Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS              0x66a
36 #define BYT_VIDS                0x66b
37 #define BYT_TURBO_RATIOS        0x66c
38 #define BYT_TURBO_VIDS          0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52         return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57         int mask, ret;
58
59         ret = fp_toint(x);
60         mask = (1 << FRAC_BITS) - 1;
61         if (x & mask)
62                 ret += 1;
63         return ret;
64 }
65
66 struct sample {
67         int32_t core_pct_busy;
68         u64 aperf;
69         u64 mperf;
70         int freq;
71         ktime_t time;
72 };
73
74 struct pstate_data {
75         int     current_pstate;
76         int     min_pstate;
77         int     max_pstate;
78         int     scaling;
79         int     turbo_pstate;
80 };
81
82 struct vid_data {
83         int min;
84         int max;
85         int turbo;
86         int32_t ratio;
87 };
88
89 struct _pid {
90         int setpoint;
91         int32_t integral;
92         int32_t p_gain;
93         int32_t i_gain;
94         int32_t d_gain;
95         int deadband;
96         int32_t last_err;
97 };
98
99 struct cpudata {
100         int cpu;
101
102         struct timer_list timer;
103
104         struct pstate_data pstate;
105         struct vid_data vid;
106         struct _pid pid;
107
108         ktime_t last_sample_time;
109         u64     prev_aperf;
110         u64     prev_mperf;
111         struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116         int sample_rate_ms;
117         int deadband;
118         int setpoint;
119         int p_gain_pct;
120         int d_gain_pct;
121         int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125         int (*get_max)(void);
126         int (*get_min)(void);
127         int (*get_turbo)(void);
128         int (*get_scaling)(void);
129         void (*set)(struct cpudata*, int pstate);
130         void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134         struct pstate_adjust_policy pid_policy;
135         struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143         int no_turbo;
144         int turbo_disabled;
145         int max_perf_pct;
146         int min_perf_pct;
147         int32_t max_perf;
148         int32_t min_perf;
149         int max_policy_pct;
150         int max_sysfs_pct;
151         int min_policy_pct;
152         int min_sysfs_pct;
153 };
154
155 static struct perf_limits limits = {
156         .no_turbo = 0,
157         .turbo_disabled = 0,
158         .max_perf_pct = 100,
159         .max_perf = int_tofp(1),
160         .min_perf_pct = 0,
161         .min_perf = 0,
162         .max_policy_pct = 100,
163         .max_sysfs_pct = 100,
164         .min_policy_pct = 0,
165         .min_sysfs_pct = 0,
166 };
167
168 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
169                              int deadband, int integral) {
170         pid->setpoint = setpoint;
171         pid->deadband  = deadband;
172         pid->integral  = int_tofp(integral);
173         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
174 }
175
176 static inline void pid_p_gain_set(struct _pid *pid, int percent)
177 {
178         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
179 }
180
181 static inline void pid_i_gain_set(struct _pid *pid, int percent)
182 {
183         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
184 }
185
186 static inline void pid_d_gain_set(struct _pid *pid, int percent)
187 {
188         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
189 }
190
191 static signed int pid_calc(struct _pid *pid, int32_t busy)
192 {
193         signed int result;
194         int32_t pterm, dterm, fp_error;
195         int32_t integral_limit;
196
197         fp_error = int_tofp(pid->setpoint) - busy;
198
199         if (abs(fp_error) <= int_tofp(pid->deadband))
200                 return 0;
201
202         pterm = mul_fp(pid->p_gain, fp_error);
203
204         pid->integral += fp_error;
205
206         /*
207          * We limit the integral here so that it will never
208          * get higher than 30.  This prevents it from becoming
209          * too large an input over long periods of time and allows
210          * it to get factored out sooner.
211          *
212          * The value of 30 was chosen through experimentation.
213          */
214         integral_limit = int_tofp(30);
215         if (pid->integral > integral_limit)
216                 pid->integral = integral_limit;
217         if (pid->integral < -integral_limit)
218                 pid->integral = -integral_limit;
219
220         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
221         pid->last_err = fp_error;
222
223         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
224         result = result + (1 << (FRAC_BITS-1));
225         return (signed int)fp_toint(result);
226 }
227
228 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
229 {
230         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
231         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
232         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
233
234         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
235 }
236
237 static inline void intel_pstate_reset_all_pid(void)
238 {
239         unsigned int cpu;
240
241         for_each_online_cpu(cpu) {
242                 if (all_cpu_data[cpu])
243                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
244         }
245 }
246
247 static inline void update_turbo_state(void)
248 {
249         u64 misc_en;
250         struct cpudata *cpu;
251
252         cpu = all_cpu_data[0];
253         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
254         limits.turbo_disabled =
255                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
256                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
257 }
258
259 #define PCT_TO_HWP(x) (x * 255 / 100)
260 static void intel_pstate_hwp_set(void)
261 {
262         int min, max, cpu;
263         u64 value, freq;
264
265         get_online_cpus();
266
267         for_each_online_cpu(cpu) {
268                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
269                 min = PCT_TO_HWP(limits.min_perf_pct);
270                 value &= ~HWP_MIN_PERF(~0L);
271                 value |= HWP_MIN_PERF(min);
272
273                 max = PCT_TO_HWP(limits.max_perf_pct);
274                 if (limits.no_turbo) {
275                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
276                         max = HWP_GUARANTEED_PERF(freq);
277                 }
278
279                 value &= ~HWP_MAX_PERF(~0L);
280                 value |= HWP_MAX_PERF(max);
281                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
282         }
283
284         put_online_cpus();
285 }
286
287 /************************** debugfs begin ************************/
288 static int pid_param_set(void *data, u64 val)
289 {
290         *(u32 *)data = val;
291         intel_pstate_reset_all_pid();
292         return 0;
293 }
294
295 static int pid_param_get(void *data, u64 *val)
296 {
297         *val = *(u32 *)data;
298         return 0;
299 }
300 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
301
302 struct pid_param {
303         char *name;
304         void *value;
305 };
306
307 static struct pid_param pid_files[] = {
308         {"sample_rate_ms", &pid_params.sample_rate_ms},
309         {"d_gain_pct", &pid_params.d_gain_pct},
310         {"i_gain_pct", &pid_params.i_gain_pct},
311         {"deadband", &pid_params.deadband},
312         {"setpoint", &pid_params.setpoint},
313         {"p_gain_pct", &pid_params.p_gain_pct},
314         {NULL, NULL}
315 };
316
317 static void __init intel_pstate_debug_expose_params(void)
318 {
319         struct dentry *debugfs_parent;
320         int i = 0;
321
322         if (hwp_active)
323                 return;
324         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
325         if (IS_ERR_OR_NULL(debugfs_parent))
326                 return;
327         while (pid_files[i].name) {
328                 debugfs_create_file(pid_files[i].name, 0660,
329                                     debugfs_parent, pid_files[i].value,
330                                     &fops_pid_param);
331                 i++;
332         }
333 }
334
335 /************************** debugfs end ************************/
336
337 /************************** sysfs begin ************************/
338 #define show_one(file_name, object)                                     \
339         static ssize_t show_##file_name                                 \
340         (struct kobject *kobj, struct attribute *attr, char *buf)       \
341         {                                                               \
342                 return sprintf(buf, "%u\n", limits.object);             \
343         }
344
345 static ssize_t show_turbo_pct(struct kobject *kobj,
346                                 struct attribute *attr, char *buf)
347 {
348         struct cpudata *cpu;
349         int total, no_turbo, turbo_pct;
350         uint32_t turbo_fp;
351
352         cpu = all_cpu_data[0];
353
354         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
355         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
356         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
357         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
358         return sprintf(buf, "%u\n", turbo_pct);
359 }
360
361 static ssize_t show_num_pstates(struct kobject *kobj,
362                                 struct attribute *attr, char *buf)
363 {
364         struct cpudata *cpu;
365         int total;
366
367         cpu = all_cpu_data[0];
368         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
369         return sprintf(buf, "%u\n", total);
370 }
371
372 static ssize_t show_no_turbo(struct kobject *kobj,
373                              struct attribute *attr, char *buf)
374 {
375         ssize_t ret;
376
377         update_turbo_state();
378         if (limits.turbo_disabled)
379                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
380         else
381                 ret = sprintf(buf, "%u\n", limits.no_turbo);
382
383         return ret;
384 }
385
386 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
387                               const char *buf, size_t count)
388 {
389         unsigned int input;
390         int ret;
391
392         ret = sscanf(buf, "%u", &input);
393         if (ret != 1)
394                 return -EINVAL;
395
396         update_turbo_state();
397         if (limits.turbo_disabled) {
398                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
399                 return -EPERM;
400         }
401
402         limits.no_turbo = clamp_t(int, input, 0, 1);
403
404         if (hwp_active)
405                 intel_pstate_hwp_set();
406
407         return count;
408 }
409
410 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
411                                   const char *buf, size_t count)
412 {
413         unsigned int input;
414         int ret;
415
416         ret = sscanf(buf, "%u", &input);
417         if (ret != 1)
418                 return -EINVAL;
419
420         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
421         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
422         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
423
424         if (hwp_active)
425                 intel_pstate_hwp_set();
426         return count;
427 }
428
429 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
430                                   const char *buf, size_t count)
431 {
432         unsigned int input;
433         int ret;
434
435         ret = sscanf(buf, "%u", &input);
436         if (ret != 1)
437                 return -EINVAL;
438
439         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
440         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
441         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
442
443         if (hwp_active)
444                 intel_pstate_hwp_set();
445         return count;
446 }
447
448 show_one(max_perf_pct, max_perf_pct);
449 show_one(min_perf_pct, min_perf_pct);
450
451 define_one_global_rw(no_turbo);
452 define_one_global_rw(max_perf_pct);
453 define_one_global_rw(min_perf_pct);
454 define_one_global_ro(turbo_pct);
455 define_one_global_ro(num_pstates);
456
457 static struct attribute *intel_pstate_attributes[] = {
458         &no_turbo.attr,
459         &max_perf_pct.attr,
460         &min_perf_pct.attr,
461         &turbo_pct.attr,
462         &num_pstates.attr,
463         NULL
464 };
465
466 static struct attribute_group intel_pstate_attr_group = {
467         .attrs = intel_pstate_attributes,
468 };
469
470 static void __init intel_pstate_sysfs_expose_params(void)
471 {
472         struct kobject *intel_pstate_kobject;
473         int rc;
474
475         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
476                                                 &cpu_subsys.dev_root->kobj);
477         BUG_ON(!intel_pstate_kobject);
478         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
479         BUG_ON(rc);
480 }
481 /************************** sysfs end ************************/
482
483 static void intel_pstate_hwp_enable(void)
484 {
485         hwp_active++;
486         pr_info("intel_pstate HWP enabled\n");
487
488         wrmsrl( MSR_PM_ENABLE, 0x1);
489 }
490
491 static int byt_get_min_pstate(void)
492 {
493         u64 value;
494
495         rdmsrl(BYT_RATIOS, value);
496         return (value >> 8) & 0x7F;
497 }
498
499 static int byt_get_max_pstate(void)
500 {
501         u64 value;
502
503         rdmsrl(BYT_RATIOS, value);
504         return (value >> 16) & 0x7F;
505 }
506
507 static int byt_get_turbo_pstate(void)
508 {
509         u64 value;
510
511         rdmsrl(BYT_TURBO_RATIOS, value);
512         return value & 0x7F;
513 }
514
515 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
516 {
517         u64 val;
518         int32_t vid_fp;
519         u32 vid;
520
521         val = pstate << 8;
522         if (limits.no_turbo && !limits.turbo_disabled)
523                 val |= (u64)1 << 32;
524
525         vid_fp = cpudata->vid.min + mul_fp(
526                 int_tofp(pstate - cpudata->pstate.min_pstate),
527                 cpudata->vid.ratio);
528
529         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
530         vid = ceiling_fp(vid_fp);
531
532         if (pstate > cpudata->pstate.max_pstate)
533                 vid = cpudata->vid.turbo;
534
535         val |= vid;
536
537         wrmsrl(MSR_IA32_PERF_CTL, val);
538 }
539
540 #define BYT_BCLK_FREQS 5
541 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
542
543 static int byt_get_scaling(void)
544 {
545         u64 value;
546         int i;
547
548         rdmsrl(MSR_FSB_FREQ, value);
549         i = value & 0x3;
550
551         BUG_ON(i > BYT_BCLK_FREQS);
552
553         return byt_freq_table[i] * 100;
554 }
555
556 static void byt_get_vid(struct cpudata *cpudata)
557 {
558         u64 value;
559
560         rdmsrl(BYT_VIDS, value);
561         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
562         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
563         cpudata->vid.ratio = div_fp(
564                 cpudata->vid.max - cpudata->vid.min,
565                 int_tofp(cpudata->pstate.max_pstate -
566                         cpudata->pstate.min_pstate));
567
568         rdmsrl(BYT_TURBO_VIDS, value);
569         cpudata->vid.turbo = value & 0x7f;
570 }
571
572 static int core_get_min_pstate(void)
573 {
574         u64 value;
575
576         rdmsrl(MSR_PLATFORM_INFO, value);
577         return (value >> 40) & 0xFF;
578 }
579
580 static int core_get_max_pstate(void)
581 {
582         u64 value;
583
584         rdmsrl(MSR_PLATFORM_INFO, value);
585         return (value >> 8) & 0xFF;
586 }
587
588 static int core_get_turbo_pstate(void)
589 {
590         u64 value;
591         int nont, ret;
592
593         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
594         nont = core_get_max_pstate();
595         ret = (value) & 255;
596         if (ret <= nont)
597                 ret = nont;
598         return ret;
599 }
600
601 static inline int core_get_scaling(void)
602 {
603         return 100000;
604 }
605
606 static void core_set_pstate(struct cpudata *cpudata, int pstate)
607 {
608         u64 val;
609
610         val = pstate << 8;
611         if (limits.no_turbo && !limits.turbo_disabled)
612                 val |= (u64)1 << 32;
613
614         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
615 }
616
617 static struct cpu_defaults core_params = {
618         .pid_policy = {
619                 .sample_rate_ms = 10,
620                 .deadband = 0,
621                 .setpoint = 97,
622                 .p_gain_pct = 20,
623                 .d_gain_pct = 0,
624                 .i_gain_pct = 0,
625         },
626         .funcs = {
627                 .get_max = core_get_max_pstate,
628                 .get_min = core_get_min_pstate,
629                 .get_turbo = core_get_turbo_pstate,
630                 .get_scaling = core_get_scaling,
631                 .set = core_set_pstate,
632         },
633 };
634
635 static struct cpu_defaults byt_params = {
636         .pid_policy = {
637                 .sample_rate_ms = 10,
638                 .deadband = 0,
639                 .setpoint = 97,
640                 .p_gain_pct = 14,
641                 .d_gain_pct = 0,
642                 .i_gain_pct = 4,
643         },
644         .funcs = {
645                 .get_max = byt_get_max_pstate,
646                 .get_min = byt_get_min_pstate,
647                 .get_turbo = byt_get_turbo_pstate,
648                 .set = byt_set_pstate,
649                 .get_scaling = byt_get_scaling,
650                 .get_vid = byt_get_vid,
651         },
652 };
653
654 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
655 {
656         int max_perf = cpu->pstate.turbo_pstate;
657         int max_perf_adj;
658         int min_perf;
659
660         if (limits.no_turbo || limits.turbo_disabled)
661                 max_perf = cpu->pstate.max_pstate;
662
663         /*
664          * performance can be limited by user through sysfs, by cpufreq
665          * policy, or by cpu specific default values determined through
666          * experimentation.
667          */
668         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
669         *max = clamp_t(int, max_perf_adj,
670                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
671
672         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
673         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
674 }
675
676 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
677 {
678         int max_perf, min_perf;
679
680         update_turbo_state();
681
682         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
683
684         pstate = clamp_t(int, pstate, min_perf, max_perf);
685
686         if (pstate == cpu->pstate.current_pstate)
687                 return;
688
689         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
690
691         cpu->pstate.current_pstate = pstate;
692
693         pstate_funcs.set(cpu, pstate);
694 }
695
696 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
697 {
698         cpu->pstate.min_pstate = pstate_funcs.get_min();
699         cpu->pstate.max_pstate = pstate_funcs.get_max();
700         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
701         cpu->pstate.scaling = pstate_funcs.get_scaling();
702
703         if (pstate_funcs.get_vid)
704                 pstate_funcs.get_vid(cpu);
705         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
706 }
707
708 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
709 {
710         struct sample *sample = &cpu->sample;
711         int64_t core_pct;
712
713         core_pct = int_tofp(sample->aperf) * int_tofp(100);
714         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
715
716         sample->freq = fp_toint(
717                 mul_fp(int_tofp(
718                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
719                         core_pct));
720
721         sample->core_pct_busy = (int32_t)core_pct;
722 }
723
724 static inline void intel_pstate_sample(struct cpudata *cpu)
725 {
726         u64 aperf, mperf;
727         unsigned long flags;
728
729         local_irq_save(flags);
730         rdmsrl(MSR_IA32_APERF, aperf);
731         rdmsrl(MSR_IA32_MPERF, mperf);
732         local_irq_restore(flags);
733
734         cpu->last_sample_time = cpu->sample.time;
735         cpu->sample.time = ktime_get();
736         cpu->sample.aperf = aperf;
737         cpu->sample.mperf = mperf;
738         cpu->sample.aperf -= cpu->prev_aperf;
739         cpu->sample.mperf -= cpu->prev_mperf;
740
741         intel_pstate_calc_busy(cpu);
742
743         cpu->prev_aperf = aperf;
744         cpu->prev_mperf = mperf;
745 }
746
747 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
748 {
749         int delay;
750
751         delay = msecs_to_jiffies(50);
752         mod_timer_pinned(&cpu->timer, jiffies + delay);
753 }
754
755 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
756 {
757         int delay;
758
759         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
760         mod_timer_pinned(&cpu->timer, jiffies + delay);
761 }
762
763 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
764 {
765         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
766         u32 duration_us;
767         u32 sample_time;
768
769         /*
770          * core_busy is the ratio of actual performance to max
771          * max_pstate is the max non turbo pstate available
772          * current_pstate was the pstate that was requested during
773          *      the last sample period.
774          *
775          * We normalize core_busy, which was our actual percent
776          * performance to what we requested during the last sample
777          * period. The result will be a percentage of busy at a
778          * specified pstate.
779          */
780         core_busy = cpu->sample.core_pct_busy;
781         max_pstate = int_tofp(cpu->pstate.max_pstate);
782         current_pstate = int_tofp(cpu->pstate.current_pstate);
783         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
784
785         /*
786          * Since we have a deferred timer, it will not fire unless
787          * we are in C0.  So, determine if the actual elapsed time
788          * is significantly greater (3x) than our sample interval.  If it
789          * is, then we were idle for a long enough period of time
790          * to adjust our busyness.
791          */
792         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
793         duration_us = (u32) ktime_us_delta(cpu->sample.time,
794                                            cpu->last_sample_time);
795         if (duration_us > sample_time * 3) {
796                 sample_ratio = div_fp(int_tofp(sample_time),
797                                       int_tofp(duration_us));
798                 core_busy = mul_fp(core_busy, sample_ratio);
799         }
800
801         return core_busy;
802 }
803
804 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
805 {
806         int32_t busy_scaled;
807         struct _pid *pid;
808         signed int ctl;
809
810         pid = &cpu->pid;
811         busy_scaled = intel_pstate_get_scaled_busy(cpu);
812
813         ctl = pid_calc(pid, busy_scaled);
814
815         /* Negative values of ctl increase the pstate and vice versa */
816         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
817 }
818
819 static void intel_hwp_timer_func(unsigned long __data)
820 {
821         struct cpudata *cpu = (struct cpudata *) __data;
822
823         intel_pstate_sample(cpu);
824         intel_hwp_set_sample_time(cpu);
825 }
826
827 static void intel_pstate_timer_func(unsigned long __data)
828 {
829         struct cpudata *cpu = (struct cpudata *) __data;
830         struct sample *sample;
831
832         intel_pstate_sample(cpu);
833
834         sample = &cpu->sample;
835
836         intel_pstate_adjust_busy_pstate(cpu);
837
838         trace_pstate_sample(fp_toint(sample->core_pct_busy),
839                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
840                         cpu->pstate.current_pstate,
841                         sample->mperf,
842                         sample->aperf,
843                         sample->freq);
844
845         intel_pstate_set_sample_time(cpu);
846 }
847
848 #define ICPU(model, policy) \
849         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
850                         (unsigned long)&policy }
851
852 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
853         ICPU(0x2a, core_params),
854         ICPU(0x2d, core_params),
855         ICPU(0x37, byt_params),
856         ICPU(0x3a, core_params),
857         ICPU(0x3c, core_params),
858         ICPU(0x3d, core_params),
859         ICPU(0x3e, core_params),
860         ICPU(0x3f, core_params),
861         ICPU(0x45, core_params),
862         ICPU(0x46, core_params),
863         ICPU(0x47, core_params),
864         ICPU(0x4c, byt_params),
865         ICPU(0x4e, core_params),
866         ICPU(0x4f, core_params),
867         ICPU(0x56, core_params),
868         {}
869 };
870 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
871
872 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
873         ICPU(0x56, core_params),
874         {}
875 };
876
877 static int intel_pstate_init_cpu(unsigned int cpunum)
878 {
879         struct cpudata *cpu;
880
881         if (!all_cpu_data[cpunum])
882                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
883                                                GFP_KERNEL);
884         if (!all_cpu_data[cpunum])
885                 return -ENOMEM;
886
887         cpu = all_cpu_data[cpunum];
888
889         cpu->cpu = cpunum;
890         intel_pstate_get_cpu_pstates(cpu);
891
892         init_timer_deferrable(&cpu->timer);
893         cpu->timer.data = (unsigned long)cpu;
894         cpu->timer.expires = jiffies + HZ/100;
895
896         if (!hwp_active)
897                 cpu->timer.function = intel_pstate_timer_func;
898         else
899                 cpu->timer.function = intel_hwp_timer_func;
900
901         intel_pstate_busy_pid_reset(cpu);
902         intel_pstate_sample(cpu);
903
904         add_timer_on(&cpu->timer, cpunum);
905
906         pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
907
908         return 0;
909 }
910
911 static unsigned int intel_pstate_get(unsigned int cpu_num)
912 {
913         struct sample *sample;
914         struct cpudata *cpu;
915
916         cpu = all_cpu_data[cpu_num];
917         if (!cpu)
918                 return 0;
919         sample = &cpu->sample;
920         return sample->freq;
921 }
922
923 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
924 {
925         if (!policy->cpuinfo.max_freq)
926                 return -ENODEV;
927
928         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
929             policy->max >= policy->cpuinfo.max_freq) {
930                 limits.min_policy_pct = 100;
931                 limits.min_perf_pct = 100;
932                 limits.min_perf = int_tofp(1);
933                 limits.max_policy_pct = 100;
934                 limits.max_perf_pct = 100;
935                 limits.max_perf = int_tofp(1);
936                 limits.no_turbo = 0;
937                 return 0;
938         }
939
940         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
941         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
942         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
943         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
944
945         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
946         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
947         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
948         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
949
950         if (hwp_active)
951                 intel_pstate_hwp_set();
952
953         return 0;
954 }
955
956 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
957 {
958         cpufreq_verify_within_cpu_limits(policy);
959
960         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
961             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
962                 return -EINVAL;
963
964         return 0;
965 }
966
967 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
968 {
969         int cpu_num = policy->cpu;
970         struct cpudata *cpu = all_cpu_data[cpu_num];
971
972         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
973
974         del_timer_sync(&all_cpu_data[cpu_num]->timer);
975         if (hwp_active)
976                 return;
977
978         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
979 }
980
981 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
982 {
983         struct cpudata *cpu;
984         int rc;
985
986         rc = intel_pstate_init_cpu(policy->cpu);
987         if (rc)
988                 return rc;
989
990         cpu = all_cpu_data[policy->cpu];
991
992         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
993                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
994         else
995                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
996
997         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
998         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
999
1000         /* cpuinfo and default policy values */
1001         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1002         policy->cpuinfo.max_freq =
1003                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1004         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1005         cpumask_set_cpu(policy->cpu, policy->cpus);
1006
1007         return 0;
1008 }
1009
1010 static struct cpufreq_driver intel_pstate_driver = {
1011         .flags          = CPUFREQ_CONST_LOOPS,
1012         .verify         = intel_pstate_verify_policy,
1013         .setpolicy      = intel_pstate_set_policy,
1014         .get            = intel_pstate_get,
1015         .init           = intel_pstate_cpu_init,
1016         .stop_cpu       = intel_pstate_stop_cpu,
1017         .name           = "intel_pstate",
1018 };
1019
1020 static int __initdata no_load;
1021 static int __initdata no_hwp;
1022 static int __initdata hwp_only;
1023 static unsigned int force_load;
1024
1025 static int intel_pstate_msrs_not_valid(void)
1026 {
1027         /* Check that all the msr's we are using are valid. */
1028         u64 aperf, mperf, tmp;
1029
1030         rdmsrl(MSR_IA32_APERF, aperf);
1031         rdmsrl(MSR_IA32_MPERF, mperf);
1032
1033         if (!pstate_funcs.get_max() ||
1034             !pstate_funcs.get_min() ||
1035             !pstate_funcs.get_turbo())
1036                 return -ENODEV;
1037
1038         rdmsrl(MSR_IA32_APERF, tmp);
1039         if (!(tmp - aperf))
1040                 return -ENODEV;
1041
1042         rdmsrl(MSR_IA32_MPERF, tmp);
1043         if (!(tmp - mperf))
1044                 return -ENODEV;
1045
1046         return 0;
1047 }
1048
1049 static void copy_pid_params(struct pstate_adjust_policy *policy)
1050 {
1051         pid_params.sample_rate_ms = policy->sample_rate_ms;
1052         pid_params.p_gain_pct = policy->p_gain_pct;
1053         pid_params.i_gain_pct = policy->i_gain_pct;
1054         pid_params.d_gain_pct = policy->d_gain_pct;
1055         pid_params.deadband = policy->deadband;
1056         pid_params.setpoint = policy->setpoint;
1057 }
1058
1059 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1060 {
1061         pstate_funcs.get_max   = funcs->get_max;
1062         pstate_funcs.get_min   = funcs->get_min;
1063         pstate_funcs.get_turbo = funcs->get_turbo;
1064         pstate_funcs.get_scaling = funcs->get_scaling;
1065         pstate_funcs.set       = funcs->set;
1066         pstate_funcs.get_vid   = funcs->get_vid;
1067 }
1068
1069 #if IS_ENABLED(CONFIG_ACPI)
1070 #include <acpi/processor.h>
1071
1072 static bool intel_pstate_no_acpi_pss(void)
1073 {
1074         int i;
1075
1076         for_each_possible_cpu(i) {
1077                 acpi_status status;
1078                 union acpi_object *pss;
1079                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1080                 struct acpi_processor *pr = per_cpu(processors, i);
1081
1082                 if (!pr)
1083                         continue;
1084
1085                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1086                 if (ACPI_FAILURE(status))
1087                         continue;
1088
1089                 pss = buffer.pointer;
1090                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1091                         kfree(pss);
1092                         return false;
1093                 }
1094
1095                 kfree(pss);
1096         }
1097
1098         return true;
1099 }
1100
1101 static bool intel_pstate_has_acpi_ppc(void)
1102 {
1103         int i;
1104
1105         for_each_possible_cpu(i) {
1106                 struct acpi_processor *pr = per_cpu(processors, i);
1107
1108                 if (!pr)
1109                         continue;
1110                 if (acpi_has_method(pr->handle, "_PPC"))
1111                         return true;
1112         }
1113         return false;
1114 }
1115
1116 enum {
1117         PSS,
1118         PPC,
1119 };
1120
1121 struct hw_vendor_info {
1122         u16  valid;
1123         char oem_id[ACPI_OEM_ID_SIZE];
1124         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1125         int  oem_pwr_table;
1126 };
1127
1128 /* Hardware vendor-specific info that has its own power management modes */
1129 static struct hw_vendor_info vendor_info[] = {
1130         {1, "HP    ", "ProLiant", PSS},
1131         {1, "ORACLE", "X4-2    ", PPC},
1132         {1, "ORACLE", "X4-2L   ", PPC},
1133         {1, "ORACLE", "X4-2B   ", PPC},
1134         {1, "ORACLE", "X3-2    ", PPC},
1135         {1, "ORACLE", "X3-2L   ", PPC},
1136         {1, "ORACLE", "X3-2B   ", PPC},
1137         {1, "ORACLE", "X4470M2 ", PPC},
1138         {1, "ORACLE", "X4270M3 ", PPC},
1139         {1, "ORACLE", "X4270M2 ", PPC},
1140         {1, "ORACLE", "X4170M2 ", PPC},
1141         {0, "", ""},
1142 };
1143
1144 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1145 {
1146         struct acpi_table_header hdr;
1147         struct hw_vendor_info *v_info;
1148         const struct x86_cpu_id *id;
1149         u64 misc_pwr;
1150
1151         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1152         if (id) {
1153                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1154                 if ( misc_pwr & (1 << 8))
1155                         return true;
1156         }
1157
1158         if (acpi_disabled ||
1159             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1160                 return false;
1161
1162         for (v_info = vendor_info; v_info->valid; v_info++) {
1163                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1164                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1165                                                 ACPI_OEM_TABLE_ID_SIZE))
1166                         switch (v_info->oem_pwr_table) {
1167                         case PSS:
1168                                 return intel_pstate_no_acpi_pss();
1169                         case PPC:
1170                                 return intel_pstate_has_acpi_ppc() &&
1171                                         (!force_load);
1172                         }
1173         }
1174
1175         return false;
1176 }
1177 #else /* CONFIG_ACPI not enabled */
1178 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1179 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1180 #endif /* CONFIG_ACPI */
1181
1182 static int __init intel_pstate_init(void)
1183 {
1184         int cpu, rc = 0;
1185         const struct x86_cpu_id *id;
1186         struct cpu_defaults *cpu_info;
1187         struct cpuinfo_x86 *c = &boot_cpu_data;
1188
1189         if (no_load)
1190                 return -ENODEV;
1191
1192         id = x86_match_cpu(intel_pstate_cpu_ids);
1193         if (!id)
1194                 return -ENODEV;
1195
1196         /*
1197          * The Intel pstate driver will be ignored if the platform
1198          * firmware has its own power management modes.
1199          */
1200         if (intel_pstate_platform_pwr_mgmt_exists())
1201                 return -ENODEV;
1202
1203         cpu_info = (struct cpu_defaults *)id->driver_data;
1204
1205         copy_pid_params(&cpu_info->pid_policy);
1206         copy_cpu_funcs(&cpu_info->funcs);
1207
1208         if (intel_pstate_msrs_not_valid())
1209                 return -ENODEV;
1210
1211         pr_info("Intel P-state driver initializing.\n");
1212
1213         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1214         if (!all_cpu_data)
1215                 return -ENOMEM;
1216
1217         if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1218                 intel_pstate_hwp_enable();
1219
1220         if (!hwp_active && hwp_only)
1221                 goto out;
1222
1223         rc = cpufreq_register_driver(&intel_pstate_driver);
1224         if (rc)
1225                 goto out;
1226
1227         intel_pstate_debug_expose_params();
1228         intel_pstate_sysfs_expose_params();
1229
1230         return rc;
1231 out:
1232         get_online_cpus();
1233         for_each_online_cpu(cpu) {
1234                 if (all_cpu_data[cpu]) {
1235                         del_timer_sync(&all_cpu_data[cpu]->timer);
1236                         kfree(all_cpu_data[cpu]);
1237                 }
1238         }
1239
1240         put_online_cpus();
1241         vfree(all_cpu_data);
1242         return -ENODEV;
1243 }
1244 device_initcall(intel_pstate_init);
1245
1246 static int __init intel_pstate_setup(char *str)
1247 {
1248         if (!str)
1249                 return -EINVAL;
1250
1251         if (!strcmp(str, "disable"))
1252                 no_load = 1;
1253         if (!strcmp(str, "no_hwp"))
1254                 no_hwp = 1;
1255         if (!strcmp(str, "force"))
1256                 force_load = 1;
1257         if (!strcmp(str, "hwp_only"))
1258                 hwp_only = 1;
1259         return 0;
1260 }
1261 early_param("intel_pstate", intel_pstate_setup);
1262
1263 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1264 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1265 MODULE_LICENSE("GPL");