Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/fpu/internal.h>
44 #include <asm/perf_event.h>
45 #include <asm/debugreg.h>
46 #include <asm/kexec.h>
47 #include <asm/apic.h>
48
49 #include "trace.h"
50 #include "pmu.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_VMX),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76                         enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96  * If nested=1, nested virtualization is supported, i.e., guests may use
97  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98  * use VMX instructions.
99  */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON                                            \
111         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS                                      \
113         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
114          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125  * ple_gap:    upper bound on the amount of time between two successive
126  *             executions of PAUSE in a loop. Also indicate if ple enabled.
127  *             According to test, this time is usually smaller than 128 cycles.
128  * ple_window: upper bound on the amount of time a guest is allowed to execute
129  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
130  *             less than 2^12 cycles
131  * Time is measured based on a counter that runs at the same rate as the TSC,
132  * refer SDM volume 3b section 21.6.13 & 22.1.3.
133  */
134 #define KVM_VMX_DEFAULT_PLE_GAP           128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
139                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166         u32 revision_id;
167         u32 abort;
168         char data[0];
169 };
170
171 /*
172  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174  * loaded on this CPU (so we can clear them if the CPU goes down).
175  */
176 struct loaded_vmcs {
177         struct vmcs *vmcs;
178         int cpu;
179         int launched;
180         struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184         unsigned index;
185         u64 data;
186         u64 mask;
187 };
188
189 /*
190  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195  * More than one of these structures may exist, if L1 runs multiple L2 guests.
196  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197  * underlying hardware which will be used to run L2.
198  * This structure is packed to ensure that its layout is identical across
199  * machines (necessary for live migration).
200  * If there are changes in this struct, VMCS12_REVISION must be changed.
201  */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204         /* According to the Intel spec, a VMCS region must start with the
205          * following two fields. Then follow implementation-specific data.
206          */
207         u32 revision_id;
208         u32 abort;
209
210         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211         u32 padding[7]; /* room for future expansion */
212
213         u64 io_bitmap_a;
214         u64 io_bitmap_b;
215         u64 msr_bitmap;
216         u64 vm_exit_msr_store_addr;
217         u64 vm_exit_msr_load_addr;
218         u64 vm_entry_msr_load_addr;
219         u64 tsc_offset;
220         u64 virtual_apic_page_addr;
221         u64 apic_access_addr;
222         u64 posted_intr_desc_addr;
223         u64 ept_pointer;
224         u64 eoi_exit_bitmap0;
225         u64 eoi_exit_bitmap1;
226         u64 eoi_exit_bitmap2;
227         u64 eoi_exit_bitmap3;
228         u64 xss_exit_bitmap;
229         u64 guest_physical_address;
230         u64 vmcs_link_pointer;
231         u64 guest_ia32_debugctl;
232         u64 guest_ia32_pat;
233         u64 guest_ia32_efer;
234         u64 guest_ia32_perf_global_ctrl;
235         u64 guest_pdptr0;
236         u64 guest_pdptr1;
237         u64 guest_pdptr2;
238         u64 guest_pdptr3;
239         u64 guest_bndcfgs;
240         u64 host_ia32_pat;
241         u64 host_ia32_efer;
242         u64 host_ia32_perf_global_ctrl;
243         u64 padding64[8]; /* room for future expansion */
244         /*
245          * To allow migration of L1 (complete with its L2 guests) between
246          * machines of different natural widths (32 or 64 bit), we cannot have
247          * unsigned long fields with no explict size. We use u64 (aliased
248          * natural_width) instead. Luckily, x86 is little-endian.
249          */
250         natural_width cr0_guest_host_mask;
251         natural_width cr4_guest_host_mask;
252         natural_width cr0_read_shadow;
253         natural_width cr4_read_shadow;
254         natural_width cr3_target_value0;
255         natural_width cr3_target_value1;
256         natural_width cr3_target_value2;
257         natural_width cr3_target_value3;
258         natural_width exit_qualification;
259         natural_width guest_linear_address;
260         natural_width guest_cr0;
261         natural_width guest_cr3;
262         natural_width guest_cr4;
263         natural_width guest_es_base;
264         natural_width guest_cs_base;
265         natural_width guest_ss_base;
266         natural_width guest_ds_base;
267         natural_width guest_fs_base;
268         natural_width guest_gs_base;
269         natural_width guest_ldtr_base;
270         natural_width guest_tr_base;
271         natural_width guest_gdtr_base;
272         natural_width guest_idtr_base;
273         natural_width guest_dr7;
274         natural_width guest_rsp;
275         natural_width guest_rip;
276         natural_width guest_rflags;
277         natural_width guest_pending_dbg_exceptions;
278         natural_width guest_sysenter_esp;
279         natural_width guest_sysenter_eip;
280         natural_width host_cr0;
281         natural_width host_cr3;
282         natural_width host_cr4;
283         natural_width host_fs_base;
284         natural_width host_gs_base;
285         natural_width host_tr_base;
286         natural_width host_gdtr_base;
287         natural_width host_idtr_base;
288         natural_width host_ia32_sysenter_esp;
289         natural_width host_ia32_sysenter_eip;
290         natural_width host_rsp;
291         natural_width host_rip;
292         natural_width paddingl[8]; /* room for future expansion */
293         u32 pin_based_vm_exec_control;
294         u32 cpu_based_vm_exec_control;
295         u32 exception_bitmap;
296         u32 page_fault_error_code_mask;
297         u32 page_fault_error_code_match;
298         u32 cr3_target_count;
299         u32 vm_exit_controls;
300         u32 vm_exit_msr_store_count;
301         u32 vm_exit_msr_load_count;
302         u32 vm_entry_controls;
303         u32 vm_entry_msr_load_count;
304         u32 vm_entry_intr_info_field;
305         u32 vm_entry_exception_error_code;
306         u32 vm_entry_instruction_len;
307         u32 tpr_threshold;
308         u32 secondary_vm_exec_control;
309         u32 vm_instruction_error;
310         u32 vm_exit_reason;
311         u32 vm_exit_intr_info;
312         u32 vm_exit_intr_error_code;
313         u32 idt_vectoring_info_field;
314         u32 idt_vectoring_error_code;
315         u32 vm_exit_instruction_len;
316         u32 vmx_instruction_info;
317         u32 guest_es_limit;
318         u32 guest_cs_limit;
319         u32 guest_ss_limit;
320         u32 guest_ds_limit;
321         u32 guest_fs_limit;
322         u32 guest_gs_limit;
323         u32 guest_ldtr_limit;
324         u32 guest_tr_limit;
325         u32 guest_gdtr_limit;
326         u32 guest_idtr_limit;
327         u32 guest_es_ar_bytes;
328         u32 guest_cs_ar_bytes;
329         u32 guest_ss_ar_bytes;
330         u32 guest_ds_ar_bytes;
331         u32 guest_fs_ar_bytes;
332         u32 guest_gs_ar_bytes;
333         u32 guest_ldtr_ar_bytes;
334         u32 guest_tr_ar_bytes;
335         u32 guest_interruptibility_info;
336         u32 guest_activity_state;
337         u32 guest_sysenter_cs;
338         u32 host_ia32_sysenter_cs;
339         u32 vmx_preemption_timer_value;
340         u32 padding32[7]; /* room for future expansion */
341         u16 virtual_processor_id;
342         u16 posted_intr_nv;
343         u16 guest_es_selector;
344         u16 guest_cs_selector;
345         u16 guest_ss_selector;
346         u16 guest_ds_selector;
347         u16 guest_fs_selector;
348         u16 guest_gs_selector;
349         u16 guest_ldtr_selector;
350         u16 guest_tr_selector;
351         u16 guest_intr_status;
352         u16 host_es_selector;
353         u16 host_cs_selector;
354         u16 host_ss_selector;
355         u16 host_ds_selector;
356         u16 host_fs_selector;
357         u16 host_gs_selector;
358         u16 host_tr_selector;
359 };
360
361 /*
362  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365  */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371  * current implementation, 4K are reserved to avoid future complications.
372  */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377         struct list_head list;
378         gpa_t vmptr;
379         struct loaded_vmcs vmcs02;
380 };
381
382 /*
383  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385  */
386 struct nested_vmx {
387         /* Has the level1 guest done vmxon? */
388         bool vmxon;
389         gpa_t vmxon_ptr;
390
391         /* The guest-physical address of the current VMCS L1 keeps for L2 */
392         gpa_t current_vmptr;
393         /* The host-usable pointer to the above */
394         struct page *current_vmcs12_page;
395         struct vmcs12 *current_vmcs12;
396         struct vmcs *current_shadow_vmcs;
397         /*
398          * Indicates if the shadow vmcs must be updated with the
399          * data hold by vmcs12
400          */
401         bool sync_shadow_vmcs;
402
403         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404         struct list_head vmcs02_pool;
405         int vmcs02_num;
406         u64 vmcs01_tsc_offset;
407         /* L2 must run next, and mustn't decide to exit to L1. */
408         bool nested_run_pending;
409         /*
410          * Guest pages referred to in vmcs02 with host-physical pointers, so
411          * we must keep them pinned while L2 runs.
412          */
413         struct page *apic_access_page;
414         struct page *virtual_apic_page;
415         struct page *pi_desc_page;
416         struct pi_desc *pi_desc;
417         bool pi_pending;
418         u16 posted_intr_nv;
419         u64 msr_ia32_feature_control;
420
421         struct hrtimer preemption_timer;
422         bool preemption_timer_expired;
423
424         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425         u64 vmcs01_debugctl;
426
427         u32 nested_vmx_procbased_ctls_low;
428         u32 nested_vmx_procbased_ctls_high;
429         u32 nested_vmx_true_procbased_ctls_low;
430         u32 nested_vmx_secondary_ctls_low;
431         u32 nested_vmx_secondary_ctls_high;
432         u32 nested_vmx_pinbased_ctls_low;
433         u32 nested_vmx_pinbased_ctls_high;
434         u32 nested_vmx_exit_ctls_low;
435         u32 nested_vmx_exit_ctls_high;
436         u32 nested_vmx_true_exit_ctls_low;
437         u32 nested_vmx_entry_ctls_low;
438         u32 nested_vmx_entry_ctls_high;
439         u32 nested_vmx_true_entry_ctls_low;
440         u32 nested_vmx_misc_low;
441         u32 nested_vmx_misc_high;
442         u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON  0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448         u32 pir[8];     /* Posted interrupt requested */
449         u32 control;    /* bit 0 of control is outstanding notification bit */
450         u32 rsvd[7];
451 } __aligned(64);
452
453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455         return test_and_set_bit(POSTED_INTR_ON,
456                         (unsigned long *)&pi_desc->control);
457 }
458
459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461         return test_and_clear_bit(POSTED_INTR_ON,
462                         (unsigned long *)&pi_desc->control);
463 }
464
465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471         struct kvm_vcpu       vcpu;
472         unsigned long         host_rsp;
473         u8                    fail;
474         bool                  nmi_known_unmasked;
475         u32                   exit_intr_info;
476         u32                   idt_vectoring_info;
477         ulong                 rflags;
478         struct shared_msr_entry *guest_msrs;
479         int                   nmsrs;
480         int                   save_nmsrs;
481         unsigned long         host_idt_base;
482 #ifdef CONFIG_X86_64
483         u64                   msr_host_kernel_gs_base;
484         u64                   msr_guest_kernel_gs_base;
485 #endif
486         u32 vm_entry_controls_shadow;
487         u32 vm_exit_controls_shadow;
488         /*
489          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490          * non-nested (L1) guest, it always points to vmcs01. For a nested
491          * guest (L2), it points to a different VMCS.
492          */
493         struct loaded_vmcs    vmcs01;
494         struct loaded_vmcs   *loaded_vmcs;
495         bool                  __launched; /* temporary, used in vmx_vcpu_run */
496         struct msr_autoload {
497                 unsigned nr;
498                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500         } msr_autoload;
501         struct {
502                 int           loaded;
503                 u16           fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505                 u16           ds_sel, es_sel;
506 #endif
507                 int           gs_ldt_reload_needed;
508                 int           fs_reload_needed;
509                 u64           msr_host_bndcfgs;
510                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
511         } host_state;
512         struct {
513                 int vm86_active;
514                 ulong save_rflags;
515                 struct kvm_segment segs[8];
516         } rmode;
517         struct {
518                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519                 struct kvm_save_segment {
520                         u16 selector;
521                         unsigned long base;
522                         u32 limit;
523                         u32 ar;
524                 } seg[8];
525         } segment_cache;
526         int vpid;
527         bool emulation_required;
528
529         /* Support for vnmi-less CPUs */
530         int soft_vnmi_blocked;
531         ktime_t entry_time;
532         s64 vnmi_blocked_time;
533         u32 exit_reason;
534
535         bool rdtscp_enabled;
536
537         /* Posted interrupt descriptor */
538         struct pi_desc pi_desc;
539
540         /* Support for a guest hypervisor (nested VMX) */
541         struct nested_vmx nested;
542
543         /* Dynamic PLE window. */
544         int ple_window;
545         bool ple_window_dirty;
546
547         /* Support for PML */
548 #define PML_ENTITY_NUM          512
549         struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553         SEG_FIELD_SEL = 0,
554         SEG_FIELD_BASE = 1,
555         SEG_FIELD_LIMIT = 2,
556         SEG_FIELD_AR = 3,
557
558         SEG_FIELD_NR = 4
559 };
560
561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563         return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
569                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573         /*
574          * We do NOT shadow fields that are modified when L0
575          * traps and emulates any vmx instruction (e.g. VMPTRLD,
576          * VMXON...) executed by L1.
577          * For example, VM_INSTRUCTION_ERROR is read
578          * by L1 if a vmx instruction fails (part of the error path).
579          * Note the code assumes this logic. If for some reason
580          * we start shadowing these fields then we need to
581          * force a shadow sync when L0 emulates vmx instructions
582          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583          * by nested_vmx_failValid)
584          */
585         VM_EXIT_REASON,
586         VM_EXIT_INTR_INFO,
587         VM_EXIT_INSTRUCTION_LEN,
588         IDT_VECTORING_INFO_FIELD,
589         IDT_VECTORING_ERROR_CODE,
590         VM_EXIT_INTR_ERROR_CODE,
591         EXIT_QUALIFICATION,
592         GUEST_LINEAR_ADDRESS,
593         GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596         ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599         TPR_THRESHOLD,
600         GUEST_RIP,
601         GUEST_RSP,
602         GUEST_CR0,
603         GUEST_CR3,
604         GUEST_CR4,
605         GUEST_INTERRUPTIBILITY_INFO,
606         GUEST_RFLAGS,
607         GUEST_CS_SELECTOR,
608         GUEST_CS_AR_BYTES,
609         GUEST_CS_LIMIT,
610         GUEST_CS_BASE,
611         GUEST_ES_BASE,
612         GUEST_BNDCFGS,
613         CR0_GUEST_HOST_MASK,
614         CR0_READ_SHADOW,
615         CR4_READ_SHADOW,
616         TSC_OFFSET,
617         EXCEPTION_BITMAP,
618         CPU_BASED_VM_EXEC_CONTROL,
619         VM_ENTRY_EXCEPTION_ERROR_CODE,
620         VM_ENTRY_INTR_INFO_FIELD,
621         VM_ENTRY_INSTRUCTION_LEN,
622         VM_ENTRY_EXCEPTION_ERROR_CODE,
623         HOST_FS_BASE,
624         HOST_GS_BASE,
625         HOST_FS_SELECTOR,
626         HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629         ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633         FIELD(POSTED_INTR_NV, posted_intr_nv),
634         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642         FIELD(GUEST_INTR_STATUS, guest_intr_status),
643         FIELD(HOST_ES_SELECTOR, host_es_selector),
644         FIELD(HOST_CS_SELECTOR, host_cs_selector),
645         FIELD(HOST_SS_SELECTOR, host_ss_selector),
646         FIELD(HOST_DS_SELECTOR, host_ds_selector),
647         FIELD(HOST_FS_SELECTOR, host_fs_selector),
648         FIELD(HOST_GS_SELECTOR, host_gs_selector),
649         FIELD(HOST_TR_SELECTOR, host_tr_selector),
650         FIELD64(IO_BITMAP_A, io_bitmap_a),
651         FIELD64(IO_BITMAP_B, io_bitmap_b),
652         FIELD64(MSR_BITMAP, msr_bitmap),
653         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656         FIELD64(TSC_OFFSET, tsc_offset),
657         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660         FIELD64(EPT_POINTER, ept_pointer),
661         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672         FIELD64(GUEST_PDPTR0, guest_pdptr0),
673         FIELD64(GUEST_PDPTR1, guest_pdptr1),
674         FIELD64(GUEST_PDPTR2, guest_pdptr2),
675         FIELD64(GUEST_PDPTR3, guest_pdptr3),
676         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677         FIELD64(HOST_IA32_PAT, host_ia32_pat),
678         FIELD64(HOST_IA32_EFER, host_ia32_efer),
679         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682         FIELD(EXCEPTION_BITMAP, exception_bitmap),
683         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685         FIELD(CR3_TARGET_COUNT, cr3_target_count),
686         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694         FIELD(TPR_THRESHOLD, tpr_threshold),
695         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697         FIELD(VM_EXIT_REASON, vm_exit_reason),
698         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704         FIELD(GUEST_ES_LIMIT, guest_es_limit),
705         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735         FIELD(EXIT_QUALIFICATION, exit_qualification),
736         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737         FIELD(GUEST_CR0, guest_cr0),
738         FIELD(GUEST_CR3, guest_cr3),
739         FIELD(GUEST_CR4, guest_cr4),
740         FIELD(GUEST_ES_BASE, guest_es_base),
741         FIELD(GUEST_CS_BASE, guest_cs_base),
742         FIELD(GUEST_SS_BASE, guest_ss_base),
743         FIELD(GUEST_DS_BASE, guest_ds_base),
744         FIELD(GUEST_FS_BASE, guest_fs_base),
745         FIELD(GUEST_GS_BASE, guest_gs_base),
746         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747         FIELD(GUEST_TR_BASE, guest_tr_base),
748         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750         FIELD(GUEST_DR7, guest_dr7),
751         FIELD(GUEST_RSP, guest_rsp),
752         FIELD(GUEST_RIP, guest_rip),
753         FIELD(GUEST_RFLAGS, guest_rflags),
754         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757         FIELD(HOST_CR0, host_cr0),
758         FIELD(HOST_CR3, host_cr3),
759         FIELD(HOST_CR4, host_cr4),
760         FIELD(HOST_FS_BASE, host_fs_base),
761         FIELD(HOST_GS_BASE, host_gs_base),
762         FIELD(HOST_TR_BASE, host_tr_base),
763         FIELD(HOST_GDTR_BASE, host_gdtr_base),
764         FIELD(HOST_IDTR_BASE, host_idtr_base),
765         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767         FIELD(HOST_RSP, host_rsp),
768         FIELD(HOST_RIP, host_rip),
769 };
770
771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776             vmcs_field_to_offset_table[field] == 0)
777                 return -ENOENT;
778
779         return vmcs_field_to_offset_table[field];
780 }
781
782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784         return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
790         if (is_error_page(page))
791                 return NULL;
792
793         return page;
794 }
795
796 static void nested_release_page(struct page *page)
797 {
798         kvm_release_page_dirty(page);
799 }
800
801 static void nested_release_page_clean(struct page *page)
802 {
803         kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
814 static void vmx_set_segment(struct kvm_vcpu *vcpu,
815                             struct kvm_segment *var, int seg);
816 static void vmx_get_segment(struct kvm_vcpu *vcpu,
817                             struct kvm_segment *var, int seg);
818 static bool guest_state_valid(struct kvm_vcpu *vcpu);
819 static u32 vmx_segment_access_rights(struct kvm_segment *var);
820 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
821 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
822 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
823 static int alloc_identity_pagetable(struct kvm *kvm);
824
825 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
826 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
827 /*
828  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
829  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
830  */
831 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
832 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
833
834 static unsigned long *vmx_io_bitmap_a;
835 static unsigned long *vmx_io_bitmap_b;
836 static unsigned long *vmx_msr_bitmap_legacy;
837 static unsigned long *vmx_msr_bitmap_longmode;
838 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
839 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
840 static unsigned long *vmx_msr_bitmap_nested;
841 static unsigned long *vmx_vmread_bitmap;
842 static unsigned long *vmx_vmwrite_bitmap;
843
844 static bool cpu_has_load_ia32_efer;
845 static bool cpu_has_load_perf_global_ctrl;
846
847 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
848 static DEFINE_SPINLOCK(vmx_vpid_lock);
849
850 static struct vmcs_config {
851         int size;
852         int order;
853         u32 revision_id;
854         u32 pin_based_exec_ctrl;
855         u32 cpu_based_exec_ctrl;
856         u32 cpu_based_2nd_exec_ctrl;
857         u32 vmexit_ctrl;
858         u32 vmentry_ctrl;
859 } vmcs_config;
860
861 static struct vmx_capability {
862         u32 ept;
863         u32 vpid;
864 } vmx_capability;
865
866 #define VMX_SEGMENT_FIELD(seg)                                  \
867         [VCPU_SREG_##seg] = {                                   \
868                 .selector = GUEST_##seg##_SELECTOR,             \
869                 .base = GUEST_##seg##_BASE,                     \
870                 .limit = GUEST_##seg##_LIMIT,                   \
871                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
872         }
873
874 static const struct kvm_vmx_segment_field {
875         unsigned selector;
876         unsigned base;
877         unsigned limit;
878         unsigned ar_bytes;
879 } kvm_vmx_segment_fields[] = {
880         VMX_SEGMENT_FIELD(CS),
881         VMX_SEGMENT_FIELD(DS),
882         VMX_SEGMENT_FIELD(ES),
883         VMX_SEGMENT_FIELD(FS),
884         VMX_SEGMENT_FIELD(GS),
885         VMX_SEGMENT_FIELD(SS),
886         VMX_SEGMENT_FIELD(TR),
887         VMX_SEGMENT_FIELD(LDTR),
888 };
889
890 static u64 host_efer;
891
892 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
893
894 /*
895  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
896  * away by decrementing the array size.
897  */
898 static const u32 vmx_msr_index[] = {
899 #ifdef CONFIG_X86_64
900         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
901 #endif
902         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
903 };
904
905 static inline bool is_page_fault(u32 intr_info)
906 {
907         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
908                              INTR_INFO_VALID_MASK)) ==
909                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
910 }
911
912 static inline bool is_no_device(u32 intr_info)
913 {
914         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
915                              INTR_INFO_VALID_MASK)) ==
916                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
917 }
918
919 static inline bool is_invalid_opcode(u32 intr_info)
920 {
921         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
922                              INTR_INFO_VALID_MASK)) ==
923                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
924 }
925
926 static inline bool is_external_interrupt(u32 intr_info)
927 {
928         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
929                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
930 }
931
932 static inline bool is_machine_check(u32 intr_info)
933 {
934         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
935                              INTR_INFO_VALID_MASK)) ==
936                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
937 }
938
939 static inline bool cpu_has_vmx_msr_bitmap(void)
940 {
941         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
942 }
943
944 static inline bool cpu_has_vmx_tpr_shadow(void)
945 {
946         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
947 }
948
949 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
950 {
951         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
952 }
953
954 static inline bool cpu_has_secondary_exec_ctrls(void)
955 {
956         return vmcs_config.cpu_based_exec_ctrl &
957                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
958 }
959
960 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
961 {
962         return vmcs_config.cpu_based_2nd_exec_ctrl &
963                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
964 }
965
966 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
967 {
968         return vmcs_config.cpu_based_2nd_exec_ctrl &
969                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
970 }
971
972 static inline bool cpu_has_vmx_apic_register_virt(void)
973 {
974         return vmcs_config.cpu_based_2nd_exec_ctrl &
975                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
976 }
977
978 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
979 {
980         return vmcs_config.cpu_based_2nd_exec_ctrl &
981                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
982 }
983
984 static inline bool cpu_has_vmx_posted_intr(void)
985 {
986         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
987 }
988
989 static inline bool cpu_has_vmx_apicv(void)
990 {
991         return cpu_has_vmx_apic_register_virt() &&
992                 cpu_has_vmx_virtual_intr_delivery() &&
993                 cpu_has_vmx_posted_intr();
994 }
995
996 static inline bool cpu_has_vmx_flexpriority(void)
997 {
998         return cpu_has_vmx_tpr_shadow() &&
999                 cpu_has_vmx_virtualize_apic_accesses();
1000 }
1001
1002 static inline bool cpu_has_vmx_ept_execute_only(void)
1003 {
1004         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_ept_2m_page(void)
1008 {
1009         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1010 }
1011
1012 static inline bool cpu_has_vmx_ept_1g_page(void)
1013 {
1014         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1015 }
1016
1017 static inline bool cpu_has_vmx_ept_4levels(void)
1018 {
1019         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020 }
1021
1022 static inline bool cpu_has_vmx_ept_ad_bits(void)
1023 {
1024         return vmx_capability.ept & VMX_EPT_AD_BIT;
1025 }
1026
1027 static inline bool cpu_has_vmx_invept_context(void)
1028 {
1029         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1030 }
1031
1032 static inline bool cpu_has_vmx_invept_global(void)
1033 {
1034         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1035 }
1036
1037 static inline bool cpu_has_vmx_invvpid_single(void)
1038 {
1039         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040 }
1041
1042 static inline bool cpu_has_vmx_invvpid_global(void)
1043 {
1044         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045 }
1046
1047 static inline bool cpu_has_vmx_ept(void)
1048 {
1049         return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                 SECONDARY_EXEC_ENABLE_EPT;
1051 }
1052
1053 static inline bool cpu_has_vmx_unrestricted_guest(void)
1054 {
1055         return vmcs_config.cpu_based_2nd_exec_ctrl &
1056                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057 }
1058
1059 static inline bool cpu_has_vmx_ple(void)
1060 {
1061         return vmcs_config.cpu_based_2nd_exec_ctrl &
1062                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063 }
1064
1065 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1066 {
1067         return flexpriority_enabled && irqchip_in_kernel(kvm);
1068 }
1069
1070 static inline bool cpu_has_vmx_vpid(void)
1071 {
1072         return vmcs_config.cpu_based_2nd_exec_ctrl &
1073                 SECONDARY_EXEC_ENABLE_VPID;
1074 }
1075
1076 static inline bool cpu_has_vmx_rdtscp(void)
1077 {
1078         return vmcs_config.cpu_based_2nd_exec_ctrl &
1079                 SECONDARY_EXEC_RDTSCP;
1080 }
1081
1082 static inline bool cpu_has_vmx_invpcid(void)
1083 {
1084         return vmcs_config.cpu_based_2nd_exec_ctrl &
1085                 SECONDARY_EXEC_ENABLE_INVPCID;
1086 }
1087
1088 static inline bool cpu_has_virtual_nmis(void)
1089 {
1090         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
1093 static inline bool cpu_has_vmx_wbinvd_exit(void)
1094 {
1095         return vmcs_config.cpu_based_2nd_exec_ctrl &
1096                 SECONDARY_EXEC_WBINVD_EXITING;
1097 }
1098
1099 static inline bool cpu_has_vmx_shadow_vmcs(void)
1100 {
1101         u64 vmx_msr;
1102         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103         /* check if the cpu supports writing r/o exit information fields */
1104         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105                 return false;
1106
1107         return vmcs_config.cpu_based_2nd_exec_ctrl &
1108                 SECONDARY_EXEC_SHADOW_VMCS;
1109 }
1110
1111 static inline bool cpu_has_vmx_pml(void)
1112 {
1113         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114 }
1115
1116 static inline bool report_flexpriority(void)
1117 {
1118         return flexpriority_enabled;
1119 }
1120
1121 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122 {
1123         return vmcs12->cpu_based_vm_exec_control & bit;
1124 }
1125
1126 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127 {
1128         return (vmcs12->cpu_based_vm_exec_control &
1129                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130                 (vmcs12->secondary_vm_exec_control & bit);
1131 }
1132
1133 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1134 {
1135         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136 }
1137
1138 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139 {
1140         return vmcs12->pin_based_vm_exec_control &
1141                 PIN_BASED_VMX_PREEMPTION_TIMER;
1142 }
1143
1144 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145 {
1146         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147 }
1148
1149 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150 {
1151         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152                 vmx_xsaves_supported();
1153 }
1154
1155 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156 {
1157         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158 }
1159
1160 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161 {
1162         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163 }
1164
1165 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166 {
1167         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168 }
1169
1170 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171 {
1172         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173 }
1174
1175 static inline bool is_exception(u32 intr_info)
1176 {
1177         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179 }
1180
1181 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182                               u32 exit_intr_info,
1183                               unsigned long exit_qualification);
1184 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185                         struct vmcs12 *vmcs12,
1186                         u32 reason, unsigned long qualification);
1187
1188 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1189 {
1190         int i;
1191
1192         for (i = 0; i < vmx->nmsrs; ++i)
1193                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1194                         return i;
1195         return -1;
1196 }
1197
1198 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199 {
1200     struct {
1201         u64 vpid : 16;
1202         u64 rsvd : 48;
1203         u64 gva;
1204     } operand = { vpid, 0, gva };
1205
1206     asm volatile (__ex(ASM_VMX_INVVPID)
1207                   /* CF==1 or ZF==1 --> rc = -1 */
1208                   "; ja 1f ; ud2 ; 1:"
1209                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1210 }
1211
1212 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213 {
1214         struct {
1215                 u64 eptp, gpa;
1216         } operand = {eptp, gpa};
1217
1218         asm volatile (__ex(ASM_VMX_INVEPT)
1219                         /* CF==1 or ZF==1 --> rc = -1 */
1220                         "; ja 1f ; ud2 ; 1:\n"
1221                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1222 }
1223
1224 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1225 {
1226         int i;
1227
1228         i = __find_msr_index(vmx, msr);
1229         if (i >= 0)
1230                 return &vmx->guest_msrs[i];
1231         return NULL;
1232 }
1233
1234 static void vmcs_clear(struct vmcs *vmcs)
1235 {
1236         u64 phys_addr = __pa(vmcs);
1237         u8 error;
1238
1239         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1240                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1241                       : "cc", "memory");
1242         if (error)
1243                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244                        vmcs, phys_addr);
1245 }
1246
1247 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248 {
1249         vmcs_clear(loaded_vmcs->vmcs);
1250         loaded_vmcs->cpu = -1;
1251         loaded_vmcs->launched = 0;
1252 }
1253
1254 static void vmcs_load(struct vmcs *vmcs)
1255 {
1256         u64 phys_addr = __pa(vmcs);
1257         u8 error;
1258
1259         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1260                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1261                         : "cc", "memory");
1262         if (error)
1263                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1264                        vmcs, phys_addr);
1265 }
1266
1267 #ifdef CONFIG_KEXEC
1268 /*
1269  * This bitmap is used to indicate whether the vmclear
1270  * operation is enabled on all cpus. All disabled by
1271  * default.
1272  */
1273 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
1275 static inline void crash_enable_local_vmclear(int cpu)
1276 {
1277         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278 }
1279
1280 static inline void crash_disable_local_vmclear(int cpu)
1281 {
1282         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283 }
1284
1285 static inline int crash_local_vmclear_enabled(int cpu)
1286 {
1287         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288 }
1289
1290 static void crash_vmclear_local_loaded_vmcss(void)
1291 {
1292         int cpu = raw_smp_processor_id();
1293         struct loaded_vmcs *v;
1294
1295         if (!crash_local_vmclear_enabled(cpu))
1296                 return;
1297
1298         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299                             loaded_vmcss_on_cpu_link)
1300                 vmcs_clear(v->vmcs);
1301 }
1302 #else
1303 static inline void crash_enable_local_vmclear(int cpu) { }
1304 static inline void crash_disable_local_vmclear(int cpu) { }
1305 #endif /* CONFIG_KEXEC */
1306
1307 static void __loaded_vmcs_clear(void *arg)
1308 {
1309         struct loaded_vmcs *loaded_vmcs = arg;
1310         int cpu = raw_smp_processor_id();
1311
1312         if (loaded_vmcs->cpu != cpu)
1313                 return; /* vcpu migration can race with cpu offline */
1314         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1315                 per_cpu(current_vmcs, cpu) = NULL;
1316         crash_disable_local_vmclear(cpu);
1317         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1318
1319         /*
1320          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321          * is before setting loaded_vmcs->vcpu to -1 which is done in
1322          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323          * then adds the vmcs into percpu list before it is deleted.
1324          */
1325         smp_wmb();
1326
1327         loaded_vmcs_init(loaded_vmcs);
1328         crash_enable_local_vmclear(cpu);
1329 }
1330
1331 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1332 {
1333         int cpu = loaded_vmcs->cpu;
1334
1335         if (cpu != -1)
1336                 smp_call_function_single(cpu,
1337                          __loaded_vmcs_clear, loaded_vmcs, 1);
1338 }
1339
1340 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1341 {
1342         if (vmx->vpid == 0)
1343                 return;
1344
1345         if (cpu_has_vmx_invvpid_single())
1346                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1347 }
1348
1349 static inline void vpid_sync_vcpu_global(void)
1350 {
1351         if (cpu_has_vmx_invvpid_global())
1352                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353 }
1354
1355 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356 {
1357         if (cpu_has_vmx_invvpid_single())
1358                 vpid_sync_vcpu_single(vmx);
1359         else
1360                 vpid_sync_vcpu_global();
1361 }
1362
1363 static inline void ept_sync_global(void)
1364 {
1365         if (cpu_has_vmx_invept_global())
1366                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367 }
1368
1369 static inline void ept_sync_context(u64 eptp)
1370 {
1371         if (enable_ept) {
1372                 if (cpu_has_vmx_invept_context())
1373                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374                 else
1375                         ept_sync_global();
1376         }
1377 }
1378
1379 static __always_inline unsigned long vmcs_readl(unsigned long field)
1380 {
1381         unsigned long value;
1382
1383         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384                       : "=a"(value) : "d"(field) : "cc");
1385         return value;
1386 }
1387
1388 static __always_inline u16 vmcs_read16(unsigned long field)
1389 {
1390         return vmcs_readl(field);
1391 }
1392
1393 static __always_inline u32 vmcs_read32(unsigned long field)
1394 {
1395         return vmcs_readl(field);
1396 }
1397
1398 static __always_inline u64 vmcs_read64(unsigned long field)
1399 {
1400 #ifdef CONFIG_X86_64
1401         return vmcs_readl(field);
1402 #else
1403         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404 #endif
1405 }
1406
1407 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408 {
1409         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411         dump_stack();
1412 }
1413
1414 static void vmcs_writel(unsigned long field, unsigned long value)
1415 {
1416         u8 error;
1417
1418         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1419                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1420         if (unlikely(error))
1421                 vmwrite_error(field, value);
1422 }
1423
1424 static void vmcs_write16(unsigned long field, u16 value)
1425 {
1426         vmcs_writel(field, value);
1427 }
1428
1429 static void vmcs_write32(unsigned long field, u32 value)
1430 {
1431         vmcs_writel(field, value);
1432 }
1433
1434 static void vmcs_write64(unsigned long field, u64 value)
1435 {
1436         vmcs_writel(field, value);
1437 #ifndef CONFIG_X86_64
1438         asm volatile ("");
1439         vmcs_writel(field+1, value >> 32);
1440 #endif
1441 }
1442
1443 static void vmcs_clear_bits(unsigned long field, u32 mask)
1444 {
1445         vmcs_writel(field, vmcs_readl(field) & ~mask);
1446 }
1447
1448 static void vmcs_set_bits(unsigned long field, u32 mask)
1449 {
1450         vmcs_writel(field, vmcs_readl(field) | mask);
1451 }
1452
1453 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454 {
1455         vmcs_write32(VM_ENTRY_CONTROLS, val);
1456         vmx->vm_entry_controls_shadow = val;
1457 }
1458
1459 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460 {
1461         if (vmx->vm_entry_controls_shadow != val)
1462                 vm_entry_controls_init(vmx, val);
1463 }
1464
1465 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466 {
1467         return vmx->vm_entry_controls_shadow;
1468 }
1469
1470
1471 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472 {
1473         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474 }
1475
1476 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477 {
1478         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479 }
1480
1481 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482 {
1483         vmcs_write32(VM_EXIT_CONTROLS, val);
1484         vmx->vm_exit_controls_shadow = val;
1485 }
1486
1487 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488 {
1489         if (vmx->vm_exit_controls_shadow != val)
1490                 vm_exit_controls_init(vmx, val);
1491 }
1492
1493 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494 {
1495         return vmx->vm_exit_controls_shadow;
1496 }
1497
1498
1499 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500 {
1501         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502 }
1503
1504 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505 {
1506         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507 }
1508
1509 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510 {
1511         vmx->segment_cache.bitmask = 0;
1512 }
1513
1514 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515                                        unsigned field)
1516 {
1517         bool ret;
1518         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522                 vmx->segment_cache.bitmask = 0;
1523         }
1524         ret = vmx->segment_cache.bitmask & mask;
1525         vmx->segment_cache.bitmask |= mask;
1526         return ret;
1527 }
1528
1529 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530 {
1531         u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535         return *p;
1536 }
1537
1538 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539 {
1540         ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544         return *p;
1545 }
1546
1547 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548 {
1549         u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553         return *p;
1554 }
1555
1556 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557 {
1558         u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562         return *p;
1563 }
1564
1565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566 {
1567         u32 eb;
1568
1569         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1571         if ((vcpu->guest_debug &
1572              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574                 eb |= 1u << BP_VECTOR;
1575         if (to_vmx(vcpu)->rmode.vm86_active)
1576                 eb = ~0;
1577         if (enable_ept)
1578                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1579         if (vcpu->fpu_active)
1580                 eb &= ~(1u << NM_VECTOR);
1581
1582         /* When we are running a nested L2 guest and L1 specified for it a
1583          * certain exception bitmap, we must trap the same exceptions and pass
1584          * them to L1. When running L2, we will only handle the exceptions
1585          * specified above if L1 did not want them.
1586          */
1587         if (is_guest_mode(vcpu))
1588                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
1590         vmcs_write32(EXCEPTION_BITMAP, eb);
1591 }
1592
1593 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594                 unsigned long entry, unsigned long exit)
1595 {
1596         vm_entry_controls_clearbit(vmx, entry);
1597         vm_exit_controls_clearbit(vmx, exit);
1598 }
1599
1600 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601 {
1602         unsigned i;
1603         struct msr_autoload *m = &vmx->msr_autoload;
1604
1605         switch (msr) {
1606         case MSR_EFER:
1607                 if (cpu_has_load_ia32_efer) {
1608                         clear_atomic_switch_msr_special(vmx,
1609                                         VM_ENTRY_LOAD_IA32_EFER,
1610                                         VM_EXIT_LOAD_IA32_EFER);
1611                         return;
1612                 }
1613                 break;
1614         case MSR_CORE_PERF_GLOBAL_CTRL:
1615                 if (cpu_has_load_perf_global_ctrl) {
1616                         clear_atomic_switch_msr_special(vmx,
1617                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619                         return;
1620                 }
1621                 break;
1622         }
1623
1624         for (i = 0; i < m->nr; ++i)
1625                 if (m->guest[i].index == msr)
1626                         break;
1627
1628         if (i == m->nr)
1629                 return;
1630         --m->nr;
1631         m->guest[i] = m->guest[m->nr];
1632         m->host[i] = m->host[m->nr];
1633         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635 }
1636
1637 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638                 unsigned long entry, unsigned long exit,
1639                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640                 u64 guest_val, u64 host_val)
1641 {
1642         vmcs_write64(guest_val_vmcs, guest_val);
1643         vmcs_write64(host_val_vmcs, host_val);
1644         vm_entry_controls_setbit(vmx, entry);
1645         vm_exit_controls_setbit(vmx, exit);
1646 }
1647
1648 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649                                   u64 guest_val, u64 host_val)
1650 {
1651         unsigned i;
1652         struct msr_autoload *m = &vmx->msr_autoload;
1653
1654         switch (msr) {
1655         case MSR_EFER:
1656                 if (cpu_has_load_ia32_efer) {
1657                         add_atomic_switch_msr_special(vmx,
1658                                         VM_ENTRY_LOAD_IA32_EFER,
1659                                         VM_EXIT_LOAD_IA32_EFER,
1660                                         GUEST_IA32_EFER,
1661                                         HOST_IA32_EFER,
1662                                         guest_val, host_val);
1663                         return;
1664                 }
1665                 break;
1666         case MSR_CORE_PERF_GLOBAL_CTRL:
1667                 if (cpu_has_load_perf_global_ctrl) {
1668                         add_atomic_switch_msr_special(vmx,
1669                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1672                                         HOST_IA32_PERF_GLOBAL_CTRL,
1673                                         guest_val, host_val);
1674                         return;
1675                 }
1676                 break;
1677         }
1678
1679         for (i = 0; i < m->nr; ++i)
1680                 if (m->guest[i].index == msr)
1681                         break;
1682
1683         if (i == NR_AUTOLOAD_MSRS) {
1684                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1685                                 "Can't add msr %x\n", msr);
1686                 return;
1687         } else if (i == m->nr) {
1688                 ++m->nr;
1689                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1690                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1691         }
1692
1693         m->guest[i].index = msr;
1694         m->guest[i].value = guest_val;
1695         m->host[i].index = msr;
1696         m->host[i].value = host_val;
1697 }
1698
1699 static void reload_tss(void)
1700 {
1701         /*
1702          * VT restores TR but not its size.  Useless.
1703          */
1704         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1705         struct desc_struct *descs;
1706
1707         descs = (void *)gdt->address;
1708         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1709         load_TR_desc();
1710 }
1711
1712 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1713 {
1714         u64 guest_efer;
1715         u64 ignore_bits;
1716
1717         guest_efer = vmx->vcpu.arch.efer;
1718
1719         /*
1720          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1721          * outside long mode
1722          */
1723         ignore_bits = EFER_NX | EFER_SCE;
1724 #ifdef CONFIG_X86_64
1725         ignore_bits |= EFER_LMA | EFER_LME;
1726         /* SCE is meaningful only in long mode on Intel */
1727         if (guest_efer & EFER_LMA)
1728                 ignore_bits &= ~(u64)EFER_SCE;
1729 #endif
1730         guest_efer &= ~ignore_bits;
1731         guest_efer |= host_efer & ignore_bits;
1732         vmx->guest_msrs[efer_offset].data = guest_efer;
1733         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1734
1735         clear_atomic_switch_msr(vmx, MSR_EFER);
1736
1737         /*
1738          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1739          * On CPUs that support "load IA32_EFER", always switch EFER
1740          * atomically, since it's faster than switching it manually.
1741          */
1742         if (cpu_has_load_ia32_efer ||
1743             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1744                 guest_efer = vmx->vcpu.arch.efer;
1745                 if (!(guest_efer & EFER_LMA))
1746                         guest_efer &= ~EFER_LME;
1747                 if (guest_efer != host_efer)
1748                         add_atomic_switch_msr(vmx, MSR_EFER,
1749                                               guest_efer, host_efer);
1750                 return false;
1751         }
1752
1753         return true;
1754 }
1755
1756 static unsigned long segment_base(u16 selector)
1757 {
1758         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1759         struct desc_struct *d;
1760         unsigned long table_base;
1761         unsigned long v;
1762
1763         if (!(selector & ~3))
1764                 return 0;
1765
1766         table_base = gdt->address;
1767
1768         if (selector & 4) {           /* from ldt */
1769                 u16 ldt_selector = kvm_read_ldt();
1770
1771                 if (!(ldt_selector & ~3))
1772                         return 0;
1773
1774                 table_base = segment_base(ldt_selector);
1775         }
1776         d = (struct desc_struct *)(table_base + (selector & ~7));
1777         v = get_desc_base(d);
1778 #ifdef CONFIG_X86_64
1779        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1780                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1781 #endif
1782         return v;
1783 }
1784
1785 static inline unsigned long kvm_read_tr_base(void)
1786 {
1787         u16 tr;
1788         asm("str %0" : "=g"(tr));
1789         return segment_base(tr);
1790 }
1791
1792 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1793 {
1794         struct vcpu_vmx *vmx = to_vmx(vcpu);
1795         int i;
1796
1797         if (vmx->host_state.loaded)
1798                 return;
1799
1800         vmx->host_state.loaded = 1;
1801         /*
1802          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1803          * allow segment selectors with cpl > 0 or ti == 1.
1804          */
1805         vmx->host_state.ldt_sel = kvm_read_ldt();
1806         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1807         savesegment(fs, vmx->host_state.fs_sel);
1808         if (!(vmx->host_state.fs_sel & 7)) {
1809                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1810                 vmx->host_state.fs_reload_needed = 0;
1811         } else {
1812                 vmcs_write16(HOST_FS_SELECTOR, 0);
1813                 vmx->host_state.fs_reload_needed = 1;
1814         }
1815         savesegment(gs, vmx->host_state.gs_sel);
1816         if (!(vmx->host_state.gs_sel & 7))
1817                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1818         else {
1819                 vmcs_write16(HOST_GS_SELECTOR, 0);
1820                 vmx->host_state.gs_ldt_reload_needed = 1;
1821         }
1822
1823 #ifdef CONFIG_X86_64
1824         savesegment(ds, vmx->host_state.ds_sel);
1825         savesegment(es, vmx->host_state.es_sel);
1826 #endif
1827
1828 #ifdef CONFIG_X86_64
1829         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1830         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1831 #else
1832         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1833         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1834 #endif
1835
1836 #ifdef CONFIG_X86_64
1837         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1838         if (is_long_mode(&vmx->vcpu))
1839                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1840 #endif
1841         if (boot_cpu_has(X86_FEATURE_MPX))
1842                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1843         for (i = 0; i < vmx->save_nmsrs; ++i)
1844                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1845                                    vmx->guest_msrs[i].data,
1846                                    vmx->guest_msrs[i].mask);
1847 }
1848
1849 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1850 {
1851         if (!vmx->host_state.loaded)
1852                 return;
1853
1854         ++vmx->vcpu.stat.host_state_reload;
1855         vmx->host_state.loaded = 0;
1856 #ifdef CONFIG_X86_64
1857         if (is_long_mode(&vmx->vcpu))
1858                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1859 #endif
1860         if (vmx->host_state.gs_ldt_reload_needed) {
1861                 kvm_load_ldt(vmx->host_state.ldt_sel);
1862 #ifdef CONFIG_X86_64
1863                 load_gs_index(vmx->host_state.gs_sel);
1864 #else
1865                 loadsegment(gs, vmx->host_state.gs_sel);
1866 #endif
1867         }
1868         if (vmx->host_state.fs_reload_needed)
1869                 loadsegment(fs, vmx->host_state.fs_sel);
1870 #ifdef CONFIG_X86_64
1871         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1872                 loadsegment(ds, vmx->host_state.ds_sel);
1873                 loadsegment(es, vmx->host_state.es_sel);
1874         }
1875 #endif
1876         reload_tss();
1877 #ifdef CONFIG_X86_64
1878         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1879 #endif
1880         if (vmx->host_state.msr_host_bndcfgs)
1881                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1882         /*
1883          * If the FPU is not active (through the host task or
1884          * the guest vcpu), then restore the cr0.TS bit.
1885          */
1886         if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1887                 stts();
1888         load_gdt(this_cpu_ptr(&host_gdt));
1889 }
1890
1891 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1892 {
1893         preempt_disable();
1894         __vmx_load_host_state(vmx);
1895         preempt_enable();
1896 }
1897
1898 /*
1899  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1900  * vcpu mutex is already taken.
1901  */
1902 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1903 {
1904         struct vcpu_vmx *vmx = to_vmx(vcpu);
1905         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1906
1907         if (!vmm_exclusive)
1908                 kvm_cpu_vmxon(phys_addr);
1909         else if (vmx->loaded_vmcs->cpu != cpu)
1910                 loaded_vmcs_clear(vmx->loaded_vmcs);
1911
1912         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1913                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1914                 vmcs_load(vmx->loaded_vmcs->vmcs);
1915         }
1916
1917         if (vmx->loaded_vmcs->cpu != cpu) {
1918                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1919                 unsigned long sysenter_esp;
1920
1921                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1922                 local_irq_disable();
1923                 crash_disable_local_vmclear(cpu);
1924
1925                 /*
1926                  * Read loaded_vmcs->cpu should be before fetching
1927                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1928                  * See the comments in __loaded_vmcs_clear().
1929                  */
1930                 smp_rmb();
1931
1932                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1933                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1934                 crash_enable_local_vmclear(cpu);
1935                 local_irq_enable();
1936
1937                 /*
1938                  * Linux uses per-cpu TSS and GDT, so set these when switching
1939                  * processors.
1940                  */
1941                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1942                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1943
1944                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1945                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1946                 vmx->loaded_vmcs->cpu = cpu;
1947         }
1948 }
1949
1950 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1951 {
1952         __vmx_load_host_state(to_vmx(vcpu));
1953         if (!vmm_exclusive) {
1954                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1955                 vcpu->cpu = -1;
1956                 kvm_cpu_vmxoff();
1957         }
1958 }
1959
1960 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1961 {
1962         ulong cr0;
1963
1964         if (vcpu->fpu_active)
1965                 return;
1966         vcpu->fpu_active = 1;
1967         cr0 = vmcs_readl(GUEST_CR0);
1968         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1969         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1970         vmcs_writel(GUEST_CR0, cr0);
1971         update_exception_bitmap(vcpu);
1972         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1973         if (is_guest_mode(vcpu))
1974                 vcpu->arch.cr0_guest_owned_bits &=
1975                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1976         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1977 }
1978
1979 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1980
1981 /*
1982  * Return the cr0 value that a nested guest would read. This is a combination
1983  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1984  * its hypervisor (cr0_read_shadow).
1985  */
1986 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1987 {
1988         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1989                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1990 }
1991 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1992 {
1993         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1994                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1995 }
1996
1997 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1998 {
1999         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2000          * set this *before* calling this function.
2001          */
2002         vmx_decache_cr0_guest_bits(vcpu);
2003         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2004         update_exception_bitmap(vcpu);
2005         vcpu->arch.cr0_guest_owned_bits = 0;
2006         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2007         if (is_guest_mode(vcpu)) {
2008                 /*
2009                  * L1's specified read shadow might not contain the TS bit,
2010                  * so now that we turned on shadowing of this bit, we need to
2011                  * set this bit of the shadow. Like in nested_vmx_run we need
2012                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2013                  * up-to-date here because we just decached cr0.TS (and we'll
2014                  * only update vmcs12->guest_cr0 on nested exit).
2015                  */
2016                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2018                         (vcpu->arch.cr0 & X86_CR0_TS);
2019                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2020         } else
2021                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2022 }
2023
2024 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2025 {
2026         unsigned long rflags, save_rflags;
2027
2028         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2029                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2030                 rflags = vmcs_readl(GUEST_RFLAGS);
2031                 if (to_vmx(vcpu)->rmode.vm86_active) {
2032                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2033                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2034                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2035                 }
2036                 to_vmx(vcpu)->rflags = rflags;
2037         }
2038         return to_vmx(vcpu)->rflags;
2039 }
2040
2041 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2042 {
2043         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2044         to_vmx(vcpu)->rflags = rflags;
2045         if (to_vmx(vcpu)->rmode.vm86_active) {
2046                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2047                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2048         }
2049         vmcs_writel(GUEST_RFLAGS, rflags);
2050 }
2051
2052 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2053 {
2054         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2055         int ret = 0;
2056
2057         if (interruptibility & GUEST_INTR_STATE_STI)
2058                 ret |= KVM_X86_SHADOW_INT_STI;
2059         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2060                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2061
2062         return ret;
2063 }
2064
2065 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2066 {
2067         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2068         u32 interruptibility = interruptibility_old;
2069
2070         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2071
2072         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2073                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2074         else if (mask & KVM_X86_SHADOW_INT_STI)
2075                 interruptibility |= GUEST_INTR_STATE_STI;
2076
2077         if ((interruptibility != interruptibility_old))
2078                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2079 }
2080
2081 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2082 {
2083         unsigned long rip;
2084
2085         rip = kvm_rip_read(vcpu);
2086         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2087         kvm_rip_write(vcpu, rip);
2088
2089         /* skipping an emulated instruction also counts */
2090         vmx_set_interrupt_shadow(vcpu, 0);
2091 }
2092
2093 /*
2094  * KVM wants to inject page-faults which it got to the guest. This function
2095  * checks whether in a nested guest, we need to inject them to L1 or L2.
2096  */
2097 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2098 {
2099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101         if (!(vmcs12->exception_bitmap & (1u << nr)))
2102                 return 0;
2103
2104         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2105                           vmcs_read32(VM_EXIT_INTR_INFO),
2106                           vmcs_readl(EXIT_QUALIFICATION));
2107         return 1;
2108 }
2109
2110 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2111                                 bool has_error_code, u32 error_code,
2112                                 bool reinject)
2113 {
2114         struct vcpu_vmx *vmx = to_vmx(vcpu);
2115         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2116
2117         if (!reinject && is_guest_mode(vcpu) &&
2118             nested_vmx_check_exception(vcpu, nr))
2119                 return;
2120
2121         if (has_error_code) {
2122                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2123                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2124         }
2125
2126         if (vmx->rmode.vm86_active) {
2127                 int inc_eip = 0;
2128                 if (kvm_exception_is_soft(nr))
2129                         inc_eip = vcpu->arch.event_exit_inst_len;
2130                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2131                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2132                 return;
2133         }
2134
2135         if (kvm_exception_is_soft(nr)) {
2136                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2137                              vmx->vcpu.arch.event_exit_inst_len);
2138                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2139         } else
2140                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2141
2142         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2143 }
2144
2145 static bool vmx_rdtscp_supported(void)
2146 {
2147         return cpu_has_vmx_rdtscp();
2148 }
2149
2150 static bool vmx_invpcid_supported(void)
2151 {
2152         return cpu_has_vmx_invpcid() && enable_ept;
2153 }
2154
2155 /*
2156  * Swap MSR entry in host/guest MSR entry array.
2157  */
2158 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2159 {
2160         struct shared_msr_entry tmp;
2161
2162         tmp = vmx->guest_msrs[to];
2163         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2164         vmx->guest_msrs[from] = tmp;
2165 }
2166
2167 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2168 {
2169         unsigned long *msr_bitmap;
2170
2171         if (is_guest_mode(vcpu))
2172                 msr_bitmap = vmx_msr_bitmap_nested;
2173         else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2174                 if (is_long_mode(vcpu))
2175                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2176                 else
2177                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2178         } else {
2179                 if (is_long_mode(vcpu))
2180                         msr_bitmap = vmx_msr_bitmap_longmode;
2181                 else
2182                         msr_bitmap = vmx_msr_bitmap_legacy;
2183         }
2184
2185         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2186 }
2187
2188 /*
2189  * Set up the vmcs to automatically save and restore system
2190  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2191  * mode, as fiddling with msrs is very expensive.
2192  */
2193 static void setup_msrs(struct vcpu_vmx *vmx)
2194 {
2195         int save_nmsrs, index;
2196
2197         save_nmsrs = 0;
2198 #ifdef CONFIG_X86_64
2199         if (is_long_mode(&vmx->vcpu)) {
2200                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2201                 if (index >= 0)
2202                         move_msr_up(vmx, index, save_nmsrs++);
2203                 index = __find_msr_index(vmx, MSR_LSTAR);
2204                 if (index >= 0)
2205                         move_msr_up(vmx, index, save_nmsrs++);
2206                 index = __find_msr_index(vmx, MSR_CSTAR);
2207                 if (index >= 0)
2208                         move_msr_up(vmx, index, save_nmsrs++);
2209                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2210                 if (index >= 0 && vmx->rdtscp_enabled)
2211                         move_msr_up(vmx, index, save_nmsrs++);
2212                 /*
2213                  * MSR_STAR is only needed on long mode guests, and only
2214                  * if efer.sce is enabled.
2215                  */
2216                 index = __find_msr_index(vmx, MSR_STAR);
2217                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2218                         move_msr_up(vmx, index, save_nmsrs++);
2219         }
2220 #endif
2221         index = __find_msr_index(vmx, MSR_EFER);
2222         if (index >= 0 && update_transition_efer(vmx, index))
2223                 move_msr_up(vmx, index, save_nmsrs++);
2224
2225         vmx->save_nmsrs = save_nmsrs;
2226
2227         if (cpu_has_vmx_msr_bitmap())
2228                 vmx_set_msr_bitmap(&vmx->vcpu);
2229 }
2230
2231 /*
2232  * reads and returns guest's timestamp counter "register"
2233  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2234  */
2235 static u64 guest_read_tsc(void)
2236 {
2237         u64 host_tsc, tsc_offset;
2238
2239         rdtscll(host_tsc);
2240         tsc_offset = vmcs_read64(TSC_OFFSET);
2241         return host_tsc + tsc_offset;
2242 }
2243
2244 /*
2245  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2246  * counter, even if a nested guest (L2) is currently running.
2247  */
2248 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2249 {
2250         u64 tsc_offset;
2251
2252         tsc_offset = is_guest_mode(vcpu) ?
2253                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2254                 vmcs_read64(TSC_OFFSET);
2255         return host_tsc + tsc_offset;
2256 }
2257
2258 /*
2259  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2260  * software catchup for faster rates on slower CPUs.
2261  */
2262 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2263 {
2264         if (!scale)
2265                 return;
2266
2267         if (user_tsc_khz > tsc_khz) {
2268                 vcpu->arch.tsc_catchup = 1;
2269                 vcpu->arch.tsc_always_catchup = 1;
2270         } else
2271                 WARN(1, "user requested TSC rate below hardware speed\n");
2272 }
2273
2274 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2275 {
2276         return vmcs_read64(TSC_OFFSET);
2277 }
2278
2279 /*
2280  * writes 'offset' into guest's timestamp counter offset register
2281  */
2282 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2283 {
2284         if (is_guest_mode(vcpu)) {
2285                 /*
2286                  * We're here if L1 chose not to trap WRMSR to TSC. According
2287                  * to the spec, this should set L1's TSC; The offset that L1
2288                  * set for L2 remains unchanged, and still needs to be added
2289                  * to the newly set TSC to get L2's TSC.
2290                  */
2291                 struct vmcs12 *vmcs12;
2292                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2293                 /* recalculate vmcs02.TSC_OFFSET: */
2294                 vmcs12 = get_vmcs12(vcpu);
2295                 vmcs_write64(TSC_OFFSET, offset +
2296                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2297                          vmcs12->tsc_offset : 0));
2298         } else {
2299                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2300                                            vmcs_read64(TSC_OFFSET), offset);
2301                 vmcs_write64(TSC_OFFSET, offset);
2302         }
2303 }
2304
2305 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2306 {
2307         u64 offset = vmcs_read64(TSC_OFFSET);
2308
2309         vmcs_write64(TSC_OFFSET, offset + adjustment);
2310         if (is_guest_mode(vcpu)) {
2311                 /* Even when running L2, the adjustment needs to apply to L1 */
2312                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2313         } else
2314                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2315                                            offset + adjustment);
2316 }
2317
2318 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2319 {
2320         return target_tsc - native_read_tsc();
2321 }
2322
2323 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2324 {
2325         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2326         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2327 }
2328
2329 /*
2330  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2331  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2332  * all guests if the "nested" module option is off, and can also be disabled
2333  * for a single guest by disabling its VMX cpuid bit.
2334  */
2335 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2336 {
2337         return nested && guest_cpuid_has_vmx(vcpu);
2338 }
2339
2340 /*
2341  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2342  * returned for the various VMX controls MSRs when nested VMX is enabled.
2343  * The same values should also be used to verify that vmcs12 control fields are
2344  * valid during nested entry from L1 to L2.
2345  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2346  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2347  * bit in the high half is on if the corresponding bit in the control field
2348  * may be on. See also vmx_control_verify().
2349  */
2350 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2351 {
2352         /*
2353          * Note that as a general rule, the high half of the MSRs (bits in
2354          * the control fields which may be 1) should be initialized by the
2355          * intersection of the underlying hardware's MSR (i.e., features which
2356          * can be supported) and the list of features we want to expose -
2357          * because they are known to be properly supported in our code.
2358          * Also, usually, the low half of the MSRs (bits which must be 1) can
2359          * be set to 0, meaning that L1 may turn off any of these bits. The
2360          * reason is that if one of these bits is necessary, it will appear
2361          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2362          * fields of vmcs01 and vmcs02, will turn these bits off - and
2363          * nested_vmx_exit_handled() will not pass related exits to L1.
2364          * These rules have exceptions below.
2365          */
2366
2367         /* pin-based controls */
2368         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2369                 vmx->nested.nested_vmx_pinbased_ctls_low,
2370                 vmx->nested.nested_vmx_pinbased_ctls_high);
2371         vmx->nested.nested_vmx_pinbased_ctls_low |=
2372                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2373         vmx->nested.nested_vmx_pinbased_ctls_high &=
2374                 PIN_BASED_EXT_INTR_MASK |
2375                 PIN_BASED_NMI_EXITING |
2376                 PIN_BASED_VIRTUAL_NMIS;
2377         vmx->nested.nested_vmx_pinbased_ctls_high |=
2378                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2379                 PIN_BASED_VMX_PREEMPTION_TIMER;
2380         if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2381                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2382                         PIN_BASED_POSTED_INTR;
2383
2384         /* exit controls */
2385         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2386                 vmx->nested.nested_vmx_exit_ctls_low,
2387                 vmx->nested.nested_vmx_exit_ctls_high);
2388         vmx->nested.nested_vmx_exit_ctls_low =
2389                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2390
2391         vmx->nested.nested_vmx_exit_ctls_high &=
2392 #ifdef CONFIG_X86_64
2393                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2394 #endif
2395                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2396         vmx->nested.nested_vmx_exit_ctls_high |=
2397                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2398                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2399                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2400
2401         if (vmx_mpx_supported())
2402                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2403
2404         /* We support free control of debug control saving. */
2405         vmx->nested.nested_vmx_true_exit_ctls_low =
2406                 vmx->nested.nested_vmx_exit_ctls_low &
2407                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2408
2409         /* entry controls */
2410         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2411                 vmx->nested.nested_vmx_entry_ctls_low,
2412                 vmx->nested.nested_vmx_entry_ctls_high);
2413         vmx->nested.nested_vmx_entry_ctls_low =
2414                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2415         vmx->nested.nested_vmx_entry_ctls_high &=
2416 #ifdef CONFIG_X86_64
2417                 VM_ENTRY_IA32E_MODE |
2418 #endif
2419                 VM_ENTRY_LOAD_IA32_PAT;
2420         vmx->nested.nested_vmx_entry_ctls_high |=
2421                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2422         if (vmx_mpx_supported())
2423                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2424
2425         /* We support free control of debug control loading. */
2426         vmx->nested.nested_vmx_true_entry_ctls_low =
2427                 vmx->nested.nested_vmx_entry_ctls_low &
2428                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2429
2430         /* cpu-based controls */
2431         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2432                 vmx->nested.nested_vmx_procbased_ctls_low,
2433                 vmx->nested.nested_vmx_procbased_ctls_high);
2434         vmx->nested.nested_vmx_procbased_ctls_low =
2435                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2436         vmx->nested.nested_vmx_procbased_ctls_high &=
2437                 CPU_BASED_VIRTUAL_INTR_PENDING |
2438                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2439                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2440                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2441                 CPU_BASED_CR3_STORE_EXITING |
2442 #ifdef CONFIG_X86_64
2443                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2444 #endif
2445                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2446                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2447                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2448                 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2449                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2450         /*
2451          * We can allow some features even when not supported by the
2452          * hardware. For example, L1 can specify an MSR bitmap - and we
2453          * can use it to avoid exits to L1 - even when L0 runs L2
2454          * without MSR bitmaps.
2455          */
2456         vmx->nested.nested_vmx_procbased_ctls_high |=
2457                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2458                 CPU_BASED_USE_MSR_BITMAPS;
2459
2460         /* We support free control of CR3 access interception. */
2461         vmx->nested.nested_vmx_true_procbased_ctls_low =
2462                 vmx->nested.nested_vmx_procbased_ctls_low &
2463                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2464
2465         /* secondary cpu-based controls */
2466         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2467                 vmx->nested.nested_vmx_secondary_ctls_low,
2468                 vmx->nested.nested_vmx_secondary_ctls_high);
2469         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2470         vmx->nested.nested_vmx_secondary_ctls_high &=
2471                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2472                 SECONDARY_EXEC_RDTSCP |
2473                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2475                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2476                 SECONDARY_EXEC_WBINVD_EXITING |
2477                 SECONDARY_EXEC_XSAVES;
2478
2479         if (enable_ept) {
2480                 /* nested EPT: emulate EPT also to L1 */
2481                 vmx->nested.nested_vmx_secondary_ctls_high |=
2482                         SECONDARY_EXEC_ENABLE_EPT;
2483                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2484                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2485                          VMX_EPT_INVEPT_BIT;
2486                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2487                 /*
2488                  * For nested guests, we don't do anything specific
2489                  * for single context invalidation. Hence, only advertise
2490                  * support for global context invalidation.
2491                  */
2492                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2493         } else
2494                 vmx->nested.nested_vmx_ept_caps = 0;
2495
2496         if (enable_unrestricted_guest)
2497                 vmx->nested.nested_vmx_secondary_ctls_high |=
2498                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2499
2500         /* miscellaneous data */
2501         rdmsr(MSR_IA32_VMX_MISC,
2502                 vmx->nested.nested_vmx_misc_low,
2503                 vmx->nested.nested_vmx_misc_high);
2504         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2505         vmx->nested.nested_vmx_misc_low |=
2506                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2507                 VMX_MISC_ACTIVITY_HLT;
2508         vmx->nested.nested_vmx_misc_high = 0;
2509 }
2510
2511 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2512 {
2513         /*
2514          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2515          */
2516         return ((control & high) | low) == control;
2517 }
2518
2519 static inline u64 vmx_control_msr(u32 low, u32 high)
2520 {
2521         return low | ((u64)high << 32);
2522 }
2523
2524 /* Returns 0 on success, non-0 otherwise. */
2525 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2526 {
2527         struct vcpu_vmx *vmx = to_vmx(vcpu);
2528
2529         switch (msr_index) {
2530         case MSR_IA32_VMX_BASIC:
2531                 /*
2532                  * This MSR reports some information about VMX support. We
2533                  * should return information about the VMX we emulate for the
2534                  * guest, and the VMCS structure we give it - not about the
2535                  * VMX support of the underlying hardware.
2536                  */
2537                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2538                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2539                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2540                 break;
2541         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2542         case MSR_IA32_VMX_PINBASED_CTLS:
2543                 *pdata = vmx_control_msr(
2544                         vmx->nested.nested_vmx_pinbased_ctls_low,
2545                         vmx->nested.nested_vmx_pinbased_ctls_high);
2546                 break;
2547         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2548                 *pdata = vmx_control_msr(
2549                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2550                         vmx->nested.nested_vmx_procbased_ctls_high);
2551                 break;
2552         case MSR_IA32_VMX_PROCBASED_CTLS:
2553                 *pdata = vmx_control_msr(
2554                         vmx->nested.nested_vmx_procbased_ctls_low,
2555                         vmx->nested.nested_vmx_procbased_ctls_high);
2556                 break;
2557         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2558                 *pdata = vmx_control_msr(
2559                         vmx->nested.nested_vmx_true_exit_ctls_low,
2560                         vmx->nested.nested_vmx_exit_ctls_high);
2561                 break;
2562         case MSR_IA32_VMX_EXIT_CTLS:
2563                 *pdata = vmx_control_msr(
2564                         vmx->nested.nested_vmx_exit_ctls_low,
2565                         vmx->nested.nested_vmx_exit_ctls_high);
2566                 break;
2567         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2568                 *pdata = vmx_control_msr(
2569                         vmx->nested.nested_vmx_true_entry_ctls_low,
2570                         vmx->nested.nested_vmx_entry_ctls_high);
2571                 break;
2572         case MSR_IA32_VMX_ENTRY_CTLS:
2573                 *pdata = vmx_control_msr(
2574                         vmx->nested.nested_vmx_entry_ctls_low,
2575                         vmx->nested.nested_vmx_entry_ctls_high);
2576                 break;
2577         case MSR_IA32_VMX_MISC:
2578                 *pdata = vmx_control_msr(
2579                         vmx->nested.nested_vmx_misc_low,
2580                         vmx->nested.nested_vmx_misc_high);
2581                 break;
2582         /*
2583          * These MSRs specify bits which the guest must keep fixed (on or off)
2584          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2585          * We picked the standard core2 setting.
2586          */
2587 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2588 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2589         case MSR_IA32_VMX_CR0_FIXED0:
2590                 *pdata = VMXON_CR0_ALWAYSON;
2591                 break;
2592         case MSR_IA32_VMX_CR0_FIXED1:
2593                 *pdata = -1ULL;
2594                 break;
2595         case MSR_IA32_VMX_CR4_FIXED0:
2596                 *pdata = VMXON_CR4_ALWAYSON;
2597                 break;
2598         case MSR_IA32_VMX_CR4_FIXED1:
2599                 *pdata = -1ULL;
2600                 break;
2601         case MSR_IA32_VMX_VMCS_ENUM:
2602                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2603                 break;
2604         case MSR_IA32_VMX_PROCBASED_CTLS2:
2605                 *pdata = vmx_control_msr(
2606                         vmx->nested.nested_vmx_secondary_ctls_low,
2607                         vmx->nested.nested_vmx_secondary_ctls_high);
2608                 break;
2609         case MSR_IA32_VMX_EPT_VPID_CAP:
2610                 /* Currently, no nested vpid support */
2611                 *pdata = vmx->nested.nested_vmx_ept_caps;
2612                 break;
2613         default:
2614                 return 1;
2615         }
2616
2617         return 0;
2618 }
2619
2620 /*
2621  * Reads an msr value (of 'msr_index') into 'pdata'.
2622  * Returns 0 on success, non-0 otherwise.
2623  * Assumes vcpu_load() was already called.
2624  */
2625 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2626 {
2627         struct shared_msr_entry *msr;
2628
2629         switch (msr_info->index) {
2630 #ifdef CONFIG_X86_64
2631         case MSR_FS_BASE:
2632                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2633                 break;
2634         case MSR_GS_BASE:
2635                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2636                 break;
2637         case MSR_KERNEL_GS_BASE:
2638                 vmx_load_host_state(to_vmx(vcpu));
2639                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2640                 break;
2641 #endif
2642         case MSR_EFER:
2643                 return kvm_get_msr_common(vcpu, msr_info);
2644         case MSR_IA32_TSC:
2645                 msr_info->data = guest_read_tsc();
2646                 break;
2647         case MSR_IA32_SYSENTER_CS:
2648                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2649                 break;
2650         case MSR_IA32_SYSENTER_EIP:
2651                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2652                 break;
2653         case MSR_IA32_SYSENTER_ESP:
2654                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2655                 break;
2656         case MSR_IA32_BNDCFGS:
2657                 if (!vmx_mpx_supported())
2658                         return 1;
2659                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2660                 break;
2661         case MSR_IA32_FEATURE_CONTROL:
2662                 if (!nested_vmx_allowed(vcpu))
2663                         return 1;
2664                 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2665                 break;
2666         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2667                 if (!nested_vmx_allowed(vcpu))
2668                         return 1;
2669                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2670         case MSR_IA32_XSS:
2671                 if (!vmx_xsaves_supported())
2672                         return 1;
2673                 msr_info->data = vcpu->arch.ia32_xss;
2674                 break;
2675         case MSR_TSC_AUX:
2676                 if (!to_vmx(vcpu)->rdtscp_enabled)
2677                         return 1;
2678                 /* Otherwise falls through */
2679         default:
2680                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2681                 if (msr) {
2682                         msr_info->data = msr->data;
2683                         break;
2684                 }
2685                 return kvm_get_msr_common(vcpu, msr_info);
2686         }
2687
2688         return 0;
2689 }
2690
2691 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2692
2693 /*
2694  * Writes msr value into into the appropriate "register".
2695  * Returns 0 on success, non-0 otherwise.
2696  * Assumes vcpu_load() was already called.
2697  */
2698 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2699 {
2700         struct vcpu_vmx *vmx = to_vmx(vcpu);
2701         struct shared_msr_entry *msr;
2702         int ret = 0;
2703         u32 msr_index = msr_info->index;
2704         u64 data = msr_info->data;
2705
2706         switch (msr_index) {
2707         case MSR_EFER:
2708                 ret = kvm_set_msr_common(vcpu, msr_info);
2709                 break;
2710 #ifdef CONFIG_X86_64
2711         case MSR_FS_BASE:
2712                 vmx_segment_cache_clear(vmx);
2713                 vmcs_writel(GUEST_FS_BASE, data);
2714                 break;
2715         case MSR_GS_BASE:
2716                 vmx_segment_cache_clear(vmx);
2717                 vmcs_writel(GUEST_GS_BASE, data);
2718                 break;
2719         case MSR_KERNEL_GS_BASE:
2720                 vmx_load_host_state(vmx);
2721                 vmx->msr_guest_kernel_gs_base = data;
2722                 break;
2723 #endif
2724         case MSR_IA32_SYSENTER_CS:
2725                 vmcs_write32(GUEST_SYSENTER_CS, data);
2726                 break;
2727         case MSR_IA32_SYSENTER_EIP:
2728                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2729                 break;
2730         case MSR_IA32_SYSENTER_ESP:
2731                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2732                 break;
2733         case MSR_IA32_BNDCFGS:
2734                 if (!vmx_mpx_supported())
2735                         return 1;
2736                 vmcs_write64(GUEST_BNDCFGS, data);
2737                 break;
2738         case MSR_IA32_TSC:
2739                 kvm_write_tsc(vcpu, msr_info);
2740                 break;
2741         case MSR_IA32_CR_PAT:
2742                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2743                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2744                                 return 1;
2745                         vmcs_write64(GUEST_IA32_PAT, data);
2746                         vcpu->arch.pat = data;
2747                         break;
2748                 }
2749                 ret = kvm_set_msr_common(vcpu, msr_info);
2750                 break;
2751         case MSR_IA32_TSC_ADJUST:
2752                 ret = kvm_set_msr_common(vcpu, msr_info);
2753                 break;
2754         case MSR_IA32_FEATURE_CONTROL:
2755                 if (!nested_vmx_allowed(vcpu) ||
2756                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2757                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2758                         return 1;
2759                 vmx->nested.msr_ia32_feature_control = data;
2760                 if (msr_info->host_initiated && data == 0)
2761                         vmx_leave_nested(vcpu);
2762                 break;
2763         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2764                 return 1; /* they are read-only */
2765         case MSR_IA32_XSS:
2766                 if (!vmx_xsaves_supported())
2767                         return 1;
2768                 /*
2769                  * The only supported bit as of Skylake is bit 8, but
2770                  * it is not supported on KVM.
2771                  */
2772                 if (data != 0)
2773                         return 1;
2774                 vcpu->arch.ia32_xss = data;
2775                 if (vcpu->arch.ia32_xss != host_xss)
2776                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2777                                 vcpu->arch.ia32_xss, host_xss);
2778                 else
2779                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2780                 break;
2781         case MSR_TSC_AUX:
2782                 if (!vmx->rdtscp_enabled)
2783                         return 1;
2784                 /* Check reserved bit, higher 32 bits should be zero */
2785                 if ((data >> 32) != 0)
2786                         return 1;
2787                 /* Otherwise falls through */
2788         default:
2789                 msr = find_msr_entry(vmx, msr_index);
2790                 if (msr) {
2791                         u64 old_msr_data = msr->data;
2792                         msr->data = data;
2793                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2794                                 preempt_disable();
2795                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2796                                                          msr->mask);
2797                                 preempt_enable();
2798                                 if (ret)
2799                                         msr->data = old_msr_data;
2800                         }
2801                         break;
2802                 }
2803                 ret = kvm_set_msr_common(vcpu, msr_info);
2804         }
2805
2806         return ret;
2807 }
2808
2809 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2810 {
2811         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2812         switch (reg) {
2813         case VCPU_REGS_RSP:
2814                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2815                 break;
2816         case VCPU_REGS_RIP:
2817                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2818                 break;
2819         case VCPU_EXREG_PDPTR:
2820                 if (enable_ept)
2821                         ept_save_pdptrs(vcpu);
2822                 break;
2823         default:
2824                 break;
2825         }
2826 }
2827
2828 static __init int cpu_has_kvm_support(void)
2829 {
2830         return cpu_has_vmx();
2831 }
2832
2833 static __init int vmx_disabled_by_bios(void)
2834 {
2835         u64 msr;
2836
2837         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2838         if (msr & FEATURE_CONTROL_LOCKED) {
2839                 /* launched w/ TXT and VMX disabled */
2840                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2841                         && tboot_enabled())
2842                         return 1;
2843                 /* launched w/o TXT and VMX only enabled w/ TXT */
2844                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2845                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2846                         && !tboot_enabled()) {
2847                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2848                                 "activate TXT before enabling KVM\n");
2849                         return 1;
2850                 }
2851                 /* launched w/o TXT and VMX disabled */
2852                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2853                         && !tboot_enabled())
2854                         return 1;
2855         }
2856
2857         return 0;
2858 }
2859
2860 static void kvm_cpu_vmxon(u64 addr)
2861 {
2862         asm volatile (ASM_VMX_VMXON_RAX
2863                         : : "a"(&addr), "m"(addr)
2864                         : "memory", "cc");
2865 }
2866
2867 static int hardware_enable(void)
2868 {
2869         int cpu = raw_smp_processor_id();
2870         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2871         u64 old, test_bits;
2872
2873         if (cr4_read_shadow() & X86_CR4_VMXE)
2874                 return -EBUSY;
2875
2876         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2877
2878         /*
2879          * Now we can enable the vmclear operation in kdump
2880          * since the loaded_vmcss_on_cpu list on this cpu
2881          * has been initialized.
2882          *
2883          * Though the cpu is not in VMX operation now, there
2884          * is no problem to enable the vmclear operation
2885          * for the loaded_vmcss_on_cpu list is empty!
2886          */
2887         crash_enable_local_vmclear(cpu);
2888
2889         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2890
2891         test_bits = FEATURE_CONTROL_LOCKED;
2892         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2893         if (tboot_enabled())
2894                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2895
2896         if ((old & test_bits) != test_bits) {
2897                 /* enable and lock */
2898                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2899         }
2900         cr4_set_bits(X86_CR4_VMXE);
2901
2902         if (vmm_exclusive) {
2903                 kvm_cpu_vmxon(phys_addr);
2904                 ept_sync_global();
2905         }
2906
2907         native_store_gdt(this_cpu_ptr(&host_gdt));
2908
2909         return 0;
2910 }
2911
2912 static void vmclear_local_loaded_vmcss(void)
2913 {
2914         int cpu = raw_smp_processor_id();
2915         struct loaded_vmcs *v, *n;
2916
2917         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2918                                  loaded_vmcss_on_cpu_link)
2919                 __loaded_vmcs_clear(v);
2920 }
2921
2922
2923 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2924  * tricks.
2925  */
2926 static void kvm_cpu_vmxoff(void)
2927 {
2928         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2929 }
2930
2931 static void hardware_disable(void)
2932 {
2933         if (vmm_exclusive) {
2934                 vmclear_local_loaded_vmcss();
2935                 kvm_cpu_vmxoff();
2936         }
2937         cr4_clear_bits(X86_CR4_VMXE);
2938 }
2939
2940 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2941                                       u32 msr, u32 *result)
2942 {
2943         u32 vmx_msr_low, vmx_msr_high;
2944         u32 ctl = ctl_min | ctl_opt;
2945
2946         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2947
2948         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2949         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2950
2951         /* Ensure minimum (required) set of control bits are supported. */
2952         if (ctl_min & ~ctl)
2953                 return -EIO;
2954
2955         *result = ctl;
2956         return 0;
2957 }
2958
2959 static __init bool allow_1_setting(u32 msr, u32 ctl)
2960 {
2961         u32 vmx_msr_low, vmx_msr_high;
2962
2963         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2964         return vmx_msr_high & ctl;
2965 }
2966
2967 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2968 {
2969         u32 vmx_msr_low, vmx_msr_high;
2970         u32 min, opt, min2, opt2;
2971         u32 _pin_based_exec_control = 0;
2972         u32 _cpu_based_exec_control = 0;
2973         u32 _cpu_based_2nd_exec_control = 0;
2974         u32 _vmexit_control = 0;
2975         u32 _vmentry_control = 0;
2976
2977         min = CPU_BASED_HLT_EXITING |
2978 #ifdef CONFIG_X86_64
2979               CPU_BASED_CR8_LOAD_EXITING |
2980               CPU_BASED_CR8_STORE_EXITING |
2981 #endif
2982               CPU_BASED_CR3_LOAD_EXITING |
2983               CPU_BASED_CR3_STORE_EXITING |
2984               CPU_BASED_USE_IO_BITMAPS |
2985               CPU_BASED_MOV_DR_EXITING |
2986               CPU_BASED_USE_TSC_OFFSETING |
2987               CPU_BASED_MWAIT_EXITING |
2988               CPU_BASED_MONITOR_EXITING |
2989               CPU_BASED_INVLPG_EXITING |
2990               CPU_BASED_RDPMC_EXITING;
2991
2992         opt = CPU_BASED_TPR_SHADOW |
2993               CPU_BASED_USE_MSR_BITMAPS |
2994               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2995         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2996                                 &_cpu_based_exec_control) < 0)
2997                 return -EIO;
2998 #ifdef CONFIG_X86_64
2999         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3000                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3001                                            ~CPU_BASED_CR8_STORE_EXITING;
3002 #endif
3003         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3004                 min2 = 0;
3005                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3006                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3007                         SECONDARY_EXEC_WBINVD_EXITING |
3008                         SECONDARY_EXEC_ENABLE_VPID |
3009                         SECONDARY_EXEC_ENABLE_EPT |
3010                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3011                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3012                         SECONDARY_EXEC_RDTSCP |
3013                         SECONDARY_EXEC_ENABLE_INVPCID |
3014                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3015                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3016                         SECONDARY_EXEC_SHADOW_VMCS |
3017                         SECONDARY_EXEC_XSAVES |
3018                         SECONDARY_EXEC_ENABLE_PML;
3019                 if (adjust_vmx_controls(min2, opt2,
3020                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3021                                         &_cpu_based_2nd_exec_control) < 0)
3022                         return -EIO;
3023         }
3024 #ifndef CONFIG_X86_64
3025         if (!(_cpu_based_2nd_exec_control &
3026                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3027                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3028 #endif
3029
3030         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3031                 _cpu_based_2nd_exec_control &= ~(
3032                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3033                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3034                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3035
3036         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3037                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3038                    enabled */
3039                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3040                                              CPU_BASED_CR3_STORE_EXITING |
3041                                              CPU_BASED_INVLPG_EXITING);
3042                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3043                       vmx_capability.ept, vmx_capability.vpid);
3044         }
3045
3046         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3047 #ifdef CONFIG_X86_64
3048         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3049 #endif
3050         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3051                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3052         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3053                                 &_vmexit_control) < 0)
3054                 return -EIO;
3055
3056         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3057         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3058         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3059                                 &_pin_based_exec_control) < 0)
3060                 return -EIO;
3061
3062         if (!(_cpu_based_2nd_exec_control &
3063                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3064                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3065                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3066
3067         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3068         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3069         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3070                                 &_vmentry_control) < 0)
3071                 return -EIO;
3072
3073         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3074
3075         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3076         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3077                 return -EIO;
3078
3079 #ifdef CONFIG_X86_64
3080         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3081         if (vmx_msr_high & (1u<<16))
3082                 return -EIO;
3083 #endif
3084
3085         /* Require Write-Back (WB) memory type for VMCS accesses. */
3086         if (((vmx_msr_high >> 18) & 15) != 6)
3087                 return -EIO;
3088
3089         vmcs_conf->size = vmx_msr_high & 0x1fff;
3090         vmcs_conf->order = get_order(vmcs_config.size);
3091         vmcs_conf->revision_id = vmx_msr_low;
3092
3093         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3094         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3095         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3096         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3097         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3098
3099         cpu_has_load_ia32_efer =
3100                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3101                                 VM_ENTRY_LOAD_IA32_EFER)
3102                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3103                                    VM_EXIT_LOAD_IA32_EFER);
3104
3105         cpu_has_load_perf_global_ctrl =
3106                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3107                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3108                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3109                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3110
3111         /*
3112          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3113          * but due to arrata below it can't be used. Workaround is to use
3114          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3115          *
3116          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3117          *
3118          * AAK155             (model 26)
3119          * AAP115             (model 30)
3120          * AAT100             (model 37)
3121          * BC86,AAY89,BD102   (model 44)
3122          * BA97               (model 46)
3123          *
3124          */
3125         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3126                 switch (boot_cpu_data.x86_model) {
3127                 case 26:
3128                 case 30:
3129                 case 37:
3130                 case 44:
3131                 case 46:
3132                         cpu_has_load_perf_global_ctrl = false;
3133                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3134                                         "does not work properly. Using workaround\n");
3135                         break;
3136                 default:
3137                         break;
3138                 }
3139         }
3140
3141         if (cpu_has_xsaves)
3142                 rdmsrl(MSR_IA32_XSS, host_xss);
3143
3144         return 0;
3145 }
3146
3147 static struct vmcs *alloc_vmcs_cpu(int cpu)
3148 {
3149         int node = cpu_to_node(cpu);
3150         struct page *pages;
3151         struct vmcs *vmcs;
3152
3153         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3154         if (!pages)
3155                 return NULL;
3156         vmcs = page_address(pages);
3157         memset(vmcs, 0, vmcs_config.size);
3158         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3159         return vmcs;
3160 }
3161
3162 static struct vmcs *alloc_vmcs(void)
3163 {
3164         return alloc_vmcs_cpu(raw_smp_processor_id());
3165 }
3166
3167 static void free_vmcs(struct vmcs *vmcs)
3168 {
3169         free_pages((unsigned long)vmcs, vmcs_config.order);
3170 }
3171
3172 /*
3173  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3174  */
3175 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3176 {
3177         if (!loaded_vmcs->vmcs)
3178                 return;
3179         loaded_vmcs_clear(loaded_vmcs);
3180         free_vmcs(loaded_vmcs->vmcs);
3181         loaded_vmcs->vmcs = NULL;
3182 }
3183
3184 static void free_kvm_area(void)
3185 {
3186         int cpu;
3187
3188         for_each_possible_cpu(cpu) {
3189                 free_vmcs(per_cpu(vmxarea, cpu));
3190                 per_cpu(vmxarea, cpu) = NULL;
3191         }
3192 }
3193
3194 static void init_vmcs_shadow_fields(void)
3195 {
3196         int i, j;
3197
3198         /* No checks for read only fields yet */
3199
3200         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3201                 switch (shadow_read_write_fields[i]) {
3202                 case GUEST_BNDCFGS:
3203                         if (!vmx_mpx_supported())
3204                                 continue;
3205                         break;
3206                 default:
3207                         break;
3208                 }
3209
3210                 if (j < i)
3211                         shadow_read_write_fields[j] =
3212                                 shadow_read_write_fields[i];
3213                 j++;
3214         }
3215         max_shadow_read_write_fields = j;
3216
3217         /* shadowed fields guest access without vmexit */
3218         for (i = 0; i < max_shadow_read_write_fields; i++) {
3219                 clear_bit(shadow_read_write_fields[i],
3220                           vmx_vmwrite_bitmap);
3221                 clear_bit(shadow_read_write_fields[i],
3222                           vmx_vmread_bitmap);
3223         }
3224         for (i = 0; i < max_shadow_read_only_fields; i++)
3225                 clear_bit(shadow_read_only_fields[i],
3226                           vmx_vmread_bitmap);
3227 }
3228
3229 static __init int alloc_kvm_area(void)
3230 {
3231         int cpu;
3232
3233         for_each_possible_cpu(cpu) {
3234                 struct vmcs *vmcs;
3235
3236                 vmcs = alloc_vmcs_cpu(cpu);
3237                 if (!vmcs) {
3238                         free_kvm_area();
3239                         return -ENOMEM;
3240                 }
3241
3242                 per_cpu(vmxarea, cpu) = vmcs;
3243         }
3244         return 0;
3245 }
3246
3247 static bool emulation_required(struct kvm_vcpu *vcpu)
3248 {
3249         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3250 }
3251
3252 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3253                 struct kvm_segment *save)
3254 {
3255         if (!emulate_invalid_guest_state) {
3256                 /*
3257                  * CS and SS RPL should be equal during guest entry according
3258                  * to VMX spec, but in reality it is not always so. Since vcpu
3259                  * is in the middle of the transition from real mode to
3260                  * protected mode it is safe to assume that RPL 0 is a good
3261                  * default value.
3262                  */
3263                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3264                         save->selector &= ~SEGMENT_RPL_MASK;
3265                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3266                 save->s = 1;
3267         }
3268         vmx_set_segment(vcpu, save, seg);
3269 }
3270
3271 static void enter_pmode(struct kvm_vcpu *vcpu)
3272 {
3273         unsigned long flags;
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
3275
3276         /*
3277          * Update real mode segment cache. It may be not up-to-date if sement
3278          * register was written while vcpu was in a guest mode.
3279          */
3280         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3281         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3282         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3283         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3284         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3285         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3286
3287         vmx->rmode.vm86_active = 0;
3288
3289         vmx_segment_cache_clear(vmx);
3290
3291         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3292
3293         flags = vmcs_readl(GUEST_RFLAGS);
3294         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3295         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3296         vmcs_writel(GUEST_RFLAGS, flags);
3297
3298         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3299                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3300
3301         update_exception_bitmap(vcpu);
3302
3303         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3304         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3305         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3306         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3307         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3308         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3309 }
3310
3311 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3312 {
3313         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3314         struct kvm_segment var = *save;
3315
3316         var.dpl = 0x3;
3317         if (seg == VCPU_SREG_CS)
3318                 var.type = 0x3;
3319
3320         if (!emulate_invalid_guest_state) {
3321                 var.selector = var.base >> 4;
3322                 var.base = var.base & 0xffff0;
3323                 var.limit = 0xffff;
3324                 var.g = 0;
3325                 var.db = 0;
3326                 var.present = 1;
3327                 var.s = 1;
3328                 var.l = 0;
3329                 var.unusable = 0;
3330                 var.type = 0x3;
3331                 var.avl = 0;
3332                 if (save->base & 0xf)
3333                         printk_once(KERN_WARNING "kvm: segment base is not "
3334                                         "paragraph aligned when entering "
3335                                         "protected mode (seg=%d)", seg);
3336         }
3337
3338         vmcs_write16(sf->selector, var.selector);
3339         vmcs_write32(sf->base, var.base);
3340         vmcs_write32(sf->limit, var.limit);
3341         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3342 }
3343
3344 static void enter_rmode(struct kvm_vcpu *vcpu)
3345 {
3346         unsigned long flags;
3347         struct vcpu_vmx *vmx = to_vmx(vcpu);
3348
3349         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3350         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3351         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3352         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3353         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3354         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3355         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3356
3357         vmx->rmode.vm86_active = 1;
3358
3359         /*
3360          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3361          * vcpu. Warn the user that an update is overdue.
3362          */
3363         if (!vcpu->kvm->arch.tss_addr)
3364                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3365                              "called before entering vcpu\n");
3366
3367         vmx_segment_cache_clear(vmx);
3368
3369         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3370         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3371         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3372
3373         flags = vmcs_readl(GUEST_RFLAGS);
3374         vmx->rmode.save_rflags = flags;
3375
3376         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3377
3378         vmcs_writel(GUEST_RFLAGS, flags);
3379         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3380         update_exception_bitmap(vcpu);
3381
3382         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3383         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3384         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3385         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3386         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3387         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3388
3389         kvm_mmu_reset_context(vcpu);
3390 }
3391
3392 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3393 {
3394         struct vcpu_vmx *vmx = to_vmx(vcpu);
3395         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3396
3397         if (!msr)
3398                 return;
3399
3400         /*
3401          * Force kernel_gs_base reloading before EFER changes, as control
3402          * of this msr depends on is_long_mode().
3403          */
3404         vmx_load_host_state(to_vmx(vcpu));
3405         vcpu->arch.efer = efer;
3406         if (efer & EFER_LMA) {
3407                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3408                 msr->data = efer;
3409         } else {
3410                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3411
3412                 msr->data = efer & ~EFER_LME;
3413         }
3414         setup_msrs(vmx);
3415 }
3416
3417 #ifdef CONFIG_X86_64
3418
3419 static void enter_lmode(struct kvm_vcpu *vcpu)
3420 {
3421         u32 guest_tr_ar;
3422
3423         vmx_segment_cache_clear(to_vmx(vcpu));
3424
3425         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3426         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3427                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3428                                      __func__);
3429                 vmcs_write32(GUEST_TR_AR_BYTES,
3430                              (guest_tr_ar & ~AR_TYPE_MASK)
3431                              | AR_TYPE_BUSY_64_TSS);
3432         }
3433         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3434 }
3435
3436 static void exit_lmode(struct kvm_vcpu *vcpu)
3437 {
3438         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3439         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3440 }
3441
3442 #endif
3443
3444 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3445 {
3446         vpid_sync_context(to_vmx(vcpu));
3447         if (enable_ept) {
3448                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3449                         return;
3450                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3451         }
3452 }
3453
3454 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3455 {
3456         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3457
3458         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3459         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3460 }
3461
3462 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3463 {
3464         if (enable_ept && is_paging(vcpu))
3465                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3466         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3467 }
3468
3469 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3470 {
3471         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3472
3473         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3474         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3475 }
3476
3477 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3478 {
3479         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3480
3481         if (!test_bit(VCPU_EXREG_PDPTR,
3482                       (unsigned long *)&vcpu->arch.regs_dirty))
3483                 return;
3484
3485         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3486                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3487                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3488                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3489                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3490         }
3491 }
3492
3493 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3494 {
3495         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3496
3497         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3498                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3499                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3500                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3501                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3502         }
3503
3504         __set_bit(VCPU_EXREG_PDPTR,
3505                   (unsigned long *)&vcpu->arch.regs_avail);
3506         __set_bit(VCPU_EXREG_PDPTR,
3507                   (unsigned long *)&vcpu->arch.regs_dirty);
3508 }
3509
3510 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3511
3512 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3513                                         unsigned long cr0,
3514                                         struct kvm_vcpu *vcpu)
3515 {
3516         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3517                 vmx_decache_cr3(vcpu);
3518         if (!(cr0 & X86_CR0_PG)) {
3519                 /* From paging/starting to nonpaging */
3520                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3521                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3522                              (CPU_BASED_CR3_LOAD_EXITING |
3523                               CPU_BASED_CR3_STORE_EXITING));
3524                 vcpu->arch.cr0 = cr0;
3525                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3526         } else if (!is_paging(vcpu)) {
3527                 /* From nonpaging to paging */
3528                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3529                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3530                              ~(CPU_BASED_CR3_LOAD_EXITING |
3531                                CPU_BASED_CR3_STORE_EXITING));
3532                 vcpu->arch.cr0 = cr0;
3533                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3534         }
3535
3536         if (!(cr0 & X86_CR0_WP))
3537                 *hw_cr0 &= ~X86_CR0_WP;
3538 }
3539
3540 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3541 {
3542         struct vcpu_vmx *vmx = to_vmx(vcpu);
3543         unsigned long hw_cr0;
3544
3545         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3546         if (enable_unrestricted_guest)
3547                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3548         else {
3549                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3550
3551                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3552                         enter_pmode(vcpu);
3553
3554                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3555                         enter_rmode(vcpu);
3556         }
3557
3558 #ifdef CONFIG_X86_64
3559         if (vcpu->arch.efer & EFER_LME) {
3560                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3561                         enter_lmode(vcpu);
3562                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3563                         exit_lmode(vcpu);
3564         }
3565 #endif
3566
3567         if (enable_ept)
3568                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3569
3570         if (!vcpu->fpu_active)
3571                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3572
3573         vmcs_writel(CR0_READ_SHADOW, cr0);
3574         vmcs_writel(GUEST_CR0, hw_cr0);
3575         vcpu->arch.cr0 = cr0;
3576
3577         /* depends on vcpu->arch.cr0 to be set to a new value */
3578         vmx->emulation_required = emulation_required(vcpu);
3579 }
3580
3581 static u64 construct_eptp(unsigned long root_hpa)
3582 {
3583         u64 eptp;
3584
3585         /* TODO write the value reading from MSR */
3586         eptp = VMX_EPT_DEFAULT_MT |
3587                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3588         if (enable_ept_ad_bits)
3589                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3590         eptp |= (root_hpa & PAGE_MASK);
3591
3592         return eptp;
3593 }
3594
3595 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3596 {
3597         unsigned long guest_cr3;
3598         u64 eptp;
3599
3600         guest_cr3 = cr3;
3601         if (enable_ept) {
3602                 eptp = construct_eptp(cr3);
3603                 vmcs_write64(EPT_POINTER, eptp);
3604                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3605                         guest_cr3 = kvm_read_cr3(vcpu);
3606                 else
3607                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3608                 ept_load_pdptrs(vcpu);
3609         }
3610
3611         vmx_flush_tlb(vcpu);
3612         vmcs_writel(GUEST_CR3, guest_cr3);
3613 }
3614
3615 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3616 {
3617         /*
3618          * Pass through host's Machine Check Enable value to hw_cr4, which
3619          * is in force while we are in guest mode.  Do not let guests control
3620          * this bit, even if host CR4.MCE == 0.
3621          */
3622         unsigned long hw_cr4 =
3623                 (cr4_read_shadow() & X86_CR4_MCE) |
3624                 (cr4 & ~X86_CR4_MCE) |
3625                 (to_vmx(vcpu)->rmode.vm86_active ?
3626                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3627
3628         if (cr4 & X86_CR4_VMXE) {
3629                 /*
3630                  * To use VMXON (and later other VMX instructions), a guest
3631                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3632                  * So basically the check on whether to allow nested VMX
3633                  * is here.
3634                  */
3635                 if (!nested_vmx_allowed(vcpu))
3636                         return 1;
3637         }
3638         if (to_vmx(vcpu)->nested.vmxon &&
3639             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3640                 return 1;
3641
3642         vcpu->arch.cr4 = cr4;
3643         if (enable_ept) {
3644                 if (!is_paging(vcpu)) {
3645                         hw_cr4 &= ~X86_CR4_PAE;
3646                         hw_cr4 |= X86_CR4_PSE;
3647                         /*
3648                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3649                          * in hardware. However KVM always uses paging mode to
3650                          * emulate guest non-paging mode with TDP.
3651                          * To emulate this behavior, SMEP/SMAP needs to be
3652                          * manually disabled when guest switches to non-paging
3653                          * mode.
3654                          */
3655                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3656                 } else if (!(cr4 & X86_CR4_PAE)) {
3657                         hw_cr4 &= ~X86_CR4_PAE;
3658                 }
3659         }
3660
3661         vmcs_writel(CR4_READ_SHADOW, cr4);
3662         vmcs_writel(GUEST_CR4, hw_cr4);
3663         return 0;
3664 }
3665
3666 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3667                             struct kvm_segment *var, int seg)
3668 {
3669         struct vcpu_vmx *vmx = to_vmx(vcpu);
3670         u32 ar;
3671
3672         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3673                 *var = vmx->rmode.segs[seg];
3674                 if (seg == VCPU_SREG_TR
3675                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3676                         return;
3677                 var->base = vmx_read_guest_seg_base(vmx, seg);
3678                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3679                 return;
3680         }
3681         var->base = vmx_read_guest_seg_base(vmx, seg);
3682         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3683         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3684         ar = vmx_read_guest_seg_ar(vmx, seg);
3685         var->unusable = (ar >> 16) & 1;
3686         var->type = ar & 15;
3687         var->s = (ar >> 4) & 1;
3688         var->dpl = (ar >> 5) & 3;
3689         /*
3690          * Some userspaces do not preserve unusable property. Since usable
3691          * segment has to be present according to VMX spec we can use present
3692          * property to amend userspace bug by making unusable segment always
3693          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3694          * segment as unusable.
3695          */
3696         var->present = !var->unusable;
3697         var->avl = (ar >> 12) & 1;
3698         var->l = (ar >> 13) & 1;
3699         var->db = (ar >> 14) & 1;
3700         var->g = (ar >> 15) & 1;
3701 }
3702
3703 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3704 {
3705         struct kvm_segment s;
3706
3707         if (to_vmx(vcpu)->rmode.vm86_active) {
3708                 vmx_get_segment(vcpu, &s, seg);
3709                 return s.base;
3710         }
3711         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3712 }
3713
3714 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3715 {
3716         struct vcpu_vmx *vmx = to_vmx(vcpu);
3717
3718         if (unlikely(vmx->rmode.vm86_active))
3719                 return 0;
3720         else {
3721                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3722                 return AR_DPL(ar);
3723         }
3724 }
3725
3726 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3727 {
3728         u32 ar;
3729
3730         if (var->unusable || !var->present)
3731                 ar = 1 << 16;
3732         else {
3733                 ar = var->type & 15;
3734                 ar |= (var->s & 1) << 4;
3735                 ar |= (var->dpl & 3) << 5;
3736                 ar |= (var->present & 1) << 7;
3737                 ar |= (var->avl & 1) << 12;
3738                 ar |= (var->l & 1) << 13;
3739                 ar |= (var->db & 1) << 14;
3740                 ar |= (var->g & 1) << 15;
3741         }
3742
3743         return ar;
3744 }
3745
3746 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3747                             struct kvm_segment *var, int seg)
3748 {
3749         struct vcpu_vmx *vmx = to_vmx(vcpu);
3750         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3751
3752         vmx_segment_cache_clear(vmx);
3753
3754         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3755                 vmx->rmode.segs[seg] = *var;
3756                 if (seg == VCPU_SREG_TR)
3757                         vmcs_write16(sf->selector, var->selector);
3758                 else if (var->s)
3759                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3760                 goto out;
3761         }
3762
3763         vmcs_writel(sf->base, var->base);
3764         vmcs_write32(sf->limit, var->limit);
3765         vmcs_write16(sf->selector, var->selector);
3766
3767         /*
3768          *   Fix the "Accessed" bit in AR field of segment registers for older
3769          * qemu binaries.
3770          *   IA32 arch specifies that at the time of processor reset the
3771          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3772          * is setting it to 0 in the userland code. This causes invalid guest
3773          * state vmexit when "unrestricted guest" mode is turned on.
3774          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3775          * tree. Newer qemu binaries with that qemu fix would not need this
3776          * kvm hack.
3777          */
3778         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3779                 var->type |= 0x1; /* Accessed */
3780
3781         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3782
3783 out:
3784         vmx->emulation_required = emulation_required(vcpu);
3785 }
3786
3787 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3788 {
3789         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3790
3791         *db = (ar >> 14) & 1;
3792         *l = (ar >> 13) & 1;
3793 }
3794
3795 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3796 {
3797         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3798         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3799 }
3800
3801 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3802 {
3803         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3804         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3805 }
3806
3807 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3808 {
3809         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3810         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3811 }
3812
3813 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3814 {
3815         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3816         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3817 }
3818
3819 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3820 {
3821         struct kvm_segment var;
3822         u32 ar;
3823
3824         vmx_get_segment(vcpu, &var, seg);
3825         var.dpl = 0x3;
3826         if (seg == VCPU_SREG_CS)
3827                 var.type = 0x3;
3828         ar = vmx_segment_access_rights(&var);
3829
3830         if (var.base != (var.selector << 4))
3831                 return false;
3832         if (var.limit != 0xffff)
3833                 return false;
3834         if (ar != 0xf3)
3835                 return false;
3836
3837         return true;
3838 }
3839
3840 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3841 {
3842         struct kvm_segment cs;
3843         unsigned int cs_rpl;
3844
3845         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3846         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3847
3848         if (cs.unusable)
3849                 return false;
3850         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3851                 return false;
3852         if (!cs.s)
3853                 return false;
3854         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3855                 if (cs.dpl > cs_rpl)
3856                         return false;
3857         } else {
3858                 if (cs.dpl != cs_rpl)
3859                         return false;
3860         }
3861         if (!cs.present)
3862                 return false;
3863
3864         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3865         return true;
3866 }
3867
3868 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3869 {
3870         struct kvm_segment ss;
3871         unsigned int ss_rpl;
3872
3873         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3874         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3875
3876         if (ss.unusable)
3877                 return true;
3878         if (ss.type != 3 && ss.type != 7)
3879                 return false;
3880         if (!ss.s)
3881                 return false;
3882         if (ss.dpl != ss_rpl) /* DPL != RPL */
3883                 return false;
3884         if (!ss.present)
3885                 return false;
3886
3887         return true;
3888 }
3889
3890 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3891 {
3892         struct kvm_segment var;
3893         unsigned int rpl;
3894
3895         vmx_get_segment(vcpu, &var, seg);
3896         rpl = var.selector & SEGMENT_RPL_MASK;
3897
3898         if (var.unusable)
3899                 return true;
3900         if (!var.s)
3901                 return false;
3902         if (!var.present)
3903                 return false;
3904         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3905                 if (var.dpl < rpl) /* DPL < RPL */
3906                         return false;
3907         }
3908
3909         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3910          * rights flags
3911          */
3912         return true;
3913 }
3914
3915 static bool tr_valid(struct kvm_vcpu *vcpu)
3916 {
3917         struct kvm_segment tr;
3918
3919         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3920
3921         if (tr.unusable)
3922                 return false;
3923         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3924                 return false;
3925         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3926                 return false;
3927         if (!tr.present)
3928                 return false;
3929
3930         return true;
3931 }
3932
3933 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3934 {
3935         struct kvm_segment ldtr;
3936
3937         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3938
3939         if (ldtr.unusable)
3940                 return true;
3941         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3942                 return false;
3943         if (ldtr.type != 2)
3944                 return false;
3945         if (!ldtr.present)
3946                 return false;
3947
3948         return true;
3949 }
3950
3951 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3952 {
3953         struct kvm_segment cs, ss;
3954
3955         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3956         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3957
3958         return ((cs.selector & SEGMENT_RPL_MASK) ==
3959                  (ss.selector & SEGMENT_RPL_MASK));
3960 }
3961
3962 /*
3963  * Check if guest state is valid. Returns true if valid, false if
3964  * not.
3965  * We assume that registers are always usable
3966  */
3967 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3968 {
3969         if (enable_unrestricted_guest)
3970                 return true;
3971
3972         /* real mode guest state checks */
3973         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3974                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3975                         return false;
3976                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3977                         return false;
3978                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3979                         return false;
3980                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3981                         return false;
3982                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3983                         return false;
3984                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3985                         return false;
3986         } else {
3987         /* protected mode guest state checks */
3988                 if (!cs_ss_rpl_check(vcpu))
3989                         return false;
3990                 if (!code_segment_valid(vcpu))
3991                         return false;
3992                 if (!stack_segment_valid(vcpu))
3993                         return false;
3994                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3995                         return false;
3996                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3997                         return false;
3998                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3999                         return false;
4000                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4001                         return false;
4002                 if (!tr_valid(vcpu))
4003                         return false;
4004                 if (!ldtr_valid(vcpu))
4005                         return false;
4006         }
4007         /* TODO:
4008          * - Add checks on RIP
4009          * - Add checks on RFLAGS
4010          */
4011
4012         return true;
4013 }
4014
4015 static int init_rmode_tss(struct kvm *kvm)
4016 {
4017         gfn_t fn;
4018         u16 data = 0;
4019         int idx, r;
4020
4021         idx = srcu_read_lock(&kvm->srcu);
4022         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4023         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4024         if (r < 0)
4025                 goto out;
4026         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4027         r = kvm_write_guest_page(kvm, fn++, &data,
4028                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4029         if (r < 0)
4030                 goto out;
4031         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4032         if (r < 0)
4033                 goto out;
4034         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4035         if (r < 0)
4036                 goto out;
4037         data = ~0;
4038         r = kvm_write_guest_page(kvm, fn, &data,
4039                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4040                                  sizeof(u8));
4041 out:
4042         srcu_read_unlock(&kvm->srcu, idx);
4043         return r;
4044 }
4045
4046 static int init_rmode_identity_map(struct kvm *kvm)
4047 {
4048         int i, idx, r = 0;
4049         pfn_t identity_map_pfn;
4050         u32 tmp;
4051
4052         if (!enable_ept)
4053                 return 0;
4054
4055         /* Protect kvm->arch.ept_identity_pagetable_done. */
4056         mutex_lock(&kvm->slots_lock);
4057
4058         if (likely(kvm->arch.ept_identity_pagetable_done))
4059                 goto out2;
4060
4061         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4062
4063         r = alloc_identity_pagetable(kvm);
4064         if (r < 0)
4065                 goto out2;
4066
4067         idx = srcu_read_lock(&kvm->srcu);
4068         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4069         if (r < 0)
4070                 goto out;
4071         /* Set up identity-mapping pagetable for EPT in real mode */
4072         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4073                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4074                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4075                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4076                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4077                 if (r < 0)
4078                         goto out;
4079         }
4080         kvm->arch.ept_identity_pagetable_done = true;
4081
4082 out:
4083         srcu_read_unlock(&kvm->srcu, idx);
4084
4085 out2:
4086         mutex_unlock(&kvm->slots_lock);
4087         return r;
4088 }
4089
4090 static void seg_setup(int seg)
4091 {
4092         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4093         unsigned int ar;
4094
4095         vmcs_write16(sf->selector, 0);
4096         vmcs_writel(sf->base, 0);
4097         vmcs_write32(sf->limit, 0xffff);
4098         ar = 0x93;
4099         if (seg == VCPU_SREG_CS)
4100                 ar |= 0x08; /* code segment */
4101
4102         vmcs_write32(sf->ar_bytes, ar);
4103 }
4104
4105 static int alloc_apic_access_page(struct kvm *kvm)
4106 {
4107         struct page *page;
4108         struct kvm_userspace_memory_region kvm_userspace_mem;
4109         int r = 0;
4110
4111         mutex_lock(&kvm->slots_lock);
4112         if (kvm->arch.apic_access_page_done)
4113                 goto out;
4114         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4115         kvm_userspace_mem.flags = 0;
4116         kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4117         kvm_userspace_mem.memory_size = PAGE_SIZE;
4118         r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
4119         if (r)
4120                 goto out;
4121
4122         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4123         if (is_error_page(page)) {
4124                 r = -EFAULT;
4125                 goto out;
4126         }
4127
4128         /*
4129          * Do not pin the page in memory, so that memory hot-unplug
4130          * is able to migrate it.
4131          */
4132         put_page(page);
4133         kvm->arch.apic_access_page_done = true;
4134 out:
4135         mutex_unlock(&kvm->slots_lock);
4136         return r;
4137 }
4138
4139 static int alloc_identity_pagetable(struct kvm *kvm)
4140 {
4141         /* Called with kvm->slots_lock held. */
4142
4143         struct kvm_userspace_memory_region kvm_userspace_mem;
4144         int r = 0;
4145
4146         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4147
4148         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4149         kvm_userspace_mem.flags = 0;
4150         kvm_userspace_mem.guest_phys_addr =
4151                 kvm->arch.ept_identity_map_addr;
4152         kvm_userspace_mem.memory_size = PAGE_SIZE;
4153         r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
4154
4155         return r;
4156 }
4157
4158 static void allocate_vpid(struct vcpu_vmx *vmx)
4159 {
4160         int vpid;
4161
4162         vmx->vpid = 0;
4163         if (!enable_vpid)
4164                 return;
4165         spin_lock(&vmx_vpid_lock);
4166         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4167         if (vpid < VMX_NR_VPIDS) {
4168                 vmx->vpid = vpid;
4169                 __set_bit(vpid, vmx_vpid_bitmap);
4170         }
4171         spin_unlock(&vmx_vpid_lock);
4172 }
4173
4174 static void free_vpid(struct vcpu_vmx *vmx)
4175 {
4176         if (!enable_vpid)
4177                 return;
4178         spin_lock(&vmx_vpid_lock);
4179         if (vmx->vpid != 0)
4180                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4181         spin_unlock(&vmx_vpid_lock);
4182 }
4183
4184 #define MSR_TYPE_R      1
4185 #define MSR_TYPE_W      2
4186 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4187                                                 u32 msr, int type)
4188 {
4189         int f = sizeof(unsigned long);
4190
4191         if (!cpu_has_vmx_msr_bitmap())
4192                 return;
4193
4194         /*
4195          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4196          * have the write-low and read-high bitmap offsets the wrong way round.
4197          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4198          */
4199         if (msr <= 0x1fff) {
4200                 if (type & MSR_TYPE_R)
4201                         /* read-low */
4202                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4203
4204                 if (type & MSR_TYPE_W)
4205                         /* write-low */
4206                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4207
4208         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4209                 msr &= 0x1fff;
4210                 if (type & MSR_TYPE_R)
4211                         /* read-high */
4212                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4213
4214                 if (type & MSR_TYPE_W)
4215                         /* write-high */
4216                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4217
4218         }
4219 }
4220
4221 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4222                                                 u32 msr, int type)
4223 {
4224         int f = sizeof(unsigned long);
4225
4226         if (!cpu_has_vmx_msr_bitmap())
4227                 return;
4228
4229         /*
4230          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4231          * have the write-low and read-high bitmap offsets the wrong way round.
4232          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4233          */
4234         if (msr <= 0x1fff) {
4235                 if (type & MSR_TYPE_R)
4236                         /* read-low */
4237                         __set_bit(msr, msr_bitmap + 0x000 / f);
4238
4239                 if (type & MSR_TYPE_W)
4240                         /* write-low */
4241                         __set_bit(msr, msr_bitmap + 0x800 / f);
4242
4243         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4244                 msr &= 0x1fff;
4245                 if (type & MSR_TYPE_R)
4246                         /* read-high */
4247                         __set_bit(msr, msr_bitmap + 0x400 / f);
4248
4249                 if (type & MSR_TYPE_W)
4250                         /* write-high */
4251                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4252
4253         }
4254 }
4255
4256 /*
4257  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4258  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4259  */
4260 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4261                                                unsigned long *msr_bitmap_nested,
4262                                                u32 msr, int type)
4263 {
4264         int f = sizeof(unsigned long);
4265
4266         if (!cpu_has_vmx_msr_bitmap()) {
4267                 WARN_ON(1);
4268                 return;
4269         }
4270
4271         /*
4272          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4273          * have the write-low and read-high bitmap offsets the wrong way round.
4274          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4275          */
4276         if (msr <= 0x1fff) {
4277                 if (type & MSR_TYPE_R &&
4278                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4279                         /* read-low */
4280                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4281
4282                 if (type & MSR_TYPE_W &&
4283                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4284                         /* write-low */
4285                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4286
4287         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4288                 msr &= 0x1fff;
4289                 if (type & MSR_TYPE_R &&
4290                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4291                         /* read-high */
4292                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4293
4294                 if (type & MSR_TYPE_W &&
4295                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4296                         /* write-high */
4297                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4298
4299         }
4300 }
4301
4302 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4303 {
4304         if (!longmode_only)
4305                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4306                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4307         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4308                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4309 }
4310
4311 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4312 {
4313         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4314                         msr, MSR_TYPE_R);
4315         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4316                         msr, MSR_TYPE_R);
4317 }
4318
4319 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4320 {
4321         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4322                         msr, MSR_TYPE_R);
4323         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4324                         msr, MSR_TYPE_R);
4325 }
4326
4327 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4328 {
4329         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4330                         msr, MSR_TYPE_W);
4331         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4332                         msr, MSR_TYPE_W);
4333 }
4334
4335 static int vmx_vm_has_apicv(struct kvm *kvm)
4336 {
4337         return enable_apicv && irqchip_in_kernel(kvm);
4338 }
4339
4340 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4341 {
4342         struct vcpu_vmx *vmx = to_vmx(vcpu);
4343         int max_irr;
4344         void *vapic_page;
4345         u16 status;
4346
4347         if (vmx->nested.pi_desc &&
4348             vmx->nested.pi_pending) {
4349                 vmx->nested.pi_pending = false;
4350                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4351                         return 0;
4352
4353                 max_irr = find_last_bit(
4354                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4355
4356                 if (max_irr == 256)
4357                         return 0;
4358
4359                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4360                 if (!vapic_page) {
4361                         WARN_ON(1);
4362                         return -ENOMEM;
4363                 }
4364                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4365                 kunmap(vmx->nested.virtual_apic_page);
4366
4367                 status = vmcs_read16(GUEST_INTR_STATUS);
4368                 if ((u8)max_irr > ((u8)status & 0xff)) {
4369                         status &= ~0xff;
4370                         status |= (u8)max_irr;
4371                         vmcs_write16(GUEST_INTR_STATUS, status);
4372                 }
4373         }
4374         return 0;
4375 }
4376
4377 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4378 {
4379 #ifdef CONFIG_SMP
4380         if (vcpu->mode == IN_GUEST_MODE) {
4381                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4382                                 POSTED_INTR_VECTOR);
4383                 return true;
4384         }
4385 #endif
4386         return false;
4387 }
4388
4389 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4390                                                 int vector)
4391 {
4392         struct vcpu_vmx *vmx = to_vmx(vcpu);
4393
4394         if (is_guest_mode(vcpu) &&
4395             vector == vmx->nested.posted_intr_nv) {
4396                 /* the PIR and ON have been set by L1. */
4397                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4398                 /*
4399                  * If a posted intr is not recognized by hardware,
4400                  * we will accomplish it in the next vmentry.
4401                  */
4402                 vmx->nested.pi_pending = true;
4403                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4404                 return 0;
4405         }
4406         return -1;
4407 }
4408 /*
4409  * Send interrupt to vcpu via posted interrupt way.
4410  * 1. If target vcpu is running(non-root mode), send posted interrupt
4411  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4412  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4413  * interrupt from PIR in next vmentry.
4414  */
4415 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4416 {
4417         struct vcpu_vmx *vmx = to_vmx(vcpu);
4418         int r;
4419
4420         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4421         if (!r)
4422                 return;
4423
4424         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4425                 return;
4426
4427         r = pi_test_and_set_on(&vmx->pi_desc);
4428         kvm_make_request(KVM_REQ_EVENT, vcpu);
4429         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4430                 kvm_vcpu_kick(vcpu);
4431 }
4432
4433 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4434 {
4435         struct vcpu_vmx *vmx = to_vmx(vcpu);
4436
4437         if (!pi_test_and_clear_on(&vmx->pi_desc))
4438                 return;
4439
4440         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4441 }
4442
4443 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4444 {
4445         return;
4446 }
4447
4448 /*
4449  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4450  * will not change in the lifetime of the guest.
4451  * Note that host-state that does change is set elsewhere. E.g., host-state
4452  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4453  */
4454 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4455 {
4456         u32 low32, high32;
4457         unsigned long tmpl;
4458         struct desc_ptr dt;
4459         unsigned long cr4;
4460
4461         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4462         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4463
4464         /* Save the most likely value for this task's CR4 in the VMCS. */
4465         cr4 = cr4_read_shadow();
4466         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4467         vmx->host_state.vmcs_host_cr4 = cr4;
4468
4469         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4470 #ifdef CONFIG_X86_64
4471         /*
4472          * Load null selectors, so we can avoid reloading them in
4473          * __vmx_load_host_state(), in case userspace uses the null selectors
4474          * too (the expected case).
4475          */
4476         vmcs_write16(HOST_DS_SELECTOR, 0);
4477         vmcs_write16(HOST_ES_SELECTOR, 0);
4478 #else
4479         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4480         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4481 #endif
4482         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4483         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4484
4485         native_store_idt(&dt);
4486         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4487         vmx->host_idt_base = dt.address;
4488
4489         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4490
4491         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4492         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4493         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4494         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4495
4496         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4497                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4498                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4499         }
4500 }
4501
4502 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4503 {
4504         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4505         if (enable_ept)
4506                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4507         if (is_guest_mode(&vmx->vcpu))
4508                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4509                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4510         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4511 }
4512
4513 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4514 {
4515         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4516
4517         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4518                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4519         return pin_based_exec_ctrl;
4520 }
4521
4522 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4523 {
4524         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4525
4526         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4527                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4528
4529         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4530                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4531 #ifdef CONFIG_X86_64
4532                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4533                                 CPU_BASED_CR8_LOAD_EXITING;
4534 #endif
4535         }
4536         if (!enable_ept)
4537                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4538                                 CPU_BASED_CR3_LOAD_EXITING  |
4539                                 CPU_BASED_INVLPG_EXITING;
4540         return exec_control;
4541 }
4542
4543 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4544 {
4545         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4546         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4547                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4548         if (vmx->vpid == 0)
4549                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4550         if (!enable_ept) {
4551                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4552                 enable_unrestricted_guest = 0;
4553                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4554                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4555         }
4556         if (!enable_unrestricted_guest)
4557                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4558         if (!ple_gap)
4559                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4560         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4561                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4562                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4563         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4564         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4565            (handle_vmptrld).
4566            We can NOT enable shadow_vmcs here because we don't have yet
4567            a current VMCS12
4568         */
4569         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4570         /* PML is enabled/disabled in creating/destorying vcpu */
4571         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4572
4573         return exec_control;
4574 }
4575
4576 static void ept_set_mmio_spte_mask(void)
4577 {
4578         /*
4579          * EPT Misconfigurations can be generated if the value of bits 2:0
4580          * of an EPT paging-structure entry is 110b (write/execute).
4581          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4582          * spte.
4583          */
4584         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4585 }
4586
4587 #define VMX_XSS_EXIT_BITMAP 0
4588 /*
4589  * Sets up the vmcs for emulated real mode.
4590  */
4591 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4592 {
4593 #ifdef CONFIG_X86_64
4594         unsigned long a;
4595 #endif
4596         int i;
4597
4598         /* I/O */
4599         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4600         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4601
4602         if (enable_shadow_vmcs) {
4603                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4604                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4605         }
4606         if (cpu_has_vmx_msr_bitmap())
4607                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4608
4609         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4610
4611         /* Control */
4612         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4613
4614         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4615
4616         if (cpu_has_secondary_exec_ctrls()) {
4617                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4618                                 vmx_secondary_exec_control(vmx));
4619         }
4620
4621         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4622                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4623                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4624                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4625                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4626
4627                 vmcs_write16(GUEST_INTR_STATUS, 0);
4628
4629                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4630                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4631         }
4632
4633         if (ple_gap) {
4634                 vmcs_write32(PLE_GAP, ple_gap);
4635                 vmx->ple_window = ple_window;
4636                 vmx->ple_window_dirty = true;
4637         }
4638
4639         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4640         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4641         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4642
4643         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4644         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4645         vmx_set_constant_host_state(vmx);
4646 #ifdef CONFIG_X86_64
4647         rdmsrl(MSR_FS_BASE, a);
4648         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4649         rdmsrl(MSR_GS_BASE, a);
4650         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4651 #else
4652         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4653         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4654 #endif
4655
4656         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4657         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4658         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4659         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4660         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4661
4662         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4663                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4664
4665         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4666                 u32 index = vmx_msr_index[i];
4667                 u32 data_low, data_high;
4668                 int j = vmx->nmsrs;
4669
4670                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4671                         continue;
4672                 if (wrmsr_safe(index, data_low, data_high) < 0)
4673                         continue;
4674                 vmx->guest_msrs[j].index = i;
4675                 vmx->guest_msrs[j].data = 0;
4676                 vmx->guest_msrs[j].mask = -1ull;
4677                 ++vmx->nmsrs;
4678         }
4679
4680
4681         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4682
4683         /* 22.2.1, 20.8.1 */
4684         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4685
4686         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4687         set_cr4_guest_host_mask(vmx);
4688
4689         if (vmx_xsaves_supported())
4690                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4691
4692         return 0;
4693 }
4694
4695 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4696 {
4697         struct vcpu_vmx *vmx = to_vmx(vcpu);
4698         struct msr_data apic_base_msr;
4699         u64 cr0;
4700
4701         vmx->rmode.vm86_active = 0;
4702
4703         vmx->soft_vnmi_blocked = 0;
4704
4705         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4706         kvm_set_cr8(vcpu, 0);
4707
4708         if (!init_event) {
4709                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4710                                      MSR_IA32_APICBASE_ENABLE;
4711                 if (kvm_vcpu_is_reset_bsp(vcpu))
4712                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4713                 apic_base_msr.host_initiated = true;
4714                 kvm_set_apic_base(vcpu, &apic_base_msr);
4715         }
4716
4717         vmx_segment_cache_clear(vmx);
4718
4719         seg_setup(VCPU_SREG_CS);
4720         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4721         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4722
4723         seg_setup(VCPU_SREG_DS);
4724         seg_setup(VCPU_SREG_ES);
4725         seg_setup(VCPU_SREG_FS);
4726         seg_setup(VCPU_SREG_GS);
4727         seg_setup(VCPU_SREG_SS);
4728
4729         vmcs_write16(GUEST_TR_SELECTOR, 0);
4730         vmcs_writel(GUEST_TR_BASE, 0);
4731         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4732         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4733
4734         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4735         vmcs_writel(GUEST_LDTR_BASE, 0);
4736         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4737         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4738
4739         if (!init_event) {
4740                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4741                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4742                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4743                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4744         }
4745
4746         vmcs_writel(GUEST_RFLAGS, 0x02);
4747         kvm_rip_write(vcpu, 0xfff0);
4748
4749         vmcs_writel(GUEST_GDTR_BASE, 0);
4750         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4751
4752         vmcs_writel(GUEST_IDTR_BASE, 0);
4753         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4754
4755         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4756         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4757         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4758
4759         setup_msrs(vmx);
4760
4761         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4762
4763         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4764                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4765                 if (vm_need_tpr_shadow(vcpu->kvm))
4766                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4767                                      __pa(vcpu->arch.apic->regs));
4768                 vmcs_write32(TPR_THRESHOLD, 0);
4769         }
4770
4771         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4772
4773         if (vmx_vm_has_apicv(vcpu->kvm))
4774                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4775
4776         if (vmx->vpid != 0)
4777                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4778
4779         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4780         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4781         vmx->vcpu.arch.cr0 = cr0;
4782         vmx_set_cr4(vcpu, 0);
4783         if (!init_event)
4784                 vmx_set_efer(vcpu, 0);
4785         vmx_fpu_activate(vcpu);
4786         update_exception_bitmap(vcpu);
4787
4788         vpid_sync_context(vmx);
4789 }
4790
4791 /*
4792  * In nested virtualization, check if L1 asked to exit on external interrupts.
4793  * For most existing hypervisors, this will always return true.
4794  */
4795 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4796 {
4797         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4798                 PIN_BASED_EXT_INTR_MASK;
4799 }
4800
4801 /*
4802  * In nested virtualization, check if L1 has set
4803  * VM_EXIT_ACK_INTR_ON_EXIT
4804  */
4805 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4806 {
4807         return get_vmcs12(vcpu)->vm_exit_controls &
4808                 VM_EXIT_ACK_INTR_ON_EXIT;
4809 }
4810
4811 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4812 {
4813         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4814                 PIN_BASED_NMI_EXITING;
4815 }
4816
4817 static void enable_irq_window(struct kvm_vcpu *vcpu)
4818 {
4819         u32 cpu_based_vm_exec_control;
4820
4821         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4822         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4823         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4824 }
4825
4826 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4827 {
4828         u32 cpu_based_vm_exec_control;
4829
4830         if (!cpu_has_virtual_nmis() ||
4831             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4832                 enable_irq_window(vcpu);
4833                 return;
4834         }
4835
4836         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4837         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4838         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4839 }
4840
4841 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4842 {
4843         struct vcpu_vmx *vmx = to_vmx(vcpu);
4844         uint32_t intr;
4845         int irq = vcpu->arch.interrupt.nr;
4846
4847         trace_kvm_inj_virq(irq);
4848
4849         ++vcpu->stat.irq_injections;
4850         if (vmx->rmode.vm86_active) {
4851                 int inc_eip = 0;
4852                 if (vcpu->arch.interrupt.soft)
4853                         inc_eip = vcpu->arch.event_exit_inst_len;
4854                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4855                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4856                 return;
4857         }
4858         intr = irq | INTR_INFO_VALID_MASK;
4859         if (vcpu->arch.interrupt.soft) {
4860                 intr |= INTR_TYPE_SOFT_INTR;
4861                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4862                              vmx->vcpu.arch.event_exit_inst_len);
4863         } else
4864                 intr |= INTR_TYPE_EXT_INTR;
4865         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4866 }
4867
4868 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4869 {
4870         struct vcpu_vmx *vmx = to_vmx(vcpu);
4871
4872         if (is_guest_mode(vcpu))
4873                 return;
4874
4875         if (!cpu_has_virtual_nmis()) {
4876                 /*
4877                  * Tracking the NMI-blocked state in software is built upon
4878                  * finding the next open IRQ window. This, in turn, depends on
4879                  * well-behaving guests: They have to keep IRQs disabled at
4880                  * least as long as the NMI handler runs. Otherwise we may
4881                  * cause NMI nesting, maybe breaking the guest. But as this is
4882                  * highly unlikely, we can live with the residual risk.
4883                  */
4884                 vmx->soft_vnmi_blocked = 1;
4885                 vmx->vnmi_blocked_time = 0;
4886         }
4887
4888         ++vcpu->stat.nmi_injections;
4889         vmx->nmi_known_unmasked = false;
4890         if (vmx->rmode.vm86_active) {
4891                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4892                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4893                 return;
4894         }
4895         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4896                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4897 }
4898
4899 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4900 {
4901         if (!cpu_has_virtual_nmis())
4902                 return to_vmx(vcpu)->soft_vnmi_blocked;
4903         if (to_vmx(vcpu)->nmi_known_unmasked)
4904                 return false;
4905         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4906 }
4907
4908 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4909 {
4910         struct vcpu_vmx *vmx = to_vmx(vcpu);
4911
4912         if (!cpu_has_virtual_nmis()) {
4913                 if (vmx->soft_vnmi_blocked != masked) {
4914                         vmx->soft_vnmi_blocked = masked;
4915                         vmx->vnmi_blocked_time = 0;
4916                 }
4917         } else {
4918                 vmx->nmi_known_unmasked = !masked;
4919                 if (masked)
4920                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4921                                       GUEST_INTR_STATE_NMI);
4922                 else
4923                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4924                                         GUEST_INTR_STATE_NMI);
4925         }
4926 }
4927
4928 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4929 {
4930         if (to_vmx(vcpu)->nested.nested_run_pending)
4931                 return 0;
4932
4933         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4934                 return 0;
4935
4936         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4937                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4938                    | GUEST_INTR_STATE_NMI));
4939 }
4940
4941 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4942 {
4943         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4944                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4945                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4946                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4947 }
4948
4949 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4950 {
4951         int ret;
4952         struct kvm_userspace_memory_region tss_mem = {
4953                 .slot = TSS_PRIVATE_MEMSLOT,
4954                 .guest_phys_addr = addr,
4955                 .memory_size = PAGE_SIZE * 3,
4956                 .flags = 0,
4957         };
4958
4959         ret = x86_set_memory_region(kvm, &tss_mem);
4960         if (ret)
4961                 return ret;
4962         kvm->arch.tss_addr = addr;
4963         return init_rmode_tss(kvm);
4964 }
4965
4966 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4967 {
4968         switch (vec) {
4969         case BP_VECTOR:
4970                 /*
4971                  * Update instruction length as we may reinject the exception
4972                  * from user space while in guest debugging mode.
4973                  */
4974                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4975                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4976                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4977                         return false;
4978                 /* fall through */
4979         case DB_VECTOR:
4980                 if (vcpu->guest_debug &
4981                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4982                         return false;
4983                 /* fall through */
4984         case DE_VECTOR:
4985         case OF_VECTOR:
4986         case BR_VECTOR:
4987         case UD_VECTOR:
4988         case DF_VECTOR:
4989         case SS_VECTOR:
4990         case GP_VECTOR:
4991         case MF_VECTOR:
4992                 return true;
4993         break;
4994         }
4995         return false;
4996 }
4997
4998 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4999                                   int vec, u32 err_code)
5000 {
5001         /*
5002          * Instruction with address size override prefix opcode 0x67
5003          * Cause the #SS fault with 0 error code in VM86 mode.
5004          */
5005         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5006                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5007                         if (vcpu->arch.halt_request) {
5008                                 vcpu->arch.halt_request = 0;
5009                                 return kvm_vcpu_halt(vcpu);
5010                         }
5011                         return 1;
5012                 }
5013                 return 0;
5014         }
5015
5016         /*
5017          * Forward all other exceptions that are valid in real mode.
5018          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5019          *        the required debugging infrastructure rework.
5020          */
5021         kvm_queue_exception(vcpu, vec);
5022         return 1;
5023 }
5024
5025 /*
5026  * Trigger machine check on the host. We assume all the MSRs are already set up
5027  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5028  * We pass a fake environment to the machine check handler because we want
5029  * the guest to be always treated like user space, no matter what context
5030  * it used internally.
5031  */
5032 static void kvm_machine_check(void)
5033 {
5034 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5035         struct pt_regs regs = {
5036                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5037                 .flags = X86_EFLAGS_IF,
5038         };
5039
5040         do_machine_check(&regs, 0);
5041 #endif
5042 }
5043
5044 static int handle_machine_check(struct kvm_vcpu *vcpu)
5045 {
5046         /* already handled by vcpu_run */
5047         return 1;
5048 }
5049
5050 static int handle_exception(struct kvm_vcpu *vcpu)
5051 {
5052         struct vcpu_vmx *vmx = to_vmx(vcpu);
5053         struct kvm_run *kvm_run = vcpu->run;
5054         u32 intr_info, ex_no, error_code;
5055         unsigned long cr2, rip, dr6;
5056         u32 vect_info;
5057         enum emulation_result er;
5058
5059         vect_info = vmx->idt_vectoring_info;
5060         intr_info = vmx->exit_intr_info;
5061
5062         if (is_machine_check(intr_info))
5063                 return handle_machine_check(vcpu);
5064
5065         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5066                 return 1;  /* already handled by vmx_vcpu_run() */
5067
5068         if (is_no_device(intr_info)) {
5069                 vmx_fpu_activate(vcpu);
5070                 return 1;
5071         }
5072
5073         if (is_invalid_opcode(intr_info)) {
5074                 if (is_guest_mode(vcpu)) {
5075                         kvm_queue_exception(vcpu, UD_VECTOR);
5076                         return 1;
5077                 }
5078                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5079                 if (er != EMULATE_DONE)
5080                         kvm_queue_exception(vcpu, UD_VECTOR);
5081                 return 1;
5082         }
5083
5084         error_code = 0;
5085         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5086                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5087
5088         /*
5089          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5090          * MMIO, it is better to report an internal error.
5091          * See the comments in vmx_handle_exit.
5092          */
5093         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5094             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5095                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5096                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5097                 vcpu->run->internal.ndata = 3;
5098                 vcpu->run->internal.data[0] = vect_info;
5099                 vcpu->run->internal.data[1] = intr_info;
5100                 vcpu->run->internal.data[2] = error_code;
5101                 return 0;
5102         }
5103
5104         if (is_page_fault(intr_info)) {
5105                 /* EPT won't cause page fault directly */
5106                 BUG_ON(enable_ept);
5107                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5108                 trace_kvm_page_fault(cr2, error_code);
5109
5110                 if (kvm_event_needs_reinjection(vcpu))
5111                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5112                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5113         }
5114
5115         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5116
5117         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5118                 return handle_rmode_exception(vcpu, ex_no, error_code);
5119
5120         switch (ex_no) {
5121         case DB_VECTOR:
5122                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5123                 if (!(vcpu->guest_debug &
5124                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5125                         vcpu->arch.dr6 &= ~15;
5126                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5127                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5128                                 skip_emulated_instruction(vcpu);
5129
5130                         kvm_queue_exception(vcpu, DB_VECTOR);
5131                         return 1;
5132                 }
5133                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5134                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5135                 /* fall through */
5136         case BP_VECTOR:
5137                 /*
5138                  * Update instruction length as we may reinject #BP from
5139                  * user space while in guest debugging mode. Reading it for
5140                  * #DB as well causes no harm, it is not used in that case.
5141                  */
5142                 vmx->vcpu.arch.event_exit_inst_len =
5143                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5144                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5145                 rip = kvm_rip_read(vcpu);
5146                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5147                 kvm_run->debug.arch.exception = ex_no;
5148                 break;
5149         default:
5150                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5151                 kvm_run->ex.exception = ex_no;
5152                 kvm_run->ex.error_code = error_code;
5153                 break;
5154         }
5155         return 0;
5156 }
5157
5158 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5159 {
5160         ++vcpu->stat.irq_exits;
5161         return 1;
5162 }
5163
5164 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5165 {
5166         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5167         return 0;
5168 }
5169
5170 static int handle_io(struct kvm_vcpu *vcpu)
5171 {
5172         unsigned long exit_qualification;
5173         int size, in, string;
5174         unsigned port;
5175
5176         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5177         string = (exit_qualification & 16) != 0;
5178         in = (exit_qualification & 8) != 0;
5179
5180         ++vcpu->stat.io_exits;
5181
5182         if (string || in)
5183                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5184
5185         port = exit_qualification >> 16;
5186         size = (exit_qualification & 7) + 1;
5187         skip_emulated_instruction(vcpu);
5188
5189         return kvm_fast_pio_out(vcpu, size, port);
5190 }
5191
5192 static void
5193 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5194 {
5195         /*
5196          * Patch in the VMCALL instruction:
5197          */
5198         hypercall[0] = 0x0f;
5199         hypercall[1] = 0x01;
5200         hypercall[2] = 0xc1;
5201 }
5202
5203 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5204 {
5205         unsigned long always_on = VMXON_CR0_ALWAYSON;
5206         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5207
5208         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5209                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5210             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5211                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5212         return (val & always_on) == always_on;
5213 }
5214
5215 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5216 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5217 {
5218         if (is_guest_mode(vcpu)) {
5219                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5220                 unsigned long orig_val = val;
5221
5222                 /*
5223                  * We get here when L2 changed cr0 in a way that did not change
5224                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5225                  * but did change L0 shadowed bits. So we first calculate the
5226                  * effective cr0 value that L1 would like to write into the
5227                  * hardware. It consists of the L2-owned bits from the new
5228                  * value combined with the L1-owned bits from L1's guest_cr0.
5229                  */
5230                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5231                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5232
5233                 if (!nested_cr0_valid(vcpu, val))
5234                         return 1;
5235
5236                 if (kvm_set_cr0(vcpu, val))
5237                         return 1;
5238                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5239                 return 0;
5240         } else {
5241                 if (to_vmx(vcpu)->nested.vmxon &&
5242                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5243                         return 1;
5244                 return kvm_set_cr0(vcpu, val);
5245         }
5246 }
5247
5248 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5249 {
5250         if (is_guest_mode(vcpu)) {
5251                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5252                 unsigned long orig_val = val;
5253
5254                 /* analogously to handle_set_cr0 */
5255                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5256                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5257                 if (kvm_set_cr4(vcpu, val))
5258                         return 1;
5259                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5260                 return 0;
5261         } else
5262                 return kvm_set_cr4(vcpu, val);
5263 }
5264
5265 /* called to set cr0 as approriate for clts instruction exit. */
5266 static void handle_clts(struct kvm_vcpu *vcpu)
5267 {
5268         if (is_guest_mode(vcpu)) {
5269                 /*
5270                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5271                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5272                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5273                  */
5274                 vmcs_writel(CR0_READ_SHADOW,
5275                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5276                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5277         } else
5278                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5279 }
5280
5281 static int handle_cr(struct kvm_vcpu *vcpu)
5282 {
5283         unsigned long exit_qualification, val;
5284         int cr;
5285         int reg;
5286         int err;
5287
5288         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5289         cr = exit_qualification & 15;
5290         reg = (exit_qualification >> 8) & 15;
5291         switch ((exit_qualification >> 4) & 3) {
5292         case 0: /* mov to cr */
5293                 val = kvm_register_readl(vcpu, reg);
5294                 trace_kvm_cr_write(cr, val);
5295                 switch (cr) {
5296                 case 0:
5297                         err = handle_set_cr0(vcpu, val);
5298                         kvm_complete_insn_gp(vcpu, err);
5299                         return 1;
5300                 case 3:
5301                         err = kvm_set_cr3(vcpu, val);
5302                         kvm_complete_insn_gp(vcpu, err);
5303                         return 1;
5304                 case 4:
5305                         err = handle_set_cr4(vcpu, val);
5306                         kvm_complete_insn_gp(vcpu, err);
5307                         return 1;
5308                 case 8: {
5309                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5310                                 u8 cr8 = (u8)val;
5311                                 err = kvm_set_cr8(vcpu, cr8);
5312                                 kvm_complete_insn_gp(vcpu, err);
5313                                 if (irqchip_in_kernel(vcpu->kvm))
5314                                         return 1;
5315                                 if (cr8_prev <= cr8)
5316                                         return 1;
5317                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5318                                 return 0;
5319                         }
5320                 }
5321                 break;
5322         case 2: /* clts */
5323                 handle_clts(vcpu);
5324                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5325                 skip_emulated_instruction(vcpu);
5326                 vmx_fpu_activate(vcpu);
5327                 return 1;
5328         case 1: /*mov from cr*/
5329                 switch (cr) {
5330                 case 3:
5331                         val = kvm_read_cr3(vcpu);
5332                         kvm_register_write(vcpu, reg, val);
5333                         trace_kvm_cr_read(cr, val);
5334                         skip_emulated_instruction(vcpu);
5335                         return 1;
5336                 case 8:
5337                         val = kvm_get_cr8(vcpu);
5338                         kvm_register_write(vcpu, reg, val);
5339                         trace_kvm_cr_read(cr, val);
5340                         skip_emulated_instruction(vcpu);
5341                         return 1;
5342                 }
5343                 break;
5344         case 3: /* lmsw */
5345                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5346                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5347                 kvm_lmsw(vcpu, val);
5348
5349                 skip_emulated_instruction(vcpu);
5350                 return 1;
5351         default:
5352                 break;
5353         }
5354         vcpu->run->exit_reason = 0;
5355         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5356                (int)(exit_qualification >> 4) & 3, cr);
5357         return 0;
5358 }
5359
5360 static int handle_dr(struct kvm_vcpu *vcpu)
5361 {
5362         unsigned long exit_qualification;
5363         int dr, dr7, reg;
5364
5365         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5366         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5367
5368         /* First, if DR does not exist, trigger UD */
5369         if (!kvm_require_dr(vcpu, dr))
5370                 return 1;
5371
5372         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5373         if (!kvm_require_cpl(vcpu, 0))
5374                 return 1;
5375         dr7 = vmcs_readl(GUEST_DR7);
5376         if (dr7 & DR7_GD) {
5377                 /*
5378                  * As the vm-exit takes precedence over the debug trap, we
5379                  * need to emulate the latter, either for the host or the
5380                  * guest debugging itself.
5381                  */
5382                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5383                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5384                         vcpu->run->debug.arch.dr7 = dr7;
5385                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5386                         vcpu->run->debug.arch.exception = DB_VECTOR;
5387                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5388                         return 0;
5389                 } else {
5390                         vcpu->arch.dr6 &= ~15;
5391                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5392                         kvm_queue_exception(vcpu, DB_VECTOR);
5393                         return 1;
5394                 }
5395         }
5396
5397         if (vcpu->guest_debug == 0) {
5398                 u32 cpu_based_vm_exec_control;
5399
5400                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5401                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5402                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5403
5404                 /*
5405                  * No more DR vmexits; force a reload of the debug registers
5406                  * and reenter on this instruction.  The next vmexit will
5407                  * retrieve the full state of the debug registers.
5408                  */
5409                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5410                 return 1;
5411         }
5412
5413         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5414         if (exit_qualification & TYPE_MOV_FROM_DR) {
5415                 unsigned long val;
5416
5417                 if (kvm_get_dr(vcpu, dr, &val))
5418                         return 1;
5419                 kvm_register_write(vcpu, reg, val);
5420         } else
5421                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5422                         return 1;
5423
5424         skip_emulated_instruction(vcpu);
5425         return 1;
5426 }
5427
5428 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5429 {
5430         return vcpu->arch.dr6;
5431 }
5432
5433 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5434 {
5435 }
5436
5437 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5438 {
5439         u32 cpu_based_vm_exec_control;
5440
5441         get_debugreg(vcpu->arch.db[0], 0);
5442         get_debugreg(vcpu->arch.db[1], 1);
5443         get_debugreg(vcpu->arch.db[2], 2);
5444         get_debugreg(vcpu->arch.db[3], 3);
5445         get_debugreg(vcpu->arch.dr6, 6);
5446         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5447
5448         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5449
5450         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5451         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5452         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5453 }
5454
5455 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5456 {
5457         vmcs_writel(GUEST_DR7, val);
5458 }
5459
5460 static int handle_cpuid(struct kvm_vcpu *vcpu)
5461 {
5462         kvm_emulate_cpuid(vcpu);
5463         return 1;
5464 }
5465
5466 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5467 {
5468         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5469         struct msr_data msr_info;
5470
5471         msr_info.index = ecx;
5472         msr_info.host_initiated = false;
5473         if (vmx_get_msr(vcpu, &msr_info)) {
5474                 trace_kvm_msr_read_ex(ecx);
5475                 kvm_inject_gp(vcpu, 0);
5476                 return 1;
5477         }
5478
5479         trace_kvm_msr_read(ecx, msr_info.data);
5480
5481         /* FIXME: handling of bits 32:63 of rax, rdx */
5482         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5483         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5484         skip_emulated_instruction(vcpu);
5485         return 1;
5486 }
5487
5488 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5489 {
5490         struct msr_data msr;
5491         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5492         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5493                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5494
5495         msr.data = data;
5496         msr.index = ecx;
5497         msr.host_initiated = false;
5498         if (kvm_set_msr(vcpu, &msr) != 0) {
5499                 trace_kvm_msr_write_ex(ecx, data);
5500                 kvm_inject_gp(vcpu, 0);
5501                 return 1;
5502         }
5503
5504         trace_kvm_msr_write(ecx, data);
5505         skip_emulated_instruction(vcpu);
5506         return 1;
5507 }
5508
5509 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5510 {
5511         kvm_make_request(KVM_REQ_EVENT, vcpu);
5512         return 1;
5513 }
5514
5515 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5516 {
5517         u32 cpu_based_vm_exec_control;
5518
5519         /* clear pending irq */
5520         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5521         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5522         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5523
5524         kvm_make_request(KVM_REQ_EVENT, vcpu);
5525
5526         ++vcpu->stat.irq_window_exits;
5527
5528         /*
5529          * If the user space waits to inject interrupts, exit as soon as
5530          * possible
5531          */
5532         if (!irqchip_in_kernel(vcpu->kvm) &&
5533             vcpu->run->request_interrupt_window &&
5534             !kvm_cpu_has_interrupt(vcpu)) {
5535                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5536                 return 0;
5537         }
5538         return 1;
5539 }
5540
5541 static int handle_halt(struct kvm_vcpu *vcpu)
5542 {
5543         return kvm_emulate_halt(vcpu);
5544 }
5545
5546 static int handle_vmcall(struct kvm_vcpu *vcpu)
5547 {
5548         kvm_emulate_hypercall(vcpu);
5549         return 1;
5550 }
5551
5552 static int handle_invd(struct kvm_vcpu *vcpu)
5553 {
5554         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5555 }
5556
5557 static int handle_invlpg(struct kvm_vcpu *vcpu)
5558 {
5559         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5560
5561         kvm_mmu_invlpg(vcpu, exit_qualification);
5562         skip_emulated_instruction(vcpu);
5563         return 1;
5564 }
5565
5566 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5567 {
5568         int err;
5569
5570         err = kvm_rdpmc(vcpu);
5571         kvm_complete_insn_gp(vcpu, err);
5572
5573         return 1;
5574 }
5575
5576 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5577 {
5578         kvm_emulate_wbinvd(vcpu);
5579         return 1;
5580 }
5581
5582 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5583 {
5584         u64 new_bv = kvm_read_edx_eax(vcpu);
5585         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5586
5587         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5588                 skip_emulated_instruction(vcpu);
5589         return 1;
5590 }
5591
5592 static int handle_xsaves(struct kvm_vcpu *vcpu)
5593 {
5594         skip_emulated_instruction(vcpu);
5595         WARN(1, "this should never happen\n");
5596         return 1;
5597 }
5598
5599 static int handle_xrstors(struct kvm_vcpu *vcpu)
5600 {
5601         skip_emulated_instruction(vcpu);
5602         WARN(1, "this should never happen\n");
5603         return 1;
5604 }
5605
5606 static int handle_apic_access(struct kvm_vcpu *vcpu)
5607 {
5608         if (likely(fasteoi)) {
5609                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5610                 int access_type, offset;
5611
5612                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5613                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5614                 /*
5615                  * Sane guest uses MOV to write EOI, with written value
5616                  * not cared. So make a short-circuit here by avoiding
5617                  * heavy instruction emulation.
5618                  */
5619                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5620                     (offset == APIC_EOI)) {
5621                         kvm_lapic_set_eoi(vcpu);
5622                         skip_emulated_instruction(vcpu);
5623                         return 1;
5624                 }
5625         }
5626         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5627 }
5628
5629 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5630 {
5631         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5632         int vector = exit_qualification & 0xff;
5633
5634         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5635         kvm_apic_set_eoi_accelerated(vcpu, vector);
5636         return 1;
5637 }
5638
5639 static int handle_apic_write(struct kvm_vcpu *vcpu)
5640 {
5641         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5642         u32 offset = exit_qualification & 0xfff;
5643
5644         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5645         kvm_apic_write_nodecode(vcpu, offset);
5646         return 1;
5647 }
5648
5649 static int handle_task_switch(struct kvm_vcpu *vcpu)
5650 {
5651         struct vcpu_vmx *vmx = to_vmx(vcpu);
5652         unsigned long exit_qualification;
5653         bool has_error_code = false;
5654         u32 error_code = 0;
5655         u16 tss_selector;
5656         int reason, type, idt_v, idt_index;
5657
5658         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5659         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5660         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5661
5662         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5663
5664         reason = (u32)exit_qualification >> 30;
5665         if (reason == TASK_SWITCH_GATE && idt_v) {
5666                 switch (type) {
5667                 case INTR_TYPE_NMI_INTR:
5668                         vcpu->arch.nmi_injected = false;
5669                         vmx_set_nmi_mask(vcpu, true);
5670                         break;
5671                 case INTR_TYPE_EXT_INTR:
5672                 case INTR_TYPE_SOFT_INTR:
5673                         kvm_clear_interrupt_queue(vcpu);
5674                         break;
5675                 case INTR_TYPE_HARD_EXCEPTION:
5676                         if (vmx->idt_vectoring_info &
5677                             VECTORING_INFO_DELIVER_CODE_MASK) {
5678                                 has_error_code = true;
5679                                 error_code =
5680                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5681                         }
5682                         /* fall through */
5683                 case INTR_TYPE_SOFT_EXCEPTION:
5684                         kvm_clear_exception_queue(vcpu);
5685                         break;
5686                 default:
5687                         break;
5688                 }
5689         }
5690         tss_selector = exit_qualification;
5691
5692         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5693                        type != INTR_TYPE_EXT_INTR &&
5694                        type != INTR_TYPE_NMI_INTR))
5695                 skip_emulated_instruction(vcpu);
5696
5697         if (kvm_task_switch(vcpu, tss_selector,
5698                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5699                             has_error_code, error_code) == EMULATE_FAIL) {
5700                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5701                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5702                 vcpu->run->internal.ndata = 0;
5703                 return 0;
5704         }
5705
5706         /*
5707          * TODO: What about debug traps on tss switch?
5708          *       Are we supposed to inject them and update dr6?
5709          */
5710
5711         return 1;
5712 }
5713
5714 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5715 {
5716         unsigned long exit_qualification;
5717         gpa_t gpa;
5718         u32 error_code;
5719         int gla_validity;
5720
5721         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5722
5723         gla_validity = (exit_qualification >> 7) & 0x3;
5724         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5725                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5726                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5727                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5728                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5729                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5730                         (long unsigned int)exit_qualification);
5731                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5732                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5733                 return 0;
5734         }
5735
5736         /*
5737          * EPT violation happened while executing iret from NMI,
5738          * "blocked by NMI" bit has to be set before next VM entry.
5739          * There are errata that may cause this bit to not be set:
5740          * AAK134, BY25.
5741          */
5742         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5743                         cpu_has_virtual_nmis() &&
5744                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5745                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5746
5747         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5748         trace_kvm_page_fault(gpa, exit_qualification);
5749
5750         /* It is a write fault? */
5751         error_code = exit_qualification & PFERR_WRITE_MASK;
5752         /* It is a fetch fault? */
5753         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5754         /* ept page table is present? */
5755         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5756
5757         vcpu->arch.exit_qualification = exit_qualification;
5758
5759         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5760 }
5761
5762 static u64 ept_rsvd_mask(u64 spte, int level)
5763 {
5764         int i;
5765         u64 mask = 0;
5766
5767         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5768                 mask |= (1ULL << i);
5769
5770         if (level == 4)
5771                 /* bits 7:3 reserved */
5772                 mask |= 0xf8;
5773         else if (spte & (1ULL << 7))
5774                 /*
5775                  * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5776                  * level == 1 if the hypervisor is using the ignored bit 7.
5777                  */
5778                 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5779         else if (level > 1)
5780                 /* bits 6:3 reserved */
5781                 mask |= 0x78;
5782
5783         return mask;
5784 }
5785
5786 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5787                                        int level)
5788 {
5789         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5790
5791         /* 010b (write-only) */
5792         WARN_ON((spte & 0x7) == 0x2);
5793
5794         /* 110b (write/execute) */
5795         WARN_ON((spte & 0x7) == 0x6);
5796
5797         /* 100b (execute-only) and value not supported by logical processor */
5798         if (!cpu_has_vmx_ept_execute_only())
5799                 WARN_ON((spte & 0x7) == 0x4);
5800
5801         /* not 000b */
5802         if ((spte & 0x7)) {
5803                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5804
5805                 if (rsvd_bits != 0) {
5806                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5807                                          __func__, rsvd_bits);
5808                         WARN_ON(1);
5809                 }
5810
5811                 /* bits 5:3 are _not_ reserved for large page or leaf page */
5812                 if ((rsvd_bits & 0x38) == 0) {
5813                         u64 ept_mem_type = (spte & 0x38) >> 3;
5814
5815                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5816                             ept_mem_type == 7) {
5817                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5818                                                 __func__, ept_mem_type);
5819                                 WARN_ON(1);
5820                         }
5821                 }
5822         }
5823 }
5824
5825 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5826 {
5827         u64 sptes[4];
5828         int nr_sptes, i, ret;
5829         gpa_t gpa;
5830
5831         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5832         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5833                 skip_emulated_instruction(vcpu);
5834                 return 1;
5835         }
5836
5837         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5838         if (likely(ret == RET_MMIO_PF_EMULATE))
5839                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5840                                               EMULATE_DONE;
5841
5842         if (unlikely(ret == RET_MMIO_PF_INVALID))
5843                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5844
5845         if (unlikely(ret == RET_MMIO_PF_RETRY))
5846                 return 1;
5847
5848         /* It is the real ept misconfig */
5849         printk(KERN_ERR "EPT: Misconfiguration.\n");
5850         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5851
5852         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5853
5854         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5855                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5856
5857         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5858         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5859
5860         return 0;
5861 }
5862
5863 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5864 {
5865         u32 cpu_based_vm_exec_control;
5866
5867         /* clear pending NMI */
5868         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5869         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5870         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5871         ++vcpu->stat.nmi_window_exits;
5872         kvm_make_request(KVM_REQ_EVENT, vcpu);
5873
5874         return 1;
5875 }
5876
5877 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5878 {
5879         struct vcpu_vmx *vmx = to_vmx(vcpu);
5880         enum emulation_result err = EMULATE_DONE;
5881         int ret = 1;
5882         u32 cpu_exec_ctrl;
5883         bool intr_window_requested;
5884         unsigned count = 130;
5885
5886         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5887         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5888
5889         while (vmx->emulation_required && count-- != 0) {
5890                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5891                         return handle_interrupt_window(&vmx->vcpu);
5892
5893                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5894                         return 1;
5895
5896                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5897
5898                 if (err == EMULATE_USER_EXIT) {
5899                         ++vcpu->stat.mmio_exits;
5900                         ret = 0;
5901                         goto out;
5902                 }
5903
5904                 if (err != EMULATE_DONE) {
5905                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5906                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5907                         vcpu->run->internal.ndata = 0;
5908                         return 0;
5909                 }
5910
5911                 if (vcpu->arch.halt_request) {
5912                         vcpu->arch.halt_request = 0;
5913                         ret = kvm_vcpu_halt(vcpu);
5914                         goto out;
5915                 }
5916
5917                 if (signal_pending(current))
5918                         goto out;
5919                 if (need_resched())
5920                         schedule();
5921         }
5922
5923 out:
5924         return ret;
5925 }
5926
5927 static int __grow_ple_window(int val)
5928 {
5929         if (ple_window_grow < 1)
5930                 return ple_window;
5931
5932         val = min(val, ple_window_actual_max);
5933
5934         if (ple_window_grow < ple_window)
5935                 val *= ple_window_grow;
5936         else
5937                 val += ple_window_grow;
5938
5939         return val;
5940 }
5941
5942 static int __shrink_ple_window(int val, int modifier, int minimum)
5943 {
5944         if (modifier < 1)
5945                 return ple_window;
5946
5947         if (modifier < ple_window)
5948                 val /= modifier;
5949         else
5950                 val -= modifier;
5951
5952         return max(val, minimum);
5953 }
5954
5955 static void grow_ple_window(struct kvm_vcpu *vcpu)
5956 {
5957         struct vcpu_vmx *vmx = to_vmx(vcpu);
5958         int old = vmx->ple_window;
5959
5960         vmx->ple_window = __grow_ple_window(old);
5961
5962         if (vmx->ple_window != old)
5963                 vmx->ple_window_dirty = true;
5964
5965         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5966 }
5967
5968 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5969 {
5970         struct vcpu_vmx *vmx = to_vmx(vcpu);
5971         int old = vmx->ple_window;
5972
5973         vmx->ple_window = __shrink_ple_window(old,
5974                                               ple_window_shrink, ple_window);
5975
5976         if (vmx->ple_window != old)
5977                 vmx->ple_window_dirty = true;
5978
5979         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5980 }
5981
5982 /*
5983  * ple_window_actual_max is computed to be one grow_ple_window() below
5984  * ple_window_max. (See __grow_ple_window for the reason.)
5985  * This prevents overflows, because ple_window_max is int.
5986  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5987  * this process.
5988  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5989  */
5990 static void update_ple_window_actual_max(void)
5991 {
5992         ple_window_actual_max =
5993                         __shrink_ple_window(max(ple_window_max, ple_window),
5994                                             ple_window_grow, INT_MIN);
5995 }
5996
5997 static __init int hardware_setup(void)
5998 {
5999         int r = -ENOMEM, i, msr;
6000
6001         rdmsrl_safe(MSR_EFER, &host_efer);
6002
6003         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6004                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6005
6006         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6007         if (!vmx_io_bitmap_a)
6008                 return r;
6009
6010         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6011         if (!vmx_io_bitmap_b)
6012                 goto out;
6013
6014         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6015         if (!vmx_msr_bitmap_legacy)
6016                 goto out1;
6017
6018         vmx_msr_bitmap_legacy_x2apic =
6019                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6020         if (!vmx_msr_bitmap_legacy_x2apic)
6021                 goto out2;
6022
6023         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6024         if (!vmx_msr_bitmap_longmode)
6025                 goto out3;
6026
6027         vmx_msr_bitmap_longmode_x2apic =
6028                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6029         if (!vmx_msr_bitmap_longmode_x2apic)
6030                 goto out4;
6031
6032         if (nested) {
6033                 vmx_msr_bitmap_nested =
6034                         (unsigned long *)__get_free_page(GFP_KERNEL);
6035                 if (!vmx_msr_bitmap_nested)
6036                         goto out5;
6037         }
6038
6039         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6040         if (!vmx_vmread_bitmap)
6041                 goto out6;
6042
6043         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6044         if (!vmx_vmwrite_bitmap)
6045                 goto out7;
6046
6047         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6048         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6049
6050         /*
6051          * Allow direct access to the PC debug port (it is often used for I/O
6052          * delays, but the vmexits simply slow things down).
6053          */
6054         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6055         clear_bit(0x80, vmx_io_bitmap_a);
6056
6057         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6058
6059         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6060         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6061         if (nested)
6062                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6063
6064         if (setup_vmcs_config(&vmcs_config) < 0) {
6065                 r = -EIO;
6066                 goto out8;
6067         }
6068
6069         if (boot_cpu_has(X86_FEATURE_NX))
6070                 kvm_enable_efer_bits(EFER_NX);
6071
6072         if (!cpu_has_vmx_vpid())
6073                 enable_vpid = 0;
6074         if (!cpu_has_vmx_shadow_vmcs())
6075                 enable_shadow_vmcs = 0;
6076         if (enable_shadow_vmcs)
6077                 init_vmcs_shadow_fields();
6078
6079         if (!cpu_has_vmx_ept() ||
6080             !cpu_has_vmx_ept_4levels()) {
6081                 enable_ept = 0;
6082                 enable_unrestricted_guest = 0;
6083                 enable_ept_ad_bits = 0;
6084         }
6085
6086         if (!cpu_has_vmx_ept_ad_bits())
6087                 enable_ept_ad_bits = 0;
6088
6089         if (!cpu_has_vmx_unrestricted_guest())
6090                 enable_unrestricted_guest = 0;
6091
6092         if (!cpu_has_vmx_flexpriority())
6093                 flexpriority_enabled = 0;
6094
6095         /*
6096          * set_apic_access_page_addr() is used to reload apic access
6097          * page upon invalidation.  No need to do anything if not
6098          * using the APIC_ACCESS_ADDR VMCS field.
6099          */
6100         if (!flexpriority_enabled)
6101                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6102
6103         if (!cpu_has_vmx_tpr_shadow())
6104                 kvm_x86_ops->update_cr8_intercept = NULL;
6105
6106         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6107                 kvm_disable_largepages();
6108
6109         if (!cpu_has_vmx_ple())
6110                 ple_gap = 0;
6111
6112         if (!cpu_has_vmx_apicv())
6113                 enable_apicv = 0;
6114
6115         if (enable_apicv)
6116                 kvm_x86_ops->update_cr8_intercept = NULL;
6117         else {
6118                 kvm_x86_ops->hwapic_irr_update = NULL;
6119                 kvm_x86_ops->hwapic_isr_update = NULL;
6120                 kvm_x86_ops->deliver_posted_interrupt = NULL;
6121                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6122         }
6123
6124         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6125         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6126         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6127         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6128         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6129         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6130         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6131
6132         memcpy(vmx_msr_bitmap_legacy_x2apic,
6133                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6134         memcpy(vmx_msr_bitmap_longmode_x2apic,
6135                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6136
6137         if (enable_apicv) {
6138                 for (msr = 0x800; msr <= 0x8ff; msr++)
6139                         vmx_disable_intercept_msr_read_x2apic(msr);
6140
6141                 /* According SDM, in x2apic mode, the whole id reg is used.
6142                  * But in KVM, it only use the highest eight bits. Need to
6143                  * intercept it */
6144                 vmx_enable_intercept_msr_read_x2apic(0x802);
6145                 /* TMCCT */
6146                 vmx_enable_intercept_msr_read_x2apic(0x839);
6147                 /* TPR */
6148                 vmx_disable_intercept_msr_write_x2apic(0x808);
6149                 /* EOI */
6150                 vmx_disable_intercept_msr_write_x2apic(0x80b);
6151                 /* SELF-IPI */
6152                 vmx_disable_intercept_msr_write_x2apic(0x83f);
6153         }
6154
6155         if (enable_ept) {
6156                 kvm_mmu_set_mask_ptes(0ull,
6157                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6158                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6159                         0ull, VMX_EPT_EXECUTABLE_MASK);
6160                 ept_set_mmio_spte_mask();
6161                 kvm_enable_tdp();
6162         } else
6163                 kvm_disable_tdp();
6164
6165         update_ple_window_actual_max();
6166
6167         /*
6168          * Only enable PML when hardware supports PML feature, and both EPT
6169          * and EPT A/D bit features are enabled -- PML depends on them to work.
6170          */
6171         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6172                 enable_pml = 0;
6173
6174         if (!enable_pml) {
6175                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6176                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6177                 kvm_x86_ops->flush_log_dirty = NULL;
6178                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6179         }
6180
6181         return alloc_kvm_area();
6182
6183 out8:
6184         free_page((unsigned long)vmx_vmwrite_bitmap);
6185 out7:
6186         free_page((unsigned long)vmx_vmread_bitmap);
6187 out6:
6188         if (nested)
6189                 free_page((unsigned long)vmx_msr_bitmap_nested);
6190 out5:
6191         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6192 out4:
6193         free_page((unsigned long)vmx_msr_bitmap_longmode);
6194 out3:
6195         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6196 out2:
6197         free_page((unsigned long)vmx_msr_bitmap_legacy);
6198 out1:
6199         free_page((unsigned long)vmx_io_bitmap_b);
6200 out:
6201         free_page((unsigned long)vmx_io_bitmap_a);
6202
6203     return r;
6204 }
6205
6206 static __exit void hardware_unsetup(void)
6207 {
6208         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6209         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6210         free_page((unsigned long)vmx_msr_bitmap_legacy);
6211         free_page((unsigned long)vmx_msr_bitmap_longmode);
6212         free_page((unsigned long)vmx_io_bitmap_b);
6213         free_page((unsigned long)vmx_io_bitmap_a);
6214         free_page((unsigned long)vmx_vmwrite_bitmap);
6215         free_page((unsigned long)vmx_vmread_bitmap);
6216         if (nested)
6217                 free_page((unsigned long)vmx_msr_bitmap_nested);
6218
6219         free_kvm_area();
6220 }
6221
6222 /*
6223  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6224  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6225  */
6226 static int handle_pause(struct kvm_vcpu *vcpu)
6227 {
6228         if (ple_gap)
6229                 grow_ple_window(vcpu);
6230
6231         skip_emulated_instruction(vcpu);
6232         kvm_vcpu_on_spin(vcpu);
6233
6234         return 1;
6235 }
6236
6237 static int handle_nop(struct kvm_vcpu *vcpu)
6238 {
6239         skip_emulated_instruction(vcpu);
6240         return 1;
6241 }
6242
6243 static int handle_mwait(struct kvm_vcpu *vcpu)
6244 {
6245         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6246         return handle_nop(vcpu);
6247 }
6248
6249 static int handle_monitor(struct kvm_vcpu *vcpu)
6250 {
6251         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6252         return handle_nop(vcpu);
6253 }
6254
6255 /*
6256  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6257  * We could reuse a single VMCS for all the L2 guests, but we also want the
6258  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6259  * allows keeping them loaded on the processor, and in the future will allow
6260  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6261  * every entry if they never change.
6262  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6263  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6264  *
6265  * The following functions allocate and free a vmcs02 in this pool.
6266  */
6267
6268 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6269 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6270 {
6271         struct vmcs02_list *item;
6272         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6273                 if (item->vmptr == vmx->nested.current_vmptr) {
6274                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6275                         return &item->vmcs02;
6276                 }
6277
6278         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6279                 /* Recycle the least recently used VMCS. */
6280                 item = list_entry(vmx->nested.vmcs02_pool.prev,
6281                         struct vmcs02_list, list);
6282                 item->vmptr = vmx->nested.current_vmptr;
6283                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6284                 return &item->vmcs02;
6285         }
6286
6287         /* Create a new VMCS */
6288         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6289         if (!item)
6290                 return NULL;
6291         item->vmcs02.vmcs = alloc_vmcs();
6292         if (!item->vmcs02.vmcs) {
6293                 kfree(item);
6294                 return NULL;
6295         }
6296         loaded_vmcs_init(&item->vmcs02);
6297         item->vmptr = vmx->nested.current_vmptr;
6298         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6299         vmx->nested.vmcs02_num++;
6300         return &item->vmcs02;
6301 }
6302
6303 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6304 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6305 {
6306         struct vmcs02_list *item;
6307         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6308                 if (item->vmptr == vmptr) {
6309                         free_loaded_vmcs(&item->vmcs02);
6310                         list_del(&item->list);
6311                         kfree(item);
6312                         vmx->nested.vmcs02_num--;
6313                         return;
6314                 }
6315 }
6316
6317 /*
6318  * Free all VMCSs saved for this vcpu, except the one pointed by
6319  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6320  * must be &vmx->vmcs01.
6321  */
6322 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6323 {
6324         struct vmcs02_list *item, *n;
6325
6326         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6327         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6328                 /*
6329                  * Something will leak if the above WARN triggers.  Better than
6330                  * a use-after-free.
6331                  */
6332                 if (vmx->loaded_vmcs == &item->vmcs02)
6333                         continue;
6334
6335                 free_loaded_vmcs(&item->vmcs02);
6336                 list_del(&item->list);
6337                 kfree(item);
6338                 vmx->nested.vmcs02_num--;
6339         }
6340 }
6341
6342 /*
6343  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6344  * set the success or error code of an emulated VMX instruction, as specified
6345  * by Vol 2B, VMX Instruction Reference, "Conventions".
6346  */
6347 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6348 {
6349         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6350                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6351                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6352 }
6353
6354 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6355 {
6356         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6357                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6358                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6359                         | X86_EFLAGS_CF);
6360 }
6361
6362 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6363                                         u32 vm_instruction_error)
6364 {
6365         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6366                 /*
6367                  * failValid writes the error number to the current VMCS, which
6368                  * can't be done there isn't a current VMCS.
6369                  */
6370                 nested_vmx_failInvalid(vcpu);
6371                 return;
6372         }
6373         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6374                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6375                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6376                         | X86_EFLAGS_ZF);
6377         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6378         /*
6379          * We don't need to force a shadow sync because
6380          * VM_INSTRUCTION_ERROR is not shadowed
6381          */
6382 }
6383
6384 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6385 {
6386         /* TODO: not to reset guest simply here. */
6387         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6388         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6389 }
6390
6391 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6392 {
6393         struct vcpu_vmx *vmx =
6394                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6395
6396         vmx->nested.preemption_timer_expired = true;
6397         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6398         kvm_vcpu_kick(&vmx->vcpu);
6399
6400         return HRTIMER_NORESTART;
6401 }
6402
6403 /*
6404  * Decode the memory-address operand of a vmx instruction, as recorded on an
6405  * exit caused by such an instruction (run by a guest hypervisor).
6406  * On success, returns 0. When the operand is invalid, returns 1 and throws
6407  * #UD or #GP.
6408  */
6409 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6410                                  unsigned long exit_qualification,
6411                                  u32 vmx_instruction_info, gva_t *ret)
6412 {
6413         /*
6414          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6415          * Execution", on an exit, vmx_instruction_info holds most of the
6416          * addressing components of the operand. Only the displacement part
6417          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6418          * For how an actual address is calculated from all these components,
6419          * refer to Vol. 1, "Operand Addressing".
6420          */
6421         int  scaling = vmx_instruction_info & 3;
6422         int  addr_size = (vmx_instruction_info >> 7) & 7;
6423         bool is_reg = vmx_instruction_info & (1u << 10);
6424         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6425         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6426         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6427         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6428         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6429
6430         if (is_reg) {
6431                 kvm_queue_exception(vcpu, UD_VECTOR);
6432                 return 1;
6433         }
6434
6435         /* Addr = segment_base + offset */
6436         /* offset = base + [index * scale] + displacement */
6437         *ret = vmx_get_segment_base(vcpu, seg_reg);
6438         if (base_is_valid)
6439                 *ret += kvm_register_read(vcpu, base_reg);
6440         if (index_is_valid)
6441                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6442         *ret += exit_qualification; /* holds the displacement */
6443
6444         if (addr_size == 1) /* 32 bit */
6445                 *ret &= 0xffffffff;
6446
6447         /*
6448          * TODO: throw #GP (and return 1) in various cases that the VM*
6449          * instructions require it - e.g., offset beyond segment limit,
6450          * unusable or unreadable/unwritable segment, non-canonical 64-bit
6451          * address, and so on. Currently these are not checked.
6452          */
6453         return 0;
6454 }
6455
6456 /*
6457  * This function performs the various checks including
6458  * - if it's 4KB aligned
6459  * - No bits beyond the physical address width are set
6460  * - Returns 0 on success or else 1
6461  * (Intel SDM Section 30.3)
6462  */
6463 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6464                                   gpa_t *vmpointer)
6465 {
6466         gva_t gva;
6467         gpa_t vmptr;
6468         struct x86_exception e;
6469         struct page *page;
6470         struct vcpu_vmx *vmx = to_vmx(vcpu);
6471         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6472
6473         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6474                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6475                 return 1;
6476
6477         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6478                                 sizeof(vmptr), &e)) {
6479                 kvm_inject_page_fault(vcpu, &e);
6480                 return 1;
6481         }
6482
6483         switch (exit_reason) {
6484         case EXIT_REASON_VMON:
6485                 /*
6486                  * SDM 3: 24.11.5
6487                  * The first 4 bytes of VMXON region contain the supported
6488                  * VMCS revision identifier
6489                  *
6490                  * Note - IA32_VMX_BASIC[48] will never be 1
6491                  * for the nested case;
6492                  * which replaces physical address width with 32
6493                  *
6494                  */
6495                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6496                         nested_vmx_failInvalid(vcpu);
6497                         skip_emulated_instruction(vcpu);
6498                         return 1;
6499                 }
6500
6501                 page = nested_get_page(vcpu, vmptr);
6502                 if (page == NULL ||
6503                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6504                         nested_vmx_failInvalid(vcpu);
6505                         kunmap(page);
6506                         skip_emulated_instruction(vcpu);
6507                         return 1;
6508                 }
6509                 kunmap(page);
6510                 vmx->nested.vmxon_ptr = vmptr;
6511                 break;
6512         case EXIT_REASON_VMCLEAR:
6513                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6514                         nested_vmx_failValid(vcpu,
6515                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6516                         skip_emulated_instruction(vcpu);
6517                         return 1;
6518                 }
6519
6520                 if (vmptr == vmx->nested.vmxon_ptr) {
6521                         nested_vmx_failValid(vcpu,
6522                                              VMXERR_VMCLEAR_VMXON_POINTER);
6523                         skip_emulated_instruction(vcpu);
6524                         return 1;
6525                 }
6526                 break;
6527         case EXIT_REASON_VMPTRLD:
6528                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6529                         nested_vmx_failValid(vcpu,
6530                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6531                         skip_emulated_instruction(vcpu);
6532                         return 1;
6533                 }
6534
6535                 if (vmptr == vmx->nested.vmxon_ptr) {
6536                         nested_vmx_failValid(vcpu,
6537                                              VMXERR_VMCLEAR_VMXON_POINTER);
6538                         skip_emulated_instruction(vcpu);
6539                         return 1;
6540                 }
6541                 break;
6542         default:
6543                 return 1; /* shouldn't happen */
6544         }
6545
6546         if (vmpointer)
6547                 *vmpointer = vmptr;
6548         return 0;
6549 }
6550
6551 /*
6552  * Emulate the VMXON instruction.
6553  * Currently, we just remember that VMX is active, and do not save or even
6554  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6555  * do not currently need to store anything in that guest-allocated memory
6556  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6557  * argument is different from the VMXON pointer (which the spec says they do).
6558  */
6559 static int handle_vmon(struct kvm_vcpu *vcpu)
6560 {
6561         struct kvm_segment cs;
6562         struct vcpu_vmx *vmx = to_vmx(vcpu);
6563         struct vmcs *shadow_vmcs;
6564         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6565                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6566
6567         /* The Intel VMX Instruction Reference lists a bunch of bits that
6568          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6569          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6570          * Otherwise, we should fail with #UD. We test these now:
6571          */
6572         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6573             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6574             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6575                 kvm_queue_exception(vcpu, UD_VECTOR);
6576                 return 1;
6577         }
6578
6579         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6580         if (is_long_mode(vcpu) && !cs.l) {
6581                 kvm_queue_exception(vcpu, UD_VECTOR);
6582                 return 1;
6583         }
6584
6585         if (vmx_get_cpl(vcpu)) {
6586                 kvm_inject_gp(vcpu, 0);
6587                 return 1;
6588         }
6589
6590         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6591                 return 1;
6592
6593         if (vmx->nested.vmxon) {
6594                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6595                 skip_emulated_instruction(vcpu);
6596                 return 1;
6597         }
6598
6599         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6600                         != VMXON_NEEDED_FEATURES) {
6601                 kvm_inject_gp(vcpu, 0);
6602                 return 1;
6603         }
6604
6605         if (enable_shadow_vmcs) {
6606                 shadow_vmcs = alloc_vmcs();
6607                 if (!shadow_vmcs)
6608                         return -ENOMEM;
6609                 /* mark vmcs as shadow */
6610                 shadow_vmcs->revision_id |= (1u << 31);
6611                 /* init shadow vmcs */
6612                 vmcs_clear(shadow_vmcs);
6613                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6614         }
6615
6616         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6617         vmx->nested.vmcs02_num = 0;
6618
6619         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6620                      HRTIMER_MODE_REL);
6621         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6622
6623         vmx->nested.vmxon = true;
6624
6625         skip_emulated_instruction(vcpu);
6626         nested_vmx_succeed(vcpu);
6627         return 1;
6628 }
6629
6630 /*
6631  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6632  * for running VMX instructions (except VMXON, whose prerequisites are
6633  * slightly different). It also specifies what exception to inject otherwise.
6634  */
6635 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6636 {
6637         struct kvm_segment cs;
6638         struct vcpu_vmx *vmx = to_vmx(vcpu);
6639
6640         if (!vmx->nested.vmxon) {
6641                 kvm_queue_exception(vcpu, UD_VECTOR);
6642                 return 0;
6643         }
6644
6645         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6646         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6647             (is_long_mode(vcpu) && !cs.l)) {
6648                 kvm_queue_exception(vcpu, UD_VECTOR);
6649                 return 0;
6650         }
6651
6652         if (vmx_get_cpl(vcpu)) {
6653                 kvm_inject_gp(vcpu, 0);
6654                 return 0;
6655         }
6656
6657         return 1;
6658 }
6659
6660 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6661 {
6662         u32 exec_control;
6663         if (vmx->nested.current_vmptr == -1ull)
6664                 return;
6665
6666         /* current_vmptr and current_vmcs12 are always set/reset together */
6667         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6668                 return;
6669
6670         if (enable_shadow_vmcs) {
6671                 /* copy to memory all shadowed fields in case
6672                    they were modified */
6673                 copy_shadow_to_vmcs12(vmx);
6674                 vmx->nested.sync_shadow_vmcs = false;
6675                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6676                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6677                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6678                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6679         }
6680         vmx->nested.posted_intr_nv = -1;
6681         kunmap(vmx->nested.current_vmcs12_page);
6682         nested_release_page(vmx->nested.current_vmcs12_page);
6683         vmx->nested.current_vmptr = -1ull;
6684         vmx->nested.current_vmcs12 = NULL;
6685 }
6686
6687 /*
6688  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6689  * just stops using VMX.
6690  */
6691 static void free_nested(struct vcpu_vmx *vmx)
6692 {
6693         if (!vmx->nested.vmxon)
6694                 return;
6695
6696         vmx->nested.vmxon = false;
6697         nested_release_vmcs12(vmx);
6698         if (enable_shadow_vmcs)
6699                 free_vmcs(vmx->nested.current_shadow_vmcs);
6700         /* Unpin physical memory we referred to in current vmcs02 */
6701         if (vmx->nested.apic_access_page) {
6702                 nested_release_page(vmx->nested.apic_access_page);
6703                 vmx->nested.apic_access_page = NULL;
6704         }
6705         if (vmx->nested.virtual_apic_page) {
6706                 nested_release_page(vmx->nested.virtual_apic_page);
6707                 vmx->nested.virtual_apic_page = NULL;
6708         }
6709         if (vmx->nested.pi_desc_page) {
6710                 kunmap(vmx->nested.pi_desc_page);
6711                 nested_release_page(vmx->nested.pi_desc_page);
6712                 vmx->nested.pi_desc_page = NULL;
6713                 vmx->nested.pi_desc = NULL;
6714         }
6715
6716         nested_free_all_saved_vmcss(vmx);
6717 }
6718
6719 /* Emulate the VMXOFF instruction */
6720 static int handle_vmoff(struct kvm_vcpu *vcpu)
6721 {
6722         if (!nested_vmx_check_permission(vcpu))
6723                 return 1;
6724         free_nested(to_vmx(vcpu));
6725         skip_emulated_instruction(vcpu);
6726         nested_vmx_succeed(vcpu);
6727         return 1;
6728 }
6729
6730 /* Emulate the VMCLEAR instruction */
6731 static int handle_vmclear(struct kvm_vcpu *vcpu)
6732 {
6733         struct vcpu_vmx *vmx = to_vmx(vcpu);
6734         gpa_t vmptr;
6735         struct vmcs12 *vmcs12;
6736         struct page *page;
6737
6738         if (!nested_vmx_check_permission(vcpu))
6739                 return 1;
6740
6741         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6742                 return 1;
6743
6744         if (vmptr == vmx->nested.current_vmptr)
6745                 nested_release_vmcs12(vmx);
6746
6747         page = nested_get_page(vcpu, vmptr);
6748         if (page == NULL) {
6749                 /*
6750                  * For accurate processor emulation, VMCLEAR beyond available
6751                  * physical memory should do nothing at all. However, it is
6752                  * possible that a nested vmx bug, not a guest hypervisor bug,
6753                  * resulted in this case, so let's shut down before doing any
6754                  * more damage:
6755                  */
6756                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6757                 return 1;
6758         }
6759         vmcs12 = kmap(page);
6760         vmcs12->launch_state = 0;
6761         kunmap(page);
6762         nested_release_page(page);
6763
6764         nested_free_vmcs02(vmx, vmptr);
6765
6766         skip_emulated_instruction(vcpu);
6767         nested_vmx_succeed(vcpu);
6768         return 1;
6769 }
6770
6771 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6772
6773 /* Emulate the VMLAUNCH instruction */
6774 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6775 {
6776         return nested_vmx_run(vcpu, true);
6777 }
6778
6779 /* Emulate the VMRESUME instruction */
6780 static int handle_vmresume(struct kvm_vcpu *vcpu)
6781 {
6782
6783         return nested_vmx_run(vcpu, false);
6784 }
6785
6786 enum vmcs_field_type {
6787         VMCS_FIELD_TYPE_U16 = 0,
6788         VMCS_FIELD_TYPE_U64 = 1,
6789         VMCS_FIELD_TYPE_U32 = 2,
6790         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6791 };
6792
6793 static inline int vmcs_field_type(unsigned long field)
6794 {
6795         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6796                 return VMCS_FIELD_TYPE_U32;
6797         return (field >> 13) & 0x3 ;
6798 }
6799
6800 static inline int vmcs_field_readonly(unsigned long field)
6801 {
6802         return (((field >> 10) & 0x3) == 1);
6803 }
6804
6805 /*
6806  * Read a vmcs12 field. Since these can have varying lengths and we return
6807  * one type, we chose the biggest type (u64) and zero-extend the return value
6808  * to that size. Note that the caller, handle_vmread, might need to use only
6809  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6810  * 64-bit fields are to be returned).
6811  */
6812 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6813                                   unsigned long field, u64 *ret)
6814 {
6815         short offset = vmcs_field_to_offset(field);
6816         char *p;
6817
6818         if (offset < 0)
6819                 return offset;
6820
6821         p = ((char *)(get_vmcs12(vcpu))) + offset;
6822
6823         switch (vmcs_field_type(field)) {
6824         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6825                 *ret = *((natural_width *)p);
6826                 return 0;
6827         case VMCS_FIELD_TYPE_U16:
6828                 *ret = *((u16 *)p);
6829                 return 0;
6830         case VMCS_FIELD_TYPE_U32:
6831                 *ret = *((u32 *)p);
6832                 return 0;
6833         case VMCS_FIELD_TYPE_U64:
6834                 *ret = *((u64 *)p);
6835                 return 0;
6836         default:
6837                 WARN_ON(1);
6838                 return -ENOENT;
6839         }
6840 }
6841
6842
6843 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6844                                    unsigned long field, u64 field_value){
6845         short offset = vmcs_field_to_offset(field);
6846         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6847         if (offset < 0)
6848                 return offset;
6849
6850         switch (vmcs_field_type(field)) {
6851         case VMCS_FIELD_TYPE_U16:
6852                 *(u16 *)p = field_value;
6853                 return 0;
6854         case VMCS_FIELD_TYPE_U32:
6855                 *(u32 *)p = field_value;
6856                 return 0;
6857         case VMCS_FIELD_TYPE_U64:
6858                 *(u64 *)p = field_value;
6859                 return 0;
6860         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6861                 *(natural_width *)p = field_value;
6862                 return 0;
6863         default:
6864                 WARN_ON(1);
6865                 return -ENOENT;
6866         }
6867
6868 }
6869
6870 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6871 {
6872         int i;
6873         unsigned long field;
6874         u64 field_value;
6875         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6876         const unsigned long *fields = shadow_read_write_fields;
6877         const int num_fields = max_shadow_read_write_fields;
6878
6879         preempt_disable();
6880
6881         vmcs_load(shadow_vmcs);
6882
6883         for (i = 0; i < num_fields; i++) {
6884                 field = fields[i];
6885                 switch (vmcs_field_type(field)) {
6886                 case VMCS_FIELD_TYPE_U16:
6887                         field_value = vmcs_read16(field);
6888                         break;
6889                 case VMCS_FIELD_TYPE_U32:
6890                         field_value = vmcs_read32(field);
6891                         break;
6892                 case VMCS_FIELD_TYPE_U64:
6893                         field_value = vmcs_read64(field);
6894                         break;
6895                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6896                         field_value = vmcs_readl(field);
6897                         break;
6898                 default:
6899                         WARN_ON(1);
6900                         continue;
6901                 }
6902                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6903         }
6904
6905         vmcs_clear(shadow_vmcs);
6906         vmcs_load(vmx->loaded_vmcs->vmcs);
6907
6908         preempt_enable();
6909 }
6910
6911 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6912 {
6913         const unsigned long *fields[] = {
6914                 shadow_read_write_fields,
6915                 shadow_read_only_fields
6916         };
6917         const int max_fields[] = {
6918                 max_shadow_read_write_fields,
6919                 max_shadow_read_only_fields
6920         };
6921         int i, q;
6922         unsigned long field;
6923         u64 field_value = 0;
6924         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6925
6926         vmcs_load(shadow_vmcs);
6927
6928         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6929                 for (i = 0; i < max_fields[q]; i++) {
6930                         field = fields[q][i];
6931                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6932
6933                         switch (vmcs_field_type(field)) {
6934                         case VMCS_FIELD_TYPE_U16:
6935                                 vmcs_write16(field, (u16)field_value);
6936                                 break;
6937                         case VMCS_FIELD_TYPE_U32:
6938                                 vmcs_write32(field, (u32)field_value);
6939                                 break;
6940                         case VMCS_FIELD_TYPE_U64:
6941                                 vmcs_write64(field, (u64)field_value);
6942                                 break;
6943                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6944                                 vmcs_writel(field, (long)field_value);
6945                                 break;
6946                         default:
6947                                 WARN_ON(1);
6948                                 break;
6949                         }
6950                 }
6951         }
6952
6953         vmcs_clear(shadow_vmcs);
6954         vmcs_load(vmx->loaded_vmcs->vmcs);
6955 }
6956
6957 /*
6958  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6959  * used before) all generate the same failure when it is missing.
6960  */
6961 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6962 {
6963         struct vcpu_vmx *vmx = to_vmx(vcpu);
6964         if (vmx->nested.current_vmptr == -1ull) {
6965                 nested_vmx_failInvalid(vcpu);
6966                 skip_emulated_instruction(vcpu);
6967                 return 0;
6968         }
6969         return 1;
6970 }
6971
6972 static int handle_vmread(struct kvm_vcpu *vcpu)
6973 {
6974         unsigned long field;
6975         u64 field_value;
6976         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6977         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6978         gva_t gva = 0;
6979
6980         if (!nested_vmx_check_permission(vcpu) ||
6981             !nested_vmx_check_vmcs12(vcpu))
6982                 return 1;
6983
6984         /* Decode instruction info and find the field to read */
6985         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6986         /* Read the field, zero-extended to a u64 field_value */
6987         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6988                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6989                 skip_emulated_instruction(vcpu);
6990                 return 1;
6991         }
6992         /*
6993          * Now copy part of this value to register or memory, as requested.
6994          * Note that the number of bits actually copied is 32 or 64 depending
6995          * on the guest's mode (32 or 64 bit), not on the given field's length.
6996          */
6997         if (vmx_instruction_info & (1u << 10)) {
6998                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6999                         field_value);
7000         } else {
7001                 if (get_vmx_mem_address(vcpu, exit_qualification,
7002                                 vmx_instruction_info, &gva))
7003                         return 1;
7004                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7005                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7006                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7007         }
7008
7009         nested_vmx_succeed(vcpu);
7010         skip_emulated_instruction(vcpu);
7011         return 1;
7012 }
7013
7014
7015 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7016 {
7017         unsigned long field;
7018         gva_t gva;
7019         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7020         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7021         /* The value to write might be 32 or 64 bits, depending on L1's long
7022          * mode, and eventually we need to write that into a field of several
7023          * possible lengths. The code below first zero-extends the value to 64
7024          * bit (field_value), and then copies only the approriate number of
7025          * bits into the vmcs12 field.
7026          */
7027         u64 field_value = 0;
7028         struct x86_exception e;
7029
7030         if (!nested_vmx_check_permission(vcpu) ||
7031             !nested_vmx_check_vmcs12(vcpu))
7032                 return 1;
7033
7034         if (vmx_instruction_info & (1u << 10))
7035                 field_value = kvm_register_readl(vcpu,
7036                         (((vmx_instruction_info) >> 3) & 0xf));
7037         else {
7038                 if (get_vmx_mem_address(vcpu, exit_qualification,
7039                                 vmx_instruction_info, &gva))
7040                         return 1;
7041                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7042                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7043                         kvm_inject_page_fault(vcpu, &e);
7044                         return 1;
7045                 }
7046         }
7047
7048
7049         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7050         if (vmcs_field_readonly(field)) {
7051                 nested_vmx_failValid(vcpu,
7052                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7053                 skip_emulated_instruction(vcpu);
7054                 return 1;
7055         }
7056
7057         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7058                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7059                 skip_emulated_instruction(vcpu);
7060                 return 1;
7061         }
7062
7063         nested_vmx_succeed(vcpu);
7064         skip_emulated_instruction(vcpu);
7065         return 1;
7066 }
7067
7068 /* Emulate the VMPTRLD instruction */
7069 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7070 {
7071         struct vcpu_vmx *vmx = to_vmx(vcpu);
7072         gpa_t vmptr;
7073         u32 exec_control;
7074
7075         if (!nested_vmx_check_permission(vcpu))
7076                 return 1;
7077
7078         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7079                 return 1;
7080
7081         if (vmx->nested.current_vmptr != vmptr) {
7082                 struct vmcs12 *new_vmcs12;
7083                 struct page *page;
7084                 page = nested_get_page(vcpu, vmptr);
7085                 if (page == NULL) {
7086                         nested_vmx_failInvalid(vcpu);
7087                         skip_emulated_instruction(vcpu);
7088                         return 1;
7089                 }
7090                 new_vmcs12 = kmap(page);
7091                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7092                         kunmap(page);
7093                         nested_release_page_clean(page);
7094                         nested_vmx_failValid(vcpu,
7095                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7096                         skip_emulated_instruction(vcpu);
7097                         return 1;
7098                 }
7099
7100                 nested_release_vmcs12(vmx);
7101                 vmx->nested.current_vmptr = vmptr;
7102                 vmx->nested.current_vmcs12 = new_vmcs12;
7103                 vmx->nested.current_vmcs12_page = page;
7104                 if (enable_shadow_vmcs) {
7105                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7106                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7107                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7108                         vmcs_write64(VMCS_LINK_POINTER,
7109                                      __pa(vmx->nested.current_shadow_vmcs));
7110                         vmx->nested.sync_shadow_vmcs = true;
7111                 }
7112         }
7113
7114         nested_vmx_succeed(vcpu);
7115         skip_emulated_instruction(vcpu);
7116         return 1;
7117 }
7118
7119 /* Emulate the VMPTRST instruction */
7120 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7121 {
7122         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7123         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7124         gva_t vmcs_gva;
7125         struct x86_exception e;
7126
7127         if (!nested_vmx_check_permission(vcpu))
7128                 return 1;
7129
7130         if (get_vmx_mem_address(vcpu, exit_qualification,
7131                         vmx_instruction_info, &vmcs_gva))
7132                 return 1;
7133         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7134         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7135                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7136                                  sizeof(u64), &e)) {
7137                 kvm_inject_page_fault(vcpu, &e);
7138                 return 1;
7139         }
7140         nested_vmx_succeed(vcpu);
7141         skip_emulated_instruction(vcpu);
7142         return 1;
7143 }
7144
7145 /* Emulate the INVEPT instruction */
7146 static int handle_invept(struct kvm_vcpu *vcpu)
7147 {
7148         struct vcpu_vmx *vmx = to_vmx(vcpu);
7149         u32 vmx_instruction_info, types;
7150         unsigned long type;
7151         gva_t gva;
7152         struct x86_exception e;
7153         struct {
7154                 u64 eptp, gpa;
7155         } operand;
7156
7157         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7158               SECONDARY_EXEC_ENABLE_EPT) ||
7159             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7160                 kvm_queue_exception(vcpu, UD_VECTOR);
7161                 return 1;
7162         }
7163
7164         if (!nested_vmx_check_permission(vcpu))
7165                 return 1;
7166
7167         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7168                 kvm_queue_exception(vcpu, UD_VECTOR);
7169                 return 1;
7170         }
7171
7172         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7173         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7174
7175         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7176
7177         if (!(types & (1UL << type))) {
7178                 nested_vmx_failValid(vcpu,
7179                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7180                 return 1;
7181         }
7182
7183         /* According to the Intel VMX instruction reference, the memory
7184          * operand is read even if it isn't needed (e.g., for type==global)
7185          */
7186         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7187                         vmx_instruction_info, &gva))
7188                 return 1;
7189         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7190                                 sizeof(operand), &e)) {
7191                 kvm_inject_page_fault(vcpu, &e);
7192                 return 1;
7193         }
7194
7195         switch (type) {
7196         case VMX_EPT_EXTENT_GLOBAL:
7197                 kvm_mmu_sync_roots(vcpu);
7198                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7199                 nested_vmx_succeed(vcpu);
7200                 break;
7201         default:
7202                 /* Trap single context invalidation invept calls */
7203                 BUG_ON(1);
7204                 break;
7205         }
7206
7207         skip_emulated_instruction(vcpu);
7208         return 1;
7209 }
7210
7211 static int handle_invvpid(struct kvm_vcpu *vcpu)
7212 {
7213         kvm_queue_exception(vcpu, UD_VECTOR);
7214         return 1;
7215 }
7216
7217 static int handle_pml_full(struct kvm_vcpu *vcpu)
7218 {
7219         unsigned long exit_qualification;
7220
7221         trace_kvm_pml_full(vcpu->vcpu_id);
7222
7223         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7224
7225         /*
7226          * PML buffer FULL happened while executing iret from NMI,
7227          * "blocked by NMI" bit has to be set before next VM entry.
7228          */
7229         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7230                         cpu_has_virtual_nmis() &&
7231                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7232                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7233                                 GUEST_INTR_STATE_NMI);
7234
7235         /*
7236          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7237          * here.., and there's no userspace involvement needed for PML.
7238          */
7239         return 1;
7240 }
7241
7242 /*
7243  * The exit handlers return 1 if the exit was handled fully and guest execution
7244  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7245  * to be done to userspace and return 0.
7246  */
7247 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7248         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7249         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7250         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7251         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7252         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7253         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7254         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7255         [EXIT_REASON_CPUID]                   = handle_cpuid,
7256         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7257         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7258         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7259         [EXIT_REASON_HLT]                     = handle_halt,
7260         [EXIT_REASON_INVD]                    = handle_invd,
7261         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7262         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7263         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7264         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7265         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7266         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7267         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7268         [EXIT_REASON_VMREAD]                  = handle_vmread,
7269         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7270         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7271         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7272         [EXIT_REASON_VMON]                    = handle_vmon,
7273         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7274         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7275         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7276         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7277         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7278         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7279         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7280         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7281         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7282         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7283         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7284         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7285         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7286         [EXIT_REASON_INVEPT]                  = handle_invept,
7287         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7288         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7289         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7290         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7291 };
7292
7293 static const int kvm_vmx_max_exit_handlers =
7294         ARRAY_SIZE(kvm_vmx_exit_handlers);
7295
7296 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7297                                        struct vmcs12 *vmcs12)
7298 {
7299         unsigned long exit_qualification;
7300         gpa_t bitmap, last_bitmap;
7301         unsigned int port;
7302         int size;
7303         u8 b;
7304
7305         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7306                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7307
7308         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7309
7310         port = exit_qualification >> 16;
7311         size = (exit_qualification & 7) + 1;
7312
7313         last_bitmap = (gpa_t)-1;
7314         b = -1;
7315
7316         while (size > 0) {
7317                 if (port < 0x8000)
7318                         bitmap = vmcs12->io_bitmap_a;
7319                 else if (port < 0x10000)
7320                         bitmap = vmcs12->io_bitmap_b;
7321                 else
7322                         return true;
7323                 bitmap += (port & 0x7fff) / 8;
7324
7325                 if (last_bitmap != bitmap)
7326                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7327                                 return true;
7328                 if (b & (1 << (port & 7)))
7329                         return true;
7330
7331                 port++;
7332                 size--;
7333                 last_bitmap = bitmap;
7334         }
7335
7336         return false;
7337 }
7338
7339 /*
7340  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7341  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7342  * disinterest in the current event (read or write a specific MSR) by using an
7343  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7344  */
7345 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7346         struct vmcs12 *vmcs12, u32 exit_reason)
7347 {
7348         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7349         gpa_t bitmap;
7350
7351         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7352                 return true;
7353
7354         /*
7355          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7356          * for the four combinations of read/write and low/high MSR numbers.
7357          * First we need to figure out which of the four to use:
7358          */
7359         bitmap = vmcs12->msr_bitmap;
7360         if (exit_reason == EXIT_REASON_MSR_WRITE)
7361                 bitmap += 2048;
7362         if (msr_index >= 0xc0000000) {
7363                 msr_index -= 0xc0000000;
7364                 bitmap += 1024;
7365         }
7366
7367         /* Then read the msr_index'th bit from this bitmap: */
7368         if (msr_index < 1024*8) {
7369                 unsigned char b;
7370                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7371                         return true;
7372                 return 1 & (b >> (msr_index & 7));
7373         } else
7374                 return true; /* let L1 handle the wrong parameter */
7375 }
7376
7377 /*
7378  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7379  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7380  * intercept (via guest_host_mask etc.) the current event.
7381  */
7382 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7383         struct vmcs12 *vmcs12)
7384 {
7385         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7386         int cr = exit_qualification & 15;
7387         int reg = (exit_qualification >> 8) & 15;
7388         unsigned long val = kvm_register_readl(vcpu, reg);
7389
7390         switch ((exit_qualification >> 4) & 3) {
7391         case 0: /* mov to cr */
7392                 switch (cr) {
7393                 case 0:
7394                         if (vmcs12->cr0_guest_host_mask &
7395                             (val ^ vmcs12->cr0_read_shadow))
7396                                 return true;
7397                         break;
7398                 case 3:
7399                         if ((vmcs12->cr3_target_count >= 1 &&
7400                                         vmcs12->cr3_target_value0 == val) ||
7401                                 (vmcs12->cr3_target_count >= 2 &&
7402                                         vmcs12->cr3_target_value1 == val) ||
7403                                 (vmcs12->cr3_target_count >= 3 &&
7404                                         vmcs12->cr3_target_value2 == val) ||
7405                                 (vmcs12->cr3_target_count >= 4 &&
7406                                         vmcs12->cr3_target_value3 == val))
7407                                 return false;
7408                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7409                                 return true;
7410                         break;
7411                 case 4:
7412                         if (vmcs12->cr4_guest_host_mask &
7413                             (vmcs12->cr4_read_shadow ^ val))
7414                                 return true;
7415                         break;
7416                 case 8:
7417                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7418                                 return true;
7419                         break;
7420                 }
7421                 break;
7422         case 2: /* clts */
7423                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7424                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7425                         return true;
7426                 break;
7427         case 1: /* mov from cr */
7428                 switch (cr) {
7429                 case 3:
7430                         if (vmcs12->cpu_based_vm_exec_control &
7431                             CPU_BASED_CR3_STORE_EXITING)
7432                                 return true;
7433                         break;
7434                 case 8:
7435                         if (vmcs12->cpu_based_vm_exec_control &
7436                             CPU_BASED_CR8_STORE_EXITING)
7437                                 return true;
7438                         break;
7439                 }
7440                 break;
7441         case 3: /* lmsw */
7442                 /*
7443                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7444                  * cr0. Other attempted changes are ignored, with no exit.
7445                  */
7446                 if (vmcs12->cr0_guest_host_mask & 0xe &
7447                     (val ^ vmcs12->cr0_read_shadow))
7448                         return true;
7449                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7450                     !(vmcs12->cr0_read_shadow & 0x1) &&
7451                     (val & 0x1))
7452                         return true;
7453                 break;
7454         }
7455         return false;
7456 }
7457
7458 /*
7459  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7460  * should handle it ourselves in L0 (and then continue L2). Only call this
7461  * when in is_guest_mode (L2).
7462  */
7463 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7464 {
7465         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7466         struct vcpu_vmx *vmx = to_vmx(vcpu);
7467         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7468         u32 exit_reason = vmx->exit_reason;
7469
7470         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7471                                 vmcs_readl(EXIT_QUALIFICATION),
7472                                 vmx->idt_vectoring_info,
7473                                 intr_info,
7474                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7475                                 KVM_ISA_VMX);
7476
7477         if (vmx->nested.nested_run_pending)
7478                 return false;
7479
7480         if (unlikely(vmx->fail)) {
7481                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7482                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7483                 return true;
7484         }
7485
7486         switch (exit_reason) {
7487         case EXIT_REASON_EXCEPTION_NMI:
7488                 if (!is_exception(intr_info))
7489                         return false;
7490                 else if (is_page_fault(intr_info))
7491                         return enable_ept;
7492                 else if (is_no_device(intr_info) &&
7493                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7494                         return false;
7495                 return vmcs12->exception_bitmap &
7496                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7497         case EXIT_REASON_EXTERNAL_INTERRUPT:
7498                 return false;
7499         case EXIT_REASON_TRIPLE_FAULT:
7500                 return true;
7501         case EXIT_REASON_PENDING_INTERRUPT:
7502                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7503         case EXIT_REASON_NMI_WINDOW:
7504                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7505         case EXIT_REASON_TASK_SWITCH:
7506                 return true;
7507         case EXIT_REASON_CPUID:
7508                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7509                         return false;
7510                 return true;
7511         case EXIT_REASON_HLT:
7512                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7513         case EXIT_REASON_INVD:
7514                 return true;
7515         case EXIT_REASON_INVLPG:
7516                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7517         case EXIT_REASON_RDPMC:
7518                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7519         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7520                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7521         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7522         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7523         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7524         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7525         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7526         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7527                 /*
7528                  * VMX instructions trap unconditionally. This allows L1 to
7529                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7530                  */
7531                 return true;
7532         case EXIT_REASON_CR_ACCESS:
7533                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7534         case EXIT_REASON_DR_ACCESS:
7535                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7536         case EXIT_REASON_IO_INSTRUCTION:
7537                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7538         case EXIT_REASON_MSR_READ:
7539         case EXIT_REASON_MSR_WRITE:
7540                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7541         case EXIT_REASON_INVALID_STATE:
7542                 return true;
7543         case EXIT_REASON_MWAIT_INSTRUCTION:
7544                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7545         case EXIT_REASON_MONITOR_INSTRUCTION:
7546                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7547         case EXIT_REASON_PAUSE_INSTRUCTION:
7548                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7549                         nested_cpu_has2(vmcs12,
7550                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7551         case EXIT_REASON_MCE_DURING_VMENTRY:
7552                 return false;
7553         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7554                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7555         case EXIT_REASON_APIC_ACCESS:
7556                 return nested_cpu_has2(vmcs12,
7557                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7558         case EXIT_REASON_APIC_WRITE:
7559         case EXIT_REASON_EOI_INDUCED:
7560                 /* apic_write and eoi_induced should exit unconditionally. */
7561                 return true;
7562         case EXIT_REASON_EPT_VIOLATION:
7563                 /*
7564                  * L0 always deals with the EPT violation. If nested EPT is
7565                  * used, and the nested mmu code discovers that the address is
7566                  * missing in the guest EPT table (EPT12), the EPT violation
7567                  * will be injected with nested_ept_inject_page_fault()
7568                  */
7569                 return false;
7570         case EXIT_REASON_EPT_MISCONFIG:
7571                 /*
7572                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7573                  * table (shadow on EPT) or a merged EPT table that L0 built
7574                  * (EPT on EPT). So any problems with the structure of the
7575                  * table is L0's fault.
7576                  */
7577                 return false;
7578         case EXIT_REASON_WBINVD:
7579                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7580         case EXIT_REASON_XSETBV:
7581                 return true;
7582         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7583                 /*
7584                  * This should never happen, since it is not possible to
7585                  * set XSS to a non-zero value---neither in L1 nor in L2.
7586                  * If if it were, XSS would have to be checked against
7587                  * the XSS exit bitmap in vmcs12.
7588                  */
7589                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7590         default:
7591                 return true;
7592         }
7593 }
7594
7595 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7596 {
7597         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7598         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7599 }
7600
7601 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7602 {
7603         struct page *pml_pg;
7604         u32 exec_control;
7605
7606         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7607         if (!pml_pg)
7608                 return -ENOMEM;
7609
7610         vmx->pml_pg = pml_pg;
7611
7612         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7613         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7614
7615         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7616         exec_control |= SECONDARY_EXEC_ENABLE_PML;
7617         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7618
7619         return 0;
7620 }
7621
7622 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7623 {
7624         u32 exec_control;
7625
7626         ASSERT(vmx->pml_pg);
7627         __free_page(vmx->pml_pg);
7628         vmx->pml_pg = NULL;
7629
7630         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7631         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7632         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7633 }
7634
7635 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7636 {
7637         struct vcpu_vmx *vmx = to_vmx(vcpu);
7638         u64 *pml_buf;
7639         u16 pml_idx;
7640
7641         pml_idx = vmcs_read16(GUEST_PML_INDEX);
7642
7643         /* Do nothing if PML buffer is empty */
7644         if (pml_idx == (PML_ENTITY_NUM - 1))
7645                 return;
7646
7647         /* PML index always points to next available PML buffer entity */
7648         if (pml_idx >= PML_ENTITY_NUM)
7649                 pml_idx = 0;
7650         else
7651                 pml_idx++;
7652
7653         pml_buf = page_address(vmx->pml_pg);
7654         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7655                 u64 gpa;
7656
7657                 gpa = pml_buf[pml_idx];
7658                 WARN_ON(gpa & (PAGE_SIZE - 1));
7659                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7660         }
7661
7662         /* reset PML index */
7663         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7664 }
7665
7666 /*
7667  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7668  * Called before reporting dirty_bitmap to userspace.
7669  */
7670 static void kvm_flush_pml_buffers(struct kvm *kvm)
7671 {
7672         int i;
7673         struct kvm_vcpu *vcpu;
7674         /*
7675          * We only need to kick vcpu out of guest mode here, as PML buffer
7676          * is flushed at beginning of all VMEXITs, and it's obvious that only
7677          * vcpus running in guest are possible to have unflushed GPAs in PML
7678          * buffer.
7679          */
7680         kvm_for_each_vcpu(i, vcpu, kvm)
7681                 kvm_vcpu_kick(vcpu);
7682 }
7683
7684 static void vmx_dump_sel(char *name, uint32_t sel)
7685 {
7686         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7687                name, vmcs_read32(sel),
7688                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7689                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7690                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7691 }
7692
7693 static void vmx_dump_dtsel(char *name, uint32_t limit)
7694 {
7695         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
7696                name, vmcs_read32(limit),
7697                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7698 }
7699
7700 static void dump_vmcs(void)
7701 {
7702         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7703         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7704         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7705         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7706         u32 secondary_exec_control = 0;
7707         unsigned long cr4 = vmcs_readl(GUEST_CR4);
7708         u64 efer = vmcs_readl(GUEST_IA32_EFER);
7709         int i, n;
7710
7711         if (cpu_has_secondary_exec_ctrls())
7712                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7713
7714         pr_err("*** Guest State ***\n");
7715         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7716                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7717                vmcs_readl(CR0_GUEST_HOST_MASK));
7718         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7719                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7720         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7721         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7722             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7723         {
7724                 pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
7725                        vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7726                 pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
7727                        vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7728         }
7729         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
7730                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7731         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
7732                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7733         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7734                vmcs_readl(GUEST_SYSENTER_ESP),
7735                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7736         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
7737         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
7738         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
7739         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
7740         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
7741         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
7742         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7743         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7744         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7745         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
7746         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7747             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7748                 pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
7749                        efer, vmcs_readl(GUEST_IA32_PAT));
7750         pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
7751                vmcs_readl(GUEST_IA32_DEBUGCTL),
7752                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7753         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7754                 pr_err("PerfGlobCtl = 0x%016lx\n",
7755                        vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7756         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7757                 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7758         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
7759                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7760                vmcs_read32(GUEST_ACTIVITY_STATE));
7761         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7762                 pr_err("InterruptStatus = %04x\n",
7763                        vmcs_read16(GUEST_INTR_STATUS));
7764
7765         pr_err("*** Host State ***\n");
7766         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
7767                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7768         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7769                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7770                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7771                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7772                vmcs_read16(HOST_TR_SELECTOR));
7773         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7774                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7775                vmcs_readl(HOST_TR_BASE));
7776         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7777                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7778         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7779                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7780                vmcs_readl(HOST_CR4));
7781         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7782                vmcs_readl(HOST_IA32_SYSENTER_ESP),
7783                vmcs_read32(HOST_IA32_SYSENTER_CS),
7784                vmcs_readl(HOST_IA32_SYSENTER_EIP));
7785         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7786                 pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
7787                        vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7788         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7789                 pr_err("PerfGlobCtl = 0x%016lx\n",
7790                        vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7791
7792         pr_err("*** Control State ***\n");
7793         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7794                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7795         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7796         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7797                vmcs_read32(EXCEPTION_BITMAP),
7798                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7799                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7800         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7801                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7802                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7803                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7804         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7805                vmcs_read32(VM_EXIT_INTR_INFO),
7806                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7807                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7808         pr_err("        reason=%08x qualification=%016lx\n",
7809                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7810         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7811                vmcs_read32(IDT_VECTORING_INFO_FIELD),
7812                vmcs_read32(IDT_VECTORING_ERROR_CODE));
7813         pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7814         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7815                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7816         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7817                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7818         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7819                 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7820         n = vmcs_read32(CR3_TARGET_COUNT);
7821         for (i = 0; i + 1 < n; i += 4)
7822                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7823                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7824                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7825         if (i < n)
7826                 pr_err("CR3 target%u=%016lx\n",
7827                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7828         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7829                 pr_err("PLE Gap=%08x Window=%08x\n",
7830                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7831         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7832                 pr_err("Virtual processor ID = 0x%04x\n",
7833                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
7834 }
7835
7836 /*
7837  * The guest has exited.  See if we can fix it or if we need userspace
7838  * assistance.
7839  */
7840 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7841 {
7842         struct vcpu_vmx *vmx = to_vmx(vcpu);
7843         u32 exit_reason = vmx->exit_reason;
7844         u32 vectoring_info = vmx->idt_vectoring_info;
7845
7846         /*
7847          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7848          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7849          * querying dirty_bitmap, we only need to kick all vcpus out of guest
7850          * mode as if vcpus is in root mode, the PML buffer must has been
7851          * flushed already.
7852          */
7853         if (enable_pml)
7854                 vmx_flush_pml_buffer(vcpu);
7855
7856         /* If guest state is invalid, start emulating */
7857         if (vmx->emulation_required)
7858                 return handle_invalid_guest_state(vcpu);
7859
7860         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7861                 nested_vmx_vmexit(vcpu, exit_reason,
7862                                   vmcs_read32(VM_EXIT_INTR_INFO),
7863                                   vmcs_readl(EXIT_QUALIFICATION));
7864                 return 1;
7865         }
7866
7867         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7868                 dump_vmcs();
7869                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7870                 vcpu->run->fail_entry.hardware_entry_failure_reason
7871                         = exit_reason;
7872                 return 0;
7873         }
7874
7875         if (unlikely(vmx->fail)) {
7876                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7877                 vcpu->run->fail_entry.hardware_entry_failure_reason
7878                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7879                 return 0;
7880         }
7881
7882         /*
7883          * Note:
7884          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7885          * delivery event since it indicates guest is accessing MMIO.
7886          * The vm-exit can be triggered again after return to guest that
7887          * will cause infinite loop.
7888          */
7889         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7890                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7891                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7892                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7893                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7894                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7895                 vcpu->run->internal.ndata = 2;
7896                 vcpu->run->internal.data[0] = vectoring_info;
7897                 vcpu->run->internal.data[1] = exit_reason;
7898                 return 0;
7899         }
7900
7901         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7902             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7903                                         get_vmcs12(vcpu))))) {
7904                 if (vmx_interrupt_allowed(vcpu)) {
7905                         vmx->soft_vnmi_blocked = 0;
7906                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7907                            vcpu->arch.nmi_pending) {
7908                         /*
7909                          * This CPU don't support us in finding the end of an
7910                          * NMI-blocked window if the guest runs with IRQs
7911                          * disabled. So we pull the trigger after 1 s of
7912                          * futile waiting, but inform the user about this.
7913                          */
7914                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7915                                "state on VCPU %d after 1 s timeout\n",
7916                                __func__, vcpu->vcpu_id);
7917                         vmx->soft_vnmi_blocked = 0;
7918                 }
7919         }
7920
7921         if (exit_reason < kvm_vmx_max_exit_handlers
7922             && kvm_vmx_exit_handlers[exit_reason])
7923                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7924         else {
7925                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7926                 kvm_queue_exception(vcpu, UD_VECTOR);
7927                 return 1;
7928         }
7929 }
7930
7931 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7932 {
7933         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7934
7935         if (is_guest_mode(vcpu) &&
7936                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7937                 return;
7938
7939         if (irr == -1 || tpr < irr) {
7940                 vmcs_write32(TPR_THRESHOLD, 0);
7941                 return;
7942         }
7943
7944         vmcs_write32(TPR_THRESHOLD, irr);
7945 }
7946
7947 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7948 {
7949         u32 sec_exec_control;
7950
7951         /*
7952          * There is not point to enable virtualize x2apic without enable
7953          * apicv
7954          */
7955         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7956                                 !vmx_vm_has_apicv(vcpu->kvm))
7957                 return;
7958
7959         if (!vm_need_tpr_shadow(vcpu->kvm))
7960                 return;
7961
7962         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7963
7964         if (set) {
7965                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7966                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7967         } else {
7968                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7969                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7970         }
7971         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7972
7973         vmx_set_msr_bitmap(vcpu);
7974 }
7975
7976 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7977 {
7978         struct vcpu_vmx *vmx = to_vmx(vcpu);
7979
7980         /*
7981          * Currently we do not handle the nested case where L2 has an
7982          * APIC access page of its own; that page is still pinned.
7983          * Hence, we skip the case where the VCPU is in guest mode _and_
7984          * L1 prepared an APIC access page for L2.
7985          *
7986          * For the case where L1 and L2 share the same APIC access page
7987          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7988          * in the vmcs12), this function will only update either the vmcs01
7989          * or the vmcs02.  If the former, the vmcs02 will be updated by
7990          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7991          * the next L2->L1 exit.
7992          */
7993         if (!is_guest_mode(vcpu) ||
7994             !nested_cpu_has2(vmx->nested.current_vmcs12,
7995                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7996                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7997 }
7998
7999 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8000 {
8001         u16 status;
8002         u8 old;
8003
8004         if (isr == -1)
8005                 isr = 0;
8006
8007         status = vmcs_read16(GUEST_INTR_STATUS);
8008         old = status >> 8;
8009         if (isr != old) {
8010                 status &= 0xff;
8011                 status |= isr << 8;
8012                 vmcs_write16(GUEST_INTR_STATUS, status);
8013         }
8014 }
8015
8016 static void vmx_set_rvi(int vector)
8017 {
8018         u16 status;
8019         u8 old;
8020
8021         if (vector == -1)
8022                 vector = 0;
8023
8024         status = vmcs_read16(GUEST_INTR_STATUS);
8025         old = (u8)status & 0xff;
8026         if ((u8)vector != old) {
8027                 status &= ~0xff;
8028                 status |= (u8)vector;
8029                 vmcs_write16(GUEST_INTR_STATUS, status);
8030         }
8031 }
8032
8033 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8034 {
8035         if (!is_guest_mode(vcpu)) {
8036                 vmx_set_rvi(max_irr);
8037                 return;
8038         }
8039
8040         if (max_irr == -1)
8041                 return;
8042
8043         /*
8044          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8045          * handles it.
8046          */
8047         if (nested_exit_on_intr(vcpu))
8048                 return;
8049
8050         /*
8051          * Else, fall back to pre-APICv interrupt injection since L2
8052          * is run without virtual interrupt delivery.
8053          */
8054         if (!kvm_event_needs_reinjection(vcpu) &&
8055             vmx_interrupt_allowed(vcpu)) {
8056                 kvm_queue_interrupt(vcpu, max_irr, false);
8057                 vmx_inject_irq(vcpu);
8058         }
8059 }
8060
8061 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8062 {
8063         if (!vmx_vm_has_apicv(vcpu->kvm))
8064                 return;
8065
8066         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8067         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8068         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8069         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8070 }
8071
8072 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8073 {
8074         u32 exit_intr_info;
8075
8076         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8077               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8078                 return;
8079
8080         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8081         exit_intr_info = vmx->exit_intr_info;
8082
8083         /* Handle machine checks before interrupts are enabled */
8084         if (is_machine_check(exit_intr_info))
8085                 kvm_machine_check();
8086
8087         /* We need to handle NMIs before interrupts are enabled */
8088         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8089             (exit_intr_info & INTR_INFO_VALID_MASK)) {
8090                 kvm_before_handle_nmi(&vmx->vcpu);
8091                 asm("int $2");
8092                 kvm_after_handle_nmi(&vmx->vcpu);
8093         }
8094 }
8095
8096 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8097 {
8098         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8099
8100         /*
8101          * If external interrupt exists, IF bit is set in rflags/eflags on the
8102          * interrupt stack frame, and interrupt will be enabled on a return
8103          * from interrupt handler.
8104          */
8105         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8106                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8107                 unsigned int vector;
8108                 unsigned long entry;
8109                 gate_desc *desc;
8110                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8111 #ifdef CONFIG_X86_64
8112                 unsigned long tmp;
8113 #endif
8114
8115                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8116                 desc = (gate_desc *)vmx->host_idt_base + vector;
8117                 entry = gate_offset(*desc);
8118                 asm volatile(
8119 #ifdef CONFIG_X86_64
8120                         "mov %%" _ASM_SP ", %[sp]\n\t"
8121                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8122                         "push $%c[ss]\n\t"
8123                         "push %[sp]\n\t"
8124 #endif
8125                         "pushf\n\t"
8126                         "orl $0x200, (%%" _ASM_SP ")\n\t"
8127                         __ASM_SIZE(push) " $%c[cs]\n\t"
8128                         "call *%[entry]\n\t"
8129                         :
8130 #ifdef CONFIG_X86_64
8131                         [sp]"=&r"(tmp)
8132 #endif
8133                         :
8134                         [entry]"r"(entry),
8135                         [ss]"i"(__KERNEL_DS),
8136                         [cs]"i"(__KERNEL_CS)
8137                         );
8138         } else
8139                 local_irq_enable();
8140 }
8141
8142 static bool vmx_has_high_real_mode_segbase(void)
8143 {
8144         return enable_unrestricted_guest || emulate_invalid_guest_state;
8145 }
8146
8147 static bool vmx_mpx_supported(void)
8148 {
8149         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8150                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8151 }
8152
8153 static bool vmx_xsaves_supported(void)
8154 {
8155         return vmcs_config.cpu_based_2nd_exec_ctrl &
8156                 SECONDARY_EXEC_XSAVES;
8157 }
8158
8159 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8160 {
8161         u32 exit_intr_info;
8162         bool unblock_nmi;
8163         u8 vector;
8164         bool idtv_info_valid;
8165
8166         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8167
8168         if (cpu_has_virtual_nmis()) {
8169                 if (vmx->nmi_known_unmasked)
8170                         return;
8171                 /*
8172                  * Can't use vmx->exit_intr_info since we're not sure what
8173                  * the exit reason is.
8174                  */
8175                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8176                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8177                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8178                 /*
8179                  * SDM 3: 27.7.1.2 (September 2008)
8180                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8181                  * a guest IRET fault.
8182                  * SDM 3: 23.2.2 (September 2008)
8183                  * Bit 12 is undefined in any of the following cases:
8184                  *  If the VM exit sets the valid bit in the IDT-vectoring
8185                  *   information field.
8186                  *  If the VM exit is due to a double fault.
8187                  */
8188                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8189                     vector != DF_VECTOR && !idtv_info_valid)
8190                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8191                                       GUEST_INTR_STATE_NMI);
8192                 else
8193                         vmx->nmi_known_unmasked =
8194                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8195                                   & GUEST_INTR_STATE_NMI);
8196         } else if (unlikely(vmx->soft_vnmi_blocked))
8197                 vmx->vnmi_blocked_time +=
8198                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8199 }
8200
8201 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8202                                       u32 idt_vectoring_info,
8203                                       int instr_len_field,
8204                                       int error_code_field)
8205 {
8206         u8 vector;
8207         int type;
8208         bool idtv_info_valid;
8209
8210         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8211
8212         vcpu->arch.nmi_injected = false;
8213         kvm_clear_exception_queue(vcpu);
8214         kvm_clear_interrupt_queue(vcpu);
8215
8216         if (!idtv_info_valid)
8217                 return;
8218
8219         kvm_make_request(KVM_REQ_EVENT, vcpu);
8220
8221         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8222         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8223
8224         switch (type) {
8225         case INTR_TYPE_NMI_INTR:
8226                 vcpu->arch.nmi_injected = true;
8227                 /*
8228                  * SDM 3: 27.7.1.2 (September 2008)
8229                  * Clear bit "block by NMI" before VM entry if a NMI
8230                  * delivery faulted.
8231                  */
8232                 vmx_set_nmi_mask(vcpu, false);
8233                 break;
8234         case INTR_TYPE_SOFT_EXCEPTION:
8235                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8236                 /* fall through */
8237         case INTR_TYPE_HARD_EXCEPTION:
8238                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8239                         u32 err = vmcs_read32(error_code_field);
8240                         kvm_requeue_exception_e(vcpu, vector, err);
8241                 } else
8242                         kvm_requeue_exception(vcpu, vector);
8243                 break;
8244         case INTR_TYPE_SOFT_INTR:
8245                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8246                 /* fall through */
8247         case INTR_TYPE_EXT_INTR:
8248                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8249                 break;
8250         default:
8251                 break;
8252         }
8253 }
8254
8255 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8256 {
8257         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8258                                   VM_EXIT_INSTRUCTION_LEN,
8259                                   IDT_VECTORING_ERROR_CODE);
8260 }
8261
8262 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8263 {
8264         __vmx_complete_interrupts(vcpu,
8265                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8266                                   VM_ENTRY_INSTRUCTION_LEN,
8267                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8268
8269         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8270 }
8271
8272 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8273 {
8274         int i, nr_msrs;
8275         struct perf_guest_switch_msr *msrs;
8276
8277         msrs = perf_guest_get_msrs(&nr_msrs);
8278
8279         if (!msrs)
8280                 return;
8281
8282         for (i = 0; i < nr_msrs; i++)
8283                 if (msrs[i].host == msrs[i].guest)
8284                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8285                 else
8286                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8287                                         msrs[i].host);
8288 }
8289
8290 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8291 {
8292         struct vcpu_vmx *vmx = to_vmx(vcpu);
8293         unsigned long debugctlmsr, cr4;
8294
8295         /* Record the guest's net vcpu time for enforced NMI injections. */
8296         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8297                 vmx->entry_time = ktime_get();
8298
8299         /* Don't enter VMX if guest state is invalid, let the exit handler
8300            start emulation until we arrive back to a valid state */
8301         if (vmx->emulation_required)
8302                 return;
8303
8304         if (vmx->ple_window_dirty) {
8305                 vmx->ple_window_dirty = false;
8306                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8307         }
8308
8309         if (vmx->nested.sync_shadow_vmcs) {
8310                 copy_vmcs12_to_shadow(vmx);
8311                 vmx->nested.sync_shadow_vmcs = false;
8312         }
8313
8314         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8315                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8316         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8317                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8318
8319         cr4 = cr4_read_shadow();
8320         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8321                 vmcs_writel(HOST_CR4, cr4);
8322                 vmx->host_state.vmcs_host_cr4 = cr4;
8323         }
8324
8325         /* When single-stepping over STI and MOV SS, we must clear the
8326          * corresponding interruptibility bits in the guest state. Otherwise
8327          * vmentry fails as it then expects bit 14 (BS) in pending debug
8328          * exceptions being set, but that's not correct for the guest debugging
8329          * case. */
8330         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8331                 vmx_set_interrupt_shadow(vcpu, 0);
8332
8333         atomic_switch_perf_msrs(vmx);
8334         debugctlmsr = get_debugctlmsr();
8335
8336         vmx->__launched = vmx->loaded_vmcs->launched;
8337         asm(
8338                 /* Store host registers */
8339                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8340                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8341                 "push %%" _ASM_CX " \n\t"
8342                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8343                 "je 1f \n\t"
8344                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8345                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8346                 "1: \n\t"
8347                 /* Reload cr2 if changed */
8348                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8349                 "mov %%cr2, %%" _ASM_DX " \n\t"
8350                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8351                 "je 2f \n\t"
8352                 "mov %%" _ASM_AX", %%cr2 \n\t"
8353                 "2: \n\t"
8354                 /* Check if vmlaunch of vmresume is needed */
8355                 "cmpl $0, %c[launched](%0) \n\t"
8356                 /* Load guest registers.  Don't clobber flags. */
8357                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8358                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8359                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8360                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8361                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8362                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8363 #ifdef CONFIG_X86_64
8364                 "mov %c[r8](%0),  %%r8  \n\t"
8365                 "mov %c[r9](%0),  %%r9  \n\t"
8366                 "mov %c[r10](%0), %%r10 \n\t"
8367                 "mov %c[r11](%0), %%r11 \n\t"
8368                 "mov %c[r12](%0), %%r12 \n\t"
8369                 "mov %c[r13](%0), %%r13 \n\t"
8370                 "mov %c[r14](%0), %%r14 \n\t"
8371                 "mov %c[r15](%0), %%r15 \n\t"
8372 #endif
8373                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8374
8375                 /* Enter guest mode */
8376                 "jne 1f \n\t"
8377                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8378                 "jmp 2f \n\t"
8379                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8380                 "2: "
8381                 /* Save guest registers, load host registers, keep flags */
8382                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8383                 "pop %0 \n\t"
8384                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8385                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8386                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8387                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8388                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8389                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8390                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8391 #ifdef CONFIG_X86_64
8392                 "mov %%r8,  %c[r8](%0) \n\t"
8393                 "mov %%r9,  %c[r9](%0) \n\t"
8394                 "mov %%r10, %c[r10](%0) \n\t"
8395                 "mov %%r11, %c[r11](%0) \n\t"
8396                 "mov %%r12, %c[r12](%0) \n\t"
8397                 "mov %%r13, %c[r13](%0) \n\t"
8398                 "mov %%r14, %c[r14](%0) \n\t"
8399                 "mov %%r15, %c[r15](%0) \n\t"
8400 #endif
8401                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8402                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8403
8404                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8405                 "setbe %c[fail](%0) \n\t"
8406                 ".pushsection .rodata \n\t"
8407                 ".global vmx_return \n\t"
8408                 "vmx_return: " _ASM_PTR " 2b \n\t"
8409                 ".popsection"
8410               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8411                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8412                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8413                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8414                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8415                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8416                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8417                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8418                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8419                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8420                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8421 #ifdef CONFIG_X86_64
8422                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8423                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8424                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8425                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8426                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8427                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8428                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8429                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8430 #endif
8431                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8432                 [wordsize]"i"(sizeof(ulong))
8433               : "cc", "memory"
8434 #ifdef CONFIG_X86_64
8435                 , "rax", "rbx", "rdi", "rsi"
8436                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8437 #else
8438                 , "eax", "ebx", "edi", "esi"
8439 #endif
8440               );
8441
8442         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8443         if (debugctlmsr)
8444                 update_debugctlmsr(debugctlmsr);
8445
8446 #ifndef CONFIG_X86_64
8447         /*
8448          * The sysexit path does not restore ds/es, so we must set them to
8449          * a reasonable value ourselves.
8450          *
8451          * We can't defer this to vmx_load_host_state() since that function
8452          * may be executed in interrupt context, which saves and restore segments
8453          * around it, nullifying its effect.
8454          */
8455         loadsegment(ds, __USER_DS);
8456         loadsegment(es, __USER_DS);
8457 #endif
8458
8459         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8460                                   | (1 << VCPU_EXREG_RFLAGS)
8461                                   | (1 << VCPU_EXREG_PDPTR)
8462                                   | (1 << VCPU_EXREG_SEGMENTS)
8463                                   | (1 << VCPU_EXREG_CR3));
8464         vcpu->arch.regs_dirty = 0;
8465
8466         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8467
8468         vmx->loaded_vmcs->launched = 1;
8469
8470         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8471         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8472
8473         /*
8474          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8475          * we did not inject a still-pending event to L1 now because of
8476          * nested_run_pending, we need to re-enable this bit.
8477          */
8478         if (vmx->nested.nested_run_pending)
8479                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8480
8481         vmx->nested.nested_run_pending = 0;
8482
8483         vmx_complete_atomic_exit(vmx);
8484         vmx_recover_nmi_blocking(vmx);
8485         vmx_complete_interrupts(vmx);
8486 }
8487
8488 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8489 {
8490         struct vcpu_vmx *vmx = to_vmx(vcpu);
8491         int cpu;
8492
8493         if (vmx->loaded_vmcs == &vmx->vmcs01)
8494                 return;
8495
8496         cpu = get_cpu();
8497         vmx->loaded_vmcs = &vmx->vmcs01;
8498         vmx_vcpu_put(vcpu);
8499         vmx_vcpu_load(vcpu, cpu);
8500         vcpu->cpu = cpu;
8501         put_cpu();
8502 }
8503
8504 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8505 {
8506         struct vcpu_vmx *vmx = to_vmx(vcpu);
8507
8508         if (enable_pml)
8509                 vmx_disable_pml(vmx);
8510         free_vpid(vmx);
8511         leave_guest_mode(vcpu);
8512         vmx_load_vmcs01(vcpu);
8513         free_nested(vmx);
8514         free_loaded_vmcs(vmx->loaded_vmcs);
8515         kfree(vmx->guest_msrs);
8516         kvm_vcpu_uninit(vcpu);
8517         kmem_cache_free(kvm_vcpu_cache, vmx);
8518 }
8519
8520 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8521 {
8522         int err;
8523         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8524         int cpu;
8525
8526         if (!vmx)
8527                 return ERR_PTR(-ENOMEM);
8528
8529         allocate_vpid(vmx);
8530
8531         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8532         if (err)
8533                 goto free_vcpu;
8534
8535         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8536         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8537                      > PAGE_SIZE);
8538
8539         err = -ENOMEM;
8540         if (!vmx->guest_msrs) {
8541                 goto uninit_vcpu;
8542         }
8543
8544         vmx->loaded_vmcs = &vmx->vmcs01;
8545         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8546         if (!vmx->loaded_vmcs->vmcs)
8547                 goto free_msrs;
8548         if (!vmm_exclusive)
8549                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8550         loaded_vmcs_init(vmx->loaded_vmcs);
8551         if (!vmm_exclusive)
8552                 kvm_cpu_vmxoff();
8553
8554         cpu = get_cpu();
8555         vmx_vcpu_load(&vmx->vcpu, cpu);
8556         vmx->vcpu.cpu = cpu;
8557         err = vmx_vcpu_setup(vmx);
8558         vmx_vcpu_put(&vmx->vcpu);
8559         put_cpu();
8560         if (err)
8561                 goto free_vmcs;
8562         if (vm_need_virtualize_apic_accesses(kvm)) {
8563                 err = alloc_apic_access_page(kvm);
8564                 if (err)
8565                         goto free_vmcs;
8566         }
8567
8568         if (enable_ept) {
8569                 if (!kvm->arch.ept_identity_map_addr)
8570                         kvm->arch.ept_identity_map_addr =
8571                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8572                 err = init_rmode_identity_map(kvm);
8573                 if (err)
8574                         goto free_vmcs;
8575         }
8576
8577         if (nested)
8578                 nested_vmx_setup_ctls_msrs(vmx);
8579
8580         vmx->nested.posted_intr_nv = -1;
8581         vmx->nested.current_vmptr = -1ull;
8582         vmx->nested.current_vmcs12 = NULL;
8583
8584         /*
8585          * If PML is turned on, failure on enabling PML just results in failure
8586          * of creating the vcpu, therefore we can simplify PML logic (by
8587          * avoiding dealing with cases, such as enabling PML partially on vcpus
8588          * for the guest, etc.
8589          */
8590         if (enable_pml) {
8591                 err = vmx_enable_pml(vmx);
8592                 if (err)
8593                         goto free_vmcs;
8594         }
8595
8596         return &vmx->vcpu;
8597
8598 free_vmcs:
8599         free_loaded_vmcs(vmx->loaded_vmcs);
8600 free_msrs:
8601         kfree(vmx->guest_msrs);
8602 uninit_vcpu:
8603         kvm_vcpu_uninit(&vmx->vcpu);
8604 free_vcpu:
8605         free_vpid(vmx);
8606         kmem_cache_free(kvm_vcpu_cache, vmx);
8607         return ERR_PTR(err);
8608 }
8609
8610 static void __init vmx_check_processor_compat(void *rtn)
8611 {
8612         struct vmcs_config vmcs_conf;
8613
8614         *(int *)rtn = 0;
8615         if (setup_vmcs_config(&vmcs_conf) < 0)
8616                 *(int *)rtn = -EIO;
8617         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8618                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8619                                 smp_processor_id());
8620                 *(int *)rtn = -EIO;
8621         }
8622 }
8623
8624 static int get_ept_level(void)
8625 {
8626         return VMX_EPT_DEFAULT_GAW + 1;
8627 }
8628
8629 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8630 {
8631         u8 cache;
8632         u64 ipat = 0;
8633
8634         /* For VT-d and EPT combination
8635          * 1. MMIO: guest may want to apply WC, trust it.
8636          * 2. EPT with VT-d:
8637          *   a. VT-d without snooping control feature: can't guarantee the
8638          *      result, try to trust guest.  So the same as item 1.
8639          *   b. VT-d with snooping control feature: snooping control feature of
8640          *      VT-d engine can guarantee the cache correctness. Just set it
8641          *      to WB to keep consistent with host. So the same as item 3.
8642          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8643          *    consistent with host MTRR
8644          */
8645         if (!is_mmio && !kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8646                 ipat = VMX_EPT_IPAT_BIT;
8647                 cache = MTRR_TYPE_WRBACK;
8648                 goto exit;
8649         }
8650
8651         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8652                 ipat = VMX_EPT_IPAT_BIT;
8653                 cache = MTRR_TYPE_UNCACHABLE;
8654                 goto exit;
8655         }
8656
8657         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8658
8659 exit:
8660         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8661 }
8662
8663 static int vmx_get_lpage_level(void)
8664 {
8665         if (enable_ept && !cpu_has_vmx_ept_1g_page())
8666                 return PT_DIRECTORY_LEVEL;
8667         else
8668                 /* For shadow and EPT supported 1GB page */
8669                 return PT_PDPE_LEVEL;
8670 }
8671
8672 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8673 {
8674         struct kvm_cpuid_entry2 *best;
8675         struct vcpu_vmx *vmx = to_vmx(vcpu);
8676         u32 exec_control;
8677
8678         vmx->rdtscp_enabled = false;
8679         if (vmx_rdtscp_supported()) {
8680                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8681                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8682                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8683                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8684                                 vmx->rdtscp_enabled = true;
8685                         else {
8686                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8687                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8688                                                 exec_control);
8689                         }
8690                 }
8691                 if (nested && !vmx->rdtscp_enabled)
8692                         vmx->nested.nested_vmx_secondary_ctls_high &=
8693                                 ~SECONDARY_EXEC_RDTSCP;
8694         }
8695
8696         /* Exposing INVPCID only when PCID is exposed */
8697         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8698         if (vmx_invpcid_supported() &&
8699             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8700             guest_cpuid_has_pcid(vcpu)) {
8701                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8702                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8703                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8704                              exec_control);
8705         } else {
8706                 if (cpu_has_secondary_exec_ctrls()) {
8707                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8708                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8709                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8710                                      exec_control);
8711                 }
8712                 if (best)
8713                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
8714         }
8715 }
8716
8717 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8718 {
8719         if (func == 1 && nested)
8720                 entry->ecx |= bit(X86_FEATURE_VMX);
8721 }
8722
8723 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8724                 struct x86_exception *fault)
8725 {
8726         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8727         u32 exit_reason;
8728
8729         if (fault->error_code & PFERR_RSVD_MASK)
8730                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8731         else
8732                 exit_reason = EXIT_REASON_EPT_VIOLATION;
8733         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8734         vmcs12->guest_physical_address = fault->address;
8735 }
8736
8737 /* Callbacks for nested_ept_init_mmu_context: */
8738
8739 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8740 {
8741         /* return the page table to be shadowed - in our case, EPT12 */
8742         return get_vmcs12(vcpu)->ept_pointer;
8743 }
8744
8745 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8746 {
8747         WARN_ON(mmu_is_nested(vcpu));
8748         kvm_init_shadow_ept_mmu(vcpu,
8749                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8750                         VMX_EPT_EXECUTE_ONLY_BIT);
8751         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8752         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8753         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8754
8755         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8756 }
8757
8758 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8759 {
8760         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8761 }
8762
8763 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8764                                             u16 error_code)
8765 {
8766         bool inequality, bit;
8767
8768         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8769         inequality =
8770                 (error_code & vmcs12->page_fault_error_code_mask) !=
8771                  vmcs12->page_fault_error_code_match;
8772         return inequality ^ bit;
8773 }
8774
8775 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8776                 struct x86_exception *fault)
8777 {
8778         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8779
8780         WARN_ON(!is_guest_mode(vcpu));
8781
8782         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8783                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8784                                   vmcs_read32(VM_EXIT_INTR_INFO),
8785                                   vmcs_readl(EXIT_QUALIFICATION));
8786         else
8787                 kvm_inject_page_fault(vcpu, fault);
8788 }
8789
8790 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8791                                         struct vmcs12 *vmcs12)
8792 {
8793         struct vcpu_vmx *vmx = to_vmx(vcpu);
8794         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8795
8796         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8797                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8798                     vmcs12->apic_access_addr >> maxphyaddr)
8799                         return false;
8800
8801                 /*
8802                  * Translate L1 physical address to host physical
8803                  * address for vmcs02. Keep the page pinned, so this
8804                  * physical address remains valid. We keep a reference
8805                  * to it so we can release it later.
8806                  */
8807                 if (vmx->nested.apic_access_page) /* shouldn't happen */
8808                         nested_release_page(vmx->nested.apic_access_page);
8809                 vmx->nested.apic_access_page =
8810                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8811         }
8812
8813         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8814                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8815                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
8816                         return false;
8817
8818                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8819                         nested_release_page(vmx->nested.virtual_apic_page);
8820                 vmx->nested.virtual_apic_page =
8821                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8822
8823                 /*
8824                  * Failing the vm entry is _not_ what the processor does
8825                  * but it's basically the only possibility we have.
8826                  * We could still enter the guest if CR8 load exits are
8827                  * enabled, CR8 store exits are enabled, and virtualize APIC
8828                  * access is disabled; in this case the processor would never
8829                  * use the TPR shadow and we could simply clear the bit from
8830                  * the execution control.  But such a configuration is useless,
8831                  * so let's keep the code simple.
8832                  */
8833                 if (!vmx->nested.virtual_apic_page)
8834                         return false;
8835         }
8836
8837         if (nested_cpu_has_posted_intr(vmcs12)) {
8838                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8839                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
8840                         return false;
8841
8842                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8843                         kunmap(vmx->nested.pi_desc_page);
8844                         nested_release_page(vmx->nested.pi_desc_page);
8845                 }
8846                 vmx->nested.pi_desc_page =
8847                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8848                 if (!vmx->nested.pi_desc_page)
8849                         return false;
8850
8851                 vmx->nested.pi_desc =
8852                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8853                 if (!vmx->nested.pi_desc) {
8854                         nested_release_page_clean(vmx->nested.pi_desc_page);
8855                         return false;
8856                 }
8857                 vmx->nested.pi_desc =
8858                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
8859                         (unsigned long)(vmcs12->posted_intr_desc_addr &
8860                         (PAGE_SIZE - 1)));
8861         }
8862
8863         return true;
8864 }
8865
8866 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8867 {
8868         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8869         struct vcpu_vmx *vmx = to_vmx(vcpu);
8870
8871         if (vcpu->arch.virtual_tsc_khz == 0)
8872                 return;
8873
8874         /* Make sure short timeouts reliably trigger an immediate vmexit.
8875          * hrtimer_start does not guarantee this. */
8876         if (preemption_timeout <= 1) {
8877                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8878                 return;
8879         }
8880
8881         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8882         preemption_timeout *= 1000000;
8883         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8884         hrtimer_start(&vmx->nested.preemption_timer,
8885                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8886 }
8887
8888 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8889                                                 struct vmcs12 *vmcs12)
8890 {
8891         int maxphyaddr;
8892         u64 addr;
8893
8894         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8895                 return 0;
8896
8897         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8898                 WARN_ON(1);
8899                 return -EINVAL;
8900         }
8901         maxphyaddr = cpuid_maxphyaddr(vcpu);
8902
8903         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8904            ((addr + PAGE_SIZE) >> maxphyaddr))
8905                 return -EINVAL;
8906
8907         return 0;
8908 }
8909
8910 /*
8911  * Merge L0's and L1's MSR bitmap, return false to indicate that
8912  * we do not use the hardware.
8913  */
8914 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8915                                                struct vmcs12 *vmcs12)
8916 {
8917         int msr;
8918         struct page *page;
8919         unsigned long *msr_bitmap;
8920
8921         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8922                 return false;
8923
8924         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8925         if (!page) {
8926                 WARN_ON(1);
8927                 return false;
8928         }
8929         msr_bitmap = (unsigned long *)kmap(page);
8930         if (!msr_bitmap) {
8931                 nested_release_page_clean(page);
8932                 WARN_ON(1);
8933                 return false;
8934         }
8935
8936         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8937                 if (nested_cpu_has_apic_reg_virt(vmcs12))
8938                         for (msr = 0x800; msr <= 0x8ff; msr++)
8939                                 nested_vmx_disable_intercept_for_msr(
8940                                         msr_bitmap,
8941                                         vmx_msr_bitmap_nested,
8942                                         msr, MSR_TYPE_R);
8943                 /* TPR is allowed */
8944                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8945                                 vmx_msr_bitmap_nested,
8946                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8947                                 MSR_TYPE_R | MSR_TYPE_W);
8948                 if (nested_cpu_has_vid(vmcs12)) {
8949                         /* EOI and self-IPI are allowed */
8950                         nested_vmx_disable_intercept_for_msr(
8951                                 msr_bitmap,
8952                                 vmx_msr_bitmap_nested,
8953                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8954                                 MSR_TYPE_W);
8955                         nested_vmx_disable_intercept_for_msr(
8956                                 msr_bitmap,
8957                                 vmx_msr_bitmap_nested,
8958                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8959                                 MSR_TYPE_W);
8960                 }
8961         } else {
8962                 /*
8963                  * Enable reading intercept of all the x2apic
8964                  * MSRs. We should not rely on vmcs12 to do any
8965                  * optimizations here, it may have been modified
8966                  * by L1.
8967                  */
8968                 for (msr = 0x800; msr <= 0x8ff; msr++)
8969                         __vmx_enable_intercept_for_msr(
8970                                 vmx_msr_bitmap_nested,
8971                                 msr,
8972                                 MSR_TYPE_R);
8973
8974                 __vmx_enable_intercept_for_msr(
8975                                 vmx_msr_bitmap_nested,
8976                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8977                                 MSR_TYPE_W);
8978                 __vmx_enable_intercept_for_msr(
8979                                 vmx_msr_bitmap_nested,
8980                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8981                                 MSR_TYPE_W);
8982                 __vmx_enable_intercept_for_msr(
8983                                 vmx_msr_bitmap_nested,
8984                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8985                                 MSR_TYPE_W);
8986         }
8987         kunmap(page);
8988         nested_release_page_clean(page);
8989
8990         return true;
8991 }
8992
8993 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8994                                            struct vmcs12 *vmcs12)
8995 {
8996         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8997             !nested_cpu_has_apic_reg_virt(vmcs12) &&
8998             !nested_cpu_has_vid(vmcs12) &&
8999             !nested_cpu_has_posted_intr(vmcs12))
9000                 return 0;
9001
9002         /*
9003          * If virtualize x2apic mode is enabled,
9004          * virtualize apic access must be disabled.
9005          */
9006         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9007             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9008                 return -EINVAL;
9009
9010         /*
9011          * If virtual interrupt delivery is enabled,
9012          * we must exit on external interrupts.
9013          */
9014         if (nested_cpu_has_vid(vmcs12) &&
9015            !nested_exit_on_intr(vcpu))
9016                 return -EINVAL;
9017
9018         /*
9019          * bits 15:8 should be zero in posted_intr_nv,
9020          * the descriptor address has been already checked
9021          * in nested_get_vmcs12_pages.
9022          */
9023         if (nested_cpu_has_posted_intr(vmcs12) &&
9024            (!nested_cpu_has_vid(vmcs12) ||
9025             !nested_exit_intr_ack_set(vcpu) ||
9026             vmcs12->posted_intr_nv & 0xff00))
9027                 return -EINVAL;
9028
9029         /* tpr shadow is needed by all apicv features. */
9030         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9031                 return -EINVAL;
9032
9033         return 0;
9034 }
9035
9036 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9037                                        unsigned long count_field,
9038                                        unsigned long addr_field)
9039 {
9040         int maxphyaddr;
9041         u64 count, addr;
9042
9043         if (vmcs12_read_any(vcpu, count_field, &count) ||
9044             vmcs12_read_any(vcpu, addr_field, &addr)) {
9045                 WARN_ON(1);
9046                 return -EINVAL;
9047         }
9048         if (count == 0)
9049                 return 0;
9050         maxphyaddr = cpuid_maxphyaddr(vcpu);
9051         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9052             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9053                 pr_warn_ratelimited(
9054                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9055                         addr_field, maxphyaddr, count, addr);
9056                 return -EINVAL;
9057         }
9058         return 0;
9059 }
9060
9061 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9062                                                 struct vmcs12 *vmcs12)
9063 {
9064         if (vmcs12->vm_exit_msr_load_count == 0 &&
9065             vmcs12->vm_exit_msr_store_count == 0 &&
9066             vmcs12->vm_entry_msr_load_count == 0)
9067                 return 0; /* Fast path */
9068         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9069                                         VM_EXIT_MSR_LOAD_ADDR) ||
9070             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9071                                         VM_EXIT_MSR_STORE_ADDR) ||
9072             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9073                                         VM_ENTRY_MSR_LOAD_ADDR))
9074                 return -EINVAL;
9075         return 0;
9076 }
9077
9078 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9079                                        struct vmx_msr_entry *e)
9080 {
9081         /* x2APIC MSR accesses are not allowed */
9082         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9083                 return -EINVAL;
9084         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9085             e->index == MSR_IA32_UCODE_REV)
9086                 return -EINVAL;
9087         if (e->reserved != 0)
9088                 return -EINVAL;
9089         return 0;
9090 }
9091
9092 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9093                                      struct vmx_msr_entry *e)
9094 {
9095         if (e->index == MSR_FS_BASE ||
9096             e->index == MSR_GS_BASE ||
9097             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9098             nested_vmx_msr_check_common(vcpu, e))
9099                 return -EINVAL;
9100         return 0;
9101 }
9102
9103 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9104                                       struct vmx_msr_entry *e)
9105 {
9106         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9107             nested_vmx_msr_check_common(vcpu, e))
9108                 return -EINVAL;
9109         return 0;
9110 }
9111
9112 /*
9113  * Load guest's/host's msr at nested entry/exit.
9114  * return 0 for success, entry index for failure.
9115  */
9116 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9117 {
9118         u32 i;
9119         struct vmx_msr_entry e;
9120         struct msr_data msr;
9121
9122         msr.host_initiated = false;
9123         for (i = 0; i < count; i++) {
9124                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9125                                         &e, sizeof(e))) {
9126                         pr_warn_ratelimited(
9127                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9128                                 __func__, i, gpa + i * sizeof(e));
9129                         goto fail;
9130                 }
9131                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9132                         pr_warn_ratelimited(
9133                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9134                                 __func__, i, e.index, e.reserved);
9135                         goto fail;
9136                 }
9137                 msr.index = e.index;
9138                 msr.data = e.value;
9139                 if (kvm_set_msr(vcpu, &msr)) {
9140                         pr_warn_ratelimited(
9141                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9142                                 __func__, i, e.index, e.value);
9143                         goto fail;
9144                 }
9145         }
9146         return 0;
9147 fail:
9148         return i + 1;
9149 }
9150
9151 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9152 {
9153         u32 i;
9154         struct vmx_msr_entry e;
9155
9156         for (i = 0; i < count; i++) {
9157                 struct msr_data msr_info;
9158                 if (kvm_vcpu_read_guest(vcpu,
9159                                         gpa + i * sizeof(e),
9160                                         &e, 2 * sizeof(u32))) {
9161                         pr_warn_ratelimited(
9162                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9163                                 __func__, i, gpa + i * sizeof(e));
9164                         return -EINVAL;
9165                 }
9166                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9167                         pr_warn_ratelimited(
9168                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9169                                 __func__, i, e.index, e.reserved);
9170                         return -EINVAL;
9171                 }
9172                 msr_info.host_initiated = false;
9173                 msr_info.index = e.index;
9174                 if (kvm_get_msr(vcpu, &msr_info)) {
9175                         pr_warn_ratelimited(
9176                                 "%s cannot read MSR (%u, 0x%x)\n",
9177                                 __func__, i, e.index);
9178                         return -EINVAL;
9179                 }
9180                 if (kvm_vcpu_write_guest(vcpu,
9181                                          gpa + i * sizeof(e) +
9182                                              offsetof(struct vmx_msr_entry, value),
9183                                          &msr_info.data, sizeof(msr_info.data))) {
9184                         pr_warn_ratelimited(
9185                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9186                                 __func__, i, e.index, msr_info.data);
9187                         return -EINVAL;
9188                 }
9189         }
9190         return 0;
9191 }
9192
9193 /*
9194  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9195  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9196  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9197  * guest in a way that will both be appropriate to L1's requests, and our
9198  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9199  * function also has additional necessary side-effects, like setting various
9200  * vcpu->arch fields.
9201  */
9202 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9203 {
9204         struct vcpu_vmx *vmx = to_vmx(vcpu);
9205         u32 exec_control;
9206
9207         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9208         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9209         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9210         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9211         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9212         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9213         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9214         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9215         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9216         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9217         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9218         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9219         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9220         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9221         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9222         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9223         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9224         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9225         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9226         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9227         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9228         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9229         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9230         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9231         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9232         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9233         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9234         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9235         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9236         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9237         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9238         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9239         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9240         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9241         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9242         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9243
9244         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9245                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9246                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9247         } else {
9248                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9249                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9250         }
9251         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9252                 vmcs12->vm_entry_intr_info_field);
9253         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9254                 vmcs12->vm_entry_exception_error_code);
9255         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9256                 vmcs12->vm_entry_instruction_len);
9257         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9258                 vmcs12->guest_interruptibility_info);
9259         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9260         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9261         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9262                 vmcs12->guest_pending_dbg_exceptions);
9263         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9264         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9265
9266         if (nested_cpu_has_xsaves(vmcs12))
9267                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9268         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9269
9270         exec_control = vmcs12->pin_based_vm_exec_control;
9271         exec_control |= vmcs_config.pin_based_exec_ctrl;
9272         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9273
9274         if (nested_cpu_has_posted_intr(vmcs12)) {
9275                 /*
9276                  * Note that we use L0's vector here and in
9277                  * vmx_deliver_nested_posted_interrupt.
9278                  */
9279                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9280                 vmx->nested.pi_pending = false;
9281                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9282                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9283                         page_to_phys(vmx->nested.pi_desc_page) +
9284                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9285                         (PAGE_SIZE - 1)));
9286         } else
9287                 exec_control &= ~PIN_BASED_POSTED_INTR;
9288
9289         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9290
9291         vmx->nested.preemption_timer_expired = false;
9292         if (nested_cpu_has_preemption_timer(vmcs12))
9293                 vmx_start_preemption_timer(vcpu);
9294
9295         /*
9296          * Whether page-faults are trapped is determined by a combination of
9297          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9298          * If enable_ept, L0 doesn't care about page faults and we should
9299          * set all of these to L1's desires. However, if !enable_ept, L0 does
9300          * care about (at least some) page faults, and because it is not easy
9301          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9302          * to exit on each and every L2 page fault. This is done by setting
9303          * MASK=MATCH=0 and (see below) EB.PF=1.
9304          * Note that below we don't need special code to set EB.PF beyond the
9305          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9306          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9307          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9308          *
9309          * A problem with this approach (when !enable_ept) is that L1 may be
9310          * injected with more page faults than it asked for. This could have
9311          * caused problems, but in practice existing hypervisors don't care.
9312          * To fix this, we will need to emulate the PFEC checking (on the L1
9313          * page tables), using walk_addr(), when injecting PFs to L1.
9314          */
9315         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9316                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9317         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9318                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9319
9320         if (cpu_has_secondary_exec_ctrls()) {
9321                 exec_control = vmx_secondary_exec_control(vmx);
9322                 if (!vmx->rdtscp_enabled)
9323                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
9324                 /* Take the following fields only from vmcs12 */
9325                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9326                                   SECONDARY_EXEC_RDTSCP |
9327                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9328                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
9329                 if (nested_cpu_has(vmcs12,
9330                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9331                         exec_control |= vmcs12->secondary_vm_exec_control;
9332
9333                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9334                         /*
9335                          * If translation failed, no matter: This feature asks
9336                          * to exit when accessing the given address, and if it
9337                          * can never be accessed, this feature won't do
9338                          * anything anyway.
9339                          */
9340                         if (!vmx->nested.apic_access_page)
9341                                 exec_control &=
9342                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9343                         else
9344                                 vmcs_write64(APIC_ACCESS_ADDR,
9345                                   page_to_phys(vmx->nested.apic_access_page));
9346                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9347                             (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9348                         exec_control |=
9349                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9350                         kvm_vcpu_reload_apic_access_page(vcpu);
9351                 }
9352
9353                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9354                         vmcs_write64(EOI_EXIT_BITMAP0,
9355                                 vmcs12->eoi_exit_bitmap0);
9356                         vmcs_write64(EOI_EXIT_BITMAP1,
9357                                 vmcs12->eoi_exit_bitmap1);
9358                         vmcs_write64(EOI_EXIT_BITMAP2,
9359                                 vmcs12->eoi_exit_bitmap2);
9360                         vmcs_write64(EOI_EXIT_BITMAP3,
9361                                 vmcs12->eoi_exit_bitmap3);
9362                         vmcs_write16(GUEST_INTR_STATUS,
9363                                 vmcs12->guest_intr_status);
9364                 }
9365
9366                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9367         }
9368
9369
9370         /*
9371          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9372          * Some constant fields are set here by vmx_set_constant_host_state().
9373          * Other fields are different per CPU, and will be set later when
9374          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9375          */
9376         vmx_set_constant_host_state(vmx);
9377
9378         /*
9379          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9380          * entry, but only if the current (host) sp changed from the value
9381          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9382          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9383          * here we just force the write to happen on entry.
9384          */
9385         vmx->host_rsp = 0;
9386
9387         exec_control = vmx_exec_control(vmx); /* L0's desires */
9388         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9389         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9390         exec_control &= ~CPU_BASED_TPR_SHADOW;
9391         exec_control |= vmcs12->cpu_based_vm_exec_control;
9392
9393         if (exec_control & CPU_BASED_TPR_SHADOW) {
9394                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9395                                 page_to_phys(vmx->nested.virtual_apic_page));
9396                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9397         }
9398
9399         if (cpu_has_vmx_msr_bitmap() &&
9400             exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9401                 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9402                 /* MSR_BITMAP will be set by following vmx_set_efer. */
9403         } else
9404                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9405
9406         /*
9407          * Merging of IO bitmap not currently supported.
9408          * Rather, exit every time.
9409          */
9410         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9411         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9412
9413         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9414
9415         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9416          * bitwise-or of what L1 wants to trap for L2, and what we want to
9417          * trap. Note that CR0.TS also needs updating - we do this later.
9418          */
9419         update_exception_bitmap(vcpu);
9420         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9421         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9422
9423         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9424          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9425          * bits are further modified by vmx_set_efer() below.
9426          */
9427         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9428
9429         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9430          * emulated by vmx_set_efer(), below.
9431          */
9432         vm_entry_controls_init(vmx, 
9433                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9434                         ~VM_ENTRY_IA32E_MODE) |
9435                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9436
9437         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9438                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9439                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9440         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9441                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9442
9443
9444         set_cr4_guest_host_mask(vmx);
9445
9446         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9447                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9448
9449         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9450                 vmcs_write64(TSC_OFFSET,
9451                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9452         else
9453                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9454
9455         if (enable_vpid) {
9456                 /*
9457                  * Trivially support vpid by letting L2s share their parent
9458                  * L1's vpid. TODO: move to a more elaborate solution, giving
9459                  * each L2 its own vpid and exposing the vpid feature to L1.
9460                  */
9461                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9462                 vmx_flush_tlb(vcpu);
9463         }
9464
9465         if (nested_cpu_has_ept(vmcs12)) {
9466                 kvm_mmu_unload(vcpu);
9467                 nested_ept_init_mmu_context(vcpu);
9468         }
9469
9470         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9471                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9472         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9473                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9474         else
9475                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9476         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9477         vmx_set_efer(vcpu, vcpu->arch.efer);
9478
9479         /*
9480          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9481          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9482          * The CR0_READ_SHADOW is what L2 should have expected to read given
9483          * the specifications by L1; It's not enough to take
9484          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9485          * have more bits than L1 expected.
9486          */
9487         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9488         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9489
9490         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9491         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9492
9493         /* shadow page tables on either EPT or shadow page tables */
9494         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9495         kvm_mmu_reset_context(vcpu);
9496
9497         if (!enable_ept)
9498                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9499
9500         /*
9501          * L1 may access the L2's PDPTR, so save them to construct vmcs12
9502          */
9503         if (enable_ept) {
9504                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9505                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9506                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9507                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9508         }
9509
9510         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9511         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9512 }
9513
9514 /*
9515  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9516  * for running an L2 nested guest.
9517  */
9518 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9519 {
9520         struct vmcs12 *vmcs12;
9521         struct vcpu_vmx *vmx = to_vmx(vcpu);
9522         int cpu;
9523         struct loaded_vmcs *vmcs02;
9524         bool ia32e;
9525         u32 msr_entry_idx;
9526
9527         if (!nested_vmx_check_permission(vcpu) ||
9528             !nested_vmx_check_vmcs12(vcpu))
9529                 return 1;
9530
9531         skip_emulated_instruction(vcpu);
9532         vmcs12 = get_vmcs12(vcpu);
9533
9534         if (enable_shadow_vmcs)
9535                 copy_shadow_to_vmcs12(vmx);
9536
9537         /*
9538          * The nested entry process starts with enforcing various prerequisites
9539          * on vmcs12 as required by the Intel SDM, and act appropriately when
9540          * they fail: As the SDM explains, some conditions should cause the
9541          * instruction to fail, while others will cause the instruction to seem
9542          * to succeed, but return an EXIT_REASON_INVALID_STATE.
9543          * To speed up the normal (success) code path, we should avoid checking
9544          * for misconfigurations which will anyway be caught by the processor
9545          * when using the merged vmcs02.
9546          */
9547         if (vmcs12->launch_state == launch) {
9548                 nested_vmx_failValid(vcpu,
9549                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9550                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9551                 return 1;
9552         }
9553
9554         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9555             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9556                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9557                 return 1;
9558         }
9559
9560         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9561                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9562                 return 1;
9563         }
9564
9565         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9566                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9567                 return 1;
9568         }
9569
9570         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9571                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9572                 return 1;
9573         }
9574
9575         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9576                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9577                 return 1;
9578         }
9579
9580         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9581                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
9582                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
9583             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9584                                 vmx->nested.nested_vmx_secondary_ctls_low,
9585                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
9586             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9587                                 vmx->nested.nested_vmx_pinbased_ctls_low,
9588                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9589             !vmx_control_verify(vmcs12->vm_exit_controls,
9590                                 vmx->nested.nested_vmx_true_exit_ctls_low,
9591                                 vmx->nested.nested_vmx_exit_ctls_high) ||
9592             !vmx_control_verify(vmcs12->vm_entry_controls,
9593                                 vmx->nested.nested_vmx_true_entry_ctls_low,
9594                                 vmx->nested.nested_vmx_entry_ctls_high))
9595         {
9596                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9597                 return 1;
9598         }
9599
9600         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9601             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9602                 nested_vmx_failValid(vcpu,
9603                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9604                 return 1;
9605         }
9606
9607         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9608             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9609                 nested_vmx_entry_failure(vcpu, vmcs12,
9610                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9611                 return 1;
9612         }
9613         if (vmcs12->vmcs_link_pointer != -1ull) {
9614                 nested_vmx_entry_failure(vcpu, vmcs12,
9615                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9616                 return 1;
9617         }
9618
9619         /*
9620          * If the load IA32_EFER VM-entry control is 1, the following checks
9621          * are performed on the field for the IA32_EFER MSR:
9622          * - Bits reserved in the IA32_EFER MSR must be 0.
9623          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9624          *   the IA-32e mode guest VM-exit control. It must also be identical
9625          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9626          *   CR0.PG) is 1.
9627          */
9628         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9629                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9630                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9631                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9632                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9633                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9634                         nested_vmx_entry_failure(vcpu, vmcs12,
9635                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9636                         return 1;
9637                 }
9638         }
9639
9640         /*
9641          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9642          * IA32_EFER MSR must be 0 in the field for that register. In addition,
9643          * the values of the LMA and LME bits in the field must each be that of
9644          * the host address-space size VM-exit control.
9645          */
9646         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9647                 ia32e = (vmcs12->vm_exit_controls &
9648                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9649                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9650                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9651                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9652                         nested_vmx_entry_failure(vcpu, vmcs12,
9653                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9654                         return 1;
9655                 }
9656         }
9657
9658         /*
9659          * We're finally done with prerequisite checking, and can start with
9660          * the nested entry.
9661          */
9662
9663         vmcs02 = nested_get_current_vmcs02(vmx);
9664         if (!vmcs02)
9665                 return -ENOMEM;
9666
9667         enter_guest_mode(vcpu);
9668
9669         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9670
9671         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9672                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9673
9674         cpu = get_cpu();
9675         vmx->loaded_vmcs = vmcs02;
9676         vmx_vcpu_put(vcpu);
9677         vmx_vcpu_load(vcpu, cpu);
9678         vcpu->cpu = cpu;
9679         put_cpu();
9680
9681         vmx_segment_cache_clear(vmx);
9682
9683         prepare_vmcs02(vcpu, vmcs12);
9684
9685         msr_entry_idx = nested_vmx_load_msr(vcpu,
9686                                             vmcs12->vm_entry_msr_load_addr,
9687                                             vmcs12->vm_entry_msr_load_count);
9688         if (msr_entry_idx) {
9689                 leave_guest_mode(vcpu);
9690                 vmx_load_vmcs01(vcpu);
9691                 nested_vmx_entry_failure(vcpu, vmcs12,
9692                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9693                 return 1;
9694         }
9695
9696         vmcs12->launch_state = 1;
9697
9698         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9699                 return kvm_vcpu_halt(vcpu);
9700
9701         vmx->nested.nested_run_pending = 1;
9702
9703         /*
9704          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9705          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9706          * returned as far as L1 is concerned. It will only return (and set
9707          * the success flag) when L2 exits (see nested_vmx_vmexit()).
9708          */
9709         return 1;
9710 }
9711
9712 /*
9713  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9714  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9715  * This function returns the new value we should put in vmcs12.guest_cr0.
9716  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9717  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9718  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9719  *     didn't trap the bit, because if L1 did, so would L0).
9720  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9721  *     been modified by L2, and L1 knows it. So just leave the old value of
9722  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9723  *     isn't relevant, because if L0 traps this bit it can set it to anything.
9724  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9725  *     changed these bits, and therefore they need to be updated, but L0
9726  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9727  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9728  */
9729 static inline unsigned long
9730 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9731 {
9732         return
9733         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9734         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9735         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9736                         vcpu->arch.cr0_guest_owned_bits));
9737 }
9738
9739 static inline unsigned long
9740 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9741 {
9742         return
9743         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9744         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9745         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9746                         vcpu->arch.cr4_guest_owned_bits));
9747 }
9748
9749 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9750                                        struct vmcs12 *vmcs12)
9751 {
9752         u32 idt_vectoring;
9753         unsigned int nr;
9754
9755         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9756                 nr = vcpu->arch.exception.nr;
9757                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9758
9759                 if (kvm_exception_is_soft(nr)) {
9760                         vmcs12->vm_exit_instruction_len =
9761                                 vcpu->arch.event_exit_inst_len;
9762                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9763                 } else
9764                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9765
9766                 if (vcpu->arch.exception.has_error_code) {
9767                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9768                         vmcs12->idt_vectoring_error_code =
9769                                 vcpu->arch.exception.error_code;
9770                 }
9771
9772                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9773         } else if (vcpu->arch.nmi_injected) {
9774                 vmcs12->idt_vectoring_info_field =
9775                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9776         } else if (vcpu->arch.interrupt.pending) {
9777                 nr = vcpu->arch.interrupt.nr;
9778                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9779
9780                 if (vcpu->arch.interrupt.soft) {
9781                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
9782                         vmcs12->vm_entry_instruction_len =
9783                                 vcpu->arch.event_exit_inst_len;
9784                 } else
9785                         idt_vectoring |= INTR_TYPE_EXT_INTR;
9786
9787                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9788         }
9789 }
9790
9791 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9792 {
9793         struct vcpu_vmx *vmx = to_vmx(vcpu);
9794
9795         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9796             vmx->nested.preemption_timer_expired) {
9797                 if (vmx->nested.nested_run_pending)
9798                         return -EBUSY;
9799                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9800                 return 0;
9801         }
9802
9803         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9804                 if (vmx->nested.nested_run_pending ||
9805                     vcpu->arch.interrupt.pending)
9806                         return -EBUSY;
9807                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9808                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
9809                                   INTR_INFO_VALID_MASK, 0);
9810                 /*
9811                  * The NMI-triggered VM exit counts as injection:
9812                  * clear this one and block further NMIs.
9813                  */
9814                 vcpu->arch.nmi_pending = 0;
9815                 vmx_set_nmi_mask(vcpu, true);
9816                 return 0;
9817         }
9818
9819         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9820             nested_exit_on_intr(vcpu)) {
9821                 if (vmx->nested.nested_run_pending)
9822                         return -EBUSY;
9823                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9824                 return 0;
9825         }
9826
9827         return vmx_complete_nested_posted_interrupt(vcpu);
9828 }
9829
9830 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9831 {
9832         ktime_t remaining =
9833                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9834         u64 value;
9835
9836         if (ktime_to_ns(remaining) <= 0)
9837                 return 0;
9838
9839         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9840         do_div(value, 1000000);
9841         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9842 }
9843
9844 /*
9845  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9846  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9847  * and this function updates it to reflect the changes to the guest state while
9848  * L2 was running (and perhaps made some exits which were handled directly by L0
9849  * without going back to L1), and to reflect the exit reason.
9850  * Note that we do not have to copy here all VMCS fields, just those that
9851  * could have changed by the L2 guest or the exit - i.e., the guest-state and
9852  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9853  * which already writes to vmcs12 directly.
9854  */
9855 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9856                            u32 exit_reason, u32 exit_intr_info,
9857                            unsigned long exit_qualification)
9858 {
9859         /* update guest state fields: */
9860         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9861         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9862
9863         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9864         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9865         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9866
9867         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9868         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9869         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9870         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9871         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9872         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9873         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9874         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9875         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9876         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9877         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9878         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9879         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9880         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9881         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9882         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9883         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9884         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9885         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9886         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9887         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9888         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9889         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9890         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9891         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9892         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9893         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9894         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9895         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9896         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9897         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9898         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9899         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9900         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9901         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9902         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9903
9904         vmcs12->guest_interruptibility_info =
9905                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9906         vmcs12->guest_pending_dbg_exceptions =
9907                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9908         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9909                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9910         else
9911                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9912
9913         if (nested_cpu_has_preemption_timer(vmcs12)) {
9914                 if (vmcs12->vm_exit_controls &
9915                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9916                         vmcs12->vmx_preemption_timer_value =
9917                                 vmx_get_preemption_timer_value(vcpu);
9918                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9919         }
9920
9921         /*
9922          * In some cases (usually, nested EPT), L2 is allowed to change its
9923          * own CR3 without exiting. If it has changed it, we must keep it.
9924          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9925          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9926          *
9927          * Additionally, restore L2's PDPTR to vmcs12.
9928          */
9929         if (enable_ept) {
9930                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9931                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9932                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9933                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9934                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9935         }
9936
9937         if (nested_cpu_has_vid(vmcs12))
9938                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9939
9940         vmcs12->vm_entry_controls =
9941                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9942                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9943
9944         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9945                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9946                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9947         }
9948
9949         /* TODO: These cannot have changed unless we have MSR bitmaps and
9950          * the relevant bit asks not to trap the change */
9951         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9952                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9953         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9954                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9955         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9956         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9957         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9958         if (vmx_mpx_supported())
9959                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9960         if (nested_cpu_has_xsaves(vmcs12))
9961                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9962
9963         /* update exit information fields: */
9964
9965         vmcs12->vm_exit_reason = exit_reason;
9966         vmcs12->exit_qualification = exit_qualification;
9967
9968         vmcs12->vm_exit_intr_info = exit_intr_info;
9969         if ((vmcs12->vm_exit_intr_info &
9970              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9971             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9972                 vmcs12->vm_exit_intr_error_code =
9973                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9974         vmcs12->idt_vectoring_info_field = 0;
9975         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9976         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9977
9978         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9979                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9980                  * instead of reading the real value. */
9981                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9982
9983                 /*
9984                  * Transfer the event that L0 or L1 may wanted to inject into
9985                  * L2 to IDT_VECTORING_INFO_FIELD.
9986                  */
9987                 vmcs12_save_pending_event(vcpu, vmcs12);
9988         }
9989
9990         /*
9991          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9992          * preserved above and would only end up incorrectly in L1.
9993          */
9994         vcpu->arch.nmi_injected = false;
9995         kvm_clear_exception_queue(vcpu);
9996         kvm_clear_interrupt_queue(vcpu);
9997 }
9998
9999 /*
10000  * A part of what we need to when the nested L2 guest exits and we want to
10001  * run its L1 parent, is to reset L1's guest state to the host state specified
10002  * in vmcs12.
10003  * This function is to be called not only on normal nested exit, but also on
10004  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10005  * Failures During or After Loading Guest State").
10006  * This function should be called when the active VMCS is L1's (vmcs01).
10007  */
10008 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10009                                    struct vmcs12 *vmcs12)
10010 {
10011         struct kvm_segment seg;
10012
10013         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10014                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10015         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10016                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10017         else
10018                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10019         vmx_set_efer(vcpu, vcpu->arch.efer);
10020
10021         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10022         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10023         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10024         /*
10025          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10026          * actually changed, because it depends on the current state of
10027          * fpu_active (which may have changed).
10028          * Note that vmx_set_cr0 refers to efer set above.
10029          */
10030         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10031         /*
10032          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10033          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10034          * but we also need to update cr0_guest_host_mask and exception_bitmap.
10035          */
10036         update_exception_bitmap(vcpu);
10037         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10038         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10039
10040         /*
10041          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10042          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10043          */
10044         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10045         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10046
10047         nested_ept_uninit_mmu_context(vcpu);
10048
10049         kvm_set_cr3(vcpu, vmcs12->host_cr3);
10050         kvm_mmu_reset_context(vcpu);
10051
10052         if (!enable_ept)
10053                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10054
10055         if (enable_vpid) {
10056                 /*
10057                  * Trivially support vpid by letting L2s share their parent
10058                  * L1's vpid. TODO: move to a more elaborate solution, giving
10059                  * each L2 its own vpid and exposing the vpid feature to L1.
10060                  */
10061                 vmx_flush_tlb(vcpu);
10062         }
10063
10064
10065         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10066         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10067         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10068         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10069         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10070
10071         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10072         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10073                 vmcs_write64(GUEST_BNDCFGS, 0);
10074
10075         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10076                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10077                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10078         }
10079         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10080                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10081                         vmcs12->host_ia32_perf_global_ctrl);
10082
10083         /* Set L1 segment info according to Intel SDM
10084             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10085         seg = (struct kvm_segment) {
10086                 .base = 0,
10087                 .limit = 0xFFFFFFFF,
10088                 .selector = vmcs12->host_cs_selector,
10089                 .type = 11,
10090                 .present = 1,
10091                 .s = 1,
10092                 .g = 1
10093         };
10094         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10095                 seg.l = 1;
10096         else
10097                 seg.db = 1;
10098         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10099         seg = (struct kvm_segment) {
10100                 .base = 0,
10101                 .limit = 0xFFFFFFFF,
10102                 .type = 3,
10103                 .present = 1,
10104                 .s = 1,
10105                 .db = 1,
10106                 .g = 1
10107         };
10108         seg.selector = vmcs12->host_ds_selector;
10109         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10110         seg.selector = vmcs12->host_es_selector;
10111         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10112         seg.selector = vmcs12->host_ss_selector;
10113         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10114         seg.selector = vmcs12->host_fs_selector;
10115         seg.base = vmcs12->host_fs_base;
10116         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10117         seg.selector = vmcs12->host_gs_selector;
10118         seg.base = vmcs12->host_gs_base;
10119         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10120         seg = (struct kvm_segment) {
10121                 .base = vmcs12->host_tr_base,
10122                 .limit = 0x67,
10123                 .selector = vmcs12->host_tr_selector,
10124                 .type = 11,
10125                 .present = 1
10126         };
10127         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10128
10129         kvm_set_dr(vcpu, 7, 0x400);
10130         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10131
10132         if (cpu_has_vmx_msr_bitmap())
10133                 vmx_set_msr_bitmap(vcpu);
10134
10135         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10136                                 vmcs12->vm_exit_msr_load_count))
10137                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10138 }
10139
10140 /*
10141  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10142  * and modify vmcs12 to make it see what it would expect to see there if
10143  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10144  */
10145 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10146                               u32 exit_intr_info,
10147                               unsigned long exit_qualification)
10148 {
10149         struct vcpu_vmx *vmx = to_vmx(vcpu);
10150         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10151
10152         /* trying to cancel vmlaunch/vmresume is a bug */
10153         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10154
10155         leave_guest_mode(vcpu);
10156         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10157                        exit_qualification);
10158
10159         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10160                                  vmcs12->vm_exit_msr_store_count))
10161                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10162
10163         vmx_load_vmcs01(vcpu);
10164
10165         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10166             && nested_exit_intr_ack_set(vcpu)) {
10167                 int irq = kvm_cpu_get_interrupt(vcpu);
10168                 WARN_ON(irq < 0);
10169                 vmcs12->vm_exit_intr_info = irq |
10170                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10171         }
10172
10173         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10174                                        vmcs12->exit_qualification,
10175                                        vmcs12->idt_vectoring_info_field,
10176                                        vmcs12->vm_exit_intr_info,
10177                                        vmcs12->vm_exit_intr_error_code,
10178                                        KVM_ISA_VMX);
10179
10180         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10181         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10182         vmx_segment_cache_clear(vmx);
10183
10184         /* if no vmcs02 cache requested, remove the one we used */
10185         if (VMCS02_POOL_SIZE == 0)
10186                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10187
10188         load_vmcs12_host_state(vcpu, vmcs12);
10189
10190         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10191         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10192
10193         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10194         vmx->host_rsp = 0;
10195
10196         /* Unpin physical memory we referred to in vmcs02 */
10197         if (vmx->nested.apic_access_page) {
10198                 nested_release_page(vmx->nested.apic_access_page);
10199                 vmx->nested.apic_access_page = NULL;
10200         }
10201         if (vmx->nested.virtual_apic_page) {
10202                 nested_release_page(vmx->nested.virtual_apic_page);
10203                 vmx->nested.virtual_apic_page = NULL;
10204         }
10205         if (vmx->nested.pi_desc_page) {
10206                 kunmap(vmx->nested.pi_desc_page);
10207                 nested_release_page(vmx->nested.pi_desc_page);
10208                 vmx->nested.pi_desc_page = NULL;
10209                 vmx->nested.pi_desc = NULL;
10210         }
10211
10212         /*
10213          * We are now running in L2, mmu_notifier will force to reload the
10214          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10215          */
10216         kvm_vcpu_reload_apic_access_page(vcpu);
10217
10218         /*
10219          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10220          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10221          * success or failure flag accordingly.
10222          */
10223         if (unlikely(vmx->fail)) {
10224                 vmx->fail = 0;
10225                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10226         } else
10227                 nested_vmx_succeed(vcpu);
10228         if (enable_shadow_vmcs)
10229                 vmx->nested.sync_shadow_vmcs = true;
10230
10231         /* in case we halted in L2 */
10232         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10233 }
10234
10235 /*
10236  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10237  */
10238 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10239 {
10240         if (is_guest_mode(vcpu))
10241                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10242         free_nested(to_vmx(vcpu));
10243 }
10244
10245 /*
10246  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10247  * 23.7 "VM-entry failures during or after loading guest state" (this also
10248  * lists the acceptable exit-reason and exit-qualification parameters).
10249  * It should only be called before L2 actually succeeded to run, and when
10250  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10251  */
10252 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10253                         struct vmcs12 *vmcs12,
10254                         u32 reason, unsigned long qualification)
10255 {
10256         load_vmcs12_host_state(vcpu, vmcs12);
10257         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10258         vmcs12->exit_qualification = qualification;
10259         nested_vmx_succeed(vcpu);
10260         if (enable_shadow_vmcs)
10261                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10262 }
10263
10264 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10265                                struct x86_instruction_info *info,
10266                                enum x86_intercept_stage stage)
10267 {
10268         return X86EMUL_CONTINUE;
10269 }
10270
10271 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10272 {
10273         if (ple_gap)
10274                 shrink_ple_window(vcpu);
10275 }
10276
10277 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10278                                      struct kvm_memory_slot *slot)
10279 {
10280         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10281         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10282 }
10283
10284 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10285                                        struct kvm_memory_slot *slot)
10286 {
10287         kvm_mmu_slot_set_dirty(kvm, slot);
10288 }
10289
10290 static void vmx_flush_log_dirty(struct kvm *kvm)
10291 {
10292         kvm_flush_pml_buffers(kvm);
10293 }
10294
10295 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10296                                            struct kvm_memory_slot *memslot,
10297                                            gfn_t offset, unsigned long mask)
10298 {
10299         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10300 }
10301
10302 static struct kvm_x86_ops vmx_x86_ops = {
10303         .cpu_has_kvm_support = cpu_has_kvm_support,
10304         .disabled_by_bios = vmx_disabled_by_bios,
10305         .hardware_setup = hardware_setup,
10306         .hardware_unsetup = hardware_unsetup,
10307         .check_processor_compatibility = vmx_check_processor_compat,
10308         .hardware_enable = hardware_enable,
10309         .hardware_disable = hardware_disable,
10310         .cpu_has_accelerated_tpr = report_flexpriority,
10311         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10312
10313         .vcpu_create = vmx_create_vcpu,
10314         .vcpu_free = vmx_free_vcpu,
10315         .vcpu_reset = vmx_vcpu_reset,
10316
10317         .prepare_guest_switch = vmx_save_host_state,
10318         .vcpu_load = vmx_vcpu_load,
10319         .vcpu_put = vmx_vcpu_put,
10320
10321         .update_db_bp_intercept = update_exception_bitmap,
10322         .get_msr = vmx_get_msr,
10323         .set_msr = vmx_set_msr,
10324         .get_segment_base = vmx_get_segment_base,
10325         .get_segment = vmx_get_segment,
10326         .set_segment = vmx_set_segment,
10327         .get_cpl = vmx_get_cpl,
10328         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10329         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10330         .decache_cr3 = vmx_decache_cr3,
10331         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10332         .set_cr0 = vmx_set_cr0,
10333         .set_cr3 = vmx_set_cr3,
10334         .set_cr4 = vmx_set_cr4,
10335         .set_efer = vmx_set_efer,
10336         .get_idt = vmx_get_idt,
10337         .set_idt = vmx_set_idt,
10338         .get_gdt = vmx_get_gdt,
10339         .set_gdt = vmx_set_gdt,
10340         .get_dr6 = vmx_get_dr6,
10341         .set_dr6 = vmx_set_dr6,
10342         .set_dr7 = vmx_set_dr7,
10343         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10344         .cache_reg = vmx_cache_reg,
10345         .get_rflags = vmx_get_rflags,
10346         .set_rflags = vmx_set_rflags,
10347         .fpu_activate = vmx_fpu_activate,
10348         .fpu_deactivate = vmx_fpu_deactivate,
10349
10350         .tlb_flush = vmx_flush_tlb,
10351
10352         .run = vmx_vcpu_run,
10353         .handle_exit = vmx_handle_exit,
10354         .skip_emulated_instruction = skip_emulated_instruction,
10355         .set_interrupt_shadow = vmx_set_interrupt_shadow,
10356         .get_interrupt_shadow = vmx_get_interrupt_shadow,
10357         .patch_hypercall = vmx_patch_hypercall,
10358         .set_irq = vmx_inject_irq,
10359         .set_nmi = vmx_inject_nmi,
10360         .queue_exception = vmx_queue_exception,
10361         .cancel_injection = vmx_cancel_injection,
10362         .interrupt_allowed = vmx_interrupt_allowed,
10363         .nmi_allowed = vmx_nmi_allowed,
10364         .get_nmi_mask = vmx_get_nmi_mask,
10365         .set_nmi_mask = vmx_set_nmi_mask,
10366         .enable_nmi_window = enable_nmi_window,
10367         .enable_irq_window = enable_irq_window,
10368         .update_cr8_intercept = update_cr8_intercept,
10369         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10370         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10371         .vm_has_apicv = vmx_vm_has_apicv,
10372         .load_eoi_exitmap = vmx_load_eoi_exitmap,
10373         .hwapic_irr_update = vmx_hwapic_irr_update,
10374         .hwapic_isr_update = vmx_hwapic_isr_update,
10375         .sync_pir_to_irr = vmx_sync_pir_to_irr,
10376         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10377
10378         .set_tss_addr = vmx_set_tss_addr,
10379         .get_tdp_level = get_ept_level,
10380         .get_mt_mask = vmx_get_mt_mask,
10381
10382         .get_exit_info = vmx_get_exit_info,
10383
10384         .get_lpage_level = vmx_get_lpage_level,
10385
10386         .cpuid_update = vmx_cpuid_update,
10387
10388         .rdtscp_supported = vmx_rdtscp_supported,
10389         .invpcid_supported = vmx_invpcid_supported,
10390
10391         .set_supported_cpuid = vmx_set_supported_cpuid,
10392
10393         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10394
10395         .set_tsc_khz = vmx_set_tsc_khz,
10396         .read_tsc_offset = vmx_read_tsc_offset,
10397         .write_tsc_offset = vmx_write_tsc_offset,
10398         .adjust_tsc_offset = vmx_adjust_tsc_offset,
10399         .compute_tsc_offset = vmx_compute_tsc_offset,
10400         .read_l1_tsc = vmx_read_l1_tsc,
10401
10402         .set_tdp_cr3 = vmx_set_cr3,
10403
10404         .check_intercept = vmx_check_intercept,
10405         .handle_external_intr = vmx_handle_external_intr,
10406         .mpx_supported = vmx_mpx_supported,
10407         .xsaves_supported = vmx_xsaves_supported,
10408
10409         .check_nested_events = vmx_check_nested_events,
10410
10411         .sched_in = vmx_sched_in,
10412
10413         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10414         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10415         .flush_log_dirty = vmx_flush_log_dirty,
10416         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10417
10418         .pmu_ops = &intel_pmu_ops,
10419 };
10420
10421 static int __init vmx_init(void)
10422 {
10423         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10424                      __alignof__(struct vcpu_vmx), THIS_MODULE);
10425         if (r)
10426                 return r;
10427
10428 #ifdef CONFIG_KEXEC
10429         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10430                            crash_vmclear_local_loaded_vmcss);
10431 #endif
10432
10433         return 0;
10434 }
10435
10436 static void __exit vmx_exit(void)
10437 {
10438 #ifdef CONFIG_KEXEC
10439         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10440         synchronize_rcu();
10441 #endif
10442
10443         kvm_exit();
10444 }
10445
10446 module_init(vmx_init)
10447 module_exit(vmx_exit)