
504                 dev_err(dev, "Period should be multiple of Buffer length\n");
505                 return NULL;
506         }
507
508         nslots = (buf_len / period_len) + 1;
509
510         /*
511          * Cyclic DMA users such as audio cannot tolerate delays introduced
512          * by cases where the number of periods is more than the maximum
513          * number of SGs the EDMA driver can handle at a time. For DMA types
514          * such as Slave SGs, such delays are tolerable and synchronized,
515          * but the synchronization is difficult to achieve with Cyclic and
516          * cannot be guaranteed, so we error out early.
517          */
518         if (nslots > MAX_NR_SG)
519                 return NULL;
520
521         edesc = kzalloc(sizeof(*edesc) + nslots *
522                 sizeof(edesc->pset[0]), GFP_ATOMIC);
523         if (!edesc) {
524                 dev_dbg(dev, "Failed to allocate a descriptor\n");
525                 return NULL;
526         }
527
528         edesc->cyclic = 1;
529         edesc->pset_nr = nslots;
530
531         dev_dbg(dev, "%s: nslots=%d\n", __func__, nslots);
532         dev_dbg(dev, "%s: period_len=%d\n", __func__, period_len);
533         dev_dbg(dev, "%s: buf_len=%d\n", __func__, buf_len);
534
535         for (i = 0; i < nslots; i++) {
536                 /* Allocate a PaRAM slot, if needed */
537                 if (echan->slot[i] < 0) {
538                         echan->slot[i] =
539                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
540                                                 EDMA_SLOT_ANY);
541                         if (echan->slot[i] < 0) {
542                                 dev_err(dev, "Failed to allocate slot\n");
543                                 return NULL;
544                         }
545                 }
546
547                 if (i == nslots - 1) {
548                         memcpy(&edesc->pset[i], &edesc->pset[0],
549                                sizeof(edesc->pset[0]));
550                         break;
551                 }
552
553                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
554                                        dst_addr, burst, dev_width, period_len,
555                                        direction);
556                 if (ret < 0)
557                         return NULL;
558
559                 if (direction == DMA_DEV_TO_MEM)
560                         dst_addr += period_len;
561                 else
562                         src_addr += period_len;
563
564                 dev_dbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
565                 dev_dbg(dev,
566                         "\n pset[%d]:\n"
567                         "  chnum\t%d\n"
568                         "  slot\t%d\n"
569                         "  opt\t%08x\n"
570                         "  src\t%08x\n"
571                         "  dst\t%08x\n"
572                         "  abcnt\t%08x\n"
573                         "  ccnt\t%08x\n"
574                         "  bidx\t%08x\n"
575                         "  cidx\t%08x\n"
576                         "  lkrld\t%08x\n",
577                         i, echan->ch_num, echan->slot[i],
578                         edesc->pset[i].opt,
579                         edesc->pset[i].src,
580                         edesc->pset[i].dst,
581                         edesc->pset[i].a_b_cnt,
582                         edesc->pset[i].ccnt,
583                         edesc->pset[i].src_dst_bidx,
584                         edesc->pset[i].src_dst_cidx,
585                         edesc->pset[i].link_bcntrld);
586
587                 edesc->absync = ret;
588
589                 /*
590                  * Enable interrupts for every period because callback
591                  * has to be called for every period.
592                  */
593                 edesc->pset[i].opt |= TCINTEN;
594         }
595
596         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
597 }
598
599 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
600 {
601         struct edma_chan *echan = data;
602         struct device *dev = echan->vchan.chan.device->dev;
603         struct edma_desc *edesc;
604         unsigned long flags;
605         struct edmacc_param p;
606
607         edesc = echan->edesc;
608
609         /* Pause the channel for non-cyclic */
610         if (!edesc || (edesc && !edesc->cyclic))
611                 edma_pause(echan->ch_num);
612
613         switch (ch_status) {
614         case EDMA_DMA_COMPLETE:
615                 spin_lock_irqsave(&echan->vchan.lock, flags);
616
617                 if (edesc) {
618                         if (edesc->cyclic) {
619                                 vchan_cyclic_callback(&edesc->vdesc);
620                         } else if (edesc->processed == edesc->pset_nr) {
621                                 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
622                                 edma_stop(echan->ch_num);
623                                 vchan_cookie_complete(&edesc->vdesc);
624                                 edma_execute(echan);
625                         } else {
626                                 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
627                                 edma_execute(echan);
628                         }
629                 }
630
631                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
632
633                 break;
634         case EDMA_DMA_CC_ERROR:
635                 spin_lock_irqsave(&echan->vchan.lock, flags);
636
637                 edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
638
639                 /*
640                  * Issue later based on missed flag which will be sure
641                  * to happen as:
642                  * (1) we finished transmitting an intermediate slot and
643                  *     edma_execute is coming up.
644                  * (2) or we finished current transfer and issue will
645                  *     call edma_execute.
646                  *
647                  * Important note: issuing can be dangerous here and
648                  * lead to some nasty recursion when we are in a NULL
649                  * slot. So we avoid doing so and set the missed flag.
650                  */
651                 if (p.a_b_cnt == 0 && p.ccnt == 0) {
652                         dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
653                         echan->missed = 1;
654                 } else {
655                         /*
656                          * The slot is already programmed but the event got
657                          * missed, so its safe to issue it here.
658                          */
659                         dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
660                         edma_clean_channel(echan->ch_num);
661                         edma_stop(echan->ch_num);
662                         edma_start(echan->ch_num);
663                         edma_trigger_channel(echan->ch_num);
664                 }
665
666                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
667
668                 break;
669         default:
670                 break;
671         }
672 }
673
674 /* Alloc channel resources */
675 static int edma_alloc_chan_resources(struct dma_chan *chan)
676 {
677         struct edma_chan *echan = to_edma_chan(chan);
678         struct device *dev = chan->device->dev;
679         int ret;
680         int a_ch_num;
681         LIST_HEAD(descs);
682
683         a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
684                                         chan, EVENTQ_DEFAULT);
685
686         if (a_ch_num < 0) {
687                 ret = -ENODEV;
688                 goto err_no_chan;
689         }
690
691         if (a_ch_num != echan->ch_num) {
692                 dev_err(dev, "failed to allocate requested channel %u:%u\n",
693                         EDMA_CTLR(echan->ch_num),
694                         EDMA_CHAN_SLOT(echan->ch_num));
695                 ret = -ENODEV;
696                 goto err_wrong_chan;
697         }
698
699         echan->alloced = true;
700         echan->slot[0] = echan->ch_num;
701
702         dev_info(dev, "allocated channel for %u:%u\n",
703                  EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
704
705         return 0;
706
707 err_wrong_chan:
708         edma_free_channel(a_ch_num);
709 err_no_chan:
710         return ret;
711 }
712
713 /* Free channel resources */
714 static void edma_free_chan_resources(struct dma_chan *chan)
715 {
716         struct edma_chan *echan = to_edma_chan(chan);
717         struct device *dev = chan->device->dev;
718         int i;
719
720         /* Terminate transfers */
721         edma_stop(echan->ch_num);
722
723         vchan_free_chan_resources(&echan->vchan);
724
725         /* Free EDMA PaRAM slots */
726         for (i = 1; i < EDMA_MAX_SLOTS; i++) {
727                 if (echan->slot[i] >= 0) {
728                         edma_free_slot(echan->slot[i]);
729                         echan->slot[i] = -1;
730                 }
731         }
732
733         /* Free EDMA channel */
734         if (echan->alloced) {
735                 edma_free_channel(echan->ch_num);
736                 echan->alloced = false;
737         }
738
739         dev_info(dev, "freeing channel for %u\n", echan->ch_num);
740 }
741
742 /* Send pending descriptor to hardware */
743 static void edma_issue_pending(struct dma_chan *chan)
744 {
745         struct edma_chan *echan = to_edma_chan(chan);
746         unsigned long flags;
747
748         spin_lock_irqsave(&echan->vchan.lock, flags);
749         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
750                 edma_execute(echan);
751         spin_unlock_irqrestore(&echan->vchan.lock, flags);
752 }
753
754 static size_t edma_desc_size(struct edma_desc *edesc)
755 {
756         int i;
757         size_t size;
758
759         if (edesc->absync)
760                 for (size = i = 0; i < edesc->pset_nr; i++)
761                         size += (edesc->pset[i].a_b_cnt & 0xffff) *
762                                 (edesc->pset[i].a_b_cnt >> 16) *
763                                  edesc->pset[i].ccnt;
764         else
765                 size = (edesc->pset[0].a_b_cnt & 0xffff) *
766                         (edesc->pset[0].a_b_cnt >> 16) +
767                         (edesc->pset[0].a_b_cnt & 0xffff) *
768                         (SZ_64K - 1) * edesc->pset[0].ccnt;
769
770         return size;
771 }
772
773 /* Check request completion status */
774 static enum dma_status edma_tx_status(struct dma_chan *chan,
775                                       dma_cookie_t cookie,
776                                       struct dma_tx_state *txstate)
777 {
778         struct edma_chan *echan = to_edma_chan(chan);
779         struct virt_dma_desc *vdesc;
780         enum dma_status ret;
781         unsigned long flags;
782
783         ret = dma_cookie_status(chan, cookie, txstate);
784         if (ret == DMA_COMPLETE || !txstate)
785                 return ret;
786
787         spin_lock_irqsave(&echan->vchan.lock, flags);
788         vdesc = vchan_find_desc(&echan->vchan, cookie);
789         if (vdesc) {
790                 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
791         } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
792                 struct edma_desc *edesc = echan->edesc;
793                 txstate->residue = edma_desc_size(edesc);
794         }
795         spin_unlock_irqrestore(&echan->vchan.lock, flags);
796
797         return ret;
798 }
799
800 static void __init edma_chan_init(struct edma_cc *ecc,
801                                   struct dma_device *dma,
802                                   struct edma_chan *echans)
803 {
804         int i, j;
805
806         for (i = 0; i < EDMA_CHANS; i++) {
807                 struct edma_chan *echan = &echans[i];
808                 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
809                 echan->ecc = ecc;
810                 echan->vchan.desc_free = edma_desc_free;
811
812                 vchan_init(&echan->vchan, dma);
813
814                 INIT_LIST_HEAD(&echan->node);
815                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
816                         echan->slot[j] = -1;
817         }
818 }
819
820 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
821                           struct device *dev)
822 {
823         dma->device_prep_slave_sg = edma_prep_slave_sg;
824         dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
825         dma->device_alloc_chan_resources = edma_alloc_chan_resources;
826         dma->device_free_chan_resources = edma_free_chan_resources;
827         dma->device_issue_pending = edma_issue_pending;
828         dma->device_tx_status = edma_tx_status;
829         dma->device_control = edma_control;
830         dma->dev = dev;
831
832         INIT_LIST_HEAD(&dma->channels);
833 }
834
835 static int edma_probe(struct platform_device *pdev)
836 {
837         struct edma_cc *ecc;
838         int ret;
839
840         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
841         if (ret)
842                 return ret;
843
844         ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
845         if (!ecc) {
846                 dev_err(&pdev->dev, "Can't allocate controller\n");
847                 return -ENOMEM;
848         }
849
850         ecc->ctlr = pdev->id;
851         ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
852         if (ecc->dummy_slot < 0) {
853                 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
854                 return -EIO;
855         }
856
857         dma_cap_zero(ecc->dma_slave.cap_mask);
858         dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
859
860         edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
861
862         edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
863
864         ret = dma_async_device_register(&ecc->dma_slave);
865         if (ret)
866                 goto err_reg1;
867
868         platform_set_drvdata(pdev, ecc);
869
870         dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
871
872         return 0;
873
874 err_reg1:
875         edma_free_slot(ecc->dummy_slot);
876         return ret;
877 }
878
879 static int edma_remove(struct platform_device *pdev)
880 {
881         struct device *dev = &pdev->dev;
882         struct edma_cc *ecc = dev_get_drvdata(dev);
883
884         dma_async_device_unregister(&ecc->dma_slave);
885         edma_free_slot(ecc->dummy_slot);
886
887         return 0;
888 }
889
890 static struct platform_driver edma_driver = {
891         .probe          = edma_probe,
892         .remove         = edma_remove,
893         .driver = {
894                 .name = "edma-dma-engine",
895                 .owner = THIS_MODULE,
896         },
897 };
898
899 bool edma_filter_fn(struct dma_chan *chan, void *param)
900 {
901         if (chan->device->dev->driver == &edma_driver.driver) {
902                 struct edma_chan *echan = to_edma_chan(chan);
903                 unsigned ch_req = *(unsigned *)param;
904                 return ch_req == echan->ch_num;
905         }
906         return false;
907 }
908 EXPORT_SYMBOL(edma_filter_fn);
909
910 static struct platform_device *pdev0, *pdev1;
911
912 static const struct platform_device_info edma_dev_info0 = {
913         .name = "edma-dma-engine",
914         .id = 0,
915         .dma_mask = DMA_BIT_MASK(32),
916 };
917
918 static const struct platform_device_info edma_dev_info1 = {
919         .name = "edma-dma-engine",
920         .id = 1,
921         .dma_mask = DMA_BIT_MASK(32),
922 };
923
924 static int edma_init(void)
925 {
926         int ret = platform_driver_register(&edma_driver);
927
928         if (ret == 0) {
929                 pdev0 = platform_device_register_full(&edma_dev_info0);
930                 if (IS_ERR(pdev0)) {
931                         platform_driver_unregister(&edma_driver);
932                         ret = PTR_ERR(pdev0);
933                         goto out;
934                 }
935         }
936
937         if (EDMA_CTLRS == 2) {
938                 pdev1 = platform_device_register_full(&edma_dev_info1);
939                 if (IS_ERR(pdev1)) {
940                         platform_driver_unregister(&edma_driver);
941                         platform_device_unregister(pdev0);
942                         ret = PTR_ERR(pdev1);
943                 }
944         }
945
946 out:
947         return ret;
948 }
949 subsys_initcall(edma_init);
950
951 static void __exit edma_exit(void)
952 {
953         platform_device_unregister(pdev0);
954         if (pdev1)
955                 platform_device_unregister(pdev1);
956         platform_driver_unregister(&edma_driver);
957 }
958 module_exit(edma_exit);
959
960 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
961 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
962 MODULE_LICENSE("GPL v2");