MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 static void blk_mq_run_queues(struct request_queue *q);
37
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43         unsigned int i;
44
45         for (i = 0; i < hctx->ctx_map.map_size; i++)
46                 if (hctx->ctx_map.map[i].word)
47                         return true;
48
49         return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53                                               struct blk_mq_ctx *ctx)
54 {
55         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx)   \
59         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65                                      struct blk_mq_ctx *ctx)
66 {
67         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74                                       struct blk_mq_ctx *ctx)
75 {
76         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 static int blk_mq_queue_enter(struct request_queue *q)
82 {
83         while (true) {
84                 int ret;
85
86                 if (percpu_ref_tryget_live(&q->mq_usage_counter))
87                         return 0;
88
89                 ret = wait_event_interruptible(q->mq_freeze_wq,
90                                 !q->mq_freeze_depth || blk_queue_dying(q));
91                 if (blk_queue_dying(q))
92                         return -ENODEV;
93                 if (ret)
94                         return ret;
95         }
96 }
97
98 static void blk_mq_queue_exit(struct request_queue *q)
99 {
100         percpu_ref_put(&q->mq_usage_counter);
101 }
102
103 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
104 {
105         struct request_queue *q =
106                 container_of(ref, struct request_queue, mq_usage_counter);
107
108         wake_up_all(&q->mq_freeze_wq);
109 }
110
111 void blk_mq_freeze_queue_start(struct request_queue *q)
112 {
113         bool freeze;
114
115         spin_lock_irq(q->queue_lock);
116         freeze = !q->mq_freeze_depth++;
117         spin_unlock_irq(q->queue_lock);
118
119         if (freeze) {
120                 percpu_ref_kill(&q->mq_usage_counter);
121                 blk_mq_run_queues(q);
122         }
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130
131 /*
132  * Guarantee no request is in use, so we can change any data structure of
133  * the queue afterward.
134  */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137         blk_mq_freeze_queue_start(q);
138         blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144         bool wake;
145
146         spin_lock_irq(q->queue_lock);
147         wake = !--q->mq_freeze_depth;
148         WARN_ON_ONCE(q->mq_freeze_depth < 0);
149         spin_unlock_irq(q->queue_lock);
150         if (wake) {
151                 percpu_ref_reinit(&q->mq_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 void blk_mq_wake_waiters(struct request_queue *q)
158 {
159         struct blk_mq_hw_ctx *hctx;
160         unsigned int i;
161
162         queue_for_each_hw_ctx(q, hctx, i)
163                 if (blk_mq_hw_queue_mapped(hctx))
164                         blk_mq_tag_wakeup_all(hctx->tags, true);
165
166         /*
167          * If we are called because the queue has now been marked as
168          * dying, we need to ensure that processes currently waiting on
169          * the queue are notified as well.
170          */
171         wake_up_all(&q->mq_freeze_wq);
172 }
173
174 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
175 {
176         return blk_mq_has_free_tags(hctx->tags);
177 }
178 EXPORT_SYMBOL(blk_mq_can_queue);
179
180 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
181                                struct request *rq, unsigned int rw_flags)
182 {
183         if (blk_queue_io_stat(q))
184                 rw_flags |= REQ_IO_STAT;
185
186         INIT_LIST_HEAD(&rq->queuelist);
187         /* csd/requeue_work/fifo_time is initialized before use */
188         rq->q = q;
189         rq->mq_ctx = ctx;
190         rq->cmd_flags |= rw_flags;
191         /* do not touch atomic flags, it needs atomic ops against the timer */
192         rq->cpu = -1;
193         INIT_HLIST_NODE(&rq->hash);
194         RB_CLEAR_NODE(&rq->rb_node);
195         rq->rq_disk = NULL;
196         rq->part = NULL;
197         rq->start_time = jiffies;
198 #ifdef CONFIG_BLK_CGROUP
199         rq->rl = NULL;
200         set_start_time_ns(rq);
201         rq->io_start_time_ns = 0;
202 #endif
203         rq->nr_phys_segments = 0;
204 #if defined(CONFIG_BLK_DEV_INTEGRITY)
205         rq->nr_integrity_segments = 0;
206 #endif
207         rq->special = NULL;
208         /* tag was already set */
209         rq->errors = 0;
210
211         rq->cmd = rq->__cmd;
212
213         rq->extra_len = 0;
214         rq->sense_len = 0;
215         rq->resid_len = 0;
216         rq->sense = NULL;
217
218         INIT_LIST_HEAD(&rq->timeout_list);
219         rq->timeout = 0;
220
221         rq->end_io = NULL;
222         rq->end_io_data = NULL;
223         rq->next_rq = NULL;
224
225         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
226 }
227
228 static struct request *
229 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
230 {
231         struct request *rq;
232         unsigned int tag;
233
234         tag = blk_mq_get_tag(data);
235         if (tag != BLK_MQ_TAG_FAIL) {
236                 rq = data->hctx->tags->rqs[tag];
237
238                 if (blk_mq_tag_busy(data->hctx)) {
239                         rq->cmd_flags = REQ_MQ_INFLIGHT;
240                         atomic_inc(&data->hctx->nr_active);
241                 }
242
243                 rq->tag = tag;
244                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
245                 return rq;
246         }
247
248         return NULL;
249 }
250
251 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
252                 bool reserved)
253 {
254         struct blk_mq_ctx *ctx;
255         struct blk_mq_hw_ctx *hctx;
256         struct request *rq;
257         struct blk_mq_alloc_data alloc_data;
258         int ret;
259
260         ret = blk_mq_queue_enter(q);
261         if (ret)
262                 return ERR_PTR(ret);
263
264         ctx = blk_mq_get_ctx(q);
265         hctx = q->mq_ops->map_queue(q, ctx->cpu);
266         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
267                         reserved, ctx, hctx);
268
269         rq = __blk_mq_alloc_request(&alloc_data, rw);
270         if (!rq && (gfp & __GFP_WAIT)) {
271                 __blk_mq_run_hw_queue(hctx);
272                 blk_mq_put_ctx(ctx);
273
274                 ctx = blk_mq_get_ctx(q);
275                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
276                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
277                                 hctx);
278                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
279                 ctx = alloc_data.ctx;
280         }
281         blk_mq_put_ctx(ctx);
282         if (!rq) {
283                 blk_mq_queue_exit(q);
284                 return ERR_PTR(-EWOULDBLOCK);
285         }
286         return rq;
287 }
288 EXPORT_SYMBOL(blk_mq_alloc_request);
289
290 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
291                                   struct blk_mq_ctx *ctx, struct request *rq)
292 {
293         const int tag = rq->tag;
294         struct request_queue *q = rq->q;
295
296         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
297                 atomic_dec(&hctx->nr_active);
298         rq->cmd_flags = 0;
299
300         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
301         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
302         blk_mq_queue_exit(q);
303 }
304
305 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
306 {
307         struct blk_mq_ctx *ctx = rq->mq_ctx;
308
309         ctx->rq_completed[rq_is_sync(rq)]++;
310         __blk_mq_free_request(hctx, ctx, rq);
311
312 }
313 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
314
315 void blk_mq_free_request(struct request *rq)
316 {
317         struct blk_mq_hw_ctx *hctx;
318         struct request_queue *q = rq->q;
319
320         hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
321         blk_mq_free_hctx_request(hctx, rq);
322 }
323 EXPORT_SYMBOL_GPL(blk_mq_free_request);
324
325 inline void __blk_mq_end_request(struct request *rq, int error)
326 {
327         blk_account_io_done(rq);
328
329         if (rq->end_io) {
330                 rq->end_io(rq, error);
331         } else {
332                 if (unlikely(blk_bidi_rq(rq)))
333                         blk_mq_free_request(rq->next_rq);
334                 blk_mq_free_request(rq);
335         }
336 }
337 EXPORT_SYMBOL(__blk_mq_end_request);
338
339 void blk_mq_end_request(struct request *rq, int error)
340 {
341         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
342                 BUG();
343         __blk_mq_end_request(rq, error);
344 }
345 EXPORT_SYMBOL(blk_mq_end_request);
346
347 static void __blk_mq_complete_request_remote(void *data)
348 {
349         struct request *rq = data;
350
351         rq->q->softirq_done_fn(rq);
352 }
353
354 static void blk_mq_ipi_complete_request(struct request *rq)
355 {
356         struct blk_mq_ctx *ctx = rq->mq_ctx;
357         bool shared = false;
358         int cpu;
359
360         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
361                 rq->q->softirq_done_fn(rq);
362                 return;
363         }
364
365         cpu = get_cpu();
366         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
367                 shared = cpus_share_cache(cpu, ctx->cpu);
368
369         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
370                 rq->csd.func = __blk_mq_complete_request_remote;
371                 rq->csd.info = rq;
372                 rq->csd.flags = 0;
373                 smp_call_function_single_async(ctx->cpu, &rq->csd);
374         } else {
375                 rq->q->softirq_done_fn(rq);
376         }
377         put_cpu();
378 }
379
380 void __blk_mq_complete_request(struct request *rq)
381 {
382         struct request_queue *q = rq->q;
383
384         if (!q->softirq_done_fn)
385                 blk_mq_end_request(rq, rq->errors);
386         else
387                 blk_mq_ipi_complete_request(rq);
388 }
389
390 /**
391  * blk_mq_complete_request - end I/O on a request
392  * @rq:         the request being processed
393  *
394  * Description:
395  *      Ends all I/O on a request. It does not handle partial completions.
396  *      The actual completion happens out-of-order, through a IPI handler.
397  **/
398 void blk_mq_complete_request(struct request *rq)
399 {
400         struct request_queue *q = rq->q;
401
402         if (unlikely(blk_should_fake_timeout(q)))
403                 return;
404         if (!blk_mark_rq_complete(rq))
405                 __blk_mq_complete_request(rq);
406 }
407 EXPORT_SYMBOL(blk_mq_complete_request);
408
409 int blk_mq_request_started(struct request *rq)
410 {
411         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
412 }
413 EXPORT_SYMBOL_GPL(blk_mq_request_started);
414
415 void blk_mq_start_request(struct request *rq)
416 {
417         struct request_queue *q = rq->q;
418
419         trace_block_rq_issue(q, rq);
420
421         rq->resid_len = blk_rq_bytes(rq);
422         if (unlikely(blk_bidi_rq(rq)))
423                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
424
425         blk_add_timer(rq);
426
427         /*
428          * Ensure that ->deadline is visible before set the started
429          * flag and clear the completed flag.
430          */
431         smp_mb__before_atomic();
432
433         /*
434          * Mark us as started and clear complete. Complete might have been
435          * set if requeue raced with timeout, which then marked it as
436          * complete. So be sure to clear complete again when we start
437          * the request, otherwise we'll ignore the completion event.
438          */
439         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
440                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
441         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
442                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
443
444         if (q->dma_drain_size && blk_rq_bytes(rq)) {
445                 /*
446                  * Make sure space for the drain appears.  We know we can do
447                  * this because max_hw_segments has been adjusted to be one
448                  * fewer than the device can handle.
449                  */
450                 rq->nr_phys_segments++;
451         }
452 }
453 EXPORT_SYMBOL(blk_mq_start_request);
454
455 static void __blk_mq_requeue_request(struct request *rq)
456 {
457         struct request_queue *q = rq->q;
458
459         trace_block_rq_requeue(q, rq);
460
461         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
462                 if (q->dma_drain_size && blk_rq_bytes(rq))
463                         rq->nr_phys_segments--;
464         }
465 }
466
467 void blk_mq_requeue_request(struct request *rq)
468 {
469         __blk_mq_requeue_request(rq);
470
471         BUG_ON(blk_queued_rq(rq));
472         blk_mq_add_to_requeue_list(rq, true);
473 }
474 EXPORT_SYMBOL(blk_mq_requeue_request);
475
476 static void blk_mq_requeue_work(struct work_struct *work)
477 {
478         struct request_queue *q =
479                 container_of(work, struct request_queue, requeue_work);
480         LIST_HEAD(rq_list);
481         struct request *rq, *next;
482         unsigned long flags;
483
484         spin_lock_irqsave(&q->requeue_lock, flags);
485         list_splice_init(&q->requeue_list, &rq_list);
486         spin_unlock_irqrestore(&q->requeue_lock, flags);
487
488         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
489                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
490                         continue;
491
492                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
493                 list_del_init(&rq->queuelist);
494                 blk_mq_insert_request(rq, true, false, false);
495         }
496
497         while (!list_empty(&rq_list)) {
498                 rq = list_entry(rq_list.next, struct request, queuelist);
499                 list_del_init(&rq->queuelist);
500                 blk_mq_insert_request(rq, false, false, false);
501         }
502
503         /*
504          * Use the start variant of queue running here, so that running
505          * the requeue work will kick stopped queues.
506          */
507         blk_mq_start_hw_queues(q);
508 }
509
510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
511 {
512         struct request_queue *q = rq->q;
513         unsigned long flags;
514
515         /*
516          * We abuse this flag that is otherwise used by the I/O scheduler to
517          * request head insertation from the workqueue.
518          */
519         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
520
521         spin_lock_irqsave(&q->requeue_lock, flags);
522         if (at_head) {
523                 rq->cmd_flags |= REQ_SOFTBARRIER;
524                 list_add(&rq->queuelist, &q->requeue_list);
525         } else {
526                 list_add_tail(&rq->queuelist, &q->requeue_list);
527         }
528         spin_unlock_irqrestore(&q->requeue_lock, flags);
529 }
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
531
532 void blk_mq_cancel_requeue_work(struct request_queue *q)
533 {
534         cancel_work_sync(&q->requeue_work);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
537
538 void blk_mq_kick_requeue_list(struct request_queue *q)
539 {
540         kblockd_schedule_work(&q->requeue_work);
541 }
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
543
544 void blk_mq_abort_requeue_list(struct request_queue *q)
545 {
546         unsigned long flags;
547         LIST_HEAD(rq_list);
548
549         spin_lock_irqsave(&q->requeue_lock, flags);
550         list_splice_init(&q->requeue_list, &rq_list);
551         spin_unlock_irqrestore(&q->requeue_lock, flags);
552
553         while (!list_empty(&rq_list)) {
554                 struct request *rq;
555
556                 rq = list_first_entry(&rq_list, struct request, queuelist);
557                 list_del_init(&rq->queuelist);
558                 rq->errors = -EIO;
559                 blk_mq_end_request(rq, rq->errors);
560         }
561 }
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
563
564 static inline bool is_flush_request(struct request *rq,
565                 struct blk_flush_queue *fq, unsigned int tag)
566 {
567         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
568                         fq->flush_rq->tag == tag);
569 }
570
571 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
572 {
573         struct request *rq = tags->rqs[tag];
574         /* mq_ctx of flush rq is always cloned from the corresponding req */
575         struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
576
577         if (!is_flush_request(rq, fq, tag))
578                 return rq;
579
580         return fq->flush_rq;
581 }
582 EXPORT_SYMBOL(blk_mq_tag_to_rq);
583
584 struct blk_mq_timeout_data {
585         unsigned long next;
586         unsigned int next_set;
587 };
588
589 void blk_mq_rq_timed_out(struct request *req, bool reserved)
590 {
591         struct blk_mq_ops *ops = req->q->mq_ops;
592         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593
594         /*
595          * We know that complete is set at this point. If STARTED isn't set
596          * anymore, then the request isn't active and the "timeout" should
597          * just be ignored. This can happen due to the bitflag ordering.
598          * Timeout first checks if STARTED is set, and if it is, assumes
599          * the request is active. But if we race with completion, then
600          * we both flags will get cleared. So check here again, and ignore
601          * a timeout event with a request that isn't active.
602          */
603         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
604                 return;
605
606         if (ops->timeout)
607                 ret = ops->timeout(req, reserved);
608
609         switch (ret) {
610         case BLK_EH_HANDLED:
611                 __blk_mq_complete_request(req);
612                 break;
613         case BLK_EH_RESET_TIMER:
614                 blk_add_timer(req);
615                 blk_clear_rq_complete(req);
616                 break;
617         case BLK_EH_NOT_HANDLED:
618                 break;
619         default:
620                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
621                 break;
622         }
623 }
624
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
626                 struct request *rq, void *priv, bool reserved)
627 {
628         struct blk_mq_timeout_data *data = priv;
629
630         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
631                 /*
632                  * If a request wasn't started before the queue was
633                  * marked dying, kill it here or it'll go unnoticed.
634                  */
635                 if (unlikely(blk_queue_dying(rq->q))) {
636                         rq->errors = -EIO;
637                         blk_mq_complete_request(rq);
638                 }
639                 return;
640         }
641         if (rq->cmd_flags & REQ_NO_TIMEOUT)
642                 return;
643
644         if (time_after_eq(jiffies, rq->deadline)) {
645                 if (!blk_mark_rq_complete(rq))
646                         blk_mq_rq_timed_out(rq, reserved);
647         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
648                 data->next = rq->deadline;
649                 data->next_set = 1;
650         }
651 }
652
653 static void blk_mq_rq_timer(unsigned long priv)
654 {
655         struct request_queue *q = (struct request_queue *)priv;
656         struct blk_mq_timeout_data data = {
657                 .next           = 0,
658                 .next_set       = 0,
659         };
660         struct blk_mq_hw_ctx *hctx;
661         int i;
662
663         queue_for_each_hw_ctx(q, hctx, i) {
664                 /*
665                  * If not software queues are currently mapped to this
666                  * hardware queue, there's nothing to check
667                  */
668                 if (!blk_mq_hw_queue_mapped(hctx))
669                         continue;
670
671                 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
672         }
673
674         if (data.next_set) {
675                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
676                 mod_timer(&q->timeout, data.next);
677         } else {
678                 queue_for_each_hw_ctx(q, hctx, i)
679                         blk_mq_tag_idle(hctx);
680         }
681 }
682
683 /*
684  * Reverse check our software queue for entries that we could potentially
685  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
686  * too much time checking for merges.
687  */
688 static bool blk_mq_attempt_merge(struct request_queue *q,
689                                  struct blk_mq_ctx *ctx, struct bio *bio)
690 {
691         struct request *rq;
692         int checked = 8;
693
694         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
695                 int el_ret;
696
697                 if (!checked--)
698                         break;
699
700                 if (!blk_rq_merge_ok(rq, bio))
701                         continue;
702
703                 el_ret = blk_try_merge(rq, bio);
704                 if (el_ret == ELEVATOR_BACK_MERGE) {
705                         if (bio_attempt_back_merge(q, rq, bio)) {
706                                 ctx->rq_merged++;
707                                 return true;
708                         }
709                         break;
710                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
711                         if (bio_attempt_front_merge(q, rq, bio)) {
712                                 ctx->rq_merged++;
713                                 return true;
714                         }
715                         break;
716                 }
717         }
718
719         return false;
720 }
721
722 /*
723  * Process software queues that have been marked busy, splicing them
724  * to the for-dispatch
725  */
726 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
727 {
728         struct blk_mq_ctx *ctx;
729         int i;
730
731         for (i = 0; i < hctx->ctx_map.map_size; i++) {
732                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
733                 unsigned int off, bit;
734
735                 if (!bm->word)
736                         continue;
737
738                 bit = 0;
739                 off = i * hctx->ctx_map.bits_per_word;
740                 do {
741                         bit = find_next_bit(&bm->word, bm->depth, bit);
742                         if (bit >= bm->depth)
743                                 break;
744
745                         ctx = hctx->ctxs[bit + off];
746                         clear_bit(bit, &bm->word);
747                         spin_lock(&ctx->lock);
748                         list_splice_tail_init(&ctx->rq_list, list);
749                         spin_unlock(&ctx->lock);
750
751                         bit++;
752                 } while (1);
753         }
754 }
755
756 /*
757  * Run this hardware queue, pulling any software queues mapped to it in.
758  * Note that this function currently has various problems around ordering
759  * of IO. In particular, we'd like FIFO behaviour on handling existing
760  * items on the hctx->dispatch list. Ignore that for now.
761  */
762 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
763 {
764         struct request_queue *q = hctx->queue;
765         struct request *rq;
766         LIST_HEAD(rq_list);
767         LIST_HEAD(driver_list);
768         struct list_head *dptr;
769         int queued;
770
771         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
772
773         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
774                 return;
775
776         hctx->run++;
777
778         /*
779          * Touch any software queue that has pending entries.
780          */
781         flush_busy_ctxs(hctx, &rq_list);
782
783         /*
784          * If we have previous entries on our dispatch list, grab them
785          * and stuff them at the front for more fair dispatch.
786          */
787         if (!list_empty_careful(&hctx->dispatch)) {
788                 spin_lock(&hctx->lock);
789                 if (!list_empty(&hctx->dispatch))
790                         list_splice_init(&hctx->dispatch, &rq_list);
791                 spin_unlock(&hctx->lock);
792         }
793
794         /*
795          * Start off with dptr being NULL, so we start the first request
796          * immediately, even if we have more pending.
797          */
798         dptr = NULL;
799
800         /*
801          * Now process all the entries, sending them to the driver.
802          */
803         queued = 0;
804         while (!list_empty(&rq_list)) {
805                 struct blk_mq_queue_data bd;
806                 int ret;
807
808                 rq = list_first_entry(&rq_list, struct request, queuelist);
809                 list_del_init(&rq->queuelist);
810
811                 bd.rq = rq;
812                 bd.list = dptr;
813                 bd.last = list_empty(&rq_list);
814
815                 ret = q->mq_ops->queue_rq(hctx, &bd);
816                 switch (ret) {
817                 case BLK_MQ_RQ_QUEUE_OK:
818                         queued++;
819                         continue;
820                 case BLK_MQ_RQ_QUEUE_BUSY:
821                         list_add(&rq->queuelist, &rq_list);
822                         __blk_mq_requeue_request(rq);
823                         break;
824                 default:
825                         pr_err("blk-mq: bad return on queue: %d\n", ret);
826                 case BLK_MQ_RQ_QUEUE_ERROR:
827                         rq->errors = -EIO;
828                         blk_mq_end_request(rq, rq->errors);
829                         break;
830                 }
831
832                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
833                         break;
834
835                 /*
836                  * We've done the first request. If we have more than 1
837                  * left in the list, set dptr to defer issue.
838                  */
839                 if (!dptr && rq_list.next != rq_list.prev)
840                         dptr = &driver_list;
841         }
842
843         if (!queued)
844                 hctx->dispatched[0]++;
845         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
846                 hctx->dispatched[ilog2(queued) + 1]++;
847
848         /*
849          * Any items that need requeuing? Stuff them into hctx->dispatch,
850          * that is where we will continue on next queue run.
851          */
852         if (!list_empty(&rq_list)) {
853                 spin_lock(&hctx->lock);
854                 list_splice(&rq_list, &hctx->dispatch);
855                 spin_unlock(&hctx->lock);
856         }
857 }
858
859 /*
860  * It'd be great if the workqueue API had a way to pass
861  * in a mask and had some smarts for more clever placement.
862  * For now we just round-robin here, switching for every
863  * BLK_MQ_CPU_WORK_BATCH queued items.
864  */
865 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
866 {
867         if (hctx->queue->nr_hw_queues == 1)
868                 return WORK_CPU_UNBOUND;
869
870         if (--hctx->next_cpu_batch <= 0) {
871                 int cpu = hctx->next_cpu, next_cpu;
872
873                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
874                 if (next_cpu >= nr_cpu_ids)
875                         next_cpu = cpumask_first(hctx->cpumask);
876
877                 hctx->next_cpu = next_cpu;
878                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
879
880                 return cpu;
881         }
882
883         return hctx->next_cpu;
884 }
885
886 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
887 {
888         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
889             !blk_mq_hw_queue_mapped(hctx)))
890                 return;
891
892         if (!async) {
893                 int cpu = get_cpu();
894                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
895                         __blk_mq_run_hw_queue(hctx);
896                         put_cpu();
897                         return;
898                 }
899
900                 put_cpu();
901         }
902
903         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
904                         &hctx->run_work, 0);
905 }
906
907 static void blk_mq_run_queues(struct request_queue *q)
908 {
909         struct blk_mq_hw_ctx *hctx;
910         int i;
911
912         queue_for_each_hw_ctx(q, hctx, i) {
913                 if ((!blk_mq_hctx_has_pending(hctx) &&
914                     list_empty_careful(&hctx->dispatch)) ||
915                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
916                         continue;
917
918                 blk_mq_run_hw_queue(hctx, false);
919         }
920 }
921
922 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
923 {
924         cancel_delayed_work(&hctx->run_work);
925         cancel_delayed_work(&hctx->delay_work);
926         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
927 }
928 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
929
930 void blk_mq_stop_hw_queues(struct request_queue *q)
931 {
932         struct blk_mq_hw_ctx *hctx;
933         int i;
934
935         queue_for_each_hw_ctx(q, hctx, i)
936                 blk_mq_stop_hw_queue(hctx);
937 }
938 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
939
940 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
941 {
942         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
943
944         blk_mq_run_hw_queue(hctx, false);
945 }
946 EXPORT_SYMBOL(blk_mq_start_hw_queue);
947
948 void blk_mq_start_hw_queues(struct request_queue *q)
949 {
950         struct blk_mq_hw_ctx *hctx;
951         int i;
952
953         queue_for_each_hw_ctx(q, hctx, i)
954                 blk_mq_start_hw_queue(hctx);
955 }
956 EXPORT_SYMBOL(blk_mq_start_hw_queues);
957
958 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
959 {
960         struct blk_mq_hw_ctx *hctx;
961         int i;
962
963         queue_for_each_hw_ctx(q, hctx, i) {
964                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
965                         continue;
966
967                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968                 blk_mq_run_hw_queue(hctx, async);
969         }
970 }
971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
972
973 static void blk_mq_run_work_fn(struct work_struct *work)
974 {
975         struct blk_mq_hw_ctx *hctx;
976
977         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
978
979         __blk_mq_run_hw_queue(hctx);
980 }
981
982 static void blk_mq_delay_work_fn(struct work_struct *work)
983 {
984         struct blk_mq_hw_ctx *hctx;
985
986         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
987
988         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
989                 __blk_mq_run_hw_queue(hctx);
990 }
991
992 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
993 {
994         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
995                 return;
996
997         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
998                         &hctx->delay_work, msecs_to_jiffies(msecs));
999 }
1000 EXPORT_SYMBOL(blk_mq_delay_queue);
1001
1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1003                                     struct request *rq, bool at_head)
1004 {
1005         struct blk_mq_ctx *ctx = rq->mq_ctx;
1006
1007         trace_block_rq_insert(hctx->queue, rq);
1008
1009         if (at_head)
1010                 list_add(&rq->queuelist, &ctx->rq_list);
1011         else
1012                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1013
1014         blk_mq_hctx_mark_pending(hctx, ctx);
1015 }
1016
1017 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1018                 bool async)
1019 {
1020         struct request_queue *q = rq->q;
1021         struct blk_mq_hw_ctx *hctx;
1022         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1023
1024         current_ctx = blk_mq_get_ctx(q);
1025         if (!cpu_online(ctx->cpu))
1026                 rq->mq_ctx = ctx = current_ctx;
1027
1028         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1029
1030         spin_lock(&ctx->lock);
1031         __blk_mq_insert_request(hctx, rq, at_head);
1032         spin_unlock(&ctx->lock);
1033
1034         if (run_queue)
1035                 blk_mq_run_hw_queue(hctx, async);
1036
1037         blk_mq_put_ctx(current_ctx);
1038 }
1039
1040 static void blk_mq_insert_requests(struct request_queue *q,
1041                                      struct blk_mq_ctx *ctx,
1042                                      struct list_head *list,
1043                                      int depth,
1044                                      bool from_schedule)
1045
1046 {
1047         struct blk_mq_hw_ctx *hctx;
1048         struct blk_mq_ctx *current_ctx;
1049
1050         trace_block_unplug(q, depth, !from_schedule);
1051
1052         current_ctx = blk_mq_get_ctx(q);
1053
1054         if (!cpu_online(ctx->cpu))
1055                 ctx = current_ctx;
1056         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1057
1058         /*
1059          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1060          * offline now
1061          */
1062         spin_lock(&ctx->lock);
1063         while (!list_empty(list)) {
1064                 struct request *rq;
1065
1066                 rq = list_first_entry(list, struct request, queuelist);
1067                 list_del_init(&rq->queuelist);
1068                 rq->mq_ctx = ctx;
1069                 __blk_mq_insert_request(hctx, rq, false);
1070         }
1071         spin_unlock(&ctx->lock);
1072
1073         blk_mq_run_hw_queue(hctx, from_schedule);
1074         blk_mq_put_ctx(current_ctx);
1075 }
1076
1077 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1078 {
1079         struct request *rqa = container_of(a, struct request, queuelist);
1080         struct request *rqb = container_of(b, struct request, queuelist);
1081
1082         return !(rqa->mq_ctx < rqb->mq_ctx ||
1083                  (rqa->mq_ctx == rqb->mq_ctx &&
1084                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1085 }
1086
1087 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1088 {
1089         struct blk_mq_ctx *this_ctx;
1090         struct request_queue *this_q;
1091         struct request *rq;
1092         LIST_HEAD(list);
1093         LIST_HEAD(ctx_list);
1094         unsigned int depth;
1095
1096         list_splice_init(&plug->mq_list, &list);
1097
1098         list_sort(NULL, &list, plug_ctx_cmp);
1099
1100         this_q = NULL;
1101         this_ctx = NULL;
1102         depth = 0;
1103
1104         while (!list_empty(&list)) {
1105                 rq = list_entry_rq(list.next);
1106                 list_del_init(&rq->queuelist);
1107                 BUG_ON(!rq->q);
1108                 if (rq->mq_ctx != this_ctx) {
1109                         if (this_ctx) {
1110                                 blk_mq_insert_requests(this_q, this_ctx,
1111                                                         &ctx_list, depth,
1112                                                         from_schedule);
1113                         }
1114
1115                         this_ctx = rq->mq_ctx;
1116                         this_q = rq->q;
1117                         depth = 0;
1118                 }
1119
1120                 depth++;
1121                 list_add_tail(&rq->queuelist, &ctx_list);
1122         }
1123
1124         /*
1125          * If 'this_ctx' is set, we know we have entries to complete
1126          * on 'ctx_list'. Do those.
1127          */
1128         if (this_ctx) {
1129                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1130                                        from_schedule);
1131         }
1132 }
1133
1134 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1135 {
1136         init_request_from_bio(rq, bio);
1137
1138         if (blk_do_io_stat(rq))
1139                 blk_account_io_start(rq, 1);
1140 }
1141
1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1143 {
1144         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1145                 !blk_queue_nomerges(hctx->queue);
1146 }
1147
1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1149                                          struct blk_mq_ctx *ctx,
1150                                          struct request *rq, struct bio *bio)
1151 {
1152         if (!hctx_allow_merges(hctx)) {
1153                 blk_mq_bio_to_request(rq, bio);
1154                 spin_lock(&ctx->lock);
1155 insert_rq:
1156                 __blk_mq_insert_request(hctx, rq, false);
1157                 spin_unlock(&ctx->lock);
1158                 return false;
1159         } else {
1160                 struct request_queue *q = hctx->queue;
1161
1162                 spin_lock(&ctx->lock);
1163                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1164                         blk_mq_bio_to_request(rq, bio);
1165                         goto insert_rq;
1166                 }
1167
1168                 spin_unlock(&ctx->lock);
1169                 __blk_mq_free_request(hctx, ctx, rq);
1170                 return true;
1171         }
1172 }
1173
1174 struct blk_map_ctx {
1175         struct blk_mq_hw_ctx *hctx;
1176         struct blk_mq_ctx *ctx;
1177 };
1178
1179 static struct request *blk_mq_map_request(struct request_queue *q,
1180                                           struct bio *bio,
1181                                           struct blk_map_ctx *data)
1182 {
1183         struct blk_mq_hw_ctx *hctx;
1184         struct blk_mq_ctx *ctx;
1185         struct request *rq;
1186         int rw = bio_data_dir(bio);
1187         struct blk_mq_alloc_data alloc_data;
1188
1189         if (unlikely(blk_mq_queue_enter(q))) {
1190                 bio_endio(bio, -EIO);
1191                 return NULL;
1192         }
1193
1194         ctx = blk_mq_get_ctx(q);
1195         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1196
1197         if (rw_is_sync(bio->bi_rw))
1198                 rw |= REQ_SYNC;
1199
1200         trace_block_getrq(q, bio, rw);
1201         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1202                         hctx);
1203         rq = __blk_mq_alloc_request(&alloc_data, rw);
1204         if (unlikely(!rq)) {
1205                 __blk_mq_run_hw_queue(hctx);
1206                 blk_mq_put_ctx(ctx);
1207                 trace_block_sleeprq(q, bio, rw);
1208
1209                 ctx = blk_mq_get_ctx(q);
1210                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1211                 blk_mq_set_alloc_data(&alloc_data, q,
1212                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1213                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1214                 ctx = alloc_data.ctx;
1215                 hctx = alloc_data.hctx;
1216         }
1217
1218         hctx->queued++;
1219         data->hctx = hctx;
1220         data->ctx = ctx;
1221         return rq;
1222 }
1223
1224 /*
1225  * Multiple hardware queue variant. This will not use per-process plugs,
1226  * but will attempt to bypass the hctx queueing if we can go straight to
1227  * hardware for SYNC IO.
1228  */
1229 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1230 {
1231         const int is_sync = rw_is_sync(bio->bi_rw);
1232         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233         struct blk_map_ctx data;
1234         struct request *rq;
1235
1236         blk_queue_bounce(q, &bio);
1237
1238         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1239                 bio_endio(bio, -EIO);
1240                 return;
1241         }
1242
1243         rq = blk_mq_map_request(q, bio, &data);
1244         if (unlikely(!rq))
1245                 return;
1246
1247         if (unlikely(is_flush_fua)) {
1248                 blk_mq_bio_to_request(rq, bio);
1249                 blk_insert_flush(rq);
1250                 goto run_queue;
1251         }
1252
1253         /*
1254          * If the driver supports defer issued based on 'last', then
1255          * queue it up like normal since we can potentially save some
1256          * CPU this way.
1257          */
1258         if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1259                 struct blk_mq_queue_data bd = {
1260                         .rq = rq,
1261                         .list = NULL,
1262                         .last = 1
1263                 };
1264                 int ret;
1265
1266                 blk_mq_bio_to_request(rq, bio);
1267
1268                 /*
1269                  * For OK queue, we are done. For error, kill it. Any other
1270                  * error (busy), just add it to our list as we previously
1271                  * would have done
1272                  */
1273                 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1274                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1275                         goto done;
1276                 else {
1277                         __blk_mq_requeue_request(rq);
1278
1279                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1280                                 rq->errors = -EIO;
1281                                 blk_mq_end_request(rq, rq->errors);
1282                                 goto done;
1283                         }
1284                 }
1285         }
1286
1287         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1288                 /*
1289                  * For a SYNC request, send it to the hardware immediately. For
1290                  * an ASYNC request, just ensure that we run it later on. The
1291                  * latter allows for merging opportunities and more efficient
1292                  * dispatching.
1293                  */
1294 run_queue:
1295                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1296         }
1297 done:
1298         blk_mq_put_ctx(data.ctx);
1299 }
1300
1301 /*
1302  * Single hardware queue variant. This will attempt to use any per-process
1303  * plug for merging and IO deferral.
1304  */
1305 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1306 {
1307         const int is_sync = rw_is_sync(bio->bi_rw);
1308         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1309         unsigned int use_plug, request_count = 0;
1310         struct blk_map_ctx data;
1311         struct request *rq;
1312
1313         /*
1314          * If we have multiple hardware queues, just go directly to
1315          * one of those for sync IO.
1316          */
1317         use_plug = !is_flush_fua && !is_sync;
1318
1319         blk_queue_bounce(q, &bio);
1320
1321         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1322                 bio_endio(bio, -EIO);
1323                 return;
1324         }
1325
1326         if (use_plug && !blk_queue_nomerges(q) &&
1327             blk_attempt_plug_merge(q, bio, &request_count))
1328                 return;
1329
1330         rq = blk_mq_map_request(q, bio, &data);
1331         if (unlikely(!rq))
1332                 return;
1333
1334         if (unlikely(is_flush_fua)) {
1335                 blk_mq_bio_to_request(rq, bio);
1336                 blk_insert_flush(rq);
1337                 goto run_queue;
1338         }
1339
1340         /*
1341          * A task plug currently exists. Since this is completely lockless,
1342          * utilize that to temporarily store requests until the task is
1343          * either done or scheduled away.
1344          */
1345         if (use_plug) {
1346                 struct blk_plug *plug = current->plug;
1347
1348                 if (plug) {
1349                         blk_mq_bio_to_request(rq, bio);
1350                         if (list_empty(&plug->mq_list))
1351                                 trace_block_plug(q);
1352                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1353                                 blk_flush_plug_list(plug, false);
1354                                 trace_block_plug(q);
1355                         }
1356                         list_add_tail(&rq->queuelist, &plug->mq_list);
1357                         blk_mq_put_ctx(data.ctx);
1358                         return;
1359                 }
1360         }
1361
1362         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1363                 /*
1364                  * For a SYNC request, send it to the hardware immediately. For
1365                  * an ASYNC request, just ensure that we run it later on. The
1366                  * latter allows for merging opportunities and more efficient
1367                  * dispatching.
1368                  */
1369 run_queue:
1370                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1371         }
1372
1373         blk_mq_put_ctx(data.ctx);
1374 }
1375
1376 /*
1377  * Default mapping to a software queue, since we use one per CPU.
1378  */
1379 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1380 {
1381         return q->queue_hw_ctx[q->mq_map[cpu]];
1382 }
1383 EXPORT_SYMBOL(blk_mq_map_queue);
1384
1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1386                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1387 {
1388         struct page *page;
1389
1390         if (tags->rqs && set->ops->exit_request) {
1391                 int i;
1392
1393                 for (i = 0; i < tags->nr_tags; i++) {
1394                         if (!tags->rqs[i])
1395                                 continue;
1396                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1397                                                 hctx_idx, i);
1398                         tags->rqs[i] = NULL;
1399                 }
1400         }
1401
1402         while (!list_empty(&tags->page_list)) {
1403                 page = list_first_entry(&tags->page_list, struct page, lru);
1404                 list_del_init(&page->lru);
1405                 __free_pages(page, page->private);
1406         }
1407
1408         kfree(tags->rqs);
1409
1410         blk_mq_free_tags(tags);
1411 }
1412
1413 static size_t order_to_size(unsigned int order)
1414 {
1415         return (size_t)PAGE_SIZE << order;
1416 }
1417
1418 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1419                 unsigned int hctx_idx)
1420 {
1421         struct blk_mq_tags *tags;
1422         unsigned int i, j, entries_per_page, max_order = 4;
1423         size_t rq_size, left;
1424
1425         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1426                                 set->numa_node,
1427                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1428         if (!tags)
1429                 return NULL;
1430
1431         INIT_LIST_HEAD(&tags->page_list);
1432
1433         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1434                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1435                                  set->numa_node);
1436         if (!tags->rqs) {
1437                 blk_mq_free_tags(tags);
1438                 return NULL;
1439         }
1440
1441         /*
1442          * rq_size is the size of the request plus driver payload, rounded
1443          * to the cacheline size
1444          */
1445         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1446                                 cache_line_size());
1447         left = rq_size * set->queue_depth;
1448
1449         for (i = 0; i < set->queue_depth; ) {
1450                 int this_order = max_order;
1451                 struct page *page;
1452                 int to_do;
1453                 void *p;
1454
1455                 while (left < order_to_size(this_order - 1) && this_order)
1456                         this_order--;
1457
1458                 do {
1459                         page = alloc_pages_node(set->numa_node,
1460                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1461                                 this_order);
1462                         if (page)
1463                                 break;
1464                         if (!this_order--)
1465                                 break;
1466                         if (order_to_size(this_order) < rq_size)
1467                                 break;
1468                 } while (1);
1469
1470                 if (!page)
1471                         goto fail;
1472
1473                 page->private = this_order;
1474                 list_add_tail(&page->lru, &tags->page_list);
1475
1476                 p = page_address(page);
1477                 entries_per_page = order_to_size(this_order) / rq_size;
1478                 to_do = min(entries_per_page, set->queue_depth - i);
1479                 left -= to_do * rq_size;
1480                 for (j = 0; j < to_do; j++) {
1481                         tags->rqs[i] = p;
1482                         tags->rqs[i]->atomic_flags = 0;
1483                         tags->rqs[i]->cmd_flags = 0;
1484                         if (set->ops->init_request) {
1485                                 if (set->ops->init_request(set->driver_data,
1486                                                 tags->rqs[i], hctx_idx, i,
1487                                                 set->numa_node)) {
1488                                         tags->rqs[i] = NULL;
1489                                         goto fail;
1490                                 }
1491                         }
1492
1493                         p += rq_size;
1494                         i++;
1495                 }
1496         }
1497
1498         return tags;
1499
1500 fail:
1501         blk_mq_free_rq_map(set, tags, hctx_idx);
1502         return NULL;
1503 }
1504
1505 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1506 {
1507         kfree(bitmap->map);
1508 }
1509
1510 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1511 {
1512         unsigned int bpw = 8, total, num_maps, i;
1513
1514         bitmap->bits_per_word = bpw;
1515
1516         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1517         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1518                                         GFP_KERNEL, node);
1519         if (!bitmap->map)
1520                 return -ENOMEM;
1521
1522         bitmap->map_size = num_maps;
1523
1524         total = nr_cpu_ids;
1525         for (i = 0; i < num_maps; i++) {
1526                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1527                 total -= bitmap->map[i].depth;
1528         }
1529
1530         return 0;
1531 }
1532
1533 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1534 {
1535         struct request_queue *q = hctx->queue;
1536         struct blk_mq_ctx *ctx;
1537         LIST_HEAD(tmp);
1538
1539         /*
1540          * Move ctx entries to new CPU, if this one is going away.
1541          */
1542         ctx = __blk_mq_get_ctx(q, cpu);
1543
1544         spin_lock(&ctx->lock);
1545         if (!list_empty(&ctx->rq_list)) {
1546                 list_splice_init(&ctx->rq_list, &tmp);
1547                 blk_mq_hctx_clear_pending(hctx, ctx);
1548         }
1549         spin_unlock(&ctx->lock);
1550
1551         if (list_empty(&tmp))
1552                 return NOTIFY_OK;
1553
1554         ctx = blk_mq_get_ctx(q);
1555         spin_lock(&ctx->lock);
1556
1557         while (!list_empty(&tmp)) {
1558                 struct request *rq;
1559
1560                 rq = list_first_entry(&tmp, struct request, queuelist);
1561                 rq->mq_ctx = ctx;
1562                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1563         }
1564
1565         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1566         blk_mq_hctx_mark_pending(hctx, ctx);
1567
1568         spin_unlock(&ctx->lock);
1569
1570         blk_mq_run_hw_queue(hctx, true);
1571         blk_mq_put_ctx(ctx);
1572         return NOTIFY_OK;
1573 }
1574
1575 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1576 {
1577         struct request_queue *q = hctx->queue;
1578         struct blk_mq_tag_set *set = q->tag_set;
1579
1580         if (set->tags[hctx->queue_num])
1581                 return NOTIFY_OK;
1582
1583         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1584         if (!set->tags[hctx->queue_num])
1585                 return NOTIFY_STOP;
1586
1587         hctx->tags = set->tags[hctx->queue_num];
1588         return NOTIFY_OK;
1589 }
1590
1591 static int blk_mq_hctx_notify(void *data, unsigned long action,
1592                               unsigned int cpu)
1593 {
1594         struct blk_mq_hw_ctx *hctx = data;
1595
1596         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1597                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1598         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1599                 return blk_mq_hctx_cpu_online(hctx, cpu);
1600
1601         return NOTIFY_OK;
1602 }
1603
1604 static void blk_mq_exit_hctx(struct request_queue *q,
1605                 struct blk_mq_tag_set *set,
1606                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1607 {
1608         unsigned flush_start_tag = set->queue_depth;
1609
1610         blk_mq_tag_idle(hctx);
1611
1612         if (set->ops->exit_request)
1613                 set->ops->exit_request(set->driver_data,
1614                                        hctx->fq->flush_rq, hctx_idx,
1615                                        flush_start_tag + hctx_idx);
1616
1617         if (set->ops->exit_hctx)
1618                 set->ops->exit_hctx(hctx, hctx_idx);
1619
1620         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1621         blk_free_flush_queue(hctx->fq);
1622         kfree(hctx->ctxs);
1623         blk_mq_free_bitmap(&hctx->ctx_map);
1624 }
1625
1626 static void blk_mq_exit_hw_queues(struct request_queue *q,
1627                 struct blk_mq_tag_set *set, int nr_queue)
1628 {
1629         struct blk_mq_hw_ctx *hctx;
1630         unsigned int i;
1631
1632         queue_for_each_hw_ctx(q, hctx, i) {
1633                 if (i == nr_queue)
1634                         break;
1635                 blk_mq_exit_hctx(q, set, hctx, i);
1636         }
1637 }
1638
1639 static void blk_mq_free_hw_queues(struct request_queue *q,
1640                 struct blk_mq_tag_set *set)
1641 {
1642         struct blk_mq_hw_ctx *hctx;
1643         unsigned int i;
1644
1645         queue_for_each_hw_ctx(q, hctx, i)
1646                 free_cpumask_var(hctx->cpumask);
1647 }
1648
1649 static int blk_mq_init_hctx(struct request_queue *q,
1650                 struct blk_mq_tag_set *set,
1651                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1652 {
1653         int node;
1654         unsigned flush_start_tag = set->queue_depth;
1655
1656         node = hctx->numa_node;
1657         if (node == NUMA_NO_NODE)
1658                 node = hctx->numa_node = set->numa_node;
1659
1660         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1661         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1662         spin_lock_init(&hctx->lock);
1663         INIT_LIST_HEAD(&hctx->dispatch);
1664         hctx->queue = q;
1665         hctx->queue_num = hctx_idx;
1666         hctx->flags = set->flags;
1667
1668         blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1669                                         blk_mq_hctx_notify, hctx);
1670         blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1671
1672         hctx->tags = set->tags[hctx_idx];
1673
1674         /*
1675          * Allocate space for all possible cpus to avoid allocation at
1676          * runtime
1677          */
1678         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1679                                         GFP_KERNEL, node);
1680         if (!hctx->ctxs)
1681                 goto unregister_cpu_notifier;
1682
1683         if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1684                 goto free_ctxs;
1685
1686         hctx->nr_ctx = 0;
1687
1688         if (set->ops->init_hctx &&
1689             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1690                 goto free_bitmap;
1691
1692         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1693         if (!hctx->fq)
1694                 goto exit_hctx;
1695
1696         if (set->ops->init_request &&
1697             set->ops->init_request(set->driver_data,
1698                                    hctx->fq->flush_rq, hctx_idx,
1699                                    flush_start_tag + hctx_idx, node))
1700                 goto free_fq;
1701
1702         return 0;
1703
1704  free_fq:
1705         kfree(hctx->fq);
1706  exit_hctx:
1707         if (set->ops->exit_hctx)
1708                 set->ops->exit_hctx(hctx, hctx_idx);
1709  free_bitmap:
1710         blk_mq_free_bitmap(&hctx->ctx_map);
1711  free_ctxs:
1712         kfree(hctx->ctxs);
1713  unregister_cpu_notifier:
1714         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1715
1716         return -1;
1717 }
1718
1719 static int blk_mq_init_hw_queues(struct request_queue *q,
1720                 struct blk_mq_tag_set *set)
1721 {
1722         struct blk_mq_hw_ctx *hctx;
1723         unsigned int i;
1724
1725         /*
1726          * Initialize hardware queues
1727          */
1728         queue_for_each_hw_ctx(q, hctx, i) {
1729                 if (blk_mq_init_hctx(q, set, hctx, i))
1730                         break;
1731         }
1732
1733         if (i == q->nr_hw_queues)
1734                 return 0;
1735
1736         /*
1737          * Init failed
1738          */
1739         blk_mq_exit_hw_queues(q, set, i);
1740
1741         return 1;
1742 }
1743
1744 static void blk_mq_init_cpu_queues(struct request_queue *q,
1745                                    unsigned int nr_hw_queues)
1746 {
1747         unsigned int i;
1748
1749         for_each_possible_cpu(i) {
1750                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1751                 struct blk_mq_hw_ctx *hctx;
1752
1753                 memset(__ctx, 0, sizeof(*__ctx));
1754                 __ctx->cpu = i;
1755                 spin_lock_init(&__ctx->lock);
1756                 INIT_LIST_HEAD(&__ctx->rq_list);
1757                 __ctx->queue = q;
1758
1759                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1760                 if (!cpu_online(i))
1761                         continue;
1762
1763                 hctx = q->mq_ops->map_queue(q, i);
1764                 cpumask_set_cpu(i, hctx->cpumask);
1765                 hctx->nr_ctx++;
1766
1767                 /*
1768                  * Set local node, IFF we have more than one hw queue. If
1769                  * not, we remain on the home node of the device
1770                  */
1771                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1772                         hctx->numa_node = cpu_to_node(i);
1773         }
1774 }
1775
1776 static void blk_mq_map_swqueue(struct request_queue *q)
1777 {
1778         unsigned int i;
1779         struct blk_mq_hw_ctx *hctx;
1780         struct blk_mq_ctx *ctx;
1781
1782         queue_for_each_hw_ctx(q, hctx, i) {
1783                 cpumask_clear(hctx->cpumask);
1784                 hctx->nr_ctx = 0;
1785         }
1786
1787         /*
1788          * Map software to hardware queues
1789          */
1790         queue_for_each_ctx(q, ctx, i) {
1791                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1792                 if (!cpu_online(i))
1793                         continue;
1794
1795                 hctx = q->mq_ops->map_queue(q, i);
1796                 cpumask_set_cpu(i, hctx->cpumask);
1797                 ctx->index_hw = hctx->nr_ctx;
1798                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1799         }
1800
1801         queue_for_each_hw_ctx(q, hctx, i) {
1802                 /*
1803                  * If no software queues are mapped to this hardware queue,
1804                  * disable it and free the request entries.
1805                  */
1806                 if (!hctx->nr_ctx) {
1807                         struct blk_mq_tag_set *set = q->tag_set;
1808
1809                         if (set->tags[i]) {
1810                                 blk_mq_free_rq_map(set, set->tags[i], i);
1811                                 set->tags[i] = NULL;
1812                                 hctx->tags = NULL;
1813                         }
1814                         continue;
1815                 }
1816
1817                 /*
1818                  * Initialize batch roundrobin counts
1819                  */
1820                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1821                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1822         }
1823 }
1824
1825 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1826 {
1827         struct blk_mq_hw_ctx *hctx;
1828         struct request_queue *q;
1829         bool shared;
1830         int i;
1831
1832         if (set->tag_list.next == set->tag_list.prev)
1833                 shared = false;
1834         else
1835                 shared = true;
1836
1837         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1838                 blk_mq_freeze_queue(q);
1839
1840                 queue_for_each_hw_ctx(q, hctx, i) {
1841                         if (shared)
1842                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1843                         else
1844                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1845                 }
1846                 blk_mq_unfreeze_queue(q);
1847         }
1848 }
1849
1850 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1851 {
1852         struct blk_mq_tag_set *set = q->tag_set;
1853
1854         mutex_lock(&set->tag_list_lock);
1855         list_del_init(&q->tag_set_list);
1856         blk_mq_update_tag_set_depth(set);
1857         mutex_unlock(&set->tag_list_lock);
1858 }
1859
1860 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1861                                      struct request_queue *q)
1862 {
1863         q->tag_set = set;
1864
1865         mutex_lock(&set->tag_list_lock);
1866         list_add_tail(&q->tag_set_list, &set->tag_list);
1867         blk_mq_update_tag_set_depth(set);
1868         mutex_unlock(&set->tag_list_lock);
1869 }
1870
1871 /*
1872  * It is the actual release handler for mq, but we do it from
1873  * request queue's release handler for avoiding use-after-free
1874  * and headache because q->mq_kobj shouldn't have been introduced,
1875  * but we can't group ctx/kctx kobj without it.
1876  */
1877 void blk_mq_release(struct request_queue *q)
1878 {
1879         struct blk_mq_hw_ctx *hctx;
1880         unsigned int i;
1881
1882         /* hctx kobj stays in hctx */
1883         queue_for_each_hw_ctx(q, hctx, i)
1884                 kfree(hctx);
1885
1886         kfree(q->queue_hw_ctx);
1887
1888         /* ctx kobj stays in queue_ctx */
1889         free_percpu(q->queue_ctx);
1890 }
1891
1892 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1893 {
1894         struct blk_mq_hw_ctx **hctxs;
1895         struct blk_mq_ctx __percpu *ctx;
1896         struct request_queue *q;
1897         unsigned int *map;
1898         int i;
1899
1900         ctx = alloc_percpu(struct blk_mq_ctx);
1901         if (!ctx)
1902                 return ERR_PTR(-ENOMEM);
1903
1904         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1905                         set->numa_node);
1906
1907         if (!hctxs)
1908                 goto err_percpu;
1909
1910         map = blk_mq_make_queue_map(set);
1911         if (!map)
1912                 goto err_map;
1913
1914         for (i = 0; i < set->nr_hw_queues; i++) {
1915                 int node = blk_mq_hw_queue_to_node(map, i);
1916
1917                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1918                                         GFP_KERNEL, node);
1919                 if (!hctxs[i])
1920                         goto err_hctxs;
1921
1922                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1923                                                 node))
1924                         goto err_hctxs;
1925
1926                 atomic_set(&hctxs[i]->nr_active, 0);
1927                 hctxs[i]->numa_node = node;
1928                 hctxs[i]->queue_num = i;
1929         }
1930
1931         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1932         if (!q)
1933                 goto err_hctxs;
1934
1935         /*
1936          * Init percpu_ref in atomic mode so that it's faster to shutdown.
1937          * See blk_register_queue() for details.
1938          */
1939         if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1940                             PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1941                 goto err_map;
1942
1943         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1944         blk_queue_rq_timeout(q, 30000);
1945
1946         q->nr_queues = nr_cpu_ids;
1947         q->nr_hw_queues = set->nr_hw_queues;
1948         q->mq_map = map;
1949
1950         q->queue_ctx = ctx;
1951         q->queue_hw_ctx = hctxs;
1952
1953         q->mq_ops = set->ops;
1954         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1955
1956         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1957                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1958
1959         q->sg_reserved_size = INT_MAX;
1960
1961         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1962         INIT_LIST_HEAD(&q->requeue_list);
1963         spin_lock_init(&q->requeue_lock);
1964
1965         if (q->nr_hw_queues > 1)
1966                 blk_queue_make_request(q, blk_mq_make_request);
1967         else
1968                 blk_queue_make_request(q, blk_sq_make_request);
1969
1970         if (set->timeout)
1971                 blk_queue_rq_timeout(q, set->timeout);
1972
1973         /*
1974          * Do this after blk_queue_make_request() overrides it...
1975          */
1976         q->nr_requests = set->queue_depth;
1977
1978         if (set->ops->complete)
1979                 blk_queue_softirq_done(q, set->ops->complete);
1980
1981         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1982
1983         if (blk_mq_init_hw_queues(q, set))
1984                 goto err_hw;
1985
1986         mutex_lock(&all_q_mutex);
1987         list_add_tail(&q->all_q_node, &all_q_list);
1988         mutex_unlock(&all_q_mutex);
1989
1990         blk_mq_add_queue_tag_set(set, q);
1991
1992         blk_mq_map_swqueue(q);
1993
1994         return q;
1995
1996 err_hw:
1997         blk_cleanup_queue(q);
1998 err_hctxs:
1999         kfree(map);
2000         for (i = 0; i < set->nr_hw_queues; i++) {
2001                 if (!hctxs[i])
2002                         break;
2003                 free_cpumask_var(hctxs[i]->cpumask);
2004                 kfree(hctxs[i]);
2005         }
2006 err_map:
2007         kfree(hctxs);
2008 err_percpu:
2009         free_percpu(ctx);
2010         return ERR_PTR(-ENOMEM);
2011 }
2012 EXPORT_SYMBOL(blk_mq_init_queue);
2013
2014 void blk_mq_free_queue(struct request_queue *q)
2015 {
2016         struct blk_mq_tag_set   *set = q->tag_set;
2017
2018         blk_mq_del_queue_tag_set(q);
2019
2020         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2021         blk_mq_free_hw_queues(q, set);
2022
2023         percpu_ref_exit(&q->mq_usage_counter);
2024
2025         kfree(q->mq_map);
2026
2027         q->mq_map = NULL;
2028
2029         mutex_lock(&all_q_mutex);
2030         list_del_init(&q->all_q_node);
2031         mutex_unlock(&all_q_mutex);
2032 }
2033
2034 /* Basically redo blk_mq_init_queue with queue frozen */
2035 static void blk_mq_queue_reinit(struct request_queue *q)
2036 {
2037         WARN_ON_ONCE(!q->mq_freeze_depth);
2038
2039         blk_mq_sysfs_unregister(q);
2040
2041         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2042
2043         /*
2044          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2045          * we should change hctx numa_node according to new topology (this
2046          * involves free and re-allocate memory, worthy doing?)
2047          */
2048
2049         blk_mq_map_swqueue(q);
2050
2051         blk_mq_sysfs_register(q);
2052 }
2053
2054 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2055                                       unsigned long action, void *hcpu)
2056 {
2057         struct request_queue *q;
2058
2059         /*
2060          * Before new mappings are established, hotadded cpu might already
2061          * start handling requests. This doesn't break anything as we map
2062          * offline CPUs to first hardware queue. We will re-init the queue
2063          * below to get optimal settings.
2064          */
2065         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2066             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2067                 return NOTIFY_OK;
2068
2069         mutex_lock(&all_q_mutex);
2070
2071         /*
2072          * We need to freeze and reinit all existing queues.  Freezing
2073          * involves synchronous wait for an RCU grace period and doing it
2074          * one by one may take a long time.  Start freezing all queues in
2075          * one swoop and then wait for the completions so that freezing can
2076          * take place in parallel.
2077          */
2078         list_for_each_entry(q, &all_q_list, all_q_node)
2079                 blk_mq_freeze_queue_start(q);
2080         list_for_each_entry(q, &all_q_list, all_q_node)
2081                 blk_mq_freeze_queue_wait(q);
2082
2083         list_for_each_entry(q, &all_q_list, all_q_node)
2084                 blk_mq_queue_reinit(q);
2085
2086         list_for_each_entry(q, &all_q_list, all_q_node)
2087                 blk_mq_unfreeze_queue(q);
2088
2089         mutex_unlock(&all_q_mutex);
2090         return NOTIFY_OK;
2091 }
2092
2093 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2094 {
2095         int i;
2096
2097         for (i = 0; i < set->nr_hw_queues; i++) {
2098                 set->tags[i] = blk_mq_init_rq_map(set, i);
2099                 if (!set->tags[i])
2100                         goto out_unwind;
2101         }
2102
2103         return 0;
2104
2105 out_unwind:
2106         while (--i >= 0)
2107                 blk_mq_free_rq_map(set, set->tags[i], i);
2108
2109         return -ENOMEM;
2110 }
2111
2112 /*
2113  * Allocate the request maps associated with this tag_set. Note that this
2114  * may reduce the depth asked for, if memory is tight. set->queue_depth
2115  * will be updated to reflect the allocated depth.
2116  */
2117 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2118 {
2119         unsigned int depth;
2120         int err;
2121
2122         depth = set->queue_depth;
2123         do {
2124                 err = __blk_mq_alloc_rq_maps(set);
2125                 if (!err)
2126                         break;
2127
2128                 set->queue_depth >>= 1;
2129                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2130                         err = -ENOMEM;
2131                         break;
2132                 }
2133         } while (set->queue_depth);
2134
2135         if (!set->queue_depth || err) {
2136                 pr_err("blk-mq: failed to allocate request map\n");
2137                 return -ENOMEM;
2138         }
2139
2140         if (depth != set->queue_depth)
2141                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2142                                                 depth, set->queue_depth);
2143
2144         return 0;
2145 }
2146
2147 /*
2148  * Alloc a tag set to be associated with one or more request queues.
2149  * May fail with EINVAL for various error conditions. May adjust the
2150  * requested depth down, if if it too large. In that case, the set
2151  * value will be stored in set->queue_depth.
2152  */
2153 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2154 {
2155         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2156
2157         if (!set->nr_hw_queues)
2158                 return -EINVAL;
2159         if (!set->queue_depth)
2160                 return -EINVAL;
2161         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2162                 return -EINVAL;
2163
2164         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2165                 return -EINVAL;
2166
2167         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2168                 pr_info("blk-mq: reduced tag depth to %u\n",
2169                         BLK_MQ_MAX_DEPTH);
2170                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2171         }
2172
2173         /*
2174          * If a crashdump is active, then we are potentially in a very
2175          * memory constrained environment. Limit us to 1 queue and
2176          * 64 tags to prevent using too much memory.
2177          */
2178         if (is_kdump_kernel()) {
2179                 set->nr_hw_queues = 1;
2180                 set->queue_depth = min(64U, set->queue_depth);
2181         }
2182
2183         set->tags = kmalloc_node(set->nr_hw_queues *
2184                                  sizeof(struct blk_mq_tags *),
2185                                  GFP_KERNEL, set->numa_node);
2186         if (!set->tags)
2187                 return -ENOMEM;
2188
2189         if (blk_mq_alloc_rq_maps(set))
2190                 goto enomem;
2191
2192         mutex_init(&set->tag_list_lock);
2193         INIT_LIST_HEAD(&set->tag_list);
2194
2195         return 0;
2196 enomem:
2197         kfree(set->tags);
2198         set->tags = NULL;
2199         return -ENOMEM;
2200 }
2201 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2202
2203 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2204 {
2205         int i;
2206
2207         for (i = 0; i < set->nr_hw_queues; i++) {
2208                 if (set->tags[i])
2209                         blk_mq_free_rq_map(set, set->tags[i], i);
2210         }
2211
2212         kfree(set->tags);
2213         set->tags = NULL;
2214 }
2215 EXPORT_SYMBOL(blk_mq_free_tag_set);
2216
2217 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2218 {
2219         struct blk_mq_tag_set *set = q->tag_set;
2220         struct blk_mq_hw_ctx *hctx;
2221         int i, ret;
2222
2223         if (!set || nr > set->queue_depth)
2224                 return -EINVAL;
2225
2226         ret = 0;
2227         queue_for_each_hw_ctx(q, hctx, i) {
2228                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2229                 if (ret)
2230                         break;
2231         }
2232
2233         if (!ret)
2234                 q->nr_requests = nr;
2235
2236         return ret;
2237 }
2238
2239 void blk_mq_disable_hotplug(void)
2240 {
2241         mutex_lock(&all_q_mutex);
2242 }
2243
2244 void blk_mq_enable_hotplug(void)
2245 {
2246         mutex_unlock(&all_q_mutex);
2247 }
2248
2249 static int __init blk_mq_init(void)
2250 {
2251         blk_mq_cpu_init();
2252
2253         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2254
2255         return 0;
2256 }
2257 subsys_initcall(blk_mq_init);