Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS             (1U << MINORBITS)
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static DEFINE_SPINLOCK(dev_list_lock);
76 static LIST_HEAD(dev_list);
77 static struct task_struct *nvme_thread;
78 static struct workqueue_struct *nvme_workq;
79 static wait_queue_head_t nvme_kthread_wait;
80
81 static struct class *nvme_class;
82
83 static void nvme_reset_failed_dev(struct work_struct *ws);
84 static int nvme_reset(struct nvme_dev *dev);
85 static int nvme_process_cq(struct nvme_queue *nvmeq);
86
87 struct async_cmd_info {
88         struct kthread_work work;
89         struct kthread_worker *worker;
90         struct request *req;
91         u32 result;
92         int status;
93         void *ctx;
94 };
95
96 /*
97  * An NVM Express queue.  Each device has at least two (one for admin
98  * commands and one for I/O commands).
99  */
100 struct nvme_queue {
101         struct device *q_dmadev;
102         struct nvme_dev *dev;
103         char irqname[24];       /* nvme4294967295-65535\0 */
104         spinlock_t q_lock;
105         struct nvme_command *sq_cmds;
106         volatile struct nvme_completion *cqes;
107         struct blk_mq_tags **tags;
108         dma_addr_t sq_dma_addr;
109         dma_addr_t cq_dma_addr;
110         u32 __iomem *q_db;
111         u16 q_depth;
112         s16 cq_vector;
113         u16 sq_head;
114         u16 sq_tail;
115         u16 cq_head;
116         u16 qid;
117         u8 cq_phase;
118         u8 cqe_seen;
119         struct async_cmd_info cmdinfo;
120 };
121
122 /*
123  * Check we didin't inadvertently grow the command struct
124  */
125 static inline void _nvme_check_size(void)
126 {
127         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
139 }
140
141 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
142                                                 struct nvme_completion *);
143
144 struct nvme_cmd_info {
145         nvme_completion_fn fn;
146         void *ctx;
147         int aborted;
148         struct nvme_queue *nvmeq;
149         struct nvme_iod iod[0];
150 };
151
152 /*
153  * Max size of iod being embedded in the request payload
154  */
155 #define NVME_INT_PAGES          2
156 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
157 #define NVME_INT_MASK           0x01
158
159 /*
160  * Will slightly overestimate the number of pages needed.  This is OK
161  * as it only leads to a small amount of wasted memory for the lifetime of
162  * the I/O.
163  */
164 static int nvme_npages(unsigned size, struct nvme_dev *dev)
165 {
166         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
167         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
168 }
169
170 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
171 {
172         unsigned int ret = sizeof(struct nvme_cmd_info);
173
174         ret += sizeof(struct nvme_iod);
175         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
176         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
177
178         return ret;
179 }
180
181 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
182                                 unsigned int hctx_idx)
183 {
184         struct nvme_dev *dev = data;
185         struct nvme_queue *nvmeq = dev->queues[0];
186
187         WARN_ON(hctx_idx != 0);
188         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
189         WARN_ON(nvmeq->tags);
190
191         hctx->driver_data = nvmeq;
192         nvmeq->tags = &dev->admin_tagset.tags[0];
193         return 0;
194 }
195
196 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
197 {
198         struct nvme_queue *nvmeq = hctx->driver_data;
199
200         nvmeq->tags = NULL;
201 }
202
203 static int nvme_admin_init_request(void *data, struct request *req,
204                                 unsigned int hctx_idx, unsigned int rq_idx,
205                                 unsigned int numa_node)
206 {
207         struct nvme_dev *dev = data;
208         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
209         struct nvme_queue *nvmeq = dev->queues[0];
210
211         BUG_ON(!nvmeq);
212         cmd->nvmeq = nvmeq;
213         return 0;
214 }
215
216 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
217                           unsigned int hctx_idx)
218 {
219         struct nvme_dev *dev = data;
220         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
221
222         if (!nvmeq->tags)
223                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
224
225         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
226         hctx->driver_data = nvmeq;
227         return 0;
228 }
229
230 static int nvme_init_request(void *data, struct request *req,
231                                 unsigned int hctx_idx, unsigned int rq_idx,
232                                 unsigned int numa_node)
233 {
234         struct nvme_dev *dev = data;
235         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
236         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
237
238         BUG_ON(!nvmeq);
239         cmd->nvmeq = nvmeq;
240         return 0;
241 }
242
243 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
244                                 nvme_completion_fn handler)
245 {
246         cmd->fn = handler;
247         cmd->ctx = ctx;
248         cmd->aborted = 0;
249         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
250 }
251
252 static void *iod_get_private(struct nvme_iod *iod)
253 {
254         return (void *) (iod->private & ~0x1UL);
255 }
256
257 /*
258  * If bit 0 is set, the iod is embedded in the request payload.
259  */
260 static bool iod_should_kfree(struct nvme_iod *iod)
261 {
262         return (iod->private & NVME_INT_MASK) == 0;
263 }
264
265 /* Special values must be less than 0x1000 */
266 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
267 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
268 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
269 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
270
271 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
272                                                 struct nvme_completion *cqe)
273 {
274         if (ctx == CMD_CTX_CANCELLED)
275                 return;
276         if (ctx == CMD_CTX_COMPLETED) {
277                 dev_warn(nvmeq->q_dmadev,
278                                 "completed id %d twice on queue %d\n",
279                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
280                 return;
281         }
282         if (ctx == CMD_CTX_INVALID) {
283                 dev_warn(nvmeq->q_dmadev,
284                                 "invalid id %d completed on queue %d\n",
285                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
286                 return;
287         }
288         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
289 }
290
291 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
292 {
293         void *ctx;
294
295         if (fn)
296                 *fn = cmd->fn;
297         ctx = cmd->ctx;
298         cmd->fn = special_completion;
299         cmd->ctx = CMD_CTX_CANCELLED;
300         return ctx;
301 }
302
303 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
304                                                 struct nvme_completion *cqe)
305 {
306         u32 result = le32_to_cpup(&cqe->result);
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310                 ++nvmeq->dev->event_limit;
311         if (status != NVME_SC_SUCCESS)
312                 return;
313
314         switch (result & 0xff07) {
315         case NVME_AER_NOTICE_NS_CHANGED:
316                 dev_info(nvmeq->q_dmadev, "rescanning\n");
317                 schedule_work(&nvmeq->dev->scan_work);
318         default:
319                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
320         }
321 }
322
323 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
324                                                 struct nvme_completion *cqe)
325 {
326         struct request *req = ctx;
327
328         u16 status = le16_to_cpup(&cqe->status) >> 1;
329         u32 result = le32_to_cpup(&cqe->result);
330
331         blk_mq_free_request(req);
332
333         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
334         ++nvmeq->dev->abort_limit;
335 }
336
337 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
338                                                 struct nvme_completion *cqe)
339 {
340         struct async_cmd_info *cmdinfo = ctx;
341         cmdinfo->result = le32_to_cpup(&cqe->result);
342         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
343         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
344         blk_mq_free_request(cmdinfo->req);
345 }
346
347 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
348                                   unsigned int tag)
349 {
350         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
351
352         return blk_mq_rq_to_pdu(req);
353 }
354
355 /*
356  * Called with local interrupts disabled and the q_lock held.  May not sleep.
357  */
358 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
359                                                 nvme_completion_fn *fn)
360 {
361         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
362         void *ctx;
363         if (tag >= nvmeq->q_depth) {
364                 *fn = special_completion;
365                 return CMD_CTX_INVALID;
366         }
367         if (fn)
368                 *fn = cmd->fn;
369         ctx = cmd->ctx;
370         cmd->fn = special_completion;
371         cmd->ctx = CMD_CTX_COMPLETED;
372         return ctx;
373 }
374
375 /**
376  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
377  * @nvmeq: The queue to use
378  * @cmd: The command to send
379  *
380  * Safe to use from interrupt context
381  */
382 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
383 {
384         u16 tail = nvmeq->sq_tail;
385
386         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
387         if (++tail == nvmeq->q_depth)
388                 tail = 0;
389         writel(tail, nvmeq->q_db);
390         nvmeq->sq_tail = tail;
391
392         return 0;
393 }
394
395 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
396 {
397         unsigned long flags;
398         int ret;
399         spin_lock_irqsave(&nvmeq->q_lock, flags);
400         ret = __nvme_submit_cmd(nvmeq, cmd);
401         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
402         return ret;
403 }
404
405 static __le64 **iod_list(struct nvme_iod *iod)
406 {
407         return ((void *)iod) + iod->offset;
408 }
409
410 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
411                             unsigned nseg, unsigned long private)
412 {
413         iod->private = private;
414         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
415         iod->npages = -1;
416         iod->length = nbytes;
417         iod->nents = 0;
418 }
419
420 static struct nvme_iod *
421 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
422                  unsigned long priv, gfp_t gfp)
423 {
424         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
425                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
426                                 sizeof(struct scatterlist) * nseg, gfp);
427
428         if (iod)
429                 iod_init(iod, bytes, nseg, priv);
430
431         return iod;
432 }
433
434 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
435                                        gfp_t gfp)
436 {
437         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
438                                                 sizeof(struct nvme_dsm_range);
439         struct nvme_iod *iod;
440
441         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
442             size <= NVME_INT_BYTES(dev)) {
443                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
444
445                 iod = cmd->iod;
446                 iod_init(iod, size, rq->nr_phys_segments,
447                                 (unsigned long) rq | NVME_INT_MASK);
448                 return iod;
449         }
450
451         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
452                                 (unsigned long) rq, gfp);
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
456 {
457         const int last_prp = dev->page_size / 8 - 1;
458         int i;
459         __le64 **list = iod_list(iod);
460         dma_addr_t prp_dma = iod->first_dma;
461
462         if (iod->npages == 0)
463                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464         for (i = 0; i < iod->npages; i++) {
465                 __le64 *prp_list = list[i];
466                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468                 prp_dma = next_prp_dma;
469         }
470
471         if (iod_should_kfree(iod))
472                 kfree(iod);
473 }
474
475 static int nvme_error_status(u16 status)
476 {
477         switch (status & 0x7ff) {
478         case NVME_SC_SUCCESS:
479                 return 0;
480         case NVME_SC_CAP_EXCEEDED:
481                 return -ENOSPC;
482         default:
483                 return -EIO;
484         }
485 }
486
487 #ifdef CONFIG_BLK_DEV_INTEGRITY
488 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
489 {
490         if (be32_to_cpu(pi->ref_tag) == v)
491                 pi->ref_tag = cpu_to_be32(p);
492 }
493
494 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
495 {
496         if (be32_to_cpu(pi->ref_tag) == p)
497                 pi->ref_tag = cpu_to_be32(v);
498 }
499
500 /**
501  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
502  *
503  * The virtual start sector is the one that was originally submitted by the
504  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
505  * start sector may be different. Remap protection information to match the
506  * physical LBA on writes, and back to the original seed on reads.
507  *
508  * Type 0 and 3 do not have a ref tag, so no remapping required.
509  */
510 static void nvme_dif_remap(struct request *req,
511                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
512 {
513         struct nvme_ns *ns = req->rq_disk->private_data;
514         struct bio_integrity_payload *bip;
515         struct t10_pi_tuple *pi;
516         void *p, *pmap;
517         u32 i, nlb, ts, phys, virt;
518
519         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
520                 return;
521
522         bip = bio_integrity(req->bio);
523         if (!bip)
524                 return;
525
526         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
527
528         p = pmap;
529         virt = bip_get_seed(bip);
530         phys = nvme_block_nr(ns, blk_rq_pos(req));
531         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532         ts = ns->disk->integrity->tuple_size;
533
534         for (i = 0; i < nlb; i++, virt++, phys++) {
535                 pi = (struct t10_pi_tuple *)p;
536                 dif_swap(phys, virt, pi);
537                 p += ts;
538         }
539         kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544         return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549         return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553         .name                   = "NVME_META_NOOP",
554         .generate_fn            = nvme_noop_generate,
555         .verify_fn              = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560         struct blk_integrity integrity;
561
562         switch (ns->pi_type) {
563         case NVME_NS_DPS_PI_TYPE3:
564                 integrity = t10_pi_type3_crc;
565                 break;
566         case NVME_NS_DPS_PI_TYPE1:
567         case NVME_NS_DPS_PI_TYPE2:
568                 integrity = t10_pi_type1_crc;
569                 break;
570         default:
571                 integrity = nvme_meta_noop;
572                 break;
573         }
574         integrity.tuple_size = ns->ms;
575         blk_integrity_register(ns->disk, &integrity);
576         blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595                                                 struct nvme_completion *cqe)
596 {
597         struct nvme_iod *iod = ctx;
598         struct request *req = iod_get_private(iod);
599         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601         u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603         if (unlikely(status)) {
604                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605                     && (jiffies - req->start_time) < req->timeout) {
606                         unsigned long flags;
607
608                         blk_mq_requeue_request(req);
609                         spin_lock_irqsave(req->q->queue_lock, flags);
610                         if (!blk_queue_stopped(req->q))
611                                 blk_mq_kick_requeue_list(req->q);
612                         spin_unlock_irqrestore(req->q->queue_lock, flags);
613                         return;
614                 }
615                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
616                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
617                                 req->errors = -EINTR;
618                         else
619                                 req->errors = status;
620                 } else {
621                         req->errors = nvme_error_status(status);
622                 }
623         } else
624                 req->errors = 0;
625         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626                 u32 result = le32_to_cpup(&cqe->result);
627                 req->special = (void *)(uintptr_t)result;
628         }
629
630         if (cmd_rq->aborted)
631                 dev_warn(nvmeq->dev->dev,
632                         "completing aborted command with status:%04x\n",
633                         status);
634
635         if (iod->nents) {
636                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
637                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
638                 if (blk_integrity_rq(req)) {
639                         if (!rq_data_dir(req))
640                                 nvme_dif_remap(req, nvme_dif_complete);
641                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
642                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
643                 }
644         }
645         nvme_free_iod(nvmeq->dev, iod);
646
647         blk_mq_complete_request(req);
648 }
649
650 /* length is in bytes.  gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652                 int total_len, gfp_t gfp)
653 {
654         struct dma_pool *pool;
655         int length = total_len;
656         struct scatterlist *sg = iod->sg;
657         int dma_len = sg_dma_len(sg);
658         u64 dma_addr = sg_dma_address(sg);
659         u32 page_size = dev->page_size;
660         int offset = dma_addr & (page_size - 1);
661         __le64 *prp_list;
662         __le64 **list = iod_list(iod);
663         dma_addr_t prp_dma;
664         int nprps, i;
665
666         length -= (page_size - offset);
667         if (length <= 0)
668                 return total_len;
669
670         dma_len -= (page_size - offset);
671         if (dma_len) {
672                 dma_addr += (page_size - offset);
673         } else {
674                 sg = sg_next(sg);
675                 dma_addr = sg_dma_address(sg);
676                 dma_len = sg_dma_len(sg);
677         }
678
679         if (length <= page_size) {
680                 iod->first_dma = dma_addr;
681                 return total_len;
682         }
683
684         nprps = DIV_ROUND_UP(length, page_size);
685         if (nprps <= (256 / 8)) {
686                 pool = dev->prp_small_pool;
687                 iod->npages = 0;
688         } else {
689                 pool = dev->prp_page_pool;
690                 iod->npages = 1;
691         }
692
693         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694         if (!prp_list) {
695                 iod->first_dma = dma_addr;
696                 iod->npages = -1;
697                 return (total_len - length) + page_size;
698         }
699         list[0] = prp_list;
700         iod->first_dma = prp_dma;
701         i = 0;
702         for (;;) {
703                 if (i == page_size >> 3) {
704                         __le64 *old_prp_list = prp_list;
705                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706                         if (!prp_list)
707                                 return total_len - length;
708                         list[iod->npages++] = prp_list;
709                         prp_list[0] = old_prp_list[i - 1];
710                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711                         i = 1;
712                 }
713                 prp_list[i++] = cpu_to_le64(dma_addr);
714                 dma_len -= page_size;
715                 dma_addr += page_size;
716                 length -= page_size;
717                 if (length <= 0)
718                         break;
719                 if (dma_len > 0)
720                         continue;
721                 BUG_ON(dma_len < 0);
722                 sg = sg_next(sg);
723                 dma_addr = sg_dma_address(sg);
724                 dma_len = sg_dma_len(sg);
725         }
726
727         return total_len;
728 }
729
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731                 struct nvme_iod *iod)
732 {
733         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
734
735         memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
736         cmnd->rw.command_id = req->tag;
737         if (req->nr_phys_segments) {
738                 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739                 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
740         }
741
742         if (++nvmeq->sq_tail == nvmeq->q_depth)
743                 nvmeq->sq_tail = 0;
744         writel(nvmeq->sq_tail, nvmeq->q_db);
745 }
746
747 /*
748  * We reuse the small pool to allocate the 16-byte range here as it is not
749  * worth having a special pool for these or additional cases to handle freeing
750  * the iod.
751  */
752 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
753                 struct request *req, struct nvme_iod *iod)
754 {
755         struct nvme_dsm_range *range =
756                                 (struct nvme_dsm_range *)iod_list(iod)[0];
757         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
758
759         range->cattr = cpu_to_le32(0);
760         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
761         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
762
763         memset(cmnd, 0, sizeof(*cmnd));
764         cmnd->dsm.opcode = nvme_cmd_dsm;
765         cmnd->dsm.command_id = req->tag;
766         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
767         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
768         cmnd->dsm.nr = 0;
769         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
770
771         if (++nvmeq->sq_tail == nvmeq->q_depth)
772                 nvmeq->sq_tail = 0;
773         writel(nvmeq->sq_tail, nvmeq->q_db);
774 }
775
776 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
777                                                                 int cmdid)
778 {
779         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
780
781         memset(cmnd, 0, sizeof(*cmnd));
782         cmnd->common.opcode = nvme_cmd_flush;
783         cmnd->common.command_id = cmdid;
784         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
785
786         if (++nvmeq->sq_tail == nvmeq->q_depth)
787                 nvmeq->sq_tail = 0;
788         writel(nvmeq->sq_tail, nvmeq->q_db);
789 }
790
791 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
792                                                         struct nvme_ns *ns)
793 {
794         struct request *req = iod_get_private(iod);
795         struct nvme_command *cmnd;
796         u16 control = 0;
797         u32 dsmgmt = 0;
798
799         if (req->cmd_flags & REQ_FUA)
800                 control |= NVME_RW_FUA;
801         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
802                 control |= NVME_RW_LR;
803
804         if (req->cmd_flags & REQ_RAHEAD)
805                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
806
807         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
808         memset(cmnd, 0, sizeof(*cmnd));
809
810         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
811         cmnd->rw.command_id = req->tag;
812         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
813         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
814         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
815         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
816         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
817
818         if (blk_integrity_rq(req)) {
819                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
820                 switch (ns->pi_type) {
821                 case NVME_NS_DPS_PI_TYPE3:
822                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
823                         break;
824                 case NVME_NS_DPS_PI_TYPE1:
825                 case NVME_NS_DPS_PI_TYPE2:
826                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
827                                         NVME_RW_PRINFO_PRCHK_REF;
828                         cmnd->rw.reftag = cpu_to_le32(
829                                         nvme_block_nr(ns, blk_rq_pos(req)));
830                         break;
831                 }
832         } else if (ns->ms)
833                 control |= NVME_RW_PRINFO_PRACT;
834
835         cmnd->rw.control = cpu_to_le16(control);
836         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
837
838         if (++nvmeq->sq_tail == nvmeq->q_depth)
839                 nvmeq->sq_tail = 0;
840         writel(nvmeq->sq_tail, nvmeq->q_db);
841
842         return 0;
843 }
844
845 /*
846  * NOTE: ns is NULL when called on the admin queue.
847  */
848 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
849                          const struct blk_mq_queue_data *bd)
850 {
851         struct nvme_ns *ns = hctx->queue->queuedata;
852         struct nvme_queue *nvmeq = hctx->driver_data;
853         struct nvme_dev *dev = nvmeq->dev;
854         struct request *req = bd->rq;
855         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
856         struct nvme_iod *iod;
857         enum dma_data_direction dma_dir;
858
859         /*
860          * If formated with metadata, require the block layer provide a buffer
861          * unless this namespace is formated such that the metadata can be
862          * stripped/generated by the controller with PRACT=1.
863          */
864         if (ns && ns->ms && !blk_integrity_rq(req)) {
865                 if (!(ns->pi_type && ns->ms == 8) &&
866                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
867                         req->errors = -EFAULT;
868                         blk_mq_complete_request(req);
869                         return BLK_MQ_RQ_QUEUE_OK;
870                 }
871         }
872
873         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
874         if (!iod)
875                 return BLK_MQ_RQ_QUEUE_BUSY;
876
877         if (req->cmd_flags & REQ_DISCARD) {
878                 void *range;
879                 /*
880                  * We reuse the small pool to allocate the 16-byte range here
881                  * as it is not worth having a special pool for these or
882                  * additional cases to handle freeing the iod.
883                  */
884                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
885                                                 &iod->first_dma);
886                 if (!range)
887                         goto retry_cmd;
888                 iod_list(iod)[0] = (__le64 *)range;
889                 iod->npages = 0;
890         } else if (req->nr_phys_segments) {
891                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
892
893                 sg_init_table(iod->sg, req->nr_phys_segments);
894                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
895                 if (!iod->nents)
896                         goto error_cmd;
897
898                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
899                         goto retry_cmd;
900
901                 if (blk_rq_bytes(req) !=
902                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
903                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
904                         goto retry_cmd;
905                 }
906                 if (blk_integrity_rq(req)) {
907                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
908                                 goto error_cmd;
909
910                         sg_init_table(iod->meta_sg, 1);
911                         if (blk_rq_map_integrity_sg(
912                                         req->q, req->bio, iod->meta_sg) != 1)
913                                 goto error_cmd;
914
915                         if (rq_data_dir(req))
916                                 nvme_dif_remap(req, nvme_dif_prep);
917
918                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
919                                 goto error_cmd;
920                 }
921         }
922
923         nvme_set_info(cmd, iod, req_completion);
924         spin_lock_irq(&nvmeq->q_lock);
925         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
926                 nvme_submit_priv(nvmeq, req, iod);
927         else if (req->cmd_flags & REQ_DISCARD)
928                 nvme_submit_discard(nvmeq, ns, req, iod);
929         else if (req->cmd_flags & REQ_FLUSH)
930                 nvme_submit_flush(nvmeq, ns, req->tag);
931         else
932                 nvme_submit_iod(nvmeq, iod, ns);
933
934         nvme_process_cq(nvmeq);
935         spin_unlock_irq(&nvmeq->q_lock);
936         return BLK_MQ_RQ_QUEUE_OK;
937
938  error_cmd:
939         nvme_free_iod(dev, iod);
940         return BLK_MQ_RQ_QUEUE_ERROR;
941  retry_cmd:
942         nvme_free_iod(dev, iod);
943         return BLK_MQ_RQ_QUEUE_BUSY;
944 }
945
946 static int nvme_process_cq(struct nvme_queue *nvmeq)
947 {
948         u16 head, phase;
949
950         head = nvmeq->cq_head;
951         phase = nvmeq->cq_phase;
952
953         for (;;) {
954                 void *ctx;
955                 nvme_completion_fn fn;
956                 struct nvme_completion cqe = nvmeq->cqes[head];
957                 if ((le16_to_cpu(cqe.status) & 1) != phase)
958                         break;
959                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
960                 if (++head == nvmeq->q_depth) {
961                         head = 0;
962                         phase = !phase;
963                 }
964                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
965                 fn(nvmeq, ctx, &cqe);
966         }
967
968         /* If the controller ignores the cq head doorbell and continuously
969          * writes to the queue, it is theoretically possible to wrap around
970          * the queue twice and mistakenly return IRQ_NONE.  Linux only
971          * requires that 0.1% of your interrupts are handled, so this isn't
972          * a big problem.
973          */
974         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
975                 return 0;
976
977         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
978         nvmeq->cq_head = head;
979         nvmeq->cq_phase = phase;
980
981         nvmeq->cqe_seen = 1;
982         return 1;
983 }
984
985 static irqreturn_t nvme_irq(int irq, void *data)
986 {
987         irqreturn_t result;
988         struct nvme_queue *nvmeq = data;
989         spin_lock(&nvmeq->q_lock);
990         nvme_process_cq(nvmeq);
991         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
992         nvmeq->cqe_seen = 0;
993         spin_unlock(&nvmeq->q_lock);
994         return result;
995 }
996
997 static irqreturn_t nvme_irq_check(int irq, void *data)
998 {
999         struct nvme_queue *nvmeq = data;
1000         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1001         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1002                 return IRQ_NONE;
1003         return IRQ_WAKE_THREAD;
1004 }
1005
1006 /*
1007  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1008  * if the result is positive, it's an NVM Express status code
1009  */
1010 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1011                 void *buffer, void __user *ubuffer, unsigned bufflen,
1012                 u32 *result, unsigned timeout)
1013 {
1014         bool write = cmd->common.opcode & 1;
1015         struct bio *bio = NULL;
1016         struct request *req;
1017         int ret;
1018
1019         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1020         if (IS_ERR(req))
1021                 return PTR_ERR(req);
1022
1023         req->cmd_type = REQ_TYPE_DRV_PRIV;
1024         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1025         req->__data_len = 0;
1026         req->__sector = (sector_t) -1;
1027         req->bio = req->biotail = NULL;
1028
1029         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1030
1031         req->cmd = (unsigned char *)cmd;
1032         req->cmd_len = sizeof(struct nvme_command);
1033         req->special = (void *)0;
1034
1035         if (buffer && bufflen) {
1036                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1037                 if (ret)
1038                         goto out;
1039         } else if (ubuffer && bufflen) {
1040                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1041                 if (ret)
1042                         goto out;
1043                 bio = req->bio;
1044         }
1045
1046         blk_execute_rq(req->q, NULL, req, 0);
1047         if (bio)
1048                 blk_rq_unmap_user(bio);
1049         if (result)
1050                 *result = (u32)(uintptr_t)req->special;
1051         ret = req->errors;
1052  out:
1053         blk_mq_free_request(req);
1054         return ret;
1055 }
1056
1057 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1058                 void *buffer, unsigned bufflen)
1059 {
1060         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1061 }
1062
1063 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1064 {
1065         struct nvme_queue *nvmeq = dev->queues[0];
1066         struct nvme_command c;
1067         struct nvme_cmd_info *cmd_info;
1068         struct request *req;
1069
1070         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1071         if (IS_ERR(req))
1072                 return PTR_ERR(req);
1073
1074         req->cmd_flags |= REQ_NO_TIMEOUT;
1075         cmd_info = blk_mq_rq_to_pdu(req);
1076         nvme_set_info(cmd_info, NULL, async_req_completion);
1077
1078         memset(&c, 0, sizeof(c));
1079         c.common.opcode = nvme_admin_async_event;
1080         c.common.command_id = req->tag;
1081
1082         blk_mq_free_request(req);
1083         return __nvme_submit_cmd(nvmeq, &c);
1084 }
1085
1086 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1087                         struct nvme_command *cmd,
1088                         struct async_cmd_info *cmdinfo, unsigned timeout)
1089 {
1090         struct nvme_queue *nvmeq = dev->queues[0];
1091         struct request *req;
1092         struct nvme_cmd_info *cmd_rq;
1093
1094         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1095         if (IS_ERR(req))
1096                 return PTR_ERR(req);
1097
1098         req->timeout = timeout;
1099         cmd_rq = blk_mq_rq_to_pdu(req);
1100         cmdinfo->req = req;
1101         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1102         cmdinfo->status = -EINTR;
1103
1104         cmd->common.command_id = req->tag;
1105
1106         return nvme_submit_cmd(nvmeq, cmd);
1107 }
1108
1109 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1110 {
1111         struct nvme_command c;
1112
1113         memset(&c, 0, sizeof(c));
1114         c.delete_queue.opcode = opcode;
1115         c.delete_queue.qid = cpu_to_le16(id);
1116
1117         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1118 }
1119
1120 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1121                                                 struct nvme_queue *nvmeq)
1122 {
1123         struct nvme_command c;
1124         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1125
1126         /*
1127          * Note: we (ab)use the fact the the prp fields survive if no data
1128          * is attached to the request.
1129          */
1130         memset(&c, 0, sizeof(c));
1131         c.create_cq.opcode = nvme_admin_create_cq;
1132         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1133         c.create_cq.cqid = cpu_to_le16(qid);
1134         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1135         c.create_cq.cq_flags = cpu_to_le16(flags);
1136         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1137
1138         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1139 }
1140
1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1142                                                 struct nvme_queue *nvmeq)
1143 {
1144         struct nvme_command c;
1145         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1146
1147         /*
1148          * Note: we (ab)use the fact the the prp fields survive if no data
1149          * is attached to the request.
1150          */
1151         memset(&c, 0, sizeof(c));
1152         c.create_sq.opcode = nvme_admin_create_sq;
1153         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1154         c.create_sq.sqid = cpu_to_le16(qid);
1155         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156         c.create_sq.sq_flags = cpu_to_le16(flags);
1157         c.create_sq.cqid = cpu_to_le16(qid);
1158
1159         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1160 }
1161
1162 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1163 {
1164         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1165 }
1166
1167 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1168 {
1169         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1170 }
1171
1172 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1173 {
1174         struct nvme_command c = { };
1175         int error;
1176
1177         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1178         c.identify.opcode = nvme_admin_identify;
1179         c.identify.cns = cpu_to_le32(1);
1180
1181         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1182         if (!*id)
1183                 return -ENOMEM;
1184
1185         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1186                         sizeof(struct nvme_id_ctrl));
1187         if (error)
1188                 kfree(*id);
1189         return error;
1190 }
1191
1192 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1193                 struct nvme_id_ns **id)
1194 {
1195         struct nvme_command c = { };
1196         int error;
1197
1198         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1199         c.identify.opcode = nvme_admin_identify,
1200         c.identify.nsid = cpu_to_le32(nsid),
1201
1202         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1203         if (!*id)
1204                 return -ENOMEM;
1205
1206         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1207                         sizeof(struct nvme_id_ns));
1208         if (error)
1209                 kfree(*id);
1210         return error;
1211 }
1212
1213 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1214                                         dma_addr_t dma_addr, u32 *result)
1215 {
1216         struct nvme_command c;
1217
1218         memset(&c, 0, sizeof(c));
1219         c.features.opcode = nvme_admin_get_features;
1220         c.features.nsid = cpu_to_le32(nsid);
1221         c.features.prp1 = cpu_to_le64(dma_addr);
1222         c.features.fid = cpu_to_le32(fid);
1223
1224         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1225                         result, 0);
1226 }
1227
1228 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1229                                         dma_addr_t dma_addr, u32 *result)
1230 {
1231         struct nvme_command c;
1232
1233         memset(&c, 0, sizeof(c));
1234         c.features.opcode = nvme_admin_set_features;
1235         c.features.prp1 = cpu_to_le64(dma_addr);
1236         c.features.fid = cpu_to_le32(fid);
1237         c.features.dword11 = cpu_to_le32(dword11);
1238
1239         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1240                         result, 0);
1241 }
1242
1243 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1244 {
1245         struct nvme_command c = { };
1246         int error;
1247
1248         c.common.opcode = nvme_admin_get_log_page,
1249         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1250         c.common.cdw10[0] = cpu_to_le32(
1251                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1252                          NVME_LOG_SMART),
1253
1254         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1255         if (!*log)
1256                 return -ENOMEM;
1257
1258         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1259                         sizeof(struct nvme_smart_log));
1260         if (error)
1261                 kfree(*log);
1262         return error;
1263 }
1264
1265 /**
1266  * nvme_abort_req - Attempt aborting a request
1267  *
1268  * Schedule controller reset if the command was already aborted once before and
1269  * still hasn't been returned to the driver, or if this is the admin queue.
1270  */
1271 static void nvme_abort_req(struct request *req)
1272 {
1273         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1274         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1275         struct nvme_dev *dev = nvmeq->dev;
1276         struct request *abort_req;
1277         struct nvme_cmd_info *abort_cmd;
1278         struct nvme_command cmd;
1279
1280         if (!nvmeq->qid || cmd_rq->aborted) {
1281                 unsigned long flags;
1282
1283                 spin_lock_irqsave(&dev_list_lock, flags);
1284                 if (work_busy(&dev->reset_work))
1285                         goto out;
1286                 list_del_init(&dev->node);
1287                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1288                                                         req->tag, nvmeq->qid);
1289                 dev->reset_workfn = nvme_reset_failed_dev;
1290                 queue_work(nvme_workq, &dev->reset_work);
1291  out:
1292                 spin_unlock_irqrestore(&dev_list_lock, flags);
1293                 return;
1294         }
1295
1296         if (!dev->abort_limit)
1297                 return;
1298
1299         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1300                                                                         false);
1301         if (IS_ERR(abort_req))
1302                 return;
1303
1304         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1305         nvme_set_info(abort_cmd, abort_req, abort_completion);
1306
1307         memset(&cmd, 0, sizeof(cmd));
1308         cmd.abort.opcode = nvme_admin_abort_cmd;
1309         cmd.abort.cid = req->tag;
1310         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1311         cmd.abort.command_id = abort_req->tag;
1312
1313         --dev->abort_limit;
1314         cmd_rq->aborted = 1;
1315
1316         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1317                                                         nvmeq->qid);
1318         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1319                 dev_warn(nvmeq->q_dmadev,
1320                                 "Could not abort I/O %d QID %d",
1321                                 req->tag, nvmeq->qid);
1322                 blk_mq_free_request(abort_req);
1323         }
1324 }
1325
1326 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1327 {
1328         struct nvme_queue *nvmeq = data;
1329         void *ctx;
1330         nvme_completion_fn fn;
1331         struct nvme_cmd_info *cmd;
1332         struct nvme_completion cqe;
1333
1334         if (!blk_mq_request_started(req))
1335                 return;
1336
1337         cmd = blk_mq_rq_to_pdu(req);
1338
1339         if (cmd->ctx == CMD_CTX_CANCELLED)
1340                 return;
1341
1342         if (blk_queue_dying(req->q))
1343                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1344         else
1345                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1346
1347
1348         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1349                                                 req->tag, nvmeq->qid);
1350         ctx = cancel_cmd_info(cmd, &fn);
1351         fn(nvmeq, ctx, &cqe);
1352 }
1353
1354 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1355 {
1356         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1357         struct nvme_queue *nvmeq = cmd->nvmeq;
1358
1359         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1360                                                         nvmeq->qid);
1361         spin_lock_irq(&nvmeq->q_lock);
1362         nvme_abort_req(req);
1363         spin_unlock_irq(&nvmeq->q_lock);
1364
1365         /*
1366          * The aborted req will be completed on receiving the abort req.
1367          * We enable the timer again. If hit twice, it'll cause a device reset,
1368          * as the device then is in a faulty state.
1369          */
1370         return BLK_EH_RESET_TIMER;
1371 }
1372
1373 static void nvme_free_queue(struct nvme_queue *nvmeq)
1374 {
1375         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1376                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1377         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1378                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1379         kfree(nvmeq);
1380 }
1381
1382 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1383 {
1384         int i;
1385
1386         for (i = dev->queue_count - 1; i >= lowest; i--) {
1387                 struct nvme_queue *nvmeq = dev->queues[i];
1388                 dev->queue_count--;
1389                 dev->queues[i] = NULL;
1390                 nvme_free_queue(nvmeq);
1391         }
1392 }
1393
1394 /**
1395  * nvme_suspend_queue - put queue into suspended state
1396  * @nvmeq - queue to suspend
1397  */
1398 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1399 {
1400         int vector;
1401
1402         spin_lock_irq(&nvmeq->q_lock);
1403         if (nvmeq->cq_vector == -1) {
1404                 spin_unlock_irq(&nvmeq->q_lock);
1405                 return 1;
1406         }
1407         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1408         nvmeq->dev->online_queues--;
1409         nvmeq->cq_vector = -1;
1410         spin_unlock_irq(&nvmeq->q_lock);
1411
1412         if (!nvmeq->qid && nvmeq->dev->admin_q)
1413                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1414
1415         irq_set_affinity_hint(vector, NULL);
1416         free_irq(vector, nvmeq);
1417
1418         return 0;
1419 }
1420
1421 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1422 {
1423         spin_lock_irq(&nvmeq->q_lock);
1424         if (nvmeq->tags && *nvmeq->tags)
1425                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1426         spin_unlock_irq(&nvmeq->q_lock);
1427 }
1428
1429 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1430 {
1431         struct nvme_queue *nvmeq = dev->queues[qid];
1432
1433         if (!nvmeq)
1434                 return;
1435         if (nvme_suspend_queue(nvmeq))
1436                 return;
1437
1438         /* Don't tell the adapter to delete the admin queue.
1439          * Don't tell a removed adapter to delete IO queues. */
1440         if (qid && readl(&dev->bar->csts) != -1) {
1441                 adapter_delete_sq(dev, qid);
1442                 adapter_delete_cq(dev, qid);
1443         }
1444
1445         spin_lock_irq(&nvmeq->q_lock);
1446         nvme_process_cq(nvmeq);
1447         spin_unlock_irq(&nvmeq->q_lock);
1448 }
1449
1450 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1451                                                         int depth)
1452 {
1453         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1454         if (!nvmeq)
1455                 return NULL;
1456
1457         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1458                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1459         if (!nvmeq->cqes)
1460                 goto free_nvmeq;
1461
1462         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1463                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1464         if (!nvmeq->sq_cmds)
1465                 goto free_cqdma;
1466
1467         nvmeq->q_dmadev = dev->dev;
1468         nvmeq->dev = dev;
1469         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1470                         dev->instance, qid);
1471         spin_lock_init(&nvmeq->q_lock);
1472         nvmeq->cq_head = 0;
1473         nvmeq->cq_phase = 1;
1474         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1475         nvmeq->q_depth = depth;
1476         nvmeq->qid = qid;
1477         nvmeq->cq_vector = -1;
1478         dev->queues[qid] = nvmeq;
1479
1480         /* make sure queue descriptor is set before queue count, for kthread */
1481         mb();
1482         dev->queue_count++;
1483
1484         return nvmeq;
1485
1486  free_cqdma:
1487         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1488                                                         nvmeq->cq_dma_addr);
1489  free_nvmeq:
1490         kfree(nvmeq);
1491         return NULL;
1492 }
1493
1494 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1495                                                         const char *name)
1496 {
1497         if (use_threaded_interrupts)
1498                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1499                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1500                                         name, nvmeq);
1501         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1502                                 IRQF_SHARED, name, nvmeq);
1503 }
1504
1505 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1506 {
1507         struct nvme_dev *dev = nvmeq->dev;
1508
1509         spin_lock_irq(&nvmeq->q_lock);
1510         nvmeq->sq_tail = 0;
1511         nvmeq->cq_head = 0;
1512         nvmeq->cq_phase = 1;
1513         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1515         dev->online_queues++;
1516         spin_unlock_irq(&nvmeq->q_lock);
1517 }
1518
1519 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1520 {
1521         struct nvme_dev *dev = nvmeq->dev;
1522         int result;
1523
1524         nvmeq->cq_vector = qid - 1;
1525         result = adapter_alloc_cq(dev, qid, nvmeq);
1526         if (result < 0)
1527                 return result;
1528
1529         result = adapter_alloc_sq(dev, qid, nvmeq);
1530         if (result < 0)
1531                 goto release_cq;
1532
1533         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1534         if (result < 0)
1535                 goto release_sq;
1536
1537         nvme_init_queue(nvmeq, qid);
1538         return result;
1539
1540  release_sq:
1541         adapter_delete_sq(dev, qid);
1542  release_cq:
1543         adapter_delete_cq(dev, qid);
1544         return result;
1545 }
1546
1547 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1548 {
1549         unsigned long timeout;
1550         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1551
1552         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1553
1554         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1555                 msleep(100);
1556                 if (fatal_signal_pending(current))
1557                         return -EINTR;
1558                 if (time_after(jiffies, timeout)) {
1559                         dev_err(dev->dev,
1560                                 "Device not ready; aborting %s\n", enabled ?
1561                                                 "initialisation" : "reset");
1562                         return -ENODEV;
1563                 }
1564         }
1565
1566         return 0;
1567 }
1568
1569 /*
1570  * If the device has been passed off to us in an enabled state, just clear
1571  * the enabled bit.  The spec says we should set the 'shutdown notification
1572  * bits', but doing so may cause the device to complete commands to the
1573  * admin queue ... and we don't know what memory that might be pointing at!
1574  */
1575 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1576 {
1577         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1578         dev->ctrl_config &= ~NVME_CC_ENABLE;
1579         writel(dev->ctrl_config, &dev->bar->cc);
1580
1581         return nvme_wait_ready(dev, cap, false);
1582 }
1583
1584 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1585 {
1586         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1587         dev->ctrl_config |= NVME_CC_ENABLE;
1588         writel(dev->ctrl_config, &dev->bar->cc);
1589
1590         return nvme_wait_ready(dev, cap, true);
1591 }
1592
1593 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1594 {
1595         unsigned long timeout;
1596
1597         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1598         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1599
1600         writel(dev->ctrl_config, &dev->bar->cc);
1601
1602         timeout = SHUTDOWN_TIMEOUT + jiffies;
1603         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1604                                                         NVME_CSTS_SHST_CMPLT) {
1605                 msleep(100);
1606                 if (fatal_signal_pending(current))
1607                         return -EINTR;
1608                 if (time_after(jiffies, timeout)) {
1609                         dev_err(dev->dev,
1610                                 "Device shutdown incomplete; abort shutdown\n");
1611                         return -ENODEV;
1612                 }
1613         }
1614
1615         return 0;
1616 }
1617
1618 static struct blk_mq_ops nvme_mq_admin_ops = {
1619         .queue_rq       = nvme_queue_rq,
1620         .map_queue      = blk_mq_map_queue,
1621         .init_hctx      = nvme_admin_init_hctx,
1622         .exit_hctx      = nvme_admin_exit_hctx,
1623         .init_request   = nvme_admin_init_request,
1624         .timeout        = nvme_timeout,
1625 };
1626
1627 static struct blk_mq_ops nvme_mq_ops = {
1628         .queue_rq       = nvme_queue_rq,
1629         .map_queue      = blk_mq_map_queue,
1630         .init_hctx      = nvme_init_hctx,
1631         .init_request   = nvme_init_request,
1632         .timeout        = nvme_timeout,
1633 };
1634
1635 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1636 {
1637         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1638                 blk_cleanup_queue(dev->admin_q);
1639                 blk_mq_free_tag_set(&dev->admin_tagset);
1640         }
1641 }
1642
1643 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1644 {
1645         if (!dev->admin_q) {
1646                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1647                 dev->admin_tagset.nr_hw_queues = 1;
1648                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1649                 dev->admin_tagset.reserved_tags = 1;
1650                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1651                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1652                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1653                 dev->admin_tagset.driver_data = dev;
1654
1655                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1656                         return -ENOMEM;
1657
1658                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1659                 if (IS_ERR(dev->admin_q)) {
1660                         blk_mq_free_tag_set(&dev->admin_tagset);
1661                         return -ENOMEM;
1662                 }
1663                 if (!blk_get_queue(dev->admin_q)) {
1664                         nvme_dev_remove_admin(dev);
1665                         dev->admin_q = NULL;
1666                         return -ENODEV;
1667                 }
1668         } else
1669                 blk_mq_unfreeze_queue(dev->admin_q);
1670
1671         return 0;
1672 }
1673
1674 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1675 {
1676         int result;
1677         u32 aqa;
1678         u64 cap = readq(&dev->bar->cap);
1679         struct nvme_queue *nvmeq;
1680         unsigned page_shift = PAGE_SHIFT;
1681         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1682         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1683
1684         if (page_shift < dev_page_min) {
1685                 dev_err(dev->dev,
1686                                 "Minimum device page size (%u) too large for "
1687                                 "host (%u)\n", 1 << dev_page_min,
1688                                 1 << page_shift);
1689                 return -ENODEV;
1690         }
1691         if (page_shift > dev_page_max) {
1692                 dev_info(dev->dev,
1693                                 "Device maximum page size (%u) smaller than "
1694                                 "host (%u); enabling work-around\n",
1695                                 1 << dev_page_max, 1 << page_shift);
1696                 page_shift = dev_page_max;
1697         }
1698
1699         result = nvme_disable_ctrl(dev, cap);
1700         if (result < 0)
1701                 return result;
1702
1703         nvmeq = dev->queues[0];
1704         if (!nvmeq) {
1705                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1706                 if (!nvmeq)
1707                         return -ENOMEM;
1708         }
1709
1710         aqa = nvmeq->q_depth - 1;
1711         aqa |= aqa << 16;
1712
1713         dev->page_size = 1 << page_shift;
1714
1715         dev->ctrl_config = NVME_CC_CSS_NVM;
1716         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1717         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1718         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1719
1720         writel(aqa, &dev->bar->aqa);
1721         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1722         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1723
1724         result = nvme_enable_ctrl(dev, cap);
1725         if (result)
1726                 goto free_nvmeq;
1727
1728         nvmeq->cq_vector = 0;
1729         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1730         if (result) {
1731                 nvmeq->cq_vector = -1;
1732                 goto free_nvmeq;
1733         }
1734
1735         return result;
1736
1737  free_nvmeq:
1738         nvme_free_queues(dev, 0);
1739         return result;
1740 }
1741
1742 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1743 {
1744         struct nvme_dev *dev = ns->dev;
1745         struct nvme_user_io io;
1746         struct nvme_command c;
1747         unsigned length, meta_len;
1748         int status, write;
1749         dma_addr_t meta_dma = 0;
1750         void *meta = NULL;
1751         void __user *metadata;
1752
1753         if (copy_from_user(&io, uio, sizeof(io)))
1754                 return -EFAULT;
1755
1756         switch (io.opcode) {
1757         case nvme_cmd_write:
1758         case nvme_cmd_read:
1759         case nvme_cmd_compare:
1760                 break;
1761         default:
1762                 return -EINVAL;
1763         }
1764
1765         length = (io.nblocks + 1) << ns->lba_shift;
1766         meta_len = (io.nblocks + 1) * ns->ms;
1767         metadata = (void __user *)(unsigned long)io.metadata;
1768         write = io.opcode & 1;
1769
1770         if (ns->ext) {
1771                 length += meta_len;
1772                 meta_len = 0;
1773         }
1774         if (meta_len) {
1775                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1776                         return -EINVAL;
1777
1778                 meta = dma_alloc_coherent(dev->dev, meta_len,
1779                                                 &meta_dma, GFP_KERNEL);
1780
1781                 if (!meta) {
1782                         status = -ENOMEM;
1783                         goto unmap;
1784                 }
1785                 if (write) {
1786                         if (copy_from_user(meta, metadata, meta_len)) {
1787                                 status = -EFAULT;
1788                                 goto unmap;
1789                         }
1790                 }
1791         }
1792
1793         memset(&c, 0, sizeof(c));
1794         c.rw.opcode = io.opcode;
1795         c.rw.flags = io.flags;
1796         c.rw.nsid = cpu_to_le32(ns->ns_id);
1797         c.rw.slba = cpu_to_le64(io.slba);
1798         c.rw.length = cpu_to_le16(io.nblocks);
1799         c.rw.control = cpu_to_le16(io.control);
1800         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1801         c.rw.reftag = cpu_to_le32(io.reftag);
1802         c.rw.apptag = cpu_to_le16(io.apptag);
1803         c.rw.appmask = cpu_to_le16(io.appmask);
1804         c.rw.metadata = cpu_to_le64(meta_dma);
1805
1806         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1807                         (void __user *)io.addr, length, NULL, 0);
1808  unmap:
1809         if (meta) {
1810                 if (status == NVME_SC_SUCCESS && !write) {
1811                         if (copy_to_user(metadata, meta, meta_len))
1812                                 status = -EFAULT;
1813                 }
1814                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1815         }
1816         return status;
1817 }
1818
1819 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1820                         struct nvme_passthru_cmd __user *ucmd)
1821 {
1822         struct nvme_passthru_cmd cmd;
1823         struct nvme_command c;
1824         unsigned timeout = 0;
1825         int status;
1826
1827         if (!capable(CAP_SYS_ADMIN))
1828                 return -EACCES;
1829         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1830                 return -EFAULT;
1831
1832         memset(&c, 0, sizeof(c));
1833         c.common.opcode = cmd.opcode;
1834         c.common.flags = cmd.flags;
1835         c.common.nsid = cpu_to_le32(cmd.nsid);
1836         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1837         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1838         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1839         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1840         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1841         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1842         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1843         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1844
1845         if (cmd.timeout_ms)
1846                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1847
1848         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1849                         NULL, (void __user *)cmd.addr, cmd.data_len,
1850                         &cmd.result, timeout);
1851         if (status >= 0) {
1852                 if (put_user(cmd.result, &ucmd->result))
1853                         return -EFAULT;
1854         }
1855
1856         return status;
1857 }
1858
1859 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1860                                                         unsigned long arg)
1861 {
1862         struct nvme_ns *ns = bdev->bd_disk->private_data;
1863
1864         switch (cmd) {
1865         case NVME_IOCTL_ID:
1866                 force_successful_syscall_return();
1867                 return ns->ns_id;
1868         case NVME_IOCTL_ADMIN_CMD:
1869                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1870         case NVME_IOCTL_IO_CMD:
1871                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1872         case NVME_IOCTL_SUBMIT_IO:
1873                 return nvme_submit_io(ns, (void __user *)arg);
1874         case SG_GET_VERSION_NUM:
1875                 return nvme_sg_get_version_num((void __user *)arg);
1876         case SG_IO:
1877                 return nvme_sg_io(ns, (void __user *)arg);
1878         default:
1879                 return -ENOTTY;
1880         }
1881 }
1882
1883 #ifdef CONFIG_COMPAT
1884 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1885                                         unsigned int cmd, unsigned long arg)
1886 {
1887         switch (cmd) {
1888         case SG_IO:
1889                 return -ENOIOCTLCMD;
1890         }
1891         return nvme_ioctl(bdev, mode, cmd, arg);
1892 }
1893 #else
1894 #define nvme_compat_ioctl       NULL
1895 #endif
1896
1897 static int nvme_open(struct block_device *bdev, fmode_t mode)
1898 {
1899         int ret = 0;
1900         struct nvme_ns *ns;
1901
1902         spin_lock(&dev_list_lock);
1903         ns = bdev->bd_disk->private_data;
1904         if (!ns)
1905                 ret = -ENXIO;
1906         else if (!kref_get_unless_zero(&ns->dev->kref))
1907                 ret = -ENXIO;
1908         spin_unlock(&dev_list_lock);
1909
1910         return ret;
1911 }
1912
1913 static void nvme_free_dev(struct kref *kref);
1914
1915 static void nvme_release(struct gendisk *disk, fmode_t mode)
1916 {
1917         struct nvme_ns *ns = disk->private_data;
1918         struct nvme_dev *dev = ns->dev;
1919
1920         kref_put(&dev->kref, nvme_free_dev);
1921 }
1922
1923 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1924 {
1925         /* some standard values */
1926         geo->heads = 1 << 6;
1927         geo->sectors = 1 << 5;
1928         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1929         return 0;
1930 }
1931
1932 static void nvme_config_discard(struct nvme_ns *ns)
1933 {
1934         u32 logical_block_size = queue_logical_block_size(ns->queue);
1935         ns->queue->limits.discard_zeroes_data = 0;
1936         ns->queue->limits.discard_alignment = logical_block_size;
1937         ns->queue->limits.discard_granularity = logical_block_size;
1938         ns->queue->limits.max_discard_sectors = 0xffffffff;
1939         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1940 }
1941
1942 static int nvme_revalidate_disk(struct gendisk *disk)
1943 {
1944         struct nvme_ns *ns = disk->private_data;
1945         struct nvme_dev *dev = ns->dev;
1946         struct nvme_id_ns *id;
1947         u8 lbaf, pi_type;
1948         u16 old_ms;
1949         unsigned short bs;
1950
1951         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1952                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1953                                                 dev->instance, ns->ns_id);
1954                 return -ENODEV;
1955         }
1956         if (id->ncap == 0) {
1957                 kfree(id);
1958                 return -ENODEV;
1959         }
1960
1961         old_ms = ns->ms;
1962         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1963         ns->lba_shift = id->lbaf[lbaf].ds;
1964         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1965         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1966
1967         /*
1968          * If identify namespace failed, use default 512 byte block size so
1969          * block layer can use before failing read/write for 0 capacity.
1970          */
1971         if (ns->lba_shift == 0)
1972                 ns->lba_shift = 9;
1973         bs = 1 << ns->lba_shift;
1974
1975         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1976         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1977                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
1978
1979         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1980                                 ns->ms != old_ms ||
1981                                 bs != queue_logical_block_size(disk->queue) ||
1982                                 (ns->ms && ns->ext)))
1983                 blk_integrity_unregister(disk);
1984
1985         ns->pi_type = pi_type;
1986         blk_queue_logical_block_size(ns->queue, bs);
1987
1988         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
1989                                                                 !ns->ext)
1990                 nvme_init_integrity(ns);
1991
1992         if (ns->ms && !blk_get_integrity(disk))
1993                 set_capacity(disk, 0);
1994         else
1995                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1996
1997         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1998                 nvme_config_discard(ns);
1999
2000         kfree(id);
2001         return 0;
2002 }
2003
2004 static const struct block_device_operations nvme_fops = {
2005         .owner          = THIS_MODULE,
2006         .ioctl          = nvme_ioctl,
2007         .compat_ioctl   = nvme_compat_ioctl,
2008         .open           = nvme_open,
2009         .release        = nvme_release,
2010         .getgeo         = nvme_getgeo,
2011         .revalidate_disk= nvme_revalidate_disk,
2012 };
2013
2014 static int nvme_kthread(void *data)
2015 {
2016         struct nvme_dev *dev, *next;
2017
2018         while (!kthread_should_stop()) {
2019                 set_current_state(TASK_INTERRUPTIBLE);
2020                 spin_lock(&dev_list_lock);
2021                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2022                         int i;
2023                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2024                                 if (work_busy(&dev->reset_work))
2025                                         continue;
2026                                 list_del_init(&dev->node);
2027                                 dev_warn(dev->dev,
2028                                         "Failed status: %x, reset controller\n",
2029                                         readl(&dev->bar->csts));
2030                                 dev->reset_workfn = nvme_reset_failed_dev;
2031                                 queue_work(nvme_workq, &dev->reset_work);
2032                                 continue;
2033                         }
2034                         for (i = 0; i < dev->queue_count; i++) {
2035                                 struct nvme_queue *nvmeq = dev->queues[i];
2036                                 if (!nvmeq)
2037                                         continue;
2038                                 spin_lock_irq(&nvmeq->q_lock);
2039                                 nvme_process_cq(nvmeq);
2040
2041                                 while ((i == 0) && (dev->event_limit > 0)) {
2042                                         if (nvme_submit_async_admin_req(dev))
2043                                                 break;
2044                                         dev->event_limit--;
2045                                 }
2046                                 spin_unlock_irq(&nvmeq->q_lock);
2047                         }
2048                 }
2049                 spin_unlock(&dev_list_lock);
2050                 schedule_timeout(round_jiffies_relative(HZ));
2051         }
2052         return 0;
2053 }
2054
2055 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2056 {
2057         struct nvme_ns *ns;
2058         struct gendisk *disk;
2059         int node = dev_to_node(dev->dev);
2060
2061         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2062         if (!ns)
2063                 return;
2064
2065         ns->queue = blk_mq_init_queue(&dev->tagset);
2066         if (IS_ERR(ns->queue))
2067                 goto out_free_ns;
2068         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2069         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2070         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2071         ns->dev = dev;
2072         ns->queue->queuedata = ns;
2073
2074         disk = alloc_disk_node(0, node);
2075         if (!disk)
2076                 goto out_free_queue;
2077
2078         ns->ns_id = nsid;
2079         ns->disk = disk;
2080         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2081         list_add_tail(&ns->list, &dev->namespaces);
2082
2083         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2084         if (dev->max_hw_sectors)
2085                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2086         if (dev->stripe_size)
2087                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2088         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2089                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2090
2091         disk->major = nvme_major;
2092         disk->first_minor = 0;
2093         disk->fops = &nvme_fops;
2094         disk->private_data = ns;
2095         disk->queue = ns->queue;
2096         disk->driverfs_dev = dev->device;
2097         disk->flags = GENHD_FL_EXT_DEVT;
2098         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2099
2100         /*
2101          * Initialize capacity to 0 until we establish the namespace format and
2102          * setup integrity extentions if necessary. The revalidate_disk after
2103          * add_disk allows the driver to register with integrity if the format
2104          * requires it.
2105          */
2106         set_capacity(disk, 0);
2107         if (nvme_revalidate_disk(ns->disk))
2108                 goto out_free_disk;
2109
2110         add_disk(ns->disk);
2111         if (ns->ms) {
2112                 struct block_device *bd = bdget_disk(ns->disk, 0);
2113                 if (!bd)
2114                         return;
2115                 if (blkdev_get(bd, FMODE_READ, NULL)) {
2116                         bdput(bd);
2117                         return;
2118                 }
2119                 blkdev_reread_part(bd);
2120                 blkdev_put(bd, FMODE_READ);
2121         }
2122         return;
2123  out_free_disk:
2124         kfree(disk);
2125         list_del(&ns->list);
2126  out_free_queue:
2127         blk_cleanup_queue(ns->queue);
2128  out_free_ns:
2129         kfree(ns);
2130 }
2131
2132 static void nvme_create_io_queues(struct nvme_dev *dev)
2133 {
2134         unsigned i;
2135
2136         for (i = dev->queue_count; i <= dev->max_qid; i++)
2137                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2138                         break;
2139
2140         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2141                 if (nvme_create_queue(dev->queues[i], i))
2142                         break;
2143 }
2144
2145 static int set_queue_count(struct nvme_dev *dev, int count)
2146 {
2147         int status;
2148         u32 result;
2149         u32 q_count = (count - 1) | ((count - 1) << 16);
2150
2151         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2152                                                                 &result);
2153         if (status < 0)
2154                 return status;
2155         if (status > 0) {
2156                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2157                 return 0;
2158         }
2159         return min(result & 0xffff, result >> 16) + 1;
2160 }
2161
2162 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2163 {
2164         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2165 }
2166
2167 static int nvme_setup_io_queues(struct nvme_dev *dev)
2168 {
2169         struct nvme_queue *adminq = dev->queues[0];
2170         struct pci_dev *pdev = to_pci_dev(dev->dev);
2171         int result, i, vecs, nr_io_queues, size;
2172
2173         nr_io_queues = num_possible_cpus();
2174         result = set_queue_count(dev, nr_io_queues);
2175         if (result <= 0)
2176                 return result;
2177         if (result < nr_io_queues)
2178                 nr_io_queues = result;
2179
2180         size = db_bar_size(dev, nr_io_queues);
2181         if (size > 8192) {
2182                 iounmap(dev->bar);
2183                 do {
2184                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2185                         if (dev->bar)
2186                                 break;
2187                         if (!--nr_io_queues)
2188                                 return -ENOMEM;
2189                         size = db_bar_size(dev, nr_io_queues);
2190                 } while (1);
2191                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2192                 adminq->q_db = dev->dbs;
2193         }
2194
2195         /* Deregister the admin queue's interrupt */
2196         free_irq(dev->entry[0].vector, adminq);
2197
2198         /*
2199          * If we enable msix early due to not intx, disable it again before
2200          * setting up the full range we need.
2201          */
2202         if (!pdev->irq)
2203                 pci_disable_msix(pdev);
2204
2205         for (i = 0; i < nr_io_queues; i++)
2206                 dev->entry[i].entry = i;
2207         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2208         if (vecs < 0) {
2209                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2210                 if (vecs < 0) {
2211                         vecs = 1;
2212                 } else {
2213                         for (i = 0; i < vecs; i++)
2214                                 dev->entry[i].vector = i + pdev->irq;
2215                 }
2216         }
2217
2218         /*
2219          * Should investigate if there's a performance win from allocating
2220          * more queues than interrupt vectors; it might allow the submission
2221          * path to scale better, even if the receive path is limited by the
2222          * number of interrupts.
2223          */
2224         nr_io_queues = vecs;
2225         dev->max_qid = nr_io_queues;
2226
2227         result = queue_request_irq(dev, adminq, adminq->irqname);
2228         if (result) {
2229                 adminq->cq_vector = -1;
2230                 goto free_queues;
2231         }
2232
2233         /* Free previously allocated queues that are no longer usable */
2234         nvme_free_queues(dev, nr_io_queues + 1);
2235         nvme_create_io_queues(dev);
2236
2237         return 0;
2238
2239  free_queues:
2240         nvme_free_queues(dev, 1);
2241         return result;
2242 }
2243
2244 static void nvme_free_namespace(struct nvme_ns *ns)
2245 {
2246         list_del(&ns->list);
2247
2248         spin_lock(&dev_list_lock);
2249         ns->disk->private_data = NULL;
2250         spin_unlock(&dev_list_lock);
2251
2252         put_disk(ns->disk);
2253         kfree(ns);
2254 }
2255
2256 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2257 {
2258         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2259         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2260
2261         return nsa->ns_id - nsb->ns_id;
2262 }
2263
2264 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2265 {
2266         struct nvme_ns *ns;
2267
2268         list_for_each_entry(ns, &dev->namespaces, list) {
2269                 if (ns->ns_id == nsid)
2270                         return ns;
2271                 if (ns->ns_id > nsid)
2272                         break;
2273         }
2274         return NULL;
2275 }
2276
2277 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2278 {
2279         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2280                                                         dev->online_queues < 2);
2281 }
2282
2283 static void nvme_ns_remove(struct nvme_ns *ns)
2284 {
2285         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2286
2287         if (kill)
2288                 blk_set_queue_dying(ns->queue);
2289         if (ns->disk->flags & GENHD_FL_UP) {
2290                 if (blk_get_integrity(ns->disk))
2291                         blk_integrity_unregister(ns->disk);
2292                 del_gendisk(ns->disk);
2293         }
2294         if (kill || !blk_queue_dying(ns->queue)) {
2295                 blk_mq_abort_requeue_list(ns->queue);
2296                 blk_cleanup_queue(ns->queue);
2297         }
2298 }
2299
2300 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2301 {
2302         struct nvme_ns *ns, *next;
2303         unsigned i;
2304
2305         for (i = 1; i <= nn; i++) {
2306                 ns = nvme_find_ns(dev, i);
2307                 if (ns) {
2308                         if (revalidate_disk(ns->disk)) {
2309                                 nvme_ns_remove(ns);
2310                                 nvme_free_namespace(ns);
2311                         }
2312                 } else
2313                         nvme_alloc_ns(dev, i);
2314         }
2315         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2316                 if (ns->ns_id > nn) {
2317                         nvme_ns_remove(ns);
2318                         nvme_free_namespace(ns);
2319                 }
2320         }
2321         list_sort(NULL, &dev->namespaces, ns_cmp);
2322 }
2323
2324 static void nvme_dev_scan(struct work_struct *work)
2325 {
2326         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2327         struct nvme_id_ctrl *ctrl;
2328
2329         if (!dev->tagset.tags)
2330                 return;
2331         if (nvme_identify_ctrl(dev, &ctrl))
2332                 return;
2333         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2334         kfree(ctrl);
2335 }
2336
2337 /*
2338  * Return: error value if an error occurred setting up the queues or calling
2339  * Identify Device.  0 if these succeeded, even if adding some of the
2340  * namespaces failed.  At the moment, these failures are silent.  TBD which
2341  * failures should be reported.
2342  */
2343 static int nvme_dev_add(struct nvme_dev *dev)
2344 {
2345         struct pci_dev *pdev = to_pci_dev(dev->dev);
2346         int res;
2347         unsigned nn;
2348         struct nvme_id_ctrl *ctrl;
2349         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2350
2351         res = nvme_identify_ctrl(dev, &ctrl);
2352         if (res) {
2353                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2354                 return -EIO;
2355         }
2356
2357         nn = le32_to_cpup(&ctrl->nn);
2358         dev->oncs = le16_to_cpup(&ctrl->oncs);
2359         dev->abort_limit = ctrl->acl + 1;
2360         dev->vwc = ctrl->vwc;
2361         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2362         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2363         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2364         if (ctrl->mdts)
2365                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2366         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2367                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2368                 unsigned int max_hw_sectors;
2369
2370                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2371                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2372                 if (dev->max_hw_sectors) {
2373                         dev->max_hw_sectors = min(max_hw_sectors,
2374                                                         dev->max_hw_sectors);
2375                 } else
2376                         dev->max_hw_sectors = max_hw_sectors;
2377         }
2378         kfree(ctrl);
2379
2380         if (!dev->tagset.tags) {
2381                 dev->tagset.ops = &nvme_mq_ops;
2382                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2383                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2384                 dev->tagset.numa_node = dev_to_node(dev->dev);
2385                 dev->tagset.queue_depth =
2386                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2387                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2388                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2389                 dev->tagset.driver_data = dev;
2390
2391                 if (blk_mq_alloc_tag_set(&dev->tagset))
2392                         return 0;
2393         }
2394         schedule_work(&dev->scan_work);
2395         return 0;
2396 }
2397
2398 static int nvme_dev_map(struct nvme_dev *dev)
2399 {
2400         u64 cap;
2401         int bars, result = -ENOMEM;
2402         struct pci_dev *pdev = to_pci_dev(dev->dev);
2403
2404         if (pci_enable_device_mem(pdev))
2405                 return result;
2406
2407         dev->entry[0].vector = pdev->irq;
2408         pci_set_master(pdev);
2409         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2410         if (!bars)
2411                 goto disable_pci;
2412
2413         if (pci_request_selected_regions(pdev, bars, "nvme"))
2414                 goto disable_pci;
2415
2416         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2417             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2418                 goto disable;
2419
2420         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2421         if (!dev->bar)
2422                 goto disable;
2423
2424         if (readl(&dev->bar->csts) == -1) {
2425                 result = -ENODEV;
2426                 goto unmap;
2427         }
2428
2429         /*
2430          * Some devices don't advertse INTx interrupts, pre-enable a single
2431          * MSIX vec for setup. We'll adjust this later.
2432          */
2433         if (!pdev->irq) {
2434                 result = pci_enable_msix(pdev, dev->entry, 1);
2435                 if (result < 0)
2436                         goto unmap;
2437         }
2438
2439         cap = readq(&dev->bar->cap);
2440         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2441         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2442         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2443
2444         return 0;
2445
2446  unmap:
2447         iounmap(dev->bar);
2448         dev->bar = NULL;
2449  disable:
2450         pci_release_regions(pdev);
2451  disable_pci:
2452         pci_disable_device(pdev);
2453         return result;
2454 }
2455
2456 static void nvme_dev_unmap(struct nvme_dev *dev)
2457 {
2458         struct pci_dev *pdev = to_pci_dev(dev->dev);
2459
2460         if (pdev->msi_enabled)
2461                 pci_disable_msi(pdev);
2462         else if (pdev->msix_enabled)
2463                 pci_disable_msix(pdev);
2464
2465         if (dev->bar) {
2466                 iounmap(dev->bar);
2467                 dev->bar = NULL;
2468                 pci_release_regions(pdev);
2469         }
2470
2471         if (pci_is_enabled(pdev))
2472                 pci_disable_device(pdev);
2473 }
2474
2475 struct nvme_delq_ctx {
2476         struct task_struct *waiter;
2477         struct kthread_worker *worker;
2478         atomic_t refcount;
2479 };
2480
2481 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2482 {
2483         dq->waiter = current;
2484         mb();
2485
2486         for (;;) {
2487                 set_current_state(TASK_KILLABLE);
2488                 if (!atomic_read(&dq->refcount))
2489                         break;
2490                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2491                                         fatal_signal_pending(current)) {
2492                         /*
2493                          * Disable the controller first since we can't trust it
2494                          * at this point, but leave the admin queue enabled
2495                          * until all queue deletion requests are flushed.
2496                          * FIXME: This may take a while if there are more h/w
2497                          * queues than admin tags.
2498                          */
2499                         set_current_state(TASK_RUNNING);
2500                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2501                         nvme_clear_queue(dev->queues[0]);
2502                         flush_kthread_worker(dq->worker);
2503                         nvme_disable_queue(dev, 0);
2504                         return;
2505                 }
2506         }
2507         set_current_state(TASK_RUNNING);
2508 }
2509
2510 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2511 {
2512         atomic_dec(&dq->refcount);
2513         if (dq->waiter)
2514                 wake_up_process(dq->waiter);
2515 }
2516
2517 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2518 {
2519         atomic_inc(&dq->refcount);
2520         return dq;
2521 }
2522
2523 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2524 {
2525         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2526         nvme_put_dq(dq);
2527 }
2528
2529 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2530                                                 kthread_work_func_t fn)
2531 {
2532         struct nvme_command c;
2533
2534         memset(&c, 0, sizeof(c));
2535         c.delete_queue.opcode = opcode;
2536         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2537
2538         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2539         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2540                                                                 ADMIN_TIMEOUT);
2541 }
2542
2543 static void nvme_del_cq_work_handler(struct kthread_work *work)
2544 {
2545         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2546                                                         cmdinfo.work);
2547         nvme_del_queue_end(nvmeq);
2548 }
2549
2550 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2551 {
2552         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2553                                                 nvme_del_cq_work_handler);
2554 }
2555
2556 static void nvme_del_sq_work_handler(struct kthread_work *work)
2557 {
2558         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2559                                                         cmdinfo.work);
2560         int status = nvmeq->cmdinfo.status;
2561
2562         if (!status)
2563                 status = nvme_delete_cq(nvmeq);
2564         if (status)
2565                 nvme_del_queue_end(nvmeq);
2566 }
2567
2568 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2569 {
2570         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2571                                                 nvme_del_sq_work_handler);
2572 }
2573
2574 static void nvme_del_queue_start(struct kthread_work *work)
2575 {
2576         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2577                                                         cmdinfo.work);
2578         if (nvme_delete_sq(nvmeq))
2579                 nvme_del_queue_end(nvmeq);
2580 }
2581
2582 static void nvme_disable_io_queues(struct nvme_dev *dev)
2583 {
2584         int i;
2585         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2586         struct nvme_delq_ctx dq;
2587         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2588                                         &worker, "nvme%d", dev->instance);
2589
2590         if (IS_ERR(kworker_task)) {
2591                 dev_err(dev->dev,
2592                         "Failed to create queue del task\n");
2593                 for (i = dev->queue_count - 1; i > 0; i--)
2594                         nvme_disable_queue(dev, i);
2595                 return;
2596         }
2597
2598         dq.waiter = NULL;
2599         atomic_set(&dq.refcount, 0);
2600         dq.worker = &worker;
2601         for (i = dev->queue_count - 1; i > 0; i--) {
2602                 struct nvme_queue *nvmeq = dev->queues[i];
2603
2604                 if (nvme_suspend_queue(nvmeq))
2605                         continue;
2606                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2607                 nvmeq->cmdinfo.worker = dq.worker;
2608                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2609                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2610         }
2611         nvme_wait_dq(&dq, dev);
2612         kthread_stop(kworker_task);
2613 }
2614
2615 /*
2616 * Remove the node from the device list and check
2617 * for whether or not we need to stop the nvme_thread.
2618 */
2619 static void nvme_dev_list_remove(struct nvme_dev *dev)
2620 {
2621         struct task_struct *tmp = NULL;
2622
2623         spin_lock(&dev_list_lock);
2624         list_del_init(&dev->node);
2625         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2626                 tmp = nvme_thread;
2627                 nvme_thread = NULL;
2628         }
2629         spin_unlock(&dev_list_lock);
2630
2631         if (tmp)
2632                 kthread_stop(tmp);
2633 }
2634
2635 static void nvme_freeze_queues(struct nvme_dev *dev)
2636 {
2637         struct nvme_ns *ns;
2638
2639         list_for_each_entry(ns, &dev->namespaces, list) {
2640                 blk_mq_freeze_queue_start(ns->queue);
2641
2642                 spin_lock_irq(ns->queue->queue_lock);
2643                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2644                 spin_unlock_irq(ns->queue->queue_lock);
2645
2646                 blk_mq_cancel_requeue_work(ns->queue);
2647                 blk_mq_stop_hw_queues(ns->queue);
2648         }
2649 }
2650
2651 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2652 {
2653         struct nvme_ns *ns;
2654
2655         list_for_each_entry(ns, &dev->namespaces, list) {
2656                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2657                 blk_mq_unfreeze_queue(ns->queue);
2658                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2659                 blk_mq_kick_requeue_list(ns->queue);
2660         }
2661 }
2662
2663 static void nvme_dev_shutdown(struct nvme_dev *dev)
2664 {
2665         int i;
2666         u32 csts = -1;
2667
2668         nvme_dev_list_remove(dev);
2669
2670         if (dev->bar) {
2671                 nvme_freeze_queues(dev);
2672                 csts = readl(&dev->bar->csts);
2673         }
2674         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2675                 for (i = dev->queue_count - 1; i >= 0; i--) {
2676                         struct nvme_queue *nvmeq = dev->queues[i];
2677                         nvme_suspend_queue(nvmeq);
2678                 }
2679         } else {
2680                 nvme_disable_io_queues(dev);
2681                 nvme_shutdown_ctrl(dev);
2682                 nvme_disable_queue(dev, 0);
2683         }
2684         nvme_dev_unmap(dev);
2685
2686         for (i = dev->queue_count - 1; i >= 0; i--)
2687                 nvme_clear_queue(dev->queues[i]);
2688 }
2689
2690 static void nvme_dev_remove(struct nvme_dev *dev)
2691 {
2692         struct nvme_ns *ns;
2693
2694         list_for_each_entry(ns, &dev->namespaces, list)
2695                 nvme_ns_remove(ns);
2696 }
2697
2698 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2699 {
2700         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2701                                                 PAGE_SIZE, PAGE_SIZE, 0);
2702         if (!dev->prp_page_pool)
2703                 return -ENOMEM;
2704
2705         /* Optimisation for I/Os between 4k and 128k */
2706         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2707                                                 256, 256, 0);
2708         if (!dev->prp_small_pool) {
2709                 dma_pool_destroy(dev->prp_page_pool);
2710                 return -ENOMEM;
2711         }
2712         return 0;
2713 }
2714
2715 static void nvme_release_prp_pools(struct nvme_dev *dev)
2716 {
2717         dma_pool_destroy(dev->prp_page_pool);
2718         dma_pool_destroy(dev->prp_small_pool);
2719 }
2720
2721 static DEFINE_IDA(nvme_instance_ida);
2722
2723 static int nvme_set_instance(struct nvme_dev *dev)
2724 {
2725         int instance, error;
2726
2727         do {
2728                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2729                         return -ENODEV;
2730
2731                 spin_lock(&dev_list_lock);
2732                 error = ida_get_new(&nvme_instance_ida, &instance);
2733                 spin_unlock(&dev_list_lock);
2734         } while (error == -EAGAIN);
2735
2736         if (error)
2737                 return -ENODEV;
2738
2739         dev->instance = instance;
2740         return 0;
2741 }
2742
2743 static void nvme_release_instance(struct nvme_dev *dev)
2744 {
2745         spin_lock(&dev_list_lock);
2746         ida_remove(&nvme_instance_ida, dev->instance);
2747         spin_unlock(&dev_list_lock);
2748 }
2749
2750 static void nvme_free_namespaces(struct nvme_dev *dev)
2751 {
2752         struct nvme_ns *ns, *next;
2753
2754         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2755                 nvme_free_namespace(ns);
2756 }
2757
2758 static void nvme_free_dev(struct kref *kref)
2759 {
2760         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2761
2762         put_device(dev->dev);
2763         put_device(dev->device);
2764         nvme_free_namespaces(dev);
2765         nvme_release_instance(dev);
2766         if (dev->tagset.tags)
2767                 blk_mq_free_tag_set(&dev->tagset);
2768         if (dev->admin_q)
2769                 blk_put_queue(dev->admin_q);
2770         kfree(dev->queues);
2771         kfree(dev->entry);
2772         kfree(dev);
2773 }
2774
2775 static int nvme_dev_open(struct inode *inode, struct file *f)
2776 {
2777         struct nvme_dev *dev;
2778         int instance = iminor(inode);
2779         int ret = -ENODEV;
2780
2781         spin_lock(&dev_list_lock);
2782         list_for_each_entry(dev, &dev_list, node) {
2783                 if (dev->instance == instance) {
2784                         if (!dev->admin_q) {
2785                                 ret = -EWOULDBLOCK;
2786                                 break;
2787                         }
2788                         if (!kref_get_unless_zero(&dev->kref))
2789                                 break;
2790                         f->private_data = dev;
2791                         ret = 0;
2792                         break;
2793                 }
2794         }
2795         spin_unlock(&dev_list_lock);
2796
2797         return ret;
2798 }
2799
2800 static int nvme_dev_release(struct inode *inode, struct file *f)
2801 {
2802         struct nvme_dev *dev = f->private_data;
2803         kref_put(&dev->kref, nvme_free_dev);
2804         return 0;
2805 }
2806
2807 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2808 {
2809         struct nvme_dev *dev = f->private_data;
2810         struct nvme_ns *ns;
2811
2812         switch (cmd) {
2813         case NVME_IOCTL_ADMIN_CMD:
2814                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2815         case NVME_IOCTL_IO_CMD:
2816                 if (list_empty(&dev->namespaces))
2817                         return -ENOTTY;
2818                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2819                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2820         case NVME_IOCTL_RESET:
2821                 dev_warn(dev->dev, "resetting controller\n");
2822                 return nvme_reset(dev);
2823         default:
2824                 return -ENOTTY;
2825         }
2826 }
2827
2828 static const struct file_operations nvme_dev_fops = {
2829         .owner          = THIS_MODULE,
2830         .open           = nvme_dev_open,
2831         .release        = nvme_dev_release,
2832         .unlocked_ioctl = nvme_dev_ioctl,
2833         .compat_ioctl   = nvme_dev_ioctl,
2834 };
2835
2836 static void nvme_set_irq_hints(struct nvme_dev *dev)
2837 {
2838         struct nvme_queue *nvmeq;
2839         int i;
2840
2841         for (i = 0; i < dev->online_queues; i++) {
2842                 nvmeq = dev->queues[i];
2843
2844                 if (!nvmeq->tags || !(*nvmeq->tags))
2845                         continue;
2846
2847                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2848                                         blk_mq_tags_cpumask(*nvmeq->tags));
2849         }
2850 }
2851
2852 static int nvme_dev_start(struct nvme_dev *dev)
2853 {
2854         int result;
2855         bool start_thread = false;
2856
2857         result = nvme_dev_map(dev);
2858         if (result)
2859                 return result;
2860
2861         result = nvme_configure_admin_queue(dev);
2862         if (result)
2863                 goto unmap;
2864
2865         spin_lock(&dev_list_lock);
2866         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2867                 start_thread = true;
2868                 nvme_thread = NULL;
2869         }
2870         list_add(&dev->node, &dev_list);
2871         spin_unlock(&dev_list_lock);
2872
2873         if (start_thread) {
2874                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2875                 wake_up_all(&nvme_kthread_wait);
2876         } else
2877                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2878
2879         if (IS_ERR_OR_NULL(nvme_thread)) {
2880                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2881                 goto disable;
2882         }
2883
2884         nvme_init_queue(dev->queues[0], 0);
2885         result = nvme_alloc_admin_tags(dev);
2886         if (result)
2887                 goto disable;
2888
2889         result = nvme_setup_io_queues(dev);
2890         if (result)
2891                 goto free_tags;
2892
2893         nvme_set_irq_hints(dev);
2894
2895         dev->event_limit = 1;
2896         return result;
2897
2898  free_tags:
2899         nvme_dev_remove_admin(dev);
2900         blk_put_queue(dev->admin_q);
2901         dev->admin_q = NULL;
2902         dev->queues[0]->tags = NULL;
2903  disable:
2904         nvme_disable_queue(dev, 0);
2905         nvme_dev_list_remove(dev);
2906  unmap:
2907         nvme_dev_unmap(dev);
2908         return result;
2909 }
2910
2911 static int nvme_remove_dead_ctrl(void *arg)
2912 {
2913         struct nvme_dev *dev = (struct nvme_dev *)arg;
2914         struct pci_dev *pdev = to_pci_dev(dev->dev);
2915
2916         if (pci_get_drvdata(pdev))
2917                 pci_stop_and_remove_bus_device_locked(pdev);
2918         kref_put(&dev->kref, nvme_free_dev);
2919         return 0;
2920 }
2921
2922 static void nvme_remove_disks(struct work_struct *ws)
2923 {
2924         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2925
2926         nvme_free_queues(dev, 1);
2927         nvme_dev_remove(dev);
2928 }
2929
2930 static int nvme_dev_resume(struct nvme_dev *dev)
2931 {
2932         int ret;
2933
2934         ret = nvme_dev_start(dev);
2935         if (ret)
2936                 return ret;
2937         if (dev->online_queues < 2) {
2938                 spin_lock(&dev_list_lock);
2939                 dev->reset_workfn = nvme_remove_disks;
2940                 queue_work(nvme_workq, &dev->reset_work);
2941                 spin_unlock(&dev_list_lock);
2942         } else {
2943                 nvme_unfreeze_queues(dev);
2944                 nvme_dev_add(dev);
2945                 nvme_set_irq_hints(dev);
2946         }
2947         return 0;
2948 }
2949
2950 static void nvme_dead_ctrl(struct nvme_dev *dev)
2951 {
2952         dev_warn(dev->dev, "Device failed to resume\n");
2953         kref_get(&dev->kref);
2954         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2955                                                 dev->instance))) {
2956                 dev_err(dev->dev,
2957                         "Failed to start controller remove task\n");
2958                 kref_put(&dev->kref, nvme_free_dev);
2959         }
2960 }
2961
2962 static void nvme_dev_reset(struct nvme_dev *dev)
2963 {
2964         bool in_probe = work_busy(&dev->probe_work);
2965
2966         nvme_dev_shutdown(dev);
2967
2968         /* Synchronize with device probe so that work will see failure status
2969          * and exit gracefully without trying to schedule another reset */
2970         flush_work(&dev->probe_work);
2971
2972         /* Fail this device if reset occured during probe to avoid
2973          * infinite initialization loops. */
2974         if (in_probe) {
2975                 nvme_dead_ctrl(dev);
2976                 return;
2977         }
2978         /* Schedule device resume asynchronously so the reset work is available
2979          * to cleanup errors that may occur during reinitialization */
2980         schedule_work(&dev->probe_work);
2981 }
2982
2983 static void nvme_reset_failed_dev(struct work_struct *ws)
2984 {
2985         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2986         nvme_dev_reset(dev);
2987 }
2988
2989 static void nvme_reset_workfn(struct work_struct *work)
2990 {
2991         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2992         dev->reset_workfn(work);
2993 }
2994
2995 static int nvme_reset(struct nvme_dev *dev)
2996 {
2997         int ret = -EBUSY;
2998
2999         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3000                 return -ENODEV;
3001
3002         spin_lock(&dev_list_lock);
3003         if (!work_pending(&dev->reset_work)) {
3004                 dev->reset_workfn = nvme_reset_failed_dev;
3005                 queue_work(nvme_workq, &dev->reset_work);
3006                 ret = 0;
3007         }
3008         spin_unlock(&dev_list_lock);
3009
3010         if (!ret) {
3011                 flush_work(&dev->reset_work);
3012                 flush_work(&dev->probe_work);
3013                 return 0;
3014         }
3015
3016         return ret;
3017 }
3018
3019 static ssize_t nvme_sysfs_reset(struct device *dev,
3020                                 struct device_attribute *attr, const char *buf,
3021                                 size_t count)
3022 {
3023         struct nvme_dev *ndev = dev_get_drvdata(dev);
3024         int ret;
3025
3026         ret = nvme_reset(ndev);
3027         if (ret < 0)
3028                 return ret;
3029
3030         return count;
3031 }
3032 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3033
3034 static void nvme_async_probe(struct work_struct *work);
3035 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3036 {
3037         int node, result = -ENOMEM;
3038         struct nvme_dev *dev;
3039
3040         node = dev_to_node(&pdev->dev);
3041         if (node == NUMA_NO_NODE)
3042                 set_dev_node(&pdev->dev, 0);
3043
3044         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3045         if (!dev)
3046                 return -ENOMEM;
3047         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3048                                                         GFP_KERNEL, node);
3049         if (!dev->entry)
3050                 goto free;
3051         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3052                                                         GFP_KERNEL, node);
3053         if (!dev->queues)
3054                 goto free;
3055
3056         INIT_LIST_HEAD(&dev->namespaces);
3057         dev->reset_workfn = nvme_reset_failed_dev;
3058         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3059         dev->dev = get_device(&pdev->dev);
3060         pci_set_drvdata(pdev, dev);
3061         result = nvme_set_instance(dev);
3062         if (result)
3063                 goto put_pci;
3064
3065         result = nvme_setup_prp_pools(dev);
3066         if (result)
3067                 goto release;
3068
3069         kref_init(&dev->kref);
3070         dev->device = device_create(nvme_class, &pdev->dev,
3071                                 MKDEV(nvme_char_major, dev->instance),
3072                                 dev, "nvme%d", dev->instance);
3073         if (IS_ERR(dev->device)) {
3074                 result = PTR_ERR(dev->device);
3075                 goto release_pools;
3076         }
3077         get_device(dev->device);
3078         dev_set_drvdata(dev->device, dev);
3079
3080         result = device_create_file(dev->device, &dev_attr_reset_controller);
3081         if (result)
3082                 goto put_dev;
3083
3084         INIT_LIST_HEAD(&dev->node);
3085         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3086         INIT_WORK(&dev->probe_work, nvme_async_probe);
3087         schedule_work(&dev->probe_work);
3088         return 0;
3089
3090  put_dev:
3091         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3092         put_device(dev->device);
3093  release_pools:
3094         nvme_release_prp_pools(dev);
3095  release:
3096         nvme_release_instance(dev);
3097  put_pci:
3098         put_device(dev->dev);
3099  free:
3100         kfree(dev->queues);
3101         kfree(dev->entry);
3102         kfree(dev);
3103         return result;
3104 }
3105
3106 static void nvme_async_probe(struct work_struct *work)
3107 {
3108         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3109
3110         if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3111                 nvme_dead_ctrl(dev);
3112 }
3113
3114 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3115 {
3116         struct nvme_dev *dev = pci_get_drvdata(pdev);
3117
3118         if (prepare)
3119                 nvme_dev_shutdown(dev);
3120         else
3121                 nvme_dev_resume(dev);
3122 }
3123
3124 static void nvme_shutdown(struct pci_dev *pdev)
3125 {
3126         struct nvme_dev *dev = pci_get_drvdata(pdev);
3127         nvme_dev_shutdown(dev);
3128 }
3129
3130 static void nvme_remove(struct pci_dev *pdev)
3131 {
3132         struct nvme_dev *dev = pci_get_drvdata(pdev);
3133
3134         spin_lock(&dev_list_lock);
3135         list_del_init(&dev->node);
3136         spin_unlock(&dev_list_lock);
3137
3138         pci_set_drvdata(pdev, NULL);
3139         flush_work(&dev->probe_work);
3140         flush_work(&dev->reset_work);
3141         flush_work(&dev->scan_work);
3142         device_remove_file(dev->device, &dev_attr_reset_controller);
3143         nvme_dev_remove(dev);
3144         nvme_dev_shutdown(dev);
3145         nvme_dev_remove_admin(dev);
3146         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3147         nvme_free_queues(dev, 0);
3148         nvme_release_prp_pools(dev);
3149         kref_put(&dev->kref, nvme_free_dev);
3150 }
3151
3152 /* These functions are yet to be implemented */
3153 #define nvme_error_detected NULL
3154 #define nvme_dump_registers NULL
3155 #define nvme_link_reset NULL
3156 #define nvme_slot_reset NULL
3157 #define nvme_error_resume NULL
3158
3159 #ifdef CONFIG_PM_SLEEP
3160 static int nvme_suspend(struct device *dev)
3161 {
3162         struct pci_dev *pdev = to_pci_dev(dev);
3163         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3164
3165         nvme_dev_shutdown(ndev);
3166         return 0;
3167 }
3168
3169 static int nvme_resume(struct device *dev)
3170 {
3171         struct pci_dev *pdev = to_pci_dev(dev);
3172         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3173
3174         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3175                 ndev->reset_workfn = nvme_reset_failed_dev;
3176                 queue_work(nvme_workq, &ndev->reset_work);
3177         }
3178         return 0;
3179 }
3180 #endif
3181
3182 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3183
3184 static const struct pci_error_handlers nvme_err_handler = {
3185         .error_detected = nvme_error_detected,
3186         .mmio_enabled   = nvme_dump_registers,
3187         .link_reset     = nvme_link_reset,
3188         .slot_reset     = nvme_slot_reset,
3189         .resume         = nvme_error_resume,
3190         .reset_notify   = nvme_reset_notify,
3191 };
3192
3193 /* Move to pci_ids.h later */
3194 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3195
3196 static const struct pci_device_id nvme_id_table[] = {
3197         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3198         { 0, }
3199 };
3200 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3201
3202 static struct pci_driver nvme_driver = {
3203         .name           = "nvme",
3204         .id_table       = nvme_id_table,
3205         .probe          = nvme_probe,
3206         .remove         = nvme_remove,
3207         .shutdown       = nvme_shutdown,
3208         .driver         = {
3209                 .pm     = &nvme_dev_pm_ops,
3210         },
3211         .err_handler    = &nvme_err_handler,
3212 };
3213
3214 static int __init nvme_init(void)
3215 {
3216         int result;
3217
3218         init_waitqueue_head(&nvme_kthread_wait);
3219
3220         nvme_workq = create_singlethread_workqueue("nvme");
3221         if (!nvme_workq)
3222                 return -ENOMEM;
3223
3224         result = register_blkdev(nvme_major, "nvme");
3225         if (result < 0)
3226                 goto kill_workq;
3227         else if (result > 0)
3228                 nvme_major = result;
3229
3230         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3231                                                         &nvme_dev_fops);
3232         if (result < 0)
3233                 goto unregister_blkdev;
3234         else if (result > 0)
3235                 nvme_char_major = result;
3236
3237         nvme_class = class_create(THIS_MODULE, "nvme");
3238         if (IS_ERR(nvme_class)) {
3239                 result = PTR_ERR(nvme_class);
3240                 goto unregister_chrdev;
3241         }
3242
3243         result = pci_register_driver(&nvme_driver);
3244         if (result)
3245                 goto destroy_class;
3246         return 0;
3247
3248  destroy_class:
3249         class_destroy(nvme_class);
3250  unregister_chrdev:
3251         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3252  unregister_blkdev:
3253         unregister_blkdev(nvme_major, "nvme");
3254  kill_workq:
3255         destroy_workqueue(nvme_workq);
3256         return result;
3257 }
3258
3259 static void __exit nvme_exit(void)
3260 {
3261         pci_unregister_driver(&nvme_driver);
3262         unregister_blkdev(nvme_major, "nvme");
3263         destroy_workqueue(nvme_workq);
3264         class_destroy(nvme_class);
3265         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3266         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3267         _nvme_check_size();
3268 }
3269
3270 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3271 MODULE_LICENSE("GPL");
3272 MODULE_VERSION("1.0");
3273 module_init(nvme_init);
3274 module_exit(nvme_exit);