Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
20 #define DEF_FREQUENCY_STEP                      (5)
21 #define DEF_SAMPLING_DOWN_FACTOR                (1)
22 #define MAX_SAMPLING_DOWN_FACTOR                (10)
23
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27                                            struct cpufreq_policy *policy)
28 {
29         unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30
31         /* max freq cannot be less than 100. But who knows... */
32         if (unlikely(freq_target == 0))
33                 freq_target = DEF_FREQUENCY_STEP;
34
35         return freq_target;
36 }
37
38 /*
39  * Every sampling_rate, we check, if current idle time is less than 20%
40  * (default), then we try to increase frequency. Every sampling_rate *
41  * sampling_down_factor, we check, if current idle time is more than 80%
42  * (default), then we try to decrease frequency
43  *
44  * Any frequency increase takes it to the maximum frequency. Frequency reduction
45  * happens at minimum steps of 5% (default) of maximum frequency
46  */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51         struct dbs_data *dbs_data = policy->governor_data;
52         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53
54         /*
55          * break out if we 'cannot' reduce the speed as the user might
56          * want freq_step to be zero
57          */
58         if (cs_tuners->freq_step == 0)
59                 return;
60
61         /* Check for frequency increase */
62         if (load > cs_tuners->up_threshold) {
63                 dbs_info->down_skip = 0;
64
65                 /* if we are already at full speed then break out early */
66                 if (dbs_info->requested_freq == policy->max)
67                         return;
68
69                 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70
71                 if (dbs_info->requested_freq > policy->max)
72                         dbs_info->requested_freq = policy->max;
73
74                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
75                         CPUFREQ_RELATION_H);
76                 return;
77         }
78
79         /* if sampling_down_factor is active break out early */
80         if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
81                 return;
82         dbs_info->down_skip = 0;
83
84         /* Check for frequency decrease */
85         if (load < cs_tuners->down_threshold) {
86                 unsigned int freq_target;
87                 /*
88                  * if we cannot reduce the frequency anymore, break out early
89                  */
90                 if (policy->cur == policy->min)
91                         return;
92
93                 freq_target = get_freq_target(cs_tuners, policy);
94                 if (dbs_info->requested_freq > freq_target)
95                         dbs_info->requested_freq -= freq_target;
96                 else
97                         dbs_info->requested_freq = policy->min;
98
99                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
100                                 CPUFREQ_RELATION_L);
101                 return;
102         }
103 }
104
105 static void cs_dbs_timer(struct work_struct *work)
106 {
107         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
108                         struct cs_cpu_dbs_info_s, cdbs.work.work);
109         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
110         struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
111                         cpu);
112         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
113         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
114         int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
115         bool modify_all = true;
116
117         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
118         if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
119                 modify_all = false;
120         else
121                 dbs_check_cpu(dbs_data, cpu);
122
123         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
124         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
125 }
126
127 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
128                 void *data)
129 {
130         struct cpufreq_freqs *freq = data;
131         struct cs_cpu_dbs_info_s *dbs_info =
132                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
133         struct cpufreq_policy *policy;
134
135         if (!dbs_info->enable)
136                 return 0;
137
138         policy = dbs_info->cdbs.cur_policy;
139
140         /*
141          * we only care if our internally tracked freq moves outside the 'valid'
142          * ranges of frequency available to us otherwise we do not change it
143         */
144         if (dbs_info->requested_freq > policy->max
145                         || dbs_info->requested_freq < policy->min)
146                 dbs_info->requested_freq = freq->new;
147
148         return 0;
149 }
150
151 /************************** sysfs interface ************************/
152 static struct common_dbs_data cs_dbs_cdata;
153
154 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
155                 const char *buf, size_t count)
156 {
157         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
158         unsigned int input;
159         int ret;
160         ret = sscanf(buf, "%u", &input);
161
162         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
163                 return -EINVAL;
164
165         cs_tuners->sampling_down_factor = input;
166         return count;
167 }
168
169 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
170                 size_t count)
171 {
172         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
173         unsigned int input;
174         int ret;
175         ret = sscanf(buf, "%u", &input);
176
177         if (ret != 1)
178                 return -EINVAL;
179
180         cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
181         return count;
182 }
183
184 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
185                 size_t count)
186 {
187         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
188         unsigned int input;
189         int ret;
190         ret = sscanf(buf, "%u", &input);
191
192         if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
193                 return -EINVAL;
194
195         cs_tuners->up_threshold = input;
196         return count;
197 }
198
199 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
200                 size_t count)
201 {
202         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
203         unsigned int input;
204         int ret;
205         ret = sscanf(buf, "%u", &input);
206
207         /* cannot be lower than 11 otherwise freq will not fall */
208         if (ret != 1 || input < 11 || input > 100 ||
209                         input >= cs_tuners->up_threshold)
210                 return -EINVAL;
211
212         cs_tuners->down_threshold = input;
213         return count;
214 }
215
216 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
217                 const char *buf, size_t count)
218 {
219         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
220         unsigned int input, j;
221         int ret;
222
223         ret = sscanf(buf, "%u", &input);
224         if (ret != 1)
225                 return -EINVAL;
226
227         if (input > 1)
228                 input = 1;
229
230         if (input == cs_tuners->ignore_nice_load) /* nothing to do */
231                 return count;
232
233         cs_tuners->ignore_nice_load = input;
234
235         /* we need to re-evaluate prev_cpu_idle */
236         for_each_online_cpu(j) {
237                 struct cs_cpu_dbs_info_s *dbs_info;
238                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
239                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
240                                         &dbs_info->cdbs.prev_cpu_wall, 0);
241                 if (cs_tuners->ignore_nice_load)
242                         dbs_info->cdbs.prev_cpu_nice =
243                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
244         }
245         return count;
246 }
247
248 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
249                 size_t count)
250 {
251         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
252         unsigned int input;
253         int ret;
254         ret = sscanf(buf, "%u", &input);
255
256         if (ret != 1)
257                 return -EINVAL;
258
259         if (input > 100)
260                 input = 100;
261
262         /*
263          * no need to test here if freq_step is zero as the user might actually
264          * want this, they would be crazy though :)
265          */
266         cs_tuners->freq_step = input;
267         return count;
268 }
269
270 show_store_one(cs, sampling_rate);
271 show_store_one(cs, sampling_down_factor);
272 show_store_one(cs, up_threshold);
273 show_store_one(cs, down_threshold);
274 show_store_one(cs, ignore_nice_load);
275 show_store_one(cs, freq_step);
276 declare_show_sampling_rate_min(cs);
277
278 gov_sys_pol_attr_rw(sampling_rate);
279 gov_sys_pol_attr_rw(sampling_down_factor);
280 gov_sys_pol_attr_rw(up_threshold);
281 gov_sys_pol_attr_rw(down_threshold);
282 gov_sys_pol_attr_rw(ignore_nice_load);
283 gov_sys_pol_attr_rw(freq_step);
284 gov_sys_pol_attr_ro(sampling_rate_min);
285
286 static struct attribute *dbs_attributes_gov_sys[] = {
287         &sampling_rate_min_gov_sys.attr,
288         &sampling_rate_gov_sys.attr,
289         &sampling_down_factor_gov_sys.attr,
290         &up_threshold_gov_sys.attr,
291         &down_threshold_gov_sys.attr,
292         &ignore_nice_load_gov_sys.attr,
293         &freq_step_gov_sys.attr,
294         NULL
295 };
296
297 static struct attribute_group cs_attr_group_gov_sys = {
298         .attrs = dbs_attributes_gov_sys,
299         .name = "conservative",
300 };
301
302 static struct attribute *dbs_attributes_gov_pol[] = {
303         &sampling_rate_min_gov_pol.attr,
304         &sampling_rate_gov_pol.attr,
305         &sampling_down_factor_gov_pol.attr,
306         &up_threshold_gov_pol.attr,
307         &down_threshold_gov_pol.attr,
308         &ignore_nice_load_gov_pol.attr,
309         &freq_step_gov_pol.attr,
310         NULL
311 };
312
313 static struct attribute_group cs_attr_group_gov_pol = {
314         .attrs = dbs_attributes_gov_pol,
315         .name = "conservative",
316 };
317
318 /************************** sysfs end ************************/
319
320 static int cs_init(struct dbs_data *dbs_data)
321 {
322         struct cs_dbs_tuners *tuners;
323
324         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
325         if (!tuners) {
326                 pr_err("%s: kzalloc failed\n", __func__);
327                 return -ENOMEM;
328         }
329
330         tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
331         tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
332         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
333         tuners->ignore_nice_load = 0;
334         tuners->freq_step = DEF_FREQUENCY_STEP;
335
336         dbs_data->tuners = tuners;
337         dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
338                 jiffies_to_usecs(10);
339         mutex_init(&dbs_data->mutex);
340         return 0;
341 }
342
343 static void cs_exit(struct dbs_data *dbs_data)
344 {
345         kfree(dbs_data->tuners);
346 }
347
348 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
349
350 static struct notifier_block cs_cpufreq_notifier_block = {
351         .notifier_call = dbs_cpufreq_notifier,
352 };
353
354 static struct cs_ops cs_ops = {
355         .notifier_block = &cs_cpufreq_notifier_block,
356 };
357
358 static struct common_dbs_data cs_dbs_cdata = {
359         .governor = GOV_CONSERVATIVE,
360         .attr_group_gov_sys = &cs_attr_group_gov_sys,
361         .attr_group_gov_pol = &cs_attr_group_gov_pol,
362         .get_cpu_cdbs = get_cpu_cdbs,
363         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
364         .gov_dbs_timer = cs_dbs_timer,
365         .gov_check_cpu = cs_check_cpu,
366         .gov_ops = &cs_ops,
367         .init = cs_init,
368         .exit = cs_exit,
369 };
370
371 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
372                                    unsigned int event)
373 {
374         return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
375 }
376
377 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
378 static
379 #endif
380 struct cpufreq_governor cpufreq_gov_conservative = {
381         .name                   = "conservative",
382         .governor               = cs_cpufreq_governor_dbs,
383         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
384         .owner                  = THIS_MODULE,
385 };
386
387 static int __init cpufreq_gov_dbs_init(void)
388 {
389         return cpufreq_register_governor(&cpufreq_gov_conservative);
390 }
391
392 static void __exit cpufreq_gov_dbs_exit(void)
393 {
394         cpufreq_unregister_governor(&cpufreq_gov_conservative);
395 }
396
397 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
398 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
399                 "Low Latency Frequency Transition capable processors "
400                 "optimised for use in a battery environment");
401 MODULE_LICENSE("GPL");
402
403 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
404 fs_initcall(cpufreq_gov_dbs_init);
405 #else
406 module_init(cpufreq_gov_dbs_init);
407 #endif
408 module_exit(cpufreq_gov_dbs_exit);