Merge remote-tracking branches 'asoc/fix/adsp', 'asoc/fix/arizona', 'asoc/fix/atmel...
[linux-drm-fsl-dcu.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53
54 #define EFI_DEBUG       1
55
56 #define EFI_MIN_RESERVE 5120
57
58 #define EFI_DUMMY_GUID \
59         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62
63 struct efi_memory_map memmap;
64
65 static struct efi efi_phys __initdata;
66 static efi_system_table_t efi_systab __initdata;
67
68 unsigned long x86_efi_facility;
69
70 static __initdata efi_config_table_type_t arch_tables[] = {
71 #ifdef CONFIG_X86_UV
72         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
73 #endif
74         {NULL_GUID, NULL, NULL},
75 };
76
77 /*
78  * Returns 1 if 'facility' is enabled, 0 otherwise.
79  */
80 int efi_enabled(int facility)
81 {
82         return test_bit(facility, &x86_efi_facility) != 0;
83 }
84 EXPORT_SYMBOL(efi_enabled);
85
86 static bool __initdata disable_runtime = false;
87 static int __init setup_noefi(char *arg)
88 {
89         disable_runtime = true;
90         return 0;
91 }
92 early_param("noefi", setup_noefi);
93
94 int add_efi_memmap;
95 EXPORT_SYMBOL(add_efi_memmap);
96
97 static int __init setup_add_efi_memmap(char *arg)
98 {
99         add_efi_memmap = 1;
100         return 0;
101 }
102 early_param("add_efi_memmap", setup_add_efi_memmap);
103
104 static bool efi_no_storage_paranoia;
105
106 static int __init setup_storage_paranoia(char *arg)
107 {
108         efi_no_storage_paranoia = true;
109         return 0;
110 }
111 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
112
113
114 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
115 {
116         unsigned long flags;
117         efi_status_t status;
118
119         spin_lock_irqsave(&rtc_lock, flags);
120         status = efi_call_virt2(get_time, tm, tc);
121         spin_unlock_irqrestore(&rtc_lock, flags);
122         return status;
123 }
124
125 static efi_status_t virt_efi_set_time(efi_time_t *tm)
126 {
127         unsigned long flags;
128         efi_status_t status;
129
130         spin_lock_irqsave(&rtc_lock, flags);
131         status = efi_call_virt1(set_time, tm);
132         spin_unlock_irqrestore(&rtc_lock, flags);
133         return status;
134 }
135
136 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
137                                              efi_bool_t *pending,
138                                              efi_time_t *tm)
139 {
140         unsigned long flags;
141         efi_status_t status;
142
143         spin_lock_irqsave(&rtc_lock, flags);
144         status = efi_call_virt3(get_wakeup_time,
145                                 enabled, pending, tm);
146         spin_unlock_irqrestore(&rtc_lock, flags);
147         return status;
148 }
149
150 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
151 {
152         unsigned long flags;
153         efi_status_t status;
154
155         spin_lock_irqsave(&rtc_lock, flags);
156         status = efi_call_virt2(set_wakeup_time,
157                                 enabled, tm);
158         spin_unlock_irqrestore(&rtc_lock, flags);
159         return status;
160 }
161
162 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
163                                           efi_guid_t *vendor,
164                                           u32 *attr,
165                                           unsigned long *data_size,
166                                           void *data)
167 {
168         return efi_call_virt5(get_variable,
169                               name, vendor, attr,
170                               data_size, data);
171 }
172
173 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
174                                                efi_char16_t *name,
175                                                efi_guid_t *vendor)
176 {
177         return efi_call_virt3(get_next_variable,
178                               name_size, name, vendor);
179 }
180
181 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
182                                           efi_guid_t *vendor,
183                                           u32 attr,
184                                           unsigned long data_size,
185                                           void *data)
186 {
187         return efi_call_virt5(set_variable,
188                               name, vendor, attr,
189                               data_size, data);
190 }
191
192 static efi_status_t virt_efi_query_variable_info(u32 attr,
193                                                  u64 *storage_space,
194                                                  u64 *remaining_space,
195                                                  u64 *max_variable_size)
196 {
197         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
198                 return EFI_UNSUPPORTED;
199
200         return efi_call_virt4(query_variable_info, attr, storage_space,
201                               remaining_space, max_variable_size);
202 }
203
204 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
205 {
206         return efi_call_virt1(get_next_high_mono_count, count);
207 }
208
209 static void virt_efi_reset_system(int reset_type,
210                                   efi_status_t status,
211                                   unsigned long data_size,
212                                   efi_char16_t *data)
213 {
214         efi_call_virt4(reset_system, reset_type, status,
215                        data_size, data);
216 }
217
218 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
219                                             unsigned long count,
220                                             unsigned long sg_list)
221 {
222         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
223                 return EFI_UNSUPPORTED;
224
225         return efi_call_virt3(update_capsule, capsules, count, sg_list);
226 }
227
228 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
229                                                 unsigned long count,
230                                                 u64 *max_size,
231                                                 int *reset_type)
232 {
233         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
234                 return EFI_UNSUPPORTED;
235
236         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
237                               reset_type);
238 }
239
240 static efi_status_t __init phys_efi_set_virtual_address_map(
241         unsigned long memory_map_size,
242         unsigned long descriptor_size,
243         u32 descriptor_version,
244         efi_memory_desc_t *virtual_map)
245 {
246         efi_status_t status;
247
248         efi_call_phys_prelog();
249         status = efi_call_phys4(efi_phys.set_virtual_address_map,
250                                 memory_map_size, descriptor_size,
251                                 descriptor_version, virtual_map);
252         efi_call_phys_epilog();
253         return status;
254 }
255
256 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
257                                              efi_time_cap_t *tc)
258 {
259         unsigned long flags;
260         efi_status_t status;
261
262         spin_lock_irqsave(&rtc_lock, flags);
263         efi_call_phys_prelog();
264         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
265                                 virt_to_phys(tc));
266         efi_call_phys_epilog();
267         spin_unlock_irqrestore(&rtc_lock, flags);
268         return status;
269 }
270
271 int efi_set_rtc_mmss(const struct timespec *now)
272 {
273         unsigned long nowtime = now->tv_sec;
274         efi_status_t    status;
275         efi_time_t      eft;
276         efi_time_cap_t  cap;
277         struct rtc_time tm;
278
279         status = efi.get_time(&eft, &cap);
280         if (status != EFI_SUCCESS) {
281                 pr_err("Oops: efitime: can't read time!\n");
282                 return -1;
283         }
284
285         rtc_time_to_tm(nowtime, &tm);
286         if (!rtc_valid_tm(&tm)) {
287                 eft.year = tm.tm_year + 1900;
288                 eft.month = tm.tm_mon + 1;
289                 eft.day = tm.tm_mday;
290                 eft.minute = tm.tm_min;
291                 eft.second = tm.tm_sec;
292                 eft.nanosecond = 0;
293         } else {
294                 printk(KERN_ERR
295                        "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
296                        __FUNCTION__, nowtime);
297                 return -1;
298         }
299
300         status = efi.set_time(&eft);
301         if (status != EFI_SUCCESS) {
302                 pr_err("Oops: efitime: can't write time!\n");
303                 return -1;
304         }
305         return 0;
306 }
307
308 void efi_get_time(struct timespec *now)
309 {
310         efi_status_t status;
311         efi_time_t eft;
312         efi_time_cap_t cap;
313
314         status = efi.get_time(&eft, &cap);
315         if (status != EFI_SUCCESS)
316                 pr_err("Oops: efitime: can't read time!\n");
317
318         now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
319                              eft.minute, eft.second);
320         now->tv_nsec = 0;
321 }
322
323 /*
324  * Tell the kernel about the EFI memory map.  This might include
325  * more than the max 128 entries that can fit in the e820 legacy
326  * (zeropage) memory map.
327  */
328
329 static void __init do_add_efi_memmap(void)
330 {
331         void *p;
332
333         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
334                 efi_memory_desc_t *md = p;
335                 unsigned long long start = md->phys_addr;
336                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
337                 int e820_type;
338
339                 switch (md->type) {
340                 case EFI_LOADER_CODE:
341                 case EFI_LOADER_DATA:
342                 case EFI_BOOT_SERVICES_CODE:
343                 case EFI_BOOT_SERVICES_DATA:
344                 case EFI_CONVENTIONAL_MEMORY:
345                         if (md->attribute & EFI_MEMORY_WB)
346                                 e820_type = E820_RAM;
347                         else
348                                 e820_type = E820_RESERVED;
349                         break;
350                 case EFI_ACPI_RECLAIM_MEMORY:
351                         e820_type = E820_ACPI;
352                         break;
353                 case EFI_ACPI_MEMORY_NVS:
354                         e820_type = E820_NVS;
355                         break;
356                 case EFI_UNUSABLE_MEMORY:
357                         e820_type = E820_UNUSABLE;
358                         break;
359                 default:
360                         /*
361                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
362                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
363                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
364                          */
365                         e820_type = E820_RESERVED;
366                         break;
367                 }
368                 e820_add_region(start, size, e820_type);
369         }
370         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
371 }
372
373 int __init efi_memblock_x86_reserve_range(void)
374 {
375         struct efi_info *e = &boot_params.efi_info;
376         unsigned long pmap;
377
378 #ifdef CONFIG_X86_32
379         /* Can't handle data above 4GB at this time */
380         if (e->efi_memmap_hi) {
381                 pr_err("Memory map is above 4GB, disabling EFI.\n");
382                 return -EINVAL;
383         }
384         pmap =  e->efi_memmap;
385 #else
386         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
387 #endif
388         memmap.phys_map         = (void *)pmap;
389         memmap.nr_map           = e->efi_memmap_size /
390                                   e->efi_memdesc_size;
391         memmap.desc_size        = e->efi_memdesc_size;
392         memmap.desc_version     = e->efi_memdesc_version;
393
394         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
395
396         efi.memmap = &memmap;
397
398         return 0;
399 }
400
401 #if EFI_DEBUG
402 static void __init print_efi_memmap(void)
403 {
404         efi_memory_desc_t *md;
405         void *p;
406         int i;
407
408         for (p = memmap.map, i = 0;
409              p < memmap.map_end;
410              p += memmap.desc_size, i++) {
411                 md = p;
412                 pr_info("mem%02u: type=%u, attr=0x%llx, "
413                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
414                         i, md->type, md->attribute, md->phys_addr,
415                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
416                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
417         }
418 }
419 #endif  /*  EFI_DEBUG  */
420
421 void __init efi_reserve_boot_services(void)
422 {
423         void *p;
424
425         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
426                 efi_memory_desc_t *md = p;
427                 u64 start = md->phys_addr;
428                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
429
430                 if (md->type != EFI_BOOT_SERVICES_CODE &&
431                     md->type != EFI_BOOT_SERVICES_DATA)
432                         continue;
433                 /* Only reserve where possible:
434                  * - Not within any already allocated areas
435                  * - Not over any memory area (really needed, if above?)
436                  * - Not within any part of the kernel
437                  * - Not the bios reserved area
438                 */
439                 if ((start+size >= __pa_symbol(_text)
440                                 && start <= __pa_symbol(_end)) ||
441                         !e820_all_mapped(start, start+size, E820_RAM) ||
442                         memblock_is_region_reserved(start, size)) {
443                         /* Could not reserve, skip it */
444                         md->num_pages = 0;
445                         memblock_dbg("Could not reserve boot range "
446                                         "[0x%010llx-0x%010llx]\n",
447                                                 start, start+size-1);
448                 } else
449                         memblock_reserve(start, size);
450         }
451 }
452
453 void __init efi_unmap_memmap(void)
454 {
455         clear_bit(EFI_MEMMAP, &x86_efi_facility);
456         if (memmap.map) {
457                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
458                 memmap.map = NULL;
459         }
460 }
461
462 void __init efi_free_boot_services(void)
463 {
464         void *p;
465
466         if (!efi_is_native())
467                 return;
468
469         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
470                 efi_memory_desc_t *md = p;
471                 unsigned long long start = md->phys_addr;
472                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
473
474                 if (md->type != EFI_BOOT_SERVICES_CODE &&
475                     md->type != EFI_BOOT_SERVICES_DATA)
476                         continue;
477
478                 /* Could not reserve boot area */
479                 if (!size)
480                         continue;
481
482                 free_bootmem_late(start, size);
483         }
484
485         efi_unmap_memmap();
486 }
487
488 static int __init efi_systab_init(void *phys)
489 {
490         if (efi_enabled(EFI_64BIT)) {
491                 efi_system_table_64_t *systab64;
492                 u64 tmp = 0;
493
494                 systab64 = early_ioremap((unsigned long)phys,
495                                          sizeof(*systab64));
496                 if (systab64 == NULL) {
497                         pr_err("Couldn't map the system table!\n");
498                         return -ENOMEM;
499                 }
500
501                 efi_systab.hdr = systab64->hdr;
502                 efi_systab.fw_vendor = systab64->fw_vendor;
503                 tmp |= systab64->fw_vendor;
504                 efi_systab.fw_revision = systab64->fw_revision;
505                 efi_systab.con_in_handle = systab64->con_in_handle;
506                 tmp |= systab64->con_in_handle;
507                 efi_systab.con_in = systab64->con_in;
508                 tmp |= systab64->con_in;
509                 efi_systab.con_out_handle = systab64->con_out_handle;
510                 tmp |= systab64->con_out_handle;
511                 efi_systab.con_out = systab64->con_out;
512                 tmp |= systab64->con_out;
513                 efi_systab.stderr_handle = systab64->stderr_handle;
514                 tmp |= systab64->stderr_handle;
515                 efi_systab.stderr = systab64->stderr;
516                 tmp |= systab64->stderr;
517                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
518                 tmp |= systab64->runtime;
519                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
520                 tmp |= systab64->boottime;
521                 efi_systab.nr_tables = systab64->nr_tables;
522                 efi_systab.tables = systab64->tables;
523                 tmp |= systab64->tables;
524
525                 early_iounmap(systab64, sizeof(*systab64));
526 #ifdef CONFIG_X86_32
527                 if (tmp >> 32) {
528                         pr_err("EFI data located above 4GB, disabling EFI.\n");
529                         return -EINVAL;
530                 }
531 #endif
532         } else {
533                 efi_system_table_32_t *systab32;
534
535                 systab32 = early_ioremap((unsigned long)phys,
536                                          sizeof(*systab32));
537                 if (systab32 == NULL) {
538                         pr_err("Couldn't map the system table!\n");
539                         return -ENOMEM;
540                 }
541
542                 efi_systab.hdr = systab32->hdr;
543                 efi_systab.fw_vendor = systab32->fw_vendor;
544                 efi_systab.fw_revision = systab32->fw_revision;
545                 efi_systab.con_in_handle = systab32->con_in_handle;
546                 efi_systab.con_in = systab32->con_in;
547                 efi_systab.con_out_handle = systab32->con_out_handle;
548                 efi_systab.con_out = systab32->con_out;
549                 efi_systab.stderr_handle = systab32->stderr_handle;
550                 efi_systab.stderr = systab32->stderr;
551                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
552                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
553                 efi_systab.nr_tables = systab32->nr_tables;
554                 efi_systab.tables = systab32->tables;
555
556                 early_iounmap(systab32, sizeof(*systab32));
557         }
558
559         efi.systab = &efi_systab;
560
561         /*
562          * Verify the EFI Table
563          */
564         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
565                 pr_err("System table signature incorrect!\n");
566                 return -EINVAL;
567         }
568         if ((efi.systab->hdr.revision >> 16) == 0)
569                 pr_err("Warning: System table version "
570                        "%d.%02d, expected 1.00 or greater!\n",
571                        efi.systab->hdr.revision >> 16,
572                        efi.systab->hdr.revision & 0xffff);
573
574         return 0;
575 }
576
577 static int __init efi_runtime_init(void)
578 {
579         efi_runtime_services_t *runtime;
580
581         /*
582          * Check out the runtime services table. We need to map
583          * the runtime services table so that we can grab the physical
584          * address of several of the EFI runtime functions, needed to
585          * set the firmware into virtual mode.
586          */
587         runtime = early_ioremap((unsigned long)efi.systab->runtime,
588                                 sizeof(efi_runtime_services_t));
589         if (!runtime) {
590                 pr_err("Could not map the runtime service table!\n");
591                 return -ENOMEM;
592         }
593         /*
594          * We will only need *early* access to the following
595          * two EFI runtime services before set_virtual_address_map
596          * is invoked.
597          */
598         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
599         efi_phys.set_virtual_address_map =
600                 (efi_set_virtual_address_map_t *)
601                 runtime->set_virtual_address_map;
602         /*
603          * Make efi_get_time can be called before entering
604          * virtual mode.
605          */
606         efi.get_time = phys_efi_get_time;
607         early_iounmap(runtime, sizeof(efi_runtime_services_t));
608
609         return 0;
610 }
611
612 static int __init efi_memmap_init(void)
613 {
614         /* Map the EFI memory map */
615         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
616                                    memmap.nr_map * memmap.desc_size);
617         if (memmap.map == NULL) {
618                 pr_err("Could not map the memory map!\n");
619                 return -ENOMEM;
620         }
621         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
622
623         if (add_efi_memmap)
624                 do_add_efi_memmap();
625
626         return 0;
627 }
628
629 void __init efi_init(void)
630 {
631         efi_char16_t *c16;
632         char vendor[100] = "unknown";
633         int i = 0;
634         void *tmp;
635
636 #ifdef CONFIG_X86_32
637         if (boot_params.efi_info.efi_systab_hi ||
638             boot_params.efi_info.efi_memmap_hi) {
639                 pr_info("Table located above 4GB, disabling EFI.\n");
640                 return;
641         }
642         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
643 #else
644         efi_phys.systab = (efi_system_table_t *)
645                           (boot_params.efi_info.efi_systab |
646                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
647 #endif
648
649         if (efi_systab_init(efi_phys.systab))
650                 return;
651
652         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
653
654         /*
655          * Show what we know for posterity
656          */
657         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
658         if (c16) {
659                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
660                         vendor[i] = *c16++;
661                 vendor[i] = '\0';
662         } else
663                 pr_err("Could not map the firmware vendor!\n");
664         early_iounmap(tmp, 2);
665
666         pr_info("EFI v%u.%.02u by %s\n",
667                 efi.systab->hdr.revision >> 16,
668                 efi.systab->hdr.revision & 0xffff, vendor);
669
670         if (efi_config_init(arch_tables))
671                 return;
672
673         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
674
675         /*
676          * Note: We currently don't support runtime services on an EFI
677          * that doesn't match the kernel 32/64-bit mode.
678          */
679
680         if (!efi_is_native())
681                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
682         else {
683                 if (disable_runtime || efi_runtime_init())
684                         return;
685                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
686         }
687
688         if (efi_memmap_init())
689                 return;
690
691         set_bit(EFI_MEMMAP, &x86_efi_facility);
692
693 #if EFI_DEBUG
694         print_efi_memmap();
695 #endif
696 }
697
698 void __init efi_late_init(void)
699 {
700         efi_bgrt_init();
701 }
702
703 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
704 {
705         u64 addr, npages;
706
707         addr = md->virt_addr;
708         npages = md->num_pages;
709
710         memrange_efi_to_native(&addr, &npages);
711
712         if (executable)
713                 set_memory_x(addr, npages);
714         else
715                 set_memory_nx(addr, npages);
716 }
717
718 static void __init runtime_code_page_mkexec(void)
719 {
720         efi_memory_desc_t *md;
721         void *p;
722
723         /* Make EFI runtime service code area executable */
724         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
725                 md = p;
726
727                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
728                         continue;
729
730                 efi_set_executable(md, true);
731         }
732 }
733
734 void efi_memory_uc(u64 addr, unsigned long size)
735 {
736         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
737         u64 npages;
738
739         npages = round_up(size, page_shift) / page_shift;
740         memrange_efi_to_native(&addr, &npages);
741         set_memory_uc(addr, npages);
742 }
743
744 /*
745  * This function will switch the EFI runtime services to virtual mode.
746  * Essentially, look through the EFI memmap and map every region that
747  * has the runtime attribute bit set in its memory descriptor and update
748  * that memory descriptor with the virtual address obtained from ioremap().
749  * This enables the runtime services to be called without having to
750  * thunk back into physical mode for every invocation.
751  */
752 void __init efi_enter_virtual_mode(void)
753 {
754         efi_memory_desc_t *md, *prev_md = NULL;
755         efi_status_t status;
756         unsigned long size;
757         u64 end, systab, start_pfn, end_pfn;
758         void *p, *va, *new_memmap = NULL;
759         int count = 0;
760
761         efi.systab = NULL;
762
763         /*
764          * We don't do virtual mode, since we don't do runtime services, on
765          * non-native EFI
766          */
767
768         if (!efi_is_native()) {
769                 efi_unmap_memmap();
770                 return;
771         }
772
773         /* Merge contiguous regions of the same type and attribute */
774         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
775                 u64 prev_size;
776                 md = p;
777
778                 if (!prev_md) {
779                         prev_md = md;
780                         continue;
781                 }
782
783                 if (prev_md->type != md->type ||
784                     prev_md->attribute != md->attribute) {
785                         prev_md = md;
786                         continue;
787                 }
788
789                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
790
791                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
792                         prev_md->num_pages += md->num_pages;
793                         md->type = EFI_RESERVED_TYPE;
794                         md->attribute = 0;
795                         continue;
796                 }
797                 prev_md = md;
798         }
799
800         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
801                 md = p;
802                 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
803 #ifdef CONFIG_X86_64
804                         if (md->type != EFI_BOOT_SERVICES_CODE &&
805                             md->type != EFI_BOOT_SERVICES_DATA)
806 #endif
807                                 continue;
808                 }
809
810                 size = md->num_pages << EFI_PAGE_SHIFT;
811                 end = md->phys_addr + size;
812
813                 start_pfn = PFN_DOWN(md->phys_addr);
814                 end_pfn = PFN_UP(end);
815                 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
816                         va = __va(md->phys_addr);
817
818                         if (!(md->attribute & EFI_MEMORY_WB))
819                                 efi_memory_uc((u64)(unsigned long)va, size);
820                 } else
821                         va = efi_ioremap(md->phys_addr, size,
822                                          md->type, md->attribute);
823
824                 md->virt_addr = (u64) (unsigned long) va;
825
826                 if (!va) {
827                         pr_err("ioremap of 0x%llX failed!\n",
828                                (unsigned long long)md->phys_addr);
829                         continue;
830                 }
831
832                 systab = (u64) (unsigned long) efi_phys.systab;
833                 if (md->phys_addr <= systab && systab < end) {
834                         systab += md->virt_addr - md->phys_addr;
835                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
836                 }
837                 new_memmap = krealloc(new_memmap,
838                                       (count + 1) * memmap.desc_size,
839                                       GFP_KERNEL);
840                 memcpy(new_memmap + (count * memmap.desc_size), md,
841                        memmap.desc_size);
842                 count++;
843         }
844
845         BUG_ON(!efi.systab);
846
847         status = phys_efi_set_virtual_address_map(
848                 memmap.desc_size * count,
849                 memmap.desc_size,
850                 memmap.desc_version,
851                 (efi_memory_desc_t *)__pa(new_memmap));
852
853         if (status != EFI_SUCCESS) {
854                 pr_alert("Unable to switch EFI into virtual mode "
855                          "(status=%lx)!\n", status);
856                 panic("EFI call to SetVirtualAddressMap() failed!");
857         }
858
859         /*
860          * Now that EFI is in virtual mode, update the function
861          * pointers in the runtime service table to the new virtual addresses.
862          *
863          * Call EFI services through wrapper functions.
864          */
865         efi.runtime_version = efi_systab.hdr.revision;
866         efi.get_time = virt_efi_get_time;
867         efi.set_time = virt_efi_set_time;
868         efi.get_wakeup_time = virt_efi_get_wakeup_time;
869         efi.set_wakeup_time = virt_efi_set_wakeup_time;
870         efi.get_variable = virt_efi_get_variable;
871         efi.get_next_variable = virt_efi_get_next_variable;
872         efi.set_variable = virt_efi_set_variable;
873         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
874         efi.reset_system = virt_efi_reset_system;
875         efi.set_virtual_address_map = NULL;
876         efi.query_variable_info = virt_efi_query_variable_info;
877         efi.update_capsule = virt_efi_update_capsule;
878         efi.query_capsule_caps = virt_efi_query_capsule_caps;
879         if (__supported_pte_mask & _PAGE_NX)
880                 runtime_code_page_mkexec();
881
882         kfree(new_memmap);
883
884         /* clean DUMMY object */
885         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
886                          EFI_VARIABLE_NON_VOLATILE |
887                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
888                          EFI_VARIABLE_RUNTIME_ACCESS,
889                          0, NULL);
890 }
891
892 /*
893  * Convenience functions to obtain memory types and attributes
894  */
895 u32 efi_mem_type(unsigned long phys_addr)
896 {
897         efi_memory_desc_t *md;
898         void *p;
899
900         if (!efi_enabled(EFI_MEMMAP))
901                 return 0;
902
903         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
904                 md = p;
905                 if ((md->phys_addr <= phys_addr) &&
906                     (phys_addr < (md->phys_addr +
907                                   (md->num_pages << EFI_PAGE_SHIFT))))
908                         return md->type;
909         }
910         return 0;
911 }
912
913 u64 efi_mem_attributes(unsigned long phys_addr)
914 {
915         efi_memory_desc_t *md;
916         void *p;
917
918         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
919                 md = p;
920                 if ((md->phys_addr <= phys_addr) &&
921                     (phys_addr < (md->phys_addr +
922                                   (md->num_pages << EFI_PAGE_SHIFT))))
923                         return md->attribute;
924         }
925         return 0;
926 }
927
928 /*
929  * Some firmware has serious problems when using more than 50% of the EFI
930  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
931  * we never use more than this safe limit.
932  *
933  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
934  * store.
935  */
936 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
937 {
938         efi_status_t status;
939         u64 storage_size, remaining_size, max_size;
940
941         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
942                 return 0;
943
944         status = efi.query_variable_info(attributes, &storage_size,
945                                          &remaining_size, &max_size);
946         if (status != EFI_SUCCESS)
947                 return status;
948
949         /*
950          * Some firmware implementations refuse to boot if there's insufficient
951          * space in the variable store. We account for that by refusing the
952          * write if permitting it would reduce the available space to under
953          * 5KB. This figure was provided by Samsung, so should be safe.
954          */
955         if ((remaining_size - size < EFI_MIN_RESERVE) &&
956                 !efi_no_storage_paranoia) {
957
958                 /*
959                  * Triggering garbage collection may require that the firmware
960                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
961                  * that by attempting to use more space than is available.
962                  */
963                 unsigned long dummy_size = remaining_size + 1024;
964                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
965
966                 if (!dummy)
967                         return EFI_OUT_OF_RESOURCES;
968
969                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
970                                           EFI_VARIABLE_NON_VOLATILE |
971                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
972                                           EFI_VARIABLE_RUNTIME_ACCESS,
973                                           dummy_size, dummy);
974
975                 if (status == EFI_SUCCESS) {
976                         /*
977                          * This should have failed, so if it didn't make sure
978                          * that we delete it...
979                          */
980                         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
981                                          EFI_VARIABLE_NON_VOLATILE |
982                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
983                                          EFI_VARIABLE_RUNTIME_ACCESS,
984                                          0, dummy);
985                 }
986
987                 kfree(dummy);
988
989                 /*
990                  * The runtime code may now have triggered a garbage collection
991                  * run, so check the variable info again
992                  */
993                 status = efi.query_variable_info(attributes, &storage_size,
994                                                  &remaining_size, &max_size);
995
996                 if (status != EFI_SUCCESS)
997                         return status;
998
999                 /*
1000                  * There still isn't enough room, so return an error
1001                  */
1002                 if (remaining_size - size < EFI_MIN_RESERVE)
1003                         return EFI_OUT_OF_RESOURCES;
1004         }
1005
1006         return EFI_SUCCESS;
1007 }
1008 EXPORT_SYMBOL_GPL(efi_query_variable_store);