Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / drivers / base / cacheinfo.c
1 /*
2  * cacheinfo support - processor cache information via sysfs
3  *
4  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
5  * Author: Sudeep Holla <sudeep.holla@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <linux/bitops.h>
20 #include <linux/cacheinfo.h>
21 #include <linux/compiler.h>
22 #include <linux/cpu.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/of.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/sysfs.h>
30
31 /* pointer to per cpu cacheinfo */
32 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
33 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
34 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
35 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
36
37 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
38 {
39         return ci_cacheinfo(cpu);
40 }
41
42 #ifdef CONFIG_OF
43 static int cache_setup_of_node(unsigned int cpu)
44 {
45         struct device_node *np;
46         struct cacheinfo *this_leaf;
47         struct device *cpu_dev = get_cpu_device(cpu);
48         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
49         unsigned int index = 0;
50
51         /* skip if of_node is already populated */
52         if (this_cpu_ci->info_list->of_node)
53                 return 0;
54
55         if (!cpu_dev) {
56                 pr_err("No cpu device for CPU %d\n", cpu);
57                 return -ENODEV;
58         }
59         np = cpu_dev->of_node;
60         if (!np) {
61                 pr_err("Failed to find cpu%d device node\n", cpu);
62                 return -ENOENT;
63         }
64
65         while (index < cache_leaves(cpu)) {
66                 this_leaf = this_cpu_ci->info_list + index;
67                 if (this_leaf->level != 1)
68                         np = of_find_next_cache_node(np);
69                 else
70                         np = of_node_get(np);/* cpu node itself */
71                 if (!np)
72                         break;
73                 this_leaf->of_node = np;
74                 index++;
75         }
76
77         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
78                 return -ENOENT;
79
80         return 0;
81 }
82
83 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
84                                            struct cacheinfo *sib_leaf)
85 {
86         return sib_leaf->of_node == this_leaf->of_node;
87 }
88 #else
89 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
90 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
91                                            struct cacheinfo *sib_leaf)
92 {
93         /*
94          * For non-DT systems, assume unique level 1 cache, system-wide
95          * shared caches for all other levels. This will be used only if
96          * arch specific code has not populated shared_cpu_map
97          */
98         return !(this_leaf->level == 1);
99 }
100 #endif
101
102 static int cache_shared_cpu_map_setup(unsigned int cpu)
103 {
104         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
105         struct cacheinfo *this_leaf, *sib_leaf;
106         unsigned int index;
107         int ret;
108
109         ret = cache_setup_of_node(cpu);
110         if (ret)
111                 return ret;
112
113         for (index = 0; index < cache_leaves(cpu); index++) {
114                 unsigned int i;
115
116                 this_leaf = this_cpu_ci->info_list + index;
117                 /* skip if shared_cpu_map is already populated */
118                 if (!cpumask_empty(&this_leaf->shared_cpu_map))
119                         continue;
120
121                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
122                 for_each_online_cpu(i) {
123                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
124
125                         if (i == cpu || !sib_cpu_ci->info_list)
126                                 continue;/* skip if itself or no cacheinfo */
127                         sib_leaf = sib_cpu_ci->info_list + index;
128                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
129                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
130                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
131                         }
132                 }
133         }
134
135         return 0;
136 }
137
138 static void cache_shared_cpu_map_remove(unsigned int cpu)
139 {
140         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
141         struct cacheinfo *this_leaf, *sib_leaf;
142         unsigned int sibling, index;
143
144         for (index = 0; index < cache_leaves(cpu); index++) {
145                 this_leaf = this_cpu_ci->info_list + index;
146                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
147                         struct cpu_cacheinfo *sib_cpu_ci;
148
149                         if (sibling == cpu) /* skip itself */
150                                 continue;
151
152                         sib_cpu_ci = get_cpu_cacheinfo(sibling);
153                         if (!sib_cpu_ci->info_list)
154                                 continue;
155
156                         sib_leaf = sib_cpu_ci->info_list + index;
157                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
158                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
159                 }
160                 of_node_put(this_leaf->of_node);
161         }
162 }
163
164 static void free_cache_attributes(unsigned int cpu)
165 {
166         if (!per_cpu_cacheinfo(cpu))
167                 return;
168
169         cache_shared_cpu_map_remove(cpu);
170
171         kfree(per_cpu_cacheinfo(cpu));
172         per_cpu_cacheinfo(cpu) = NULL;
173 }
174
175 int __weak init_cache_level(unsigned int cpu)
176 {
177         return -ENOENT;
178 }
179
180 int __weak populate_cache_leaves(unsigned int cpu)
181 {
182         return -ENOENT;
183 }
184
185 static int detect_cache_attributes(unsigned int cpu)
186 {
187         int ret;
188
189         if (init_cache_level(cpu) || !cache_leaves(cpu))
190                 return -ENOENT;
191
192         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
193                                          sizeof(struct cacheinfo), GFP_KERNEL);
194         if (per_cpu_cacheinfo(cpu) == NULL)
195                 return -ENOMEM;
196
197         ret = populate_cache_leaves(cpu);
198         if (ret)
199                 goto free_ci;
200         /*
201          * For systems using DT for cache hierarchy, of_node and shared_cpu_map
202          * will be set up here only if they are not populated already
203          */
204         ret = cache_shared_cpu_map_setup(cpu);
205         if (ret) {
206                 pr_warn("Unable to detect cache hierarchy from DT for CPU %d\n",
207                         cpu);
208                 goto free_ci;
209         }
210         return 0;
211
212 free_ci:
213         free_cache_attributes(cpu);
214         return ret;
215 }
216
217 /* pointer to cpuX/cache device */
218 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
219 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
220
221 static cpumask_t cache_dev_map;
222
223 /* pointer to array of devices for cpuX/cache/indexY */
224 static DEFINE_PER_CPU(struct device **, ci_index_dev);
225 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
226 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
227
228 #define show_one(file_name, object)                             \
229 static ssize_t file_name##_show(struct device *dev,             \
230                 struct device_attribute *attr, char *buf)       \
231 {                                                               \
232         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
233         return sprintf(buf, "%u\n", this_leaf->object);         \
234 }
235
236 show_one(level, level);
237 show_one(coherency_line_size, coherency_line_size);
238 show_one(number_of_sets, number_of_sets);
239 show_one(physical_line_partition, physical_line_partition);
240 show_one(ways_of_associativity, ways_of_associativity);
241
242 static ssize_t size_show(struct device *dev,
243                          struct device_attribute *attr, char *buf)
244 {
245         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
246
247         return sprintf(buf, "%uK\n", this_leaf->size >> 10);
248 }
249
250 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
251 {
252         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
253         const struct cpumask *mask = &this_leaf->shared_cpu_map;
254
255         return cpumap_print_to_pagebuf(list, buf, mask);
256 }
257
258 static ssize_t shared_cpu_map_show(struct device *dev,
259                                    struct device_attribute *attr, char *buf)
260 {
261         return shared_cpumap_show_func(dev, false, buf);
262 }
263
264 static ssize_t shared_cpu_list_show(struct device *dev,
265                                     struct device_attribute *attr, char *buf)
266 {
267         return shared_cpumap_show_func(dev, true, buf);
268 }
269
270 static ssize_t type_show(struct device *dev,
271                          struct device_attribute *attr, char *buf)
272 {
273         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
274
275         switch (this_leaf->type) {
276         case CACHE_TYPE_DATA:
277                 return sprintf(buf, "Data\n");
278         case CACHE_TYPE_INST:
279                 return sprintf(buf, "Instruction\n");
280         case CACHE_TYPE_UNIFIED:
281                 return sprintf(buf, "Unified\n");
282         default:
283                 return -EINVAL;
284         }
285 }
286
287 static ssize_t allocation_policy_show(struct device *dev,
288                                       struct device_attribute *attr, char *buf)
289 {
290         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
291         unsigned int ci_attr = this_leaf->attributes;
292         int n = 0;
293
294         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
295                 n = sprintf(buf, "ReadWriteAllocate\n");
296         else if (ci_attr & CACHE_READ_ALLOCATE)
297                 n = sprintf(buf, "ReadAllocate\n");
298         else if (ci_attr & CACHE_WRITE_ALLOCATE)
299                 n = sprintf(buf, "WriteAllocate\n");
300         return n;
301 }
302
303 static ssize_t write_policy_show(struct device *dev,
304                                  struct device_attribute *attr, char *buf)
305 {
306         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
307         unsigned int ci_attr = this_leaf->attributes;
308         int n = 0;
309
310         if (ci_attr & CACHE_WRITE_THROUGH)
311                 n = sprintf(buf, "WriteThrough\n");
312         else if (ci_attr & CACHE_WRITE_BACK)
313                 n = sprintf(buf, "WriteBack\n");
314         return n;
315 }
316
317 static DEVICE_ATTR_RO(level);
318 static DEVICE_ATTR_RO(type);
319 static DEVICE_ATTR_RO(coherency_line_size);
320 static DEVICE_ATTR_RO(ways_of_associativity);
321 static DEVICE_ATTR_RO(number_of_sets);
322 static DEVICE_ATTR_RO(size);
323 static DEVICE_ATTR_RO(allocation_policy);
324 static DEVICE_ATTR_RO(write_policy);
325 static DEVICE_ATTR_RO(shared_cpu_map);
326 static DEVICE_ATTR_RO(shared_cpu_list);
327 static DEVICE_ATTR_RO(physical_line_partition);
328
329 static struct attribute *cache_default_attrs[] = {
330         &dev_attr_type.attr,
331         &dev_attr_level.attr,
332         &dev_attr_shared_cpu_map.attr,
333         &dev_attr_shared_cpu_list.attr,
334         &dev_attr_coherency_line_size.attr,
335         &dev_attr_ways_of_associativity.attr,
336         &dev_attr_number_of_sets.attr,
337         &dev_attr_size.attr,
338         &dev_attr_allocation_policy.attr,
339         &dev_attr_write_policy.attr,
340         &dev_attr_physical_line_partition.attr,
341         NULL
342 };
343
344 static umode_t
345 cache_default_attrs_is_visible(struct kobject *kobj,
346                                struct attribute *attr, int unused)
347 {
348         struct device *dev = kobj_to_dev(kobj);
349         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
350         const struct cpumask *mask = &this_leaf->shared_cpu_map;
351         umode_t mode = attr->mode;
352
353         if ((attr == &dev_attr_type.attr) && this_leaf->type)
354                 return mode;
355         if ((attr == &dev_attr_level.attr) && this_leaf->level)
356                 return mode;
357         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
358                 return mode;
359         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
360                 return mode;
361         if ((attr == &dev_attr_coherency_line_size.attr) &&
362             this_leaf->coherency_line_size)
363                 return mode;
364         if ((attr == &dev_attr_ways_of_associativity.attr) &&
365             this_leaf->size) /* allow 0 = full associativity */
366                 return mode;
367         if ((attr == &dev_attr_number_of_sets.attr) &&
368             this_leaf->number_of_sets)
369                 return mode;
370         if ((attr == &dev_attr_size.attr) && this_leaf->size)
371                 return mode;
372         if ((attr == &dev_attr_write_policy.attr) &&
373             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
374                 return mode;
375         if ((attr == &dev_attr_allocation_policy.attr) &&
376             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
377                 return mode;
378         if ((attr == &dev_attr_physical_line_partition.attr) &&
379             this_leaf->physical_line_partition)
380                 return mode;
381
382         return 0;
383 }
384
385 static const struct attribute_group cache_default_group = {
386         .attrs = cache_default_attrs,
387         .is_visible = cache_default_attrs_is_visible,
388 };
389
390 static const struct attribute_group *cache_default_groups[] = {
391         &cache_default_group,
392         NULL,
393 };
394
395 static const struct attribute_group *cache_private_groups[] = {
396         &cache_default_group,
397         NULL, /* Place holder for private group */
398         NULL,
399 };
400
401 const struct attribute_group *
402 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
403 {
404         return NULL;
405 }
406
407 static const struct attribute_group **
408 cache_get_attribute_groups(struct cacheinfo *this_leaf)
409 {
410         const struct attribute_group *priv_group =
411                         cache_get_priv_group(this_leaf);
412
413         if (!priv_group)
414                 return cache_default_groups;
415
416         if (!cache_private_groups[1])
417                 cache_private_groups[1] = priv_group;
418
419         return cache_private_groups;
420 }
421
422 /* Add/Remove cache interface for CPU device */
423 static void cpu_cache_sysfs_exit(unsigned int cpu)
424 {
425         int i;
426         struct device *ci_dev;
427
428         if (per_cpu_index_dev(cpu)) {
429                 for (i = 0; i < cache_leaves(cpu); i++) {
430                         ci_dev = per_cache_index_dev(cpu, i);
431                         if (!ci_dev)
432                                 continue;
433                         device_unregister(ci_dev);
434                 }
435                 kfree(per_cpu_index_dev(cpu));
436                 per_cpu_index_dev(cpu) = NULL;
437         }
438         device_unregister(per_cpu_cache_dev(cpu));
439         per_cpu_cache_dev(cpu) = NULL;
440 }
441
442 static int cpu_cache_sysfs_init(unsigned int cpu)
443 {
444         struct device *dev = get_cpu_device(cpu);
445
446         if (per_cpu_cacheinfo(cpu) == NULL)
447                 return -ENOENT;
448
449         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
450         if (IS_ERR(per_cpu_cache_dev(cpu)))
451                 return PTR_ERR(per_cpu_cache_dev(cpu));
452
453         /* Allocate all required memory */
454         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
455                                          sizeof(struct device *), GFP_KERNEL);
456         if (unlikely(per_cpu_index_dev(cpu) == NULL))
457                 goto err_out;
458
459         return 0;
460
461 err_out:
462         cpu_cache_sysfs_exit(cpu);
463         return -ENOMEM;
464 }
465
466 static int cache_add_dev(unsigned int cpu)
467 {
468         unsigned int i;
469         int rc;
470         struct device *ci_dev, *parent;
471         struct cacheinfo *this_leaf;
472         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
473         const struct attribute_group **cache_groups;
474
475         rc = cpu_cache_sysfs_init(cpu);
476         if (unlikely(rc < 0))
477                 return rc;
478
479         parent = per_cpu_cache_dev(cpu);
480         for (i = 0; i < cache_leaves(cpu); i++) {
481                 this_leaf = this_cpu_ci->info_list + i;
482                 if (this_leaf->disable_sysfs)
483                         continue;
484                 cache_groups = cache_get_attribute_groups(this_leaf);
485                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
486                                            "index%1u", i);
487                 if (IS_ERR(ci_dev)) {
488                         rc = PTR_ERR(ci_dev);
489                         goto err;
490                 }
491                 per_cache_index_dev(cpu, i) = ci_dev;
492         }
493         cpumask_set_cpu(cpu, &cache_dev_map);
494
495         return 0;
496 err:
497         cpu_cache_sysfs_exit(cpu);
498         return rc;
499 }
500
501 static void cache_remove_dev(unsigned int cpu)
502 {
503         if (!cpumask_test_cpu(cpu, &cache_dev_map))
504                 return;
505         cpumask_clear_cpu(cpu, &cache_dev_map);
506
507         cpu_cache_sysfs_exit(cpu);
508 }
509
510 static int cacheinfo_cpu_callback(struct notifier_block *nfb,
511                                   unsigned long action, void *hcpu)
512 {
513         unsigned int cpu = (unsigned long)hcpu;
514         int rc = 0;
515
516         switch (action & ~CPU_TASKS_FROZEN) {
517         case CPU_ONLINE:
518                 rc = detect_cache_attributes(cpu);
519                 if (!rc)
520                         rc = cache_add_dev(cpu);
521                 break;
522         case CPU_DEAD:
523                 cache_remove_dev(cpu);
524                 free_cache_attributes(cpu);
525                 break;
526         }
527         return notifier_from_errno(rc);
528 }
529
530 static int __init cacheinfo_sysfs_init(void)
531 {
532         int cpu, rc = 0;
533
534         cpu_notifier_register_begin();
535
536         for_each_online_cpu(cpu) {
537                 rc = detect_cache_attributes(cpu);
538                 if (rc)
539                         goto out;
540                 rc = cache_add_dev(cpu);
541                 if (rc) {
542                         free_cache_attributes(cpu);
543                         pr_err("error populating cacheinfo..cpu%d\n", cpu);
544                         goto out;
545                 }
546         }
547         __hotcpu_notifier(cacheinfo_cpu_callback, 0);
548
549 out:
550         cpu_notifier_register_done();
551         return rc;
552 }
553
554 device_initcall(cacheinfo_sysfs_init);