Merge tag 'sunxi-fixes-for-4.3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-drm-fsl-dcu.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT       0x0100000000ULL
166
167 #define MSR_INVALID                     0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170         u32 index;   /* Index of the MSR */
171         bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173         { .index = MSR_STAR,                            .always = true  },
174         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
175 #ifdef CONFIG_X86_64
176         { .index = MSR_GS_BASE,                         .always = true  },
177         { .index = MSR_FS_BASE,                         .always = true  },
178         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
179         { .index = MSR_LSTAR,                           .always = true  },
180         { .index = MSR_CSTAR,                           .always = true  },
181         { .index = MSR_SYSCALL_MASK,                    .always = true  },
182 #endif
183         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
184         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
185         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
186         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
187         { .index = MSR_INVALID,                         .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
206 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
207 static void svm_complete_interrupts(struct vcpu_svm *svm);
208
209 static int nested_svm_exit_handled(struct vcpu_svm *svm);
210 static int nested_svm_intercept(struct vcpu_svm *svm);
211 static int nested_svm_vmexit(struct vcpu_svm *svm);
212 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
213                                       bool has_error_code, u32 error_code);
214 static u64 __scale_tsc(u64 ratio, u64 tsc);
215
216 enum {
217         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218                             pause filter count */
219         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
220         VMCB_ASID,       /* ASID */
221         VMCB_INTR,       /* int_ctl, int_vector */
222         VMCB_NPT,        /* npt_en, nCR3, gPAT */
223         VMCB_CR,         /* CR0, CR3, CR4, EFER */
224         VMCB_DR,         /* DR6, DR7 */
225         VMCB_DT,         /* GDT, IDT */
226         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
227         VMCB_CR2,        /* CR2 only */
228         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229         VMCB_DIRTY_MAX,
230 };
231
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237         vmcb->control.clean = 0;
238 }
239
240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243                                & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245
246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248         vmcb->control.clean &= ~(1 << bit);
249 }
250
251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253         return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255
256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258         struct vmcb_control_area *c, *h;
259         struct nested_state *g;
260
261         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263         if (!is_guest_mode(&svm->vcpu))
264                 return;
265
266         c = &svm->vmcb->control;
267         h = &svm->nested.hsave->control;
268         g = &svm->nested;
269
270         c->intercept_cr = h->intercept_cr | g->intercept_cr;
271         c->intercept_dr = h->intercept_dr | g->intercept_dr;
272         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273         c->intercept = h->intercept | g->intercept;
274 }
275
276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278         if (is_guest_mode(&svm->vcpu))
279                 return svm->nested.hsave;
280         else
281                 return svm->vmcb;
282 }
283
284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286         struct vmcb *vmcb = get_host_vmcb(svm);
287
288         vmcb->control.intercept_cr |= (1U << bit);
289
290         recalc_intercepts(svm);
291 }
292
293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295         struct vmcb *vmcb = get_host_vmcb(svm);
296
297         vmcb->control.intercept_cr &= ~(1U << bit);
298
299         recalc_intercepts(svm);
300 }
301
302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304         struct vmcb *vmcb = get_host_vmcb(svm);
305
306         return vmcb->control.intercept_cr & (1U << bit);
307 }
308
309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311         struct vmcb *vmcb = get_host_vmcb(svm);
312
313         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314                 | (1 << INTERCEPT_DR1_READ)
315                 | (1 << INTERCEPT_DR2_READ)
316                 | (1 << INTERCEPT_DR3_READ)
317                 | (1 << INTERCEPT_DR4_READ)
318                 | (1 << INTERCEPT_DR5_READ)
319                 | (1 << INTERCEPT_DR6_READ)
320                 | (1 << INTERCEPT_DR7_READ)
321                 | (1 << INTERCEPT_DR0_WRITE)
322                 | (1 << INTERCEPT_DR1_WRITE)
323                 | (1 << INTERCEPT_DR2_WRITE)
324                 | (1 << INTERCEPT_DR3_WRITE)
325                 | (1 << INTERCEPT_DR4_WRITE)
326                 | (1 << INTERCEPT_DR5_WRITE)
327                 | (1 << INTERCEPT_DR6_WRITE)
328                 | (1 << INTERCEPT_DR7_WRITE);
329
330         recalc_intercepts(svm);
331 }
332
333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335         struct vmcb *vmcb = get_host_vmcb(svm);
336
337         vmcb->control.intercept_dr = 0;
338
339         recalc_intercepts(svm);
340 }
341
342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344         struct vmcb *vmcb = get_host_vmcb(svm);
345
346         vmcb->control.intercept_exceptions |= (1U << bit);
347
348         recalc_intercepts(svm);
349 }
350
351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353         struct vmcb *vmcb = get_host_vmcb(svm);
354
355         vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357         recalc_intercepts(svm);
358 }
359
360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362         struct vmcb *vmcb = get_host_vmcb(svm);
363
364         vmcb->control.intercept |= (1ULL << bit);
365
366         recalc_intercepts(svm);
367 }
368
369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371         struct vmcb *vmcb = get_host_vmcb(svm);
372
373         vmcb->control.intercept &= ~(1ULL << bit);
374
375         recalc_intercepts(svm);
376 }
377
378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380         svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382
383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387
388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392
393 static unsigned long iopm_base;
394
395 struct kvm_ldttss_desc {
396         u16 limit0;
397         u16 base0;
398         unsigned base1:8, type:5, dpl:2, p:1;
399         unsigned limit1:4, zero0:3, g:1, base2:8;
400         u32 base3;
401         u32 zero1;
402 } __attribute__((packed));
403
404 struct svm_cpu_data {
405         int cpu;
406
407         u64 asid_generation;
408         u32 max_asid;
409         u32 next_asid;
410         struct kvm_ldttss_desc *tss_desc;
411
412         struct page *save_area;
413 };
414
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417 struct svm_init_data {
418         int cpu;
419         int r;
420 };
421
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428 static u32 svm_msrpm_offset(u32 msr)
429 {
430         u32 offset;
431         int i;
432
433         for (i = 0; i < NUM_MSR_MAPS; i++) {
434                 if (msr < msrpm_ranges[i] ||
435                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436                         continue;
437
438                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
440
441                 /* Now we have the u8 offset - but need the u32 offset */
442                 return offset / 4;
443         }
444
445         /* MSR not in any range */
446         return MSR_INVALID;
447 }
448
449 #define MAX_INST_SIZE 15
450
451 static inline void clgi(void)
452 {
453         asm volatile (__ex(SVM_CLGI));
454 }
455
456 static inline void stgi(void)
457 {
458         asm volatile (__ex(SVM_STGI));
459 }
460
461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465
466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469         return PT64_ROOT_LEVEL;
470 #else
471         return PT32E_ROOT_LEVEL;
472 #endif
473 }
474
475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477         vcpu->arch.efer = efer;
478         if (!npt_enabled && !(efer & EFER_LMA))
479                 efer &= ~EFER_LME;
480
481         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484
485 static int is_external_interrupt(u32 info)
486 {
487         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490
491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493         struct vcpu_svm *svm = to_svm(vcpu);
494         u32 ret = 0;
495
496         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498         return ret;
499 }
500
501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503         struct vcpu_svm *svm = to_svm(vcpu);
504
505         if (mask == 0)
506                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507         else
508                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514         struct vcpu_svm *svm = to_svm(vcpu);
515
516         if (svm->vmcb->control.next_rip != 0) {
517                 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
518                 svm->next_rip = svm->vmcb->control.next_rip;
519         }
520
521         if (!svm->next_rip) {
522                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523                                 EMULATE_DONE)
524                         printk(KERN_DEBUG "%s: NOP\n", __func__);
525                 return;
526         }
527         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529                        __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531         kvm_rip_write(vcpu, svm->next_rip);
532         svm_set_interrupt_shadow(vcpu, 0);
533 }
534
535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536                                 bool has_error_code, u32 error_code,
537                                 bool reinject)
538 {
539         struct vcpu_svm *svm = to_svm(vcpu);
540
541         /*
542          * If we are within a nested VM we'd better #VMEXIT and let the guest
543          * handle the exception
544          */
545         if (!reinject &&
546             nested_svm_check_exception(svm, nr, has_error_code, error_code))
547                 return;
548
549         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552                 /*
553                  * For guest debugging where we have to reinject #BP if some
554                  * INT3 is guest-owned:
555                  * Emulate nRIP by moving RIP forward. Will fail if injection
556                  * raises a fault that is not intercepted. Still better than
557                  * failing in all cases.
558                  */
559                 skip_emulated_instruction(&svm->vcpu);
560                 rip = kvm_rip_read(&svm->vcpu);
561                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
562                 svm->int3_injected = rip - old_rip;
563         }
564
565         svm->vmcb->control.event_inj = nr
566                 | SVM_EVTINJ_VALID
567                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568                 | SVM_EVTINJ_TYPE_EXEPT;
569         svm->vmcb->control.event_inj_err = error_code;
570 }
571
572 static void svm_init_erratum_383(void)
573 {
574         u32 low, high;
575         int err;
576         u64 val;
577
578         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579                 return;
580
581         /* Use _safe variants to not break nested virtualization */
582         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583         if (err)
584                 return;
585
586         val |= (1ULL << 47);
587
588         low  = lower_32_bits(val);
589         high = upper_32_bits(val);
590
591         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593         erratum_383_found = true;
594 }
595
596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598         /*
599          * Guests should see errata 400 and 415 as fixed (assuming that
600          * HLT and IO instructions are intercepted).
601          */
602         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605         /*
606          * By increasing VCPU's osvw.length to 3 we are telling the guest that
607          * all osvw.status bits inside that length, including bit 0 (which is
608          * reserved for erratum 298), are valid. However, if host processor's
609          * osvw_len is 0 then osvw_status[0] carries no information. We need to
610          * be conservative here and therefore we tell the guest that erratum 298
611          * is present (because we really don't know).
612          */
613         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614                 vcpu->arch.osvw.status |= 1;
615 }
616
617 static int has_svm(void)
618 {
619         const char *msg;
620
621         if (!cpu_has_svm(&msg)) {
622                 printk(KERN_INFO "has_svm: %s\n", msg);
623                 return 0;
624         }
625
626         return 1;
627 }
628
629 static void svm_hardware_disable(void)
630 {
631         /* Make sure we clean up behind us */
632         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635         cpu_svm_disable();
636
637         amd_pmu_disable_virt();
638 }
639
640 static int svm_hardware_enable(void)
641 {
642
643         struct svm_cpu_data *sd;
644         uint64_t efer;
645         struct desc_ptr gdt_descr;
646         struct desc_struct *gdt;
647         int me = raw_smp_processor_id();
648
649         rdmsrl(MSR_EFER, efer);
650         if (efer & EFER_SVME)
651                 return -EBUSY;
652
653         if (!has_svm()) {
654                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655                 return -EINVAL;
656         }
657         sd = per_cpu(svm_data, me);
658         if (!sd) {
659                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660                 return -EINVAL;
661         }
662
663         sd->asid_generation = 1;
664         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665         sd->next_asid = sd->max_asid + 1;
666
667         native_store_gdt(&gdt_descr);
668         gdt = (struct desc_struct *)gdt_descr.address;
669         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671         wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678         }
679
680
681         /*
682          * Get OSVW bits.
683          *
684          * Note that it is possible to have a system with mixed processor
685          * revisions and therefore different OSVW bits. If bits are not the same
686          * on different processors then choose the worst case (i.e. if erratum
687          * is present on one processor and not on another then assume that the
688          * erratum is present everywhere).
689          */
690         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691                 uint64_t len, status = 0;
692                 int err;
693
694                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695                 if (!err)
696                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697                                                       &err);
698
699                 if (err)
700                         osvw_status = osvw_len = 0;
701                 else {
702                         if (len < osvw_len)
703                                 osvw_len = len;
704                         osvw_status |= status;
705                         osvw_status &= (1ULL << osvw_len) - 1;
706                 }
707         } else
708                 osvw_status = osvw_len = 0;
709
710         svm_init_erratum_383();
711
712         amd_pmu_enable_virt();
713
714         return 0;
715 }
716
717 static void svm_cpu_uninit(int cpu)
718 {
719         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721         if (!sd)
722                 return;
723
724         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725         __free_page(sd->save_area);
726         kfree(sd);
727 }
728
729 static int svm_cpu_init(int cpu)
730 {
731         struct svm_cpu_data *sd;
732         int r;
733
734         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735         if (!sd)
736                 return -ENOMEM;
737         sd->cpu = cpu;
738         sd->save_area = alloc_page(GFP_KERNEL);
739         r = -ENOMEM;
740         if (!sd->save_area)
741                 goto err_1;
742
743         per_cpu(svm_data, cpu) = sd;
744
745         return 0;
746
747 err_1:
748         kfree(sd);
749         return r;
750
751 }
752
753 static bool valid_msr_intercept(u32 index)
754 {
755         int i;
756
757         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758                 if (direct_access_msrs[i].index == index)
759                         return true;
760
761         return false;
762 }
763
764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765                                  int read, int write)
766 {
767         u8 bit_read, bit_write;
768         unsigned long tmp;
769         u32 offset;
770
771         /*
772          * If this warning triggers extend the direct_access_msrs list at the
773          * beginning of the file
774          */
775         WARN_ON(!valid_msr_intercept(msr));
776
777         offset    = svm_msrpm_offset(msr);
778         bit_read  = 2 * (msr & 0x0f);
779         bit_write = 2 * (msr & 0x0f) + 1;
780         tmp       = msrpm[offset];
781
782         BUG_ON(offset == MSR_INVALID);
783
784         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
785         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787         msrpm[offset] = tmp;
788 }
789
790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792         int i;
793
794         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797                 if (!direct_access_msrs[i].always)
798                         continue;
799
800                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801         }
802 }
803
804 static void add_msr_offset(u32 offset)
805 {
806         int i;
807
808         for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810                 /* Offset already in list? */
811                 if (msrpm_offsets[i] == offset)
812                         return;
813
814                 /* Slot used by another offset? */
815                 if (msrpm_offsets[i] != MSR_INVALID)
816                         continue;
817
818                 /* Add offset to list */
819                 msrpm_offsets[i] = offset;
820
821                 return;
822         }
823
824         /*
825          * If this BUG triggers the msrpm_offsets table has an overflow. Just
826          * increase MSRPM_OFFSETS in this case.
827          */
828         BUG();
829 }
830
831 static void init_msrpm_offsets(void)
832 {
833         int i;
834
835         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838                 u32 offset;
839
840                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
841                 BUG_ON(offset == MSR_INVALID);
842
843                 add_msr_offset(offset);
844         }
845 }
846
847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849         u32 *msrpm = svm->msrpm;
850
851         svm->vmcb->control.lbr_ctl = 1;
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857
858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860         u32 *msrpm = svm->msrpm;
861
862         svm->vmcb->control.lbr_ctl = 0;
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868
869 #define MTRR_TYPE_UC_MINUS      7
870 #define MTRR2PROTVAL_INVALID 0xff
871
872 static u8 mtrr2protval[8];
873
874 static u8 fallback_mtrr_type(int mtrr)
875 {
876         /*
877          * WT and WP aren't always available in the host PAT.  Treat
878          * them as UC and UC- respectively.  Everything else should be
879          * there.
880          */
881         switch (mtrr)
882         {
883         case MTRR_TYPE_WRTHROUGH:
884                 return MTRR_TYPE_UNCACHABLE;
885         case MTRR_TYPE_WRPROT:
886                 return MTRR_TYPE_UC_MINUS;
887         default:
888                 BUG();
889         }
890 }
891
892 static void build_mtrr2protval(void)
893 {
894         int i;
895         u64 pat;
896
897         for (i = 0; i < 8; i++)
898                 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
899
900         /* Ignore the invalid MTRR types.  */
901         mtrr2protval[2] = 0;
902         mtrr2protval[3] = 0;
903
904         /*
905          * Use host PAT value to figure out the mapping from guest MTRR
906          * values to nested page table PAT/PCD/PWT values.  We do not
907          * want to change the host PAT value every time we enter the
908          * guest.
909          */
910         rdmsrl(MSR_IA32_CR_PAT, pat);
911         for (i = 0; i < 8; i++) {
912                 u8 mtrr = pat >> (8 * i);
913
914                 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
915                         mtrr2protval[mtrr] = __cm_idx2pte(i);
916         }
917
918         for (i = 0; i < 8; i++) {
919                 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
920                         u8 fallback = fallback_mtrr_type(i);
921                         mtrr2protval[i] = mtrr2protval[fallback];
922                         BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
923                 }
924         }
925 }
926
927 static __init int svm_hardware_setup(void)
928 {
929         int cpu;
930         struct page *iopm_pages;
931         void *iopm_va;
932         int r;
933
934         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
935
936         if (!iopm_pages)
937                 return -ENOMEM;
938
939         iopm_va = page_address(iopm_pages);
940         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
941         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
942
943         init_msrpm_offsets();
944
945         if (boot_cpu_has(X86_FEATURE_NX))
946                 kvm_enable_efer_bits(EFER_NX);
947
948         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
949                 kvm_enable_efer_bits(EFER_FFXSR);
950
951         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
952                 u64 max;
953
954                 kvm_has_tsc_control = true;
955
956                 /*
957                  * Make sure the user can only configure tsc_khz values that
958                  * fit into a signed integer.
959                  * A min value is not calculated needed because it will always
960                  * be 1 on all machines and a value of 0 is used to disable
961                  * tsc-scaling for the vcpu.
962                  */
963                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
964
965                 kvm_max_guest_tsc_khz = max;
966         }
967
968         if (nested) {
969                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
970                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
971         }
972
973         for_each_possible_cpu(cpu) {
974                 r = svm_cpu_init(cpu);
975                 if (r)
976                         goto err;
977         }
978
979         if (!boot_cpu_has(X86_FEATURE_NPT))
980                 npt_enabled = false;
981
982         if (npt_enabled && !npt) {
983                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
984                 npt_enabled = false;
985         }
986
987         if (npt_enabled) {
988                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
989                 kvm_enable_tdp();
990         } else
991                 kvm_disable_tdp();
992
993         build_mtrr2protval();
994         return 0;
995
996 err:
997         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
998         iopm_base = 0;
999         return r;
1000 }
1001
1002 static __exit void svm_hardware_unsetup(void)
1003 {
1004         int cpu;
1005
1006         for_each_possible_cpu(cpu)
1007                 svm_cpu_uninit(cpu);
1008
1009         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1010         iopm_base = 0;
1011 }
1012
1013 static void init_seg(struct vmcb_seg *seg)
1014 {
1015         seg->selector = 0;
1016         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1017                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1018         seg->limit = 0xffff;
1019         seg->base = 0;
1020 }
1021
1022 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1023 {
1024         seg->selector = 0;
1025         seg->attrib = SVM_SELECTOR_P_MASK | type;
1026         seg->limit = 0xffff;
1027         seg->base = 0;
1028 }
1029
1030 static u64 __scale_tsc(u64 ratio, u64 tsc)
1031 {
1032         u64 mult, frac, _tsc;
1033
1034         mult  = ratio >> 32;
1035         frac  = ratio & ((1ULL << 32) - 1);
1036
1037         _tsc  = tsc;
1038         _tsc *= mult;
1039         _tsc += (tsc >> 32) * frac;
1040         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1041
1042         return _tsc;
1043 }
1044
1045 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1046 {
1047         struct vcpu_svm *svm = to_svm(vcpu);
1048         u64 _tsc = tsc;
1049
1050         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1051                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1052
1053         return _tsc;
1054 }
1055
1056 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1057 {
1058         struct vcpu_svm *svm = to_svm(vcpu);
1059         u64 ratio;
1060         u64 khz;
1061
1062         /* Guest TSC same frequency as host TSC? */
1063         if (!scale) {
1064                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1065                 return;
1066         }
1067
1068         /* TSC scaling supported? */
1069         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1070                 if (user_tsc_khz > tsc_khz) {
1071                         vcpu->arch.tsc_catchup = 1;
1072                         vcpu->arch.tsc_always_catchup = 1;
1073                 } else
1074                         WARN(1, "user requested TSC rate below hardware speed\n");
1075                 return;
1076         }
1077
1078         khz = user_tsc_khz;
1079
1080         /* TSC scaling required  - calculate ratio */
1081         ratio = khz << 32;
1082         do_div(ratio, tsc_khz);
1083
1084         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1085                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1086                                 user_tsc_khz);
1087                 return;
1088         }
1089         svm->tsc_ratio             = ratio;
1090 }
1091
1092 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1093 {
1094         struct vcpu_svm *svm = to_svm(vcpu);
1095
1096         return svm->vmcb->control.tsc_offset;
1097 }
1098
1099 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1100 {
1101         struct vcpu_svm *svm = to_svm(vcpu);
1102         u64 g_tsc_offset = 0;
1103
1104         if (is_guest_mode(vcpu)) {
1105                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1106                                svm->nested.hsave->control.tsc_offset;
1107                 svm->nested.hsave->control.tsc_offset = offset;
1108         } else
1109                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1110                                            svm->vmcb->control.tsc_offset,
1111                                            offset);
1112
1113         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1114
1115         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1116 }
1117
1118 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1119 {
1120         struct vcpu_svm *svm = to_svm(vcpu);
1121
1122         if (host) {
1123                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1124                         WARN_ON(adjustment < 0);
1125                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1126         }
1127
1128         svm->vmcb->control.tsc_offset += adjustment;
1129         if (is_guest_mode(vcpu))
1130                 svm->nested.hsave->control.tsc_offset += adjustment;
1131         else
1132                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1133                                      svm->vmcb->control.tsc_offset - adjustment,
1134                                      svm->vmcb->control.tsc_offset);
1135
1136         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1137 }
1138
1139 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1140 {
1141         u64 tsc;
1142
1143         tsc = svm_scale_tsc(vcpu, rdtsc());
1144
1145         return target_tsc - tsc;
1146 }
1147
1148 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1149 {
1150         struct kvm_vcpu *vcpu = &svm->vcpu;
1151
1152         /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1153          *
1154          * AMD does not have IPAT.  To emulate it for the case of guests
1155          * with no assigned devices, just set everything to WB.  If guests
1156          * have assigned devices, however, we cannot force WB for RAM
1157          * pages only, so use the guest PAT directly.
1158          */
1159         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1160                 *g_pat = 0x0606060606060606;
1161         else
1162                 *g_pat = vcpu->arch.pat;
1163 }
1164
1165 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1166 {
1167         u8 mtrr;
1168
1169         /*
1170          * 1. MMIO: trust guest MTRR, so same as item 3.
1171          * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1172          * 3. Passthrough: can't guarantee the result, try to trust guest.
1173          */
1174         if (!is_mmio && !kvm_arch_has_assigned_device(vcpu->kvm))
1175                 return 0;
1176
1177         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED) &&
1178             kvm_read_cr0(vcpu) & X86_CR0_CD)
1179                 return _PAGE_NOCACHE;
1180
1181         mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1182         return mtrr2protval[mtrr];
1183 }
1184
1185 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1186 {
1187         struct vmcb_control_area *control = &svm->vmcb->control;
1188         struct vmcb_save_area *save = &svm->vmcb->save;
1189
1190         svm->vcpu.fpu_active = 1;
1191         svm->vcpu.arch.hflags = 0;
1192
1193         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1194         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1195         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1196         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1197         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1198         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1199         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1200
1201         set_dr_intercepts(svm);
1202
1203         set_exception_intercept(svm, PF_VECTOR);
1204         set_exception_intercept(svm, UD_VECTOR);
1205         set_exception_intercept(svm, MC_VECTOR);
1206
1207         set_intercept(svm, INTERCEPT_INTR);
1208         set_intercept(svm, INTERCEPT_NMI);
1209         set_intercept(svm, INTERCEPT_SMI);
1210         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1211         set_intercept(svm, INTERCEPT_RDPMC);
1212         set_intercept(svm, INTERCEPT_CPUID);
1213         set_intercept(svm, INTERCEPT_INVD);
1214         set_intercept(svm, INTERCEPT_HLT);
1215         set_intercept(svm, INTERCEPT_INVLPG);
1216         set_intercept(svm, INTERCEPT_INVLPGA);
1217         set_intercept(svm, INTERCEPT_IOIO_PROT);
1218         set_intercept(svm, INTERCEPT_MSR_PROT);
1219         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1220         set_intercept(svm, INTERCEPT_SHUTDOWN);
1221         set_intercept(svm, INTERCEPT_VMRUN);
1222         set_intercept(svm, INTERCEPT_VMMCALL);
1223         set_intercept(svm, INTERCEPT_VMLOAD);
1224         set_intercept(svm, INTERCEPT_VMSAVE);
1225         set_intercept(svm, INTERCEPT_STGI);
1226         set_intercept(svm, INTERCEPT_CLGI);
1227         set_intercept(svm, INTERCEPT_SKINIT);
1228         set_intercept(svm, INTERCEPT_WBINVD);
1229         set_intercept(svm, INTERCEPT_MONITOR);
1230         set_intercept(svm, INTERCEPT_MWAIT);
1231         set_intercept(svm, INTERCEPT_XSETBV);
1232
1233         control->iopm_base_pa = iopm_base;
1234         control->msrpm_base_pa = __pa(svm->msrpm);
1235         control->int_ctl = V_INTR_MASKING_MASK;
1236
1237         init_seg(&save->es);
1238         init_seg(&save->ss);
1239         init_seg(&save->ds);
1240         init_seg(&save->fs);
1241         init_seg(&save->gs);
1242
1243         save->cs.selector = 0xf000;
1244         save->cs.base = 0xffff0000;
1245         /* Executable/Readable Code Segment */
1246         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1247                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1248         save->cs.limit = 0xffff;
1249
1250         save->gdtr.limit = 0xffff;
1251         save->idtr.limit = 0xffff;
1252
1253         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1254         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1255
1256         if (!init_event)
1257                 svm_set_efer(&svm->vcpu, 0);
1258         save->dr6 = 0xffff0ff0;
1259         kvm_set_rflags(&svm->vcpu, 2);
1260         save->rip = 0x0000fff0;
1261         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1262
1263         /*
1264          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1265          * It also updates the guest-visible cr0 value.
1266          */
1267         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1268         kvm_mmu_reset_context(&svm->vcpu);
1269
1270         save->cr4 = X86_CR4_PAE;
1271         /* rdx = ?? */
1272
1273         if (npt_enabled) {
1274                 /* Setup VMCB for Nested Paging */
1275                 control->nested_ctl = 1;
1276                 clr_intercept(svm, INTERCEPT_INVLPG);
1277                 clr_exception_intercept(svm, PF_VECTOR);
1278                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1279                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1280                 save->g_pat = svm->vcpu.arch.pat;
1281                 svm_set_guest_pat(svm, &save->g_pat);
1282                 save->cr3 = 0;
1283                 save->cr4 = 0;
1284         }
1285         svm->asid_generation = 0;
1286
1287         svm->nested.vmcb = 0;
1288         svm->vcpu.arch.hflags = 0;
1289
1290         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1291                 control->pause_filter_count = 3000;
1292                 set_intercept(svm, INTERCEPT_PAUSE);
1293         }
1294
1295         mark_all_dirty(svm->vmcb);
1296
1297         enable_gif(svm);
1298 }
1299
1300 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1301 {
1302         struct vcpu_svm *svm = to_svm(vcpu);
1303         u32 dummy;
1304         u32 eax = 1;
1305
1306         if (!init_event) {
1307                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1308                                            MSR_IA32_APICBASE_ENABLE;
1309                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1310                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1311         }
1312         init_vmcb(svm, init_event);
1313
1314         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1315         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1316 }
1317
1318 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1319 {
1320         struct vcpu_svm *svm;
1321         struct page *page;
1322         struct page *msrpm_pages;
1323         struct page *hsave_page;
1324         struct page *nested_msrpm_pages;
1325         int err;
1326
1327         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1328         if (!svm) {
1329                 err = -ENOMEM;
1330                 goto out;
1331         }
1332
1333         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1334
1335         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1336         if (err)
1337                 goto free_svm;
1338
1339         err = -ENOMEM;
1340         page = alloc_page(GFP_KERNEL);
1341         if (!page)
1342                 goto uninit;
1343
1344         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1345         if (!msrpm_pages)
1346                 goto free_page1;
1347
1348         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1349         if (!nested_msrpm_pages)
1350                 goto free_page2;
1351
1352         hsave_page = alloc_page(GFP_KERNEL);
1353         if (!hsave_page)
1354                 goto free_page3;
1355
1356         svm->nested.hsave = page_address(hsave_page);
1357
1358         svm->msrpm = page_address(msrpm_pages);
1359         svm_vcpu_init_msrpm(svm->msrpm);
1360
1361         svm->nested.msrpm = page_address(nested_msrpm_pages);
1362         svm_vcpu_init_msrpm(svm->nested.msrpm);
1363
1364         svm->vmcb = page_address(page);
1365         clear_page(svm->vmcb);
1366         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1367         svm->asid_generation = 0;
1368         init_vmcb(svm, false);
1369
1370         svm_init_osvw(&svm->vcpu);
1371
1372         return &svm->vcpu;
1373
1374 free_page3:
1375         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1376 free_page2:
1377         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1378 free_page1:
1379         __free_page(page);
1380 uninit:
1381         kvm_vcpu_uninit(&svm->vcpu);
1382 free_svm:
1383         kmem_cache_free(kvm_vcpu_cache, svm);
1384 out:
1385         return ERR_PTR(err);
1386 }
1387
1388 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1389 {
1390         struct vcpu_svm *svm = to_svm(vcpu);
1391
1392         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1393         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1394         __free_page(virt_to_page(svm->nested.hsave));
1395         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1396         kvm_vcpu_uninit(vcpu);
1397         kmem_cache_free(kvm_vcpu_cache, svm);
1398 }
1399
1400 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1401 {
1402         struct vcpu_svm *svm = to_svm(vcpu);
1403         int i;
1404
1405         if (unlikely(cpu != vcpu->cpu)) {
1406                 svm->asid_generation = 0;
1407                 mark_all_dirty(svm->vmcb);
1408         }
1409
1410 #ifdef CONFIG_X86_64
1411         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1412 #endif
1413         savesegment(fs, svm->host.fs);
1414         savesegment(gs, svm->host.gs);
1415         svm->host.ldt = kvm_read_ldt();
1416
1417         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1418                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1419
1420         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1421             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1422                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1423                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1424         }
1425 }
1426
1427 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1428 {
1429         struct vcpu_svm *svm = to_svm(vcpu);
1430         int i;
1431
1432         ++vcpu->stat.host_state_reload;
1433         kvm_load_ldt(svm->host.ldt);
1434 #ifdef CONFIG_X86_64
1435         loadsegment(fs, svm->host.fs);
1436         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1437         load_gs_index(svm->host.gs);
1438 #else
1439 #ifdef CONFIG_X86_32_LAZY_GS
1440         loadsegment(gs, svm->host.gs);
1441 #endif
1442 #endif
1443         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1444                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1445 }
1446
1447 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1448 {
1449         return to_svm(vcpu)->vmcb->save.rflags;
1450 }
1451
1452 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1453 {
1454        /*
1455         * Any change of EFLAGS.VM is accompained by a reload of SS
1456         * (caused by either a task switch or an inter-privilege IRET),
1457         * so we do not need to update the CPL here.
1458         */
1459         to_svm(vcpu)->vmcb->save.rflags = rflags;
1460 }
1461
1462 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1463 {
1464         switch (reg) {
1465         case VCPU_EXREG_PDPTR:
1466                 BUG_ON(!npt_enabled);
1467                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1468                 break;
1469         default:
1470                 BUG();
1471         }
1472 }
1473
1474 static void svm_set_vintr(struct vcpu_svm *svm)
1475 {
1476         set_intercept(svm, INTERCEPT_VINTR);
1477 }
1478
1479 static void svm_clear_vintr(struct vcpu_svm *svm)
1480 {
1481         clr_intercept(svm, INTERCEPT_VINTR);
1482 }
1483
1484 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1485 {
1486         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1487
1488         switch (seg) {
1489         case VCPU_SREG_CS: return &save->cs;
1490         case VCPU_SREG_DS: return &save->ds;
1491         case VCPU_SREG_ES: return &save->es;
1492         case VCPU_SREG_FS: return &save->fs;
1493         case VCPU_SREG_GS: return &save->gs;
1494         case VCPU_SREG_SS: return &save->ss;
1495         case VCPU_SREG_TR: return &save->tr;
1496         case VCPU_SREG_LDTR: return &save->ldtr;
1497         }
1498         BUG();
1499         return NULL;
1500 }
1501
1502 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1503 {
1504         struct vmcb_seg *s = svm_seg(vcpu, seg);
1505
1506         return s->base;
1507 }
1508
1509 static void svm_get_segment(struct kvm_vcpu *vcpu,
1510                             struct kvm_segment *var, int seg)
1511 {
1512         struct vmcb_seg *s = svm_seg(vcpu, seg);
1513
1514         var->base = s->base;
1515         var->limit = s->limit;
1516         var->selector = s->selector;
1517         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1518         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1519         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1520         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1521         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1522         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1523         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1524
1525         /*
1526          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1527          * However, the SVM spec states that the G bit is not observed by the
1528          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1529          * So let's synthesize a legal G bit for all segments, this helps
1530          * running KVM nested. It also helps cross-vendor migration, because
1531          * Intel's vmentry has a check on the 'G' bit.
1532          */
1533         var->g = s->limit > 0xfffff;
1534
1535         /*
1536          * AMD's VMCB does not have an explicit unusable field, so emulate it
1537          * for cross vendor migration purposes by "not present"
1538          */
1539         var->unusable = !var->present || (var->type == 0);
1540
1541         switch (seg) {
1542         case VCPU_SREG_TR:
1543                 /*
1544                  * Work around a bug where the busy flag in the tr selector
1545                  * isn't exposed
1546                  */
1547                 var->type |= 0x2;
1548                 break;
1549         case VCPU_SREG_DS:
1550         case VCPU_SREG_ES:
1551         case VCPU_SREG_FS:
1552         case VCPU_SREG_GS:
1553                 /*
1554                  * The accessed bit must always be set in the segment
1555                  * descriptor cache, although it can be cleared in the
1556                  * descriptor, the cached bit always remains at 1. Since
1557                  * Intel has a check on this, set it here to support
1558                  * cross-vendor migration.
1559                  */
1560                 if (!var->unusable)
1561                         var->type |= 0x1;
1562                 break;
1563         case VCPU_SREG_SS:
1564                 /*
1565                  * On AMD CPUs sometimes the DB bit in the segment
1566                  * descriptor is left as 1, although the whole segment has
1567                  * been made unusable. Clear it here to pass an Intel VMX
1568                  * entry check when cross vendor migrating.
1569                  */
1570                 if (var->unusable)
1571                         var->db = 0;
1572                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1573                 break;
1574         }
1575 }
1576
1577 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1578 {
1579         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1580
1581         return save->cpl;
1582 }
1583
1584 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1585 {
1586         struct vcpu_svm *svm = to_svm(vcpu);
1587
1588         dt->size = svm->vmcb->save.idtr.limit;
1589         dt->address = svm->vmcb->save.idtr.base;
1590 }
1591
1592 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1593 {
1594         struct vcpu_svm *svm = to_svm(vcpu);
1595
1596         svm->vmcb->save.idtr.limit = dt->size;
1597         svm->vmcb->save.idtr.base = dt->address ;
1598         mark_dirty(svm->vmcb, VMCB_DT);
1599 }
1600
1601 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1602 {
1603         struct vcpu_svm *svm = to_svm(vcpu);
1604
1605         dt->size = svm->vmcb->save.gdtr.limit;
1606         dt->address = svm->vmcb->save.gdtr.base;
1607 }
1608
1609 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1610 {
1611         struct vcpu_svm *svm = to_svm(vcpu);
1612
1613         svm->vmcb->save.gdtr.limit = dt->size;
1614         svm->vmcb->save.gdtr.base = dt->address ;
1615         mark_dirty(svm->vmcb, VMCB_DT);
1616 }
1617
1618 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1619 {
1620 }
1621
1622 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1623 {
1624 }
1625
1626 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1627 {
1628 }
1629
1630 static void update_cr0_intercept(struct vcpu_svm *svm)
1631 {
1632         ulong gcr0 = svm->vcpu.arch.cr0;
1633         u64 *hcr0 = &svm->vmcb->save.cr0;
1634
1635         if (!svm->vcpu.fpu_active)
1636                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1637         else
1638                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1639                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1640
1641         mark_dirty(svm->vmcb, VMCB_CR);
1642
1643         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1644                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1645                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1646         } else {
1647                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1648                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1649         }
1650 }
1651
1652 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1653 {
1654         struct vcpu_svm *svm = to_svm(vcpu);
1655
1656 #ifdef CONFIG_X86_64
1657         if (vcpu->arch.efer & EFER_LME) {
1658                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1659                         vcpu->arch.efer |= EFER_LMA;
1660                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1661                 }
1662
1663                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1664                         vcpu->arch.efer &= ~EFER_LMA;
1665                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1666                 }
1667         }
1668 #endif
1669         vcpu->arch.cr0 = cr0;
1670
1671         if (!npt_enabled)
1672                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1673
1674         if (!vcpu->fpu_active)
1675                 cr0 |= X86_CR0_TS;
1676
1677         /* These are emulated via page tables.  */
1678         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1679
1680         svm->vmcb->save.cr0 = cr0;
1681         mark_dirty(svm->vmcb, VMCB_CR);
1682         update_cr0_intercept(svm);
1683 }
1684
1685 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1686 {
1687         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1688         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1689
1690         if (cr4 & X86_CR4_VMXE)
1691                 return 1;
1692
1693         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1694                 svm_flush_tlb(vcpu);
1695
1696         vcpu->arch.cr4 = cr4;
1697         if (!npt_enabled)
1698                 cr4 |= X86_CR4_PAE;
1699         cr4 |= host_cr4_mce;
1700         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1701         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1702         return 0;
1703 }
1704
1705 static void svm_set_segment(struct kvm_vcpu *vcpu,
1706                             struct kvm_segment *var, int seg)
1707 {
1708         struct vcpu_svm *svm = to_svm(vcpu);
1709         struct vmcb_seg *s = svm_seg(vcpu, seg);
1710
1711         s->base = var->base;
1712         s->limit = var->limit;
1713         s->selector = var->selector;
1714         if (var->unusable)
1715                 s->attrib = 0;
1716         else {
1717                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1718                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1719                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1720                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1721                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1722                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1723                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1724                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1725         }
1726
1727         /*
1728          * This is always accurate, except if SYSRET returned to a segment
1729          * with SS.DPL != 3.  Intel does not have this quirk, and always
1730          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1731          * would entail passing the CPL to userspace and back.
1732          */
1733         if (seg == VCPU_SREG_SS)
1734                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1735
1736         mark_dirty(svm->vmcb, VMCB_SEG);
1737 }
1738
1739 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1740 {
1741         struct vcpu_svm *svm = to_svm(vcpu);
1742
1743         clr_exception_intercept(svm, DB_VECTOR);
1744         clr_exception_intercept(svm, BP_VECTOR);
1745
1746         if (svm->nmi_singlestep)
1747                 set_exception_intercept(svm, DB_VECTOR);
1748
1749         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1750                 if (vcpu->guest_debug &
1751                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1752                         set_exception_intercept(svm, DB_VECTOR);
1753                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1754                         set_exception_intercept(svm, BP_VECTOR);
1755         } else
1756                 vcpu->guest_debug = 0;
1757 }
1758
1759 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1760 {
1761         if (sd->next_asid > sd->max_asid) {
1762                 ++sd->asid_generation;
1763                 sd->next_asid = 1;
1764                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1765         }
1766
1767         svm->asid_generation = sd->asid_generation;
1768         svm->vmcb->control.asid = sd->next_asid++;
1769
1770         mark_dirty(svm->vmcb, VMCB_ASID);
1771 }
1772
1773 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1774 {
1775         return to_svm(vcpu)->vmcb->save.dr6;
1776 }
1777
1778 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1779 {
1780         struct vcpu_svm *svm = to_svm(vcpu);
1781
1782         svm->vmcb->save.dr6 = value;
1783         mark_dirty(svm->vmcb, VMCB_DR);
1784 }
1785
1786 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1787 {
1788         struct vcpu_svm *svm = to_svm(vcpu);
1789
1790         get_debugreg(vcpu->arch.db[0], 0);
1791         get_debugreg(vcpu->arch.db[1], 1);
1792         get_debugreg(vcpu->arch.db[2], 2);
1793         get_debugreg(vcpu->arch.db[3], 3);
1794         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1795         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1796
1797         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1798         set_dr_intercepts(svm);
1799 }
1800
1801 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1802 {
1803         struct vcpu_svm *svm = to_svm(vcpu);
1804
1805         svm->vmcb->save.dr7 = value;
1806         mark_dirty(svm->vmcb, VMCB_DR);
1807 }
1808
1809 static int pf_interception(struct vcpu_svm *svm)
1810 {
1811         u64 fault_address = svm->vmcb->control.exit_info_2;
1812         u32 error_code;
1813         int r = 1;
1814
1815         switch (svm->apf_reason) {
1816         default:
1817                 error_code = svm->vmcb->control.exit_info_1;
1818
1819                 trace_kvm_page_fault(fault_address, error_code);
1820                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1821                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1822                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1823                         svm->vmcb->control.insn_bytes,
1824                         svm->vmcb->control.insn_len);
1825                 break;
1826         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1827                 svm->apf_reason = 0;
1828                 local_irq_disable();
1829                 kvm_async_pf_task_wait(fault_address);
1830                 local_irq_enable();
1831                 break;
1832         case KVM_PV_REASON_PAGE_READY:
1833                 svm->apf_reason = 0;
1834                 local_irq_disable();
1835                 kvm_async_pf_task_wake(fault_address);
1836                 local_irq_enable();
1837                 break;
1838         }
1839         return r;
1840 }
1841
1842 static int db_interception(struct vcpu_svm *svm)
1843 {
1844         struct kvm_run *kvm_run = svm->vcpu.run;
1845
1846         if (!(svm->vcpu.guest_debug &
1847               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1848                 !svm->nmi_singlestep) {
1849                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1850                 return 1;
1851         }
1852
1853         if (svm->nmi_singlestep) {
1854                 svm->nmi_singlestep = false;
1855                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1856                         svm->vmcb->save.rflags &=
1857                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1858                 update_db_bp_intercept(&svm->vcpu);
1859         }
1860
1861         if (svm->vcpu.guest_debug &
1862             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1863                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1864                 kvm_run->debug.arch.pc =
1865                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1866                 kvm_run->debug.arch.exception = DB_VECTOR;
1867                 return 0;
1868         }
1869
1870         return 1;
1871 }
1872
1873 static int bp_interception(struct vcpu_svm *svm)
1874 {
1875         struct kvm_run *kvm_run = svm->vcpu.run;
1876
1877         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1878         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1879         kvm_run->debug.arch.exception = BP_VECTOR;
1880         return 0;
1881 }
1882
1883 static int ud_interception(struct vcpu_svm *svm)
1884 {
1885         int er;
1886
1887         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1888         if (er != EMULATE_DONE)
1889                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1890         return 1;
1891 }
1892
1893 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1894 {
1895         struct vcpu_svm *svm = to_svm(vcpu);
1896
1897         clr_exception_intercept(svm, NM_VECTOR);
1898
1899         svm->vcpu.fpu_active = 1;
1900         update_cr0_intercept(svm);
1901 }
1902
1903 static int nm_interception(struct vcpu_svm *svm)
1904 {
1905         svm_fpu_activate(&svm->vcpu);
1906         return 1;
1907 }
1908
1909 static bool is_erratum_383(void)
1910 {
1911         int err, i;
1912         u64 value;
1913
1914         if (!erratum_383_found)
1915                 return false;
1916
1917         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1918         if (err)
1919                 return false;
1920
1921         /* Bit 62 may or may not be set for this mce */
1922         value &= ~(1ULL << 62);
1923
1924         if (value != 0xb600000000010015ULL)
1925                 return false;
1926
1927         /* Clear MCi_STATUS registers */
1928         for (i = 0; i < 6; ++i)
1929                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1930
1931         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1932         if (!err) {
1933                 u32 low, high;
1934
1935                 value &= ~(1ULL << 2);
1936                 low    = lower_32_bits(value);
1937                 high   = upper_32_bits(value);
1938
1939                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1940         }
1941
1942         /* Flush tlb to evict multi-match entries */
1943         __flush_tlb_all();
1944
1945         return true;
1946 }
1947
1948 static void svm_handle_mce(struct vcpu_svm *svm)
1949 {
1950         if (is_erratum_383()) {
1951                 /*
1952                  * Erratum 383 triggered. Guest state is corrupt so kill the
1953                  * guest.
1954                  */
1955                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1956
1957                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1958
1959                 return;
1960         }
1961
1962         /*
1963          * On an #MC intercept the MCE handler is not called automatically in
1964          * the host. So do it by hand here.
1965          */
1966         asm volatile (
1967                 "int $0x12\n");
1968         /* not sure if we ever come back to this point */
1969
1970         return;
1971 }
1972
1973 static int mc_interception(struct vcpu_svm *svm)
1974 {
1975         return 1;
1976 }
1977
1978 static int shutdown_interception(struct vcpu_svm *svm)
1979 {
1980         struct kvm_run *kvm_run = svm->vcpu.run;
1981
1982         /*
1983          * VMCB is undefined after a SHUTDOWN intercept
1984          * so reinitialize it.
1985          */
1986         clear_page(svm->vmcb);
1987         init_vmcb(svm, false);
1988
1989         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1990         return 0;
1991 }
1992
1993 static int io_interception(struct vcpu_svm *svm)
1994 {
1995         struct kvm_vcpu *vcpu = &svm->vcpu;
1996         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1997         int size, in, string;
1998         unsigned port;
1999
2000         ++svm->vcpu.stat.io_exits;
2001         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2002         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2003         if (string || in)
2004                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2005
2006         port = io_info >> 16;
2007         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2008         svm->next_rip = svm->vmcb->control.exit_info_2;
2009         skip_emulated_instruction(&svm->vcpu);
2010
2011         return kvm_fast_pio_out(vcpu, size, port);
2012 }
2013
2014 static int nmi_interception(struct vcpu_svm *svm)
2015 {
2016         return 1;
2017 }
2018
2019 static int intr_interception(struct vcpu_svm *svm)
2020 {
2021         ++svm->vcpu.stat.irq_exits;
2022         return 1;
2023 }
2024
2025 static int nop_on_interception(struct vcpu_svm *svm)
2026 {
2027         return 1;
2028 }
2029
2030 static int halt_interception(struct vcpu_svm *svm)
2031 {
2032         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2033         return kvm_emulate_halt(&svm->vcpu);
2034 }
2035
2036 static int vmmcall_interception(struct vcpu_svm *svm)
2037 {
2038         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2039         kvm_emulate_hypercall(&svm->vcpu);
2040         return 1;
2041 }
2042
2043 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2044 {
2045         struct vcpu_svm *svm = to_svm(vcpu);
2046
2047         return svm->nested.nested_cr3;
2048 }
2049
2050 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2051 {
2052         struct vcpu_svm *svm = to_svm(vcpu);
2053         u64 cr3 = svm->nested.nested_cr3;
2054         u64 pdpte;
2055         int ret;
2056
2057         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2058                                        offset_in_page(cr3) + index * 8, 8);
2059         if (ret)
2060                 return 0;
2061         return pdpte;
2062 }
2063
2064 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2065                                    unsigned long root)
2066 {
2067         struct vcpu_svm *svm = to_svm(vcpu);
2068
2069         svm->vmcb->control.nested_cr3 = root;
2070         mark_dirty(svm->vmcb, VMCB_NPT);
2071         svm_flush_tlb(vcpu);
2072 }
2073
2074 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2075                                        struct x86_exception *fault)
2076 {
2077         struct vcpu_svm *svm = to_svm(vcpu);
2078
2079         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2080                 /*
2081                  * TODO: track the cause of the nested page fault, and
2082                  * correctly fill in the high bits of exit_info_1.
2083                  */
2084                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2085                 svm->vmcb->control.exit_code_hi = 0;
2086                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2087                 svm->vmcb->control.exit_info_2 = fault->address;
2088         }
2089
2090         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2091         svm->vmcb->control.exit_info_1 |= fault->error_code;
2092
2093         /*
2094          * The present bit is always zero for page structure faults on real
2095          * hardware.
2096          */
2097         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2098                 svm->vmcb->control.exit_info_1 &= ~1;
2099
2100         nested_svm_vmexit(svm);
2101 }
2102
2103 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2104 {
2105         WARN_ON(mmu_is_nested(vcpu));
2106         kvm_init_shadow_mmu(vcpu);
2107         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2108         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2109         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2110         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2111         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2112         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2113         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2114 }
2115
2116 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2117 {
2118         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2119 }
2120
2121 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2122 {
2123         if (!(svm->vcpu.arch.efer & EFER_SVME)
2124             || !is_paging(&svm->vcpu)) {
2125                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2126                 return 1;
2127         }
2128
2129         if (svm->vmcb->save.cpl) {
2130                 kvm_inject_gp(&svm->vcpu, 0);
2131                 return 1;
2132         }
2133
2134        return 0;
2135 }
2136
2137 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2138                                       bool has_error_code, u32 error_code)
2139 {
2140         int vmexit;
2141
2142         if (!is_guest_mode(&svm->vcpu))
2143                 return 0;
2144
2145         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2146         svm->vmcb->control.exit_code_hi = 0;
2147         svm->vmcb->control.exit_info_1 = error_code;
2148         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2149
2150         vmexit = nested_svm_intercept(svm);
2151         if (vmexit == NESTED_EXIT_DONE)
2152                 svm->nested.exit_required = true;
2153
2154         return vmexit;
2155 }
2156
2157 /* This function returns true if it is save to enable the irq window */
2158 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2159 {
2160         if (!is_guest_mode(&svm->vcpu))
2161                 return true;
2162
2163         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2164                 return true;
2165
2166         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2167                 return false;
2168
2169         /*
2170          * if vmexit was already requested (by intercepted exception
2171          * for instance) do not overwrite it with "external interrupt"
2172          * vmexit.
2173          */
2174         if (svm->nested.exit_required)
2175                 return false;
2176
2177         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2178         svm->vmcb->control.exit_info_1 = 0;
2179         svm->vmcb->control.exit_info_2 = 0;
2180
2181         if (svm->nested.intercept & 1ULL) {
2182                 /*
2183                  * The #vmexit can't be emulated here directly because this
2184                  * code path runs with irqs and preemption disabled. A
2185                  * #vmexit emulation might sleep. Only signal request for
2186                  * the #vmexit here.
2187                  */
2188                 svm->nested.exit_required = true;
2189                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2190                 return false;
2191         }
2192
2193         return true;
2194 }
2195
2196 /* This function returns true if it is save to enable the nmi window */
2197 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2198 {
2199         if (!is_guest_mode(&svm->vcpu))
2200                 return true;
2201
2202         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2203                 return true;
2204
2205         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2206         svm->nested.exit_required = true;
2207
2208         return false;
2209 }
2210
2211 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2212 {
2213         struct page *page;
2214
2215         might_sleep();
2216
2217         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2218         if (is_error_page(page))
2219                 goto error;
2220
2221         *_page = page;
2222
2223         return kmap(page);
2224
2225 error:
2226         kvm_inject_gp(&svm->vcpu, 0);
2227
2228         return NULL;
2229 }
2230
2231 static void nested_svm_unmap(struct page *page)
2232 {
2233         kunmap(page);
2234         kvm_release_page_dirty(page);
2235 }
2236
2237 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2238 {
2239         unsigned port, size, iopm_len;
2240         u16 val, mask;
2241         u8 start_bit;
2242         u64 gpa;
2243
2244         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2245                 return NESTED_EXIT_HOST;
2246
2247         port = svm->vmcb->control.exit_info_1 >> 16;
2248         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2249                 SVM_IOIO_SIZE_SHIFT;
2250         gpa  = svm->nested.vmcb_iopm + (port / 8);
2251         start_bit = port % 8;
2252         iopm_len = (start_bit + size > 8) ? 2 : 1;
2253         mask = (0xf >> (4 - size)) << start_bit;
2254         val = 0;
2255
2256         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2257                 return NESTED_EXIT_DONE;
2258
2259         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2260 }
2261
2262 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2263 {
2264         u32 offset, msr, value;
2265         int write, mask;
2266
2267         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2268                 return NESTED_EXIT_HOST;
2269
2270         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2271         offset = svm_msrpm_offset(msr);
2272         write  = svm->vmcb->control.exit_info_1 & 1;
2273         mask   = 1 << ((2 * (msr & 0xf)) + write);
2274
2275         if (offset == MSR_INVALID)
2276                 return NESTED_EXIT_DONE;
2277
2278         /* Offset is in 32 bit units but need in 8 bit units */
2279         offset *= 4;
2280
2281         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2282                 return NESTED_EXIT_DONE;
2283
2284         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2285 }
2286
2287 static int nested_svm_exit_special(struct vcpu_svm *svm)
2288 {
2289         u32 exit_code = svm->vmcb->control.exit_code;
2290
2291         switch (exit_code) {
2292         case SVM_EXIT_INTR:
2293         case SVM_EXIT_NMI:
2294         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2295                 return NESTED_EXIT_HOST;
2296         case SVM_EXIT_NPF:
2297                 /* For now we are always handling NPFs when using them */
2298                 if (npt_enabled)
2299                         return NESTED_EXIT_HOST;
2300                 break;
2301         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2302                 /* When we're shadowing, trap PFs, but not async PF */
2303                 if (!npt_enabled && svm->apf_reason == 0)
2304                         return NESTED_EXIT_HOST;
2305                 break;
2306         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2307                 nm_interception(svm);
2308                 break;
2309         default:
2310                 break;
2311         }
2312
2313         return NESTED_EXIT_CONTINUE;
2314 }
2315
2316 /*
2317  * If this function returns true, this #vmexit was already handled
2318  */
2319 static int nested_svm_intercept(struct vcpu_svm *svm)
2320 {
2321         u32 exit_code = svm->vmcb->control.exit_code;
2322         int vmexit = NESTED_EXIT_HOST;
2323
2324         switch (exit_code) {
2325         case SVM_EXIT_MSR:
2326                 vmexit = nested_svm_exit_handled_msr(svm);
2327                 break;
2328         case SVM_EXIT_IOIO:
2329                 vmexit = nested_svm_intercept_ioio(svm);
2330                 break;
2331         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2332                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2333                 if (svm->nested.intercept_cr & bit)
2334                         vmexit = NESTED_EXIT_DONE;
2335                 break;
2336         }
2337         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2338                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2339                 if (svm->nested.intercept_dr & bit)
2340                         vmexit = NESTED_EXIT_DONE;
2341                 break;
2342         }
2343         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2344                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2345                 if (svm->nested.intercept_exceptions & excp_bits)
2346                         vmexit = NESTED_EXIT_DONE;
2347                 /* async page fault always cause vmexit */
2348                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2349                          svm->apf_reason != 0)
2350                         vmexit = NESTED_EXIT_DONE;
2351                 break;
2352         }
2353         case SVM_EXIT_ERR: {
2354                 vmexit = NESTED_EXIT_DONE;
2355                 break;
2356         }
2357         default: {
2358                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2359                 if (svm->nested.intercept & exit_bits)
2360                         vmexit = NESTED_EXIT_DONE;
2361         }
2362         }
2363
2364         return vmexit;
2365 }
2366
2367 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2368 {
2369         int vmexit;
2370
2371         vmexit = nested_svm_intercept(svm);
2372
2373         if (vmexit == NESTED_EXIT_DONE)
2374                 nested_svm_vmexit(svm);
2375
2376         return vmexit;
2377 }
2378
2379 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2380 {
2381         struct vmcb_control_area *dst  = &dst_vmcb->control;
2382         struct vmcb_control_area *from = &from_vmcb->control;
2383
2384         dst->intercept_cr         = from->intercept_cr;
2385         dst->intercept_dr         = from->intercept_dr;
2386         dst->intercept_exceptions = from->intercept_exceptions;
2387         dst->intercept            = from->intercept;
2388         dst->iopm_base_pa         = from->iopm_base_pa;
2389         dst->msrpm_base_pa        = from->msrpm_base_pa;
2390         dst->tsc_offset           = from->tsc_offset;
2391         dst->asid                 = from->asid;
2392         dst->tlb_ctl              = from->tlb_ctl;
2393         dst->int_ctl              = from->int_ctl;
2394         dst->int_vector           = from->int_vector;
2395         dst->int_state            = from->int_state;
2396         dst->exit_code            = from->exit_code;
2397         dst->exit_code_hi         = from->exit_code_hi;
2398         dst->exit_info_1          = from->exit_info_1;
2399         dst->exit_info_2          = from->exit_info_2;
2400         dst->exit_int_info        = from->exit_int_info;
2401         dst->exit_int_info_err    = from->exit_int_info_err;
2402         dst->nested_ctl           = from->nested_ctl;
2403         dst->event_inj            = from->event_inj;
2404         dst->event_inj_err        = from->event_inj_err;
2405         dst->nested_cr3           = from->nested_cr3;
2406         dst->lbr_ctl              = from->lbr_ctl;
2407 }
2408
2409 static int nested_svm_vmexit(struct vcpu_svm *svm)
2410 {
2411         struct vmcb *nested_vmcb;
2412         struct vmcb *hsave = svm->nested.hsave;
2413         struct vmcb *vmcb = svm->vmcb;
2414         struct page *page;
2415
2416         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2417                                        vmcb->control.exit_info_1,
2418                                        vmcb->control.exit_info_2,
2419                                        vmcb->control.exit_int_info,
2420                                        vmcb->control.exit_int_info_err,
2421                                        KVM_ISA_SVM);
2422
2423         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2424         if (!nested_vmcb)
2425                 return 1;
2426
2427         /* Exit Guest-Mode */
2428         leave_guest_mode(&svm->vcpu);
2429         svm->nested.vmcb = 0;
2430
2431         /* Give the current vmcb to the guest */
2432         disable_gif(svm);
2433
2434         nested_vmcb->save.es     = vmcb->save.es;
2435         nested_vmcb->save.cs     = vmcb->save.cs;
2436         nested_vmcb->save.ss     = vmcb->save.ss;
2437         nested_vmcb->save.ds     = vmcb->save.ds;
2438         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2439         nested_vmcb->save.idtr   = vmcb->save.idtr;
2440         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2441         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2442         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2443         nested_vmcb->save.cr2    = vmcb->save.cr2;
2444         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2445         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2446         nested_vmcb->save.rip    = vmcb->save.rip;
2447         nested_vmcb->save.rsp    = vmcb->save.rsp;
2448         nested_vmcb->save.rax    = vmcb->save.rax;
2449         nested_vmcb->save.dr7    = vmcb->save.dr7;
2450         nested_vmcb->save.dr6    = vmcb->save.dr6;
2451         nested_vmcb->save.cpl    = vmcb->save.cpl;
2452
2453         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2454         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2455         nested_vmcb->control.int_state         = vmcb->control.int_state;
2456         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2457         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2458         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2459         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2460         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2461         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2462         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2463
2464         /*
2465          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2466          * to make sure that we do not lose injected events. So check event_inj
2467          * here and copy it to exit_int_info if it is valid.
2468          * Exit_int_info and event_inj can't be both valid because the case
2469          * below only happens on a VMRUN instruction intercept which has
2470          * no valid exit_int_info set.
2471          */
2472         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2473                 struct vmcb_control_area *nc = &nested_vmcb->control;
2474
2475                 nc->exit_int_info     = vmcb->control.event_inj;
2476                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2477         }
2478
2479         nested_vmcb->control.tlb_ctl           = 0;
2480         nested_vmcb->control.event_inj         = 0;
2481         nested_vmcb->control.event_inj_err     = 0;
2482
2483         /* We always set V_INTR_MASKING and remember the old value in hflags */
2484         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2485                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2486
2487         /* Restore the original control entries */
2488         copy_vmcb_control_area(vmcb, hsave);
2489
2490         kvm_clear_exception_queue(&svm->vcpu);
2491         kvm_clear_interrupt_queue(&svm->vcpu);
2492
2493         svm->nested.nested_cr3 = 0;
2494
2495         /* Restore selected save entries */
2496         svm->vmcb->save.es = hsave->save.es;
2497         svm->vmcb->save.cs = hsave->save.cs;
2498         svm->vmcb->save.ss = hsave->save.ss;
2499         svm->vmcb->save.ds = hsave->save.ds;
2500         svm->vmcb->save.gdtr = hsave->save.gdtr;
2501         svm->vmcb->save.idtr = hsave->save.idtr;
2502         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2503         svm_set_efer(&svm->vcpu, hsave->save.efer);
2504         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2505         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2506         if (npt_enabled) {
2507                 svm->vmcb->save.cr3 = hsave->save.cr3;
2508                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2509         } else {
2510                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2511         }
2512         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2513         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2514         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2515         svm->vmcb->save.dr7 = 0;
2516         svm->vmcb->save.cpl = 0;
2517         svm->vmcb->control.exit_int_info = 0;
2518
2519         mark_all_dirty(svm->vmcb);
2520
2521         nested_svm_unmap(page);
2522
2523         nested_svm_uninit_mmu_context(&svm->vcpu);
2524         kvm_mmu_reset_context(&svm->vcpu);
2525         kvm_mmu_load(&svm->vcpu);
2526
2527         return 0;
2528 }
2529
2530 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2531 {
2532         /*
2533          * This function merges the msr permission bitmaps of kvm and the
2534          * nested vmcb. It is optimized in that it only merges the parts where
2535          * the kvm msr permission bitmap may contain zero bits
2536          */
2537         int i;
2538
2539         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2540                 return true;
2541
2542         for (i = 0; i < MSRPM_OFFSETS; i++) {
2543                 u32 value, p;
2544                 u64 offset;
2545
2546                 if (msrpm_offsets[i] == 0xffffffff)
2547                         break;
2548
2549                 p      = msrpm_offsets[i];
2550                 offset = svm->nested.vmcb_msrpm + (p * 4);
2551
2552                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2553                         return false;
2554
2555                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2556         }
2557
2558         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2559
2560         return true;
2561 }
2562
2563 static bool nested_vmcb_checks(struct vmcb *vmcb)
2564 {
2565         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2566                 return false;
2567
2568         if (vmcb->control.asid == 0)
2569                 return false;
2570
2571         if (vmcb->control.nested_ctl && !npt_enabled)
2572                 return false;
2573
2574         return true;
2575 }
2576
2577 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2578 {
2579         struct vmcb *nested_vmcb;
2580         struct vmcb *hsave = svm->nested.hsave;
2581         struct vmcb *vmcb = svm->vmcb;
2582         struct page *page;
2583         u64 vmcb_gpa;
2584
2585         vmcb_gpa = svm->vmcb->save.rax;
2586
2587         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2588         if (!nested_vmcb)
2589                 return false;
2590
2591         if (!nested_vmcb_checks(nested_vmcb)) {
2592                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2593                 nested_vmcb->control.exit_code_hi = 0;
2594                 nested_vmcb->control.exit_info_1  = 0;
2595                 nested_vmcb->control.exit_info_2  = 0;
2596
2597                 nested_svm_unmap(page);
2598
2599                 return false;
2600         }
2601
2602         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2603                                nested_vmcb->save.rip,
2604                                nested_vmcb->control.int_ctl,
2605                                nested_vmcb->control.event_inj,
2606                                nested_vmcb->control.nested_ctl);
2607
2608         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2609                                     nested_vmcb->control.intercept_cr >> 16,
2610                                     nested_vmcb->control.intercept_exceptions,
2611                                     nested_vmcb->control.intercept);
2612
2613         /* Clear internal status */
2614         kvm_clear_exception_queue(&svm->vcpu);
2615         kvm_clear_interrupt_queue(&svm->vcpu);
2616
2617         /*
2618          * Save the old vmcb, so we don't need to pick what we save, but can
2619          * restore everything when a VMEXIT occurs
2620          */
2621         hsave->save.es     = vmcb->save.es;
2622         hsave->save.cs     = vmcb->save.cs;
2623         hsave->save.ss     = vmcb->save.ss;
2624         hsave->save.ds     = vmcb->save.ds;
2625         hsave->save.gdtr   = vmcb->save.gdtr;
2626         hsave->save.idtr   = vmcb->save.idtr;
2627         hsave->save.efer   = svm->vcpu.arch.efer;
2628         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2629         hsave->save.cr4    = svm->vcpu.arch.cr4;
2630         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2631         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2632         hsave->save.rsp    = vmcb->save.rsp;
2633         hsave->save.rax    = vmcb->save.rax;
2634         if (npt_enabled)
2635                 hsave->save.cr3    = vmcb->save.cr3;
2636         else
2637                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2638
2639         copy_vmcb_control_area(hsave, vmcb);
2640
2641         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2642                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2643         else
2644                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2645
2646         if (nested_vmcb->control.nested_ctl) {
2647                 kvm_mmu_unload(&svm->vcpu);
2648                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2649                 nested_svm_init_mmu_context(&svm->vcpu);
2650         }
2651
2652         /* Load the nested guest state */
2653         svm->vmcb->save.es = nested_vmcb->save.es;
2654         svm->vmcb->save.cs = nested_vmcb->save.cs;
2655         svm->vmcb->save.ss = nested_vmcb->save.ss;
2656         svm->vmcb->save.ds = nested_vmcb->save.ds;
2657         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2658         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2659         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2660         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2661         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2662         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2663         if (npt_enabled) {
2664                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2665                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2666         } else
2667                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2668
2669         /* Guest paging mode is active - reset mmu */
2670         kvm_mmu_reset_context(&svm->vcpu);
2671
2672         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2673         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2674         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2675         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2676
2677         /* In case we don't even reach vcpu_run, the fields are not updated */
2678         svm->vmcb->save.rax = nested_vmcb->save.rax;
2679         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2680         svm->vmcb->save.rip = nested_vmcb->save.rip;
2681         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2682         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2683         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2684
2685         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2686         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2687
2688         /* cache intercepts */
2689         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2690         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2691         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2692         svm->nested.intercept            = nested_vmcb->control.intercept;
2693
2694         svm_flush_tlb(&svm->vcpu);
2695         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2696         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2697                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2698         else
2699                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2700
2701         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2702                 /* We only want the cr8 intercept bits of the guest */
2703                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2704                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2705         }
2706
2707         /* We don't want to see VMMCALLs from a nested guest */
2708         clr_intercept(svm, INTERCEPT_VMMCALL);
2709
2710         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2711         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2712         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2713         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2714         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2715         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2716
2717         nested_svm_unmap(page);
2718
2719         /* Enter Guest-Mode */
2720         enter_guest_mode(&svm->vcpu);
2721
2722         /*
2723          * Merge guest and host intercepts - must be called  with vcpu in
2724          * guest-mode to take affect here
2725          */
2726         recalc_intercepts(svm);
2727
2728         svm->nested.vmcb = vmcb_gpa;
2729
2730         enable_gif(svm);
2731
2732         mark_all_dirty(svm->vmcb);
2733
2734         return true;
2735 }
2736
2737 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2738 {
2739         to_vmcb->save.fs = from_vmcb->save.fs;
2740         to_vmcb->save.gs = from_vmcb->save.gs;
2741         to_vmcb->save.tr = from_vmcb->save.tr;
2742         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2743         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2744         to_vmcb->save.star = from_vmcb->save.star;
2745         to_vmcb->save.lstar = from_vmcb->save.lstar;
2746         to_vmcb->save.cstar = from_vmcb->save.cstar;
2747         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2748         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2749         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2750         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2751 }
2752
2753 static int vmload_interception(struct vcpu_svm *svm)
2754 {
2755         struct vmcb *nested_vmcb;
2756         struct page *page;
2757
2758         if (nested_svm_check_permissions(svm))
2759                 return 1;
2760
2761         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2762         if (!nested_vmcb)
2763                 return 1;
2764
2765         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2766         skip_emulated_instruction(&svm->vcpu);
2767
2768         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2769         nested_svm_unmap(page);
2770
2771         return 1;
2772 }
2773
2774 static int vmsave_interception(struct vcpu_svm *svm)
2775 {
2776         struct vmcb *nested_vmcb;
2777         struct page *page;
2778
2779         if (nested_svm_check_permissions(svm))
2780                 return 1;
2781
2782         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2783         if (!nested_vmcb)
2784                 return 1;
2785
2786         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2787         skip_emulated_instruction(&svm->vcpu);
2788
2789         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2790         nested_svm_unmap(page);
2791
2792         return 1;
2793 }
2794
2795 static int vmrun_interception(struct vcpu_svm *svm)
2796 {
2797         if (nested_svm_check_permissions(svm))
2798                 return 1;
2799
2800         /* Save rip after vmrun instruction */
2801         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2802
2803         if (!nested_svm_vmrun(svm))
2804                 return 1;
2805
2806         if (!nested_svm_vmrun_msrpm(svm))
2807                 goto failed;
2808
2809         return 1;
2810
2811 failed:
2812
2813         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2814         svm->vmcb->control.exit_code_hi = 0;
2815         svm->vmcb->control.exit_info_1  = 0;
2816         svm->vmcb->control.exit_info_2  = 0;
2817
2818         nested_svm_vmexit(svm);
2819
2820         return 1;
2821 }
2822
2823 static int stgi_interception(struct vcpu_svm *svm)
2824 {
2825         if (nested_svm_check_permissions(svm))
2826                 return 1;
2827
2828         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2829         skip_emulated_instruction(&svm->vcpu);
2830         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2831
2832         enable_gif(svm);
2833
2834         return 1;
2835 }
2836
2837 static int clgi_interception(struct vcpu_svm *svm)
2838 {
2839         if (nested_svm_check_permissions(svm))
2840                 return 1;
2841
2842         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2843         skip_emulated_instruction(&svm->vcpu);
2844
2845         disable_gif(svm);
2846
2847         /* After a CLGI no interrupts should come */
2848         svm_clear_vintr(svm);
2849         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2850
2851         mark_dirty(svm->vmcb, VMCB_INTR);
2852
2853         return 1;
2854 }
2855
2856 static int invlpga_interception(struct vcpu_svm *svm)
2857 {
2858         struct kvm_vcpu *vcpu = &svm->vcpu;
2859
2860         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2861                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2862
2863         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2864         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2865
2866         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2867         skip_emulated_instruction(&svm->vcpu);
2868         return 1;
2869 }
2870
2871 static int skinit_interception(struct vcpu_svm *svm)
2872 {
2873         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2874
2875         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2876         return 1;
2877 }
2878
2879 static int wbinvd_interception(struct vcpu_svm *svm)
2880 {
2881         kvm_emulate_wbinvd(&svm->vcpu);
2882         return 1;
2883 }
2884
2885 static int xsetbv_interception(struct vcpu_svm *svm)
2886 {
2887         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2888         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2889
2890         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2891                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2892                 skip_emulated_instruction(&svm->vcpu);
2893         }
2894
2895         return 1;
2896 }
2897
2898 static int task_switch_interception(struct vcpu_svm *svm)
2899 {
2900         u16 tss_selector;
2901         int reason;
2902         int int_type = svm->vmcb->control.exit_int_info &
2903                 SVM_EXITINTINFO_TYPE_MASK;
2904         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2905         uint32_t type =
2906                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2907         uint32_t idt_v =
2908                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2909         bool has_error_code = false;
2910         u32 error_code = 0;
2911
2912         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2913
2914         if (svm->vmcb->control.exit_info_2 &
2915             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2916                 reason = TASK_SWITCH_IRET;
2917         else if (svm->vmcb->control.exit_info_2 &
2918                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2919                 reason = TASK_SWITCH_JMP;
2920         else if (idt_v)
2921                 reason = TASK_SWITCH_GATE;
2922         else
2923                 reason = TASK_SWITCH_CALL;
2924
2925         if (reason == TASK_SWITCH_GATE) {
2926                 switch (type) {
2927                 case SVM_EXITINTINFO_TYPE_NMI:
2928                         svm->vcpu.arch.nmi_injected = false;
2929                         break;
2930                 case SVM_EXITINTINFO_TYPE_EXEPT:
2931                         if (svm->vmcb->control.exit_info_2 &
2932                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2933                                 has_error_code = true;
2934                                 error_code =
2935                                         (u32)svm->vmcb->control.exit_info_2;
2936                         }
2937                         kvm_clear_exception_queue(&svm->vcpu);
2938                         break;
2939                 case SVM_EXITINTINFO_TYPE_INTR:
2940                         kvm_clear_interrupt_queue(&svm->vcpu);
2941                         break;
2942                 default:
2943                         break;
2944                 }
2945         }
2946
2947         if (reason != TASK_SWITCH_GATE ||
2948             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2949             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2950              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2951                 skip_emulated_instruction(&svm->vcpu);
2952
2953         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2954                 int_vec = -1;
2955
2956         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2957                                 has_error_code, error_code) == EMULATE_FAIL) {
2958                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2959                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2960                 svm->vcpu.run->internal.ndata = 0;
2961                 return 0;
2962         }
2963         return 1;
2964 }
2965
2966 static int cpuid_interception(struct vcpu_svm *svm)
2967 {
2968         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2969         kvm_emulate_cpuid(&svm->vcpu);
2970         return 1;
2971 }
2972
2973 static int iret_interception(struct vcpu_svm *svm)
2974 {
2975         ++svm->vcpu.stat.nmi_window_exits;
2976         clr_intercept(svm, INTERCEPT_IRET);
2977         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2978         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2979         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2980         return 1;
2981 }
2982
2983 static int invlpg_interception(struct vcpu_svm *svm)
2984 {
2985         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2986                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2987
2988         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2989         skip_emulated_instruction(&svm->vcpu);
2990         return 1;
2991 }
2992
2993 static int emulate_on_interception(struct vcpu_svm *svm)
2994 {
2995         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2996 }
2997
2998 static int rdpmc_interception(struct vcpu_svm *svm)
2999 {
3000         int err;
3001
3002         if (!static_cpu_has(X86_FEATURE_NRIPS))
3003                 return emulate_on_interception(svm);
3004
3005         err = kvm_rdpmc(&svm->vcpu);
3006         kvm_complete_insn_gp(&svm->vcpu, err);
3007
3008         return 1;
3009 }
3010
3011 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3012                                             unsigned long val)
3013 {
3014         unsigned long cr0 = svm->vcpu.arch.cr0;
3015         bool ret = false;
3016         u64 intercept;
3017
3018         intercept = svm->nested.intercept;
3019
3020         if (!is_guest_mode(&svm->vcpu) ||
3021             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3022                 return false;
3023
3024         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3025         val &= ~SVM_CR0_SELECTIVE_MASK;
3026
3027         if (cr0 ^ val) {
3028                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3029                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3030         }
3031
3032         return ret;
3033 }
3034
3035 #define CR_VALID (1ULL << 63)
3036
3037 static int cr_interception(struct vcpu_svm *svm)
3038 {
3039         int reg, cr;
3040         unsigned long val;
3041         int err;
3042
3043         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3044                 return emulate_on_interception(svm);
3045
3046         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3047                 return emulate_on_interception(svm);
3048
3049         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3050         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3051                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3052         else
3053                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3054
3055         err = 0;
3056         if (cr >= 16) { /* mov to cr */
3057                 cr -= 16;
3058                 val = kvm_register_read(&svm->vcpu, reg);
3059                 switch (cr) {
3060                 case 0:
3061                         if (!check_selective_cr0_intercepted(svm, val))
3062                                 err = kvm_set_cr0(&svm->vcpu, val);
3063                         else
3064                                 return 1;
3065
3066                         break;
3067                 case 3:
3068                         err = kvm_set_cr3(&svm->vcpu, val);
3069                         break;
3070                 case 4:
3071                         err = kvm_set_cr4(&svm->vcpu, val);
3072                         break;
3073                 case 8:
3074                         err = kvm_set_cr8(&svm->vcpu, val);
3075                         break;
3076                 default:
3077                         WARN(1, "unhandled write to CR%d", cr);
3078                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3079                         return 1;
3080                 }
3081         } else { /* mov from cr */
3082                 switch (cr) {
3083                 case 0:
3084                         val = kvm_read_cr0(&svm->vcpu);
3085                         break;
3086                 case 2:
3087                         val = svm->vcpu.arch.cr2;
3088                         break;
3089                 case 3:
3090                         val = kvm_read_cr3(&svm->vcpu);
3091                         break;
3092                 case 4:
3093                         val = kvm_read_cr4(&svm->vcpu);
3094                         break;
3095                 case 8:
3096                         val = kvm_get_cr8(&svm->vcpu);
3097                         break;
3098                 default:
3099                         WARN(1, "unhandled read from CR%d", cr);
3100                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3101                         return 1;
3102                 }
3103                 kvm_register_write(&svm->vcpu, reg, val);
3104         }
3105         kvm_complete_insn_gp(&svm->vcpu, err);
3106
3107         return 1;
3108 }
3109
3110 static int dr_interception(struct vcpu_svm *svm)
3111 {
3112         int reg, dr;
3113         unsigned long val;
3114
3115         if (svm->vcpu.guest_debug == 0) {
3116                 /*
3117                  * No more DR vmexits; force a reload of the debug registers
3118                  * and reenter on this instruction.  The next vmexit will
3119                  * retrieve the full state of the debug registers.
3120                  */
3121                 clr_dr_intercepts(svm);
3122                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3123                 return 1;
3124         }
3125
3126         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3127                 return emulate_on_interception(svm);
3128
3129         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3130         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3131
3132         if (dr >= 16) { /* mov to DRn */
3133                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3134                         return 1;
3135                 val = kvm_register_read(&svm->vcpu, reg);
3136                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3137         } else {
3138                 if (!kvm_require_dr(&svm->vcpu, dr))
3139                         return 1;
3140                 kvm_get_dr(&svm->vcpu, dr, &val);
3141                 kvm_register_write(&svm->vcpu, reg, val);
3142         }
3143
3144         skip_emulated_instruction(&svm->vcpu);
3145
3146         return 1;
3147 }
3148
3149 static int cr8_write_interception(struct vcpu_svm *svm)
3150 {
3151         struct kvm_run *kvm_run = svm->vcpu.run;
3152         int r;
3153
3154         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3155         /* instruction emulation calls kvm_set_cr8() */
3156         r = cr_interception(svm);
3157         if (irqchip_in_kernel(svm->vcpu.kvm))
3158                 return r;
3159         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3160                 return r;
3161         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3162         return 0;
3163 }
3164
3165 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3166 {
3167         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3168         return vmcb->control.tsc_offset +
3169                 svm_scale_tsc(vcpu, host_tsc);
3170 }
3171
3172 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3173 {
3174         struct vcpu_svm *svm = to_svm(vcpu);
3175
3176         switch (msr_info->index) {
3177         case MSR_IA32_TSC: {
3178                 msr_info->data = svm->vmcb->control.tsc_offset +
3179                         svm_scale_tsc(vcpu, rdtsc());
3180
3181                 break;
3182         }
3183         case MSR_STAR:
3184                 msr_info->data = svm->vmcb->save.star;
3185                 break;
3186 #ifdef CONFIG_X86_64
3187         case MSR_LSTAR:
3188                 msr_info->data = svm->vmcb->save.lstar;
3189                 break;
3190         case MSR_CSTAR:
3191                 msr_info->data = svm->vmcb->save.cstar;
3192                 break;
3193         case MSR_KERNEL_GS_BASE:
3194                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3195                 break;
3196         case MSR_SYSCALL_MASK:
3197                 msr_info->data = svm->vmcb->save.sfmask;
3198                 break;
3199 #endif
3200         case MSR_IA32_SYSENTER_CS:
3201                 msr_info->data = svm->vmcb->save.sysenter_cs;
3202                 break;
3203         case MSR_IA32_SYSENTER_EIP:
3204                 msr_info->data = svm->sysenter_eip;
3205                 break;
3206         case MSR_IA32_SYSENTER_ESP:
3207                 msr_info->data = svm->sysenter_esp;
3208                 break;
3209         /*
3210          * Nobody will change the following 5 values in the VMCB so we can
3211          * safely return them on rdmsr. They will always be 0 until LBRV is
3212          * implemented.
3213          */
3214         case MSR_IA32_DEBUGCTLMSR:
3215                 msr_info->data = svm->vmcb->save.dbgctl;
3216                 break;
3217         case MSR_IA32_LASTBRANCHFROMIP:
3218                 msr_info->data = svm->vmcb->save.br_from;
3219                 break;
3220         case MSR_IA32_LASTBRANCHTOIP:
3221                 msr_info->data = svm->vmcb->save.br_to;
3222                 break;
3223         case MSR_IA32_LASTINTFROMIP:
3224                 msr_info->data = svm->vmcb->save.last_excp_from;
3225                 break;
3226         case MSR_IA32_LASTINTTOIP:
3227                 msr_info->data = svm->vmcb->save.last_excp_to;
3228                 break;
3229         case MSR_VM_HSAVE_PA:
3230                 msr_info->data = svm->nested.hsave_msr;
3231                 break;
3232         case MSR_VM_CR:
3233                 msr_info->data = svm->nested.vm_cr_msr;
3234                 break;
3235         case MSR_IA32_UCODE_REV:
3236                 msr_info->data = 0x01000065;
3237                 break;
3238         default:
3239                 return kvm_get_msr_common(vcpu, msr_info);
3240         }
3241         return 0;
3242 }
3243
3244 static int rdmsr_interception(struct vcpu_svm *svm)
3245 {
3246         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3247         struct msr_data msr_info;
3248
3249         msr_info.index = ecx;
3250         msr_info.host_initiated = false;
3251         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3252                 trace_kvm_msr_read_ex(ecx);
3253                 kvm_inject_gp(&svm->vcpu, 0);
3254         } else {
3255                 trace_kvm_msr_read(ecx, msr_info.data);
3256
3257                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3258                                    msr_info.data & 0xffffffff);
3259                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3260                                    msr_info.data >> 32);
3261                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3262                 skip_emulated_instruction(&svm->vcpu);
3263         }
3264         return 1;
3265 }
3266
3267 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3268 {
3269         struct vcpu_svm *svm = to_svm(vcpu);
3270         int svm_dis, chg_mask;
3271
3272         if (data & ~SVM_VM_CR_VALID_MASK)
3273                 return 1;
3274
3275         chg_mask = SVM_VM_CR_VALID_MASK;
3276
3277         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3278                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3279
3280         svm->nested.vm_cr_msr &= ~chg_mask;
3281         svm->nested.vm_cr_msr |= (data & chg_mask);
3282
3283         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3284
3285         /* check for svm_disable while efer.svme is set */
3286         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3287                 return 1;
3288
3289         return 0;
3290 }
3291
3292 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3293 {
3294         struct vcpu_svm *svm = to_svm(vcpu);
3295
3296         u32 ecx = msr->index;
3297         u64 data = msr->data;
3298         switch (ecx) {
3299         case MSR_IA32_TSC:
3300                 kvm_write_tsc(vcpu, msr);
3301                 break;
3302         case MSR_STAR:
3303                 svm->vmcb->save.star = data;
3304                 break;
3305 #ifdef CONFIG_X86_64
3306         case MSR_LSTAR:
3307                 svm->vmcb->save.lstar = data;
3308                 break;
3309         case MSR_CSTAR:
3310                 svm->vmcb->save.cstar = data;
3311                 break;
3312         case MSR_KERNEL_GS_BASE:
3313                 svm->vmcb->save.kernel_gs_base = data;
3314                 break;
3315         case MSR_SYSCALL_MASK:
3316                 svm->vmcb->save.sfmask = data;
3317                 break;
3318 #endif
3319         case MSR_IA32_SYSENTER_CS:
3320                 svm->vmcb->save.sysenter_cs = data;
3321                 break;
3322         case MSR_IA32_SYSENTER_EIP:
3323                 svm->sysenter_eip = data;
3324                 svm->vmcb->save.sysenter_eip = data;
3325                 break;
3326         case MSR_IA32_SYSENTER_ESP:
3327                 svm->sysenter_esp = data;
3328                 svm->vmcb->save.sysenter_esp = data;
3329                 break;
3330         case MSR_IA32_DEBUGCTLMSR:
3331                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3332                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3333                                     __func__, data);
3334                         break;
3335                 }
3336                 if (data & DEBUGCTL_RESERVED_BITS)
3337                         return 1;
3338
3339                 svm->vmcb->save.dbgctl = data;
3340                 mark_dirty(svm->vmcb, VMCB_LBR);
3341                 if (data & (1ULL<<0))
3342                         svm_enable_lbrv(svm);
3343                 else
3344                         svm_disable_lbrv(svm);
3345                 break;
3346         case MSR_VM_HSAVE_PA:
3347                 svm->nested.hsave_msr = data;
3348                 break;
3349         case MSR_VM_CR:
3350                 return svm_set_vm_cr(vcpu, data);
3351         case MSR_VM_IGNNE:
3352                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3353                 break;
3354         case MSR_IA32_CR_PAT:
3355                 if (npt_enabled) {
3356                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3357                                 return 1;
3358                         vcpu->arch.pat = data;
3359                         svm_set_guest_pat(svm, &svm->vmcb->save.g_pat);
3360                         mark_dirty(svm->vmcb, VMCB_NPT);
3361                         break;
3362                 }
3363                 /* fall through */
3364         default:
3365                 return kvm_set_msr_common(vcpu, msr);
3366         }
3367         return 0;
3368 }
3369
3370 static int wrmsr_interception(struct vcpu_svm *svm)
3371 {
3372         struct msr_data msr;
3373         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3374         u64 data = kvm_read_edx_eax(&svm->vcpu);
3375
3376         msr.data = data;
3377         msr.index = ecx;
3378         msr.host_initiated = false;
3379
3380         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3381         if (kvm_set_msr(&svm->vcpu, &msr)) {
3382                 trace_kvm_msr_write_ex(ecx, data);
3383                 kvm_inject_gp(&svm->vcpu, 0);
3384         } else {
3385                 trace_kvm_msr_write(ecx, data);
3386                 skip_emulated_instruction(&svm->vcpu);
3387         }
3388         return 1;
3389 }
3390
3391 static int msr_interception(struct vcpu_svm *svm)
3392 {
3393         if (svm->vmcb->control.exit_info_1)
3394                 return wrmsr_interception(svm);
3395         else
3396                 return rdmsr_interception(svm);
3397 }
3398
3399 static int interrupt_window_interception(struct vcpu_svm *svm)
3400 {
3401         struct kvm_run *kvm_run = svm->vcpu.run;
3402
3403         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3404         svm_clear_vintr(svm);
3405         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3406         mark_dirty(svm->vmcb, VMCB_INTR);
3407         ++svm->vcpu.stat.irq_window_exits;
3408         /*
3409          * If the user space waits to inject interrupts, exit as soon as
3410          * possible
3411          */
3412         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3413             kvm_run->request_interrupt_window &&
3414             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3415                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3416                 return 0;
3417         }
3418
3419         return 1;
3420 }
3421
3422 static int pause_interception(struct vcpu_svm *svm)
3423 {
3424         kvm_vcpu_on_spin(&(svm->vcpu));
3425         return 1;
3426 }
3427
3428 static int nop_interception(struct vcpu_svm *svm)
3429 {
3430         skip_emulated_instruction(&(svm->vcpu));
3431         return 1;
3432 }
3433
3434 static int monitor_interception(struct vcpu_svm *svm)
3435 {
3436         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3437         return nop_interception(svm);
3438 }
3439
3440 static int mwait_interception(struct vcpu_svm *svm)
3441 {
3442         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3443         return nop_interception(svm);
3444 }
3445
3446 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3447         [SVM_EXIT_READ_CR0]                     = cr_interception,
3448         [SVM_EXIT_READ_CR3]                     = cr_interception,
3449         [SVM_EXIT_READ_CR4]                     = cr_interception,
3450         [SVM_EXIT_READ_CR8]                     = cr_interception,
3451         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3452         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3453         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3454         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3455         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3456         [SVM_EXIT_READ_DR0]                     = dr_interception,
3457         [SVM_EXIT_READ_DR1]                     = dr_interception,
3458         [SVM_EXIT_READ_DR2]                     = dr_interception,
3459         [SVM_EXIT_READ_DR3]                     = dr_interception,
3460         [SVM_EXIT_READ_DR4]                     = dr_interception,
3461         [SVM_EXIT_READ_DR5]                     = dr_interception,
3462         [SVM_EXIT_READ_DR6]                     = dr_interception,
3463         [SVM_EXIT_READ_DR7]                     = dr_interception,
3464         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3465         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3466         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3467         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3468         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3469         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3470         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3471         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3472         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3473         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3474         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3475         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3476         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3477         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3478         [SVM_EXIT_INTR]                         = intr_interception,
3479         [SVM_EXIT_NMI]                          = nmi_interception,
3480         [SVM_EXIT_SMI]                          = nop_on_interception,
3481         [SVM_EXIT_INIT]                         = nop_on_interception,
3482         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3483         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3484         [SVM_EXIT_CPUID]                        = cpuid_interception,
3485         [SVM_EXIT_IRET]                         = iret_interception,
3486         [SVM_EXIT_INVD]                         = emulate_on_interception,
3487         [SVM_EXIT_PAUSE]                        = pause_interception,
3488         [SVM_EXIT_HLT]                          = halt_interception,
3489         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3490         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3491         [SVM_EXIT_IOIO]                         = io_interception,
3492         [SVM_EXIT_MSR]                          = msr_interception,
3493         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3494         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3495         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3496         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3497         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3498         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3499         [SVM_EXIT_STGI]                         = stgi_interception,
3500         [SVM_EXIT_CLGI]                         = clgi_interception,
3501         [SVM_EXIT_SKINIT]                       = skinit_interception,
3502         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3503         [SVM_EXIT_MONITOR]                      = monitor_interception,
3504         [SVM_EXIT_MWAIT]                        = mwait_interception,
3505         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3506         [SVM_EXIT_NPF]                          = pf_interception,
3507         [SVM_EXIT_RSM]                          = emulate_on_interception,
3508 };
3509
3510 static void dump_vmcb(struct kvm_vcpu *vcpu)
3511 {
3512         struct vcpu_svm *svm = to_svm(vcpu);
3513         struct vmcb_control_area *control = &svm->vmcb->control;
3514         struct vmcb_save_area *save = &svm->vmcb->save;
3515
3516         pr_err("VMCB Control Area:\n");
3517         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3518         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3519         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3520         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3521         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3522         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3523         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3524         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3525         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3526         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3527         pr_err("%-20s%d\n", "asid:", control->asid);
3528         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3529         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3530         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3531         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3532         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3533         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3534         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3535         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3536         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3537         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3538         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3539         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3540         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3541         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3542         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3543         pr_err("VMCB State Save Area:\n");
3544         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3545                "es:",
3546                save->es.selector, save->es.attrib,
3547                save->es.limit, save->es.base);
3548         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3549                "cs:",
3550                save->cs.selector, save->cs.attrib,
3551                save->cs.limit, save->cs.base);
3552         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3553                "ss:",
3554                save->ss.selector, save->ss.attrib,
3555                save->ss.limit, save->ss.base);
3556         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3557                "ds:",
3558                save->ds.selector, save->ds.attrib,
3559                save->ds.limit, save->ds.base);
3560         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3561                "fs:",
3562                save->fs.selector, save->fs.attrib,
3563                save->fs.limit, save->fs.base);
3564         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3565                "gs:",
3566                save->gs.selector, save->gs.attrib,
3567                save->gs.limit, save->gs.base);
3568         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3569                "gdtr:",
3570                save->gdtr.selector, save->gdtr.attrib,
3571                save->gdtr.limit, save->gdtr.base);
3572         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3573                "ldtr:",
3574                save->ldtr.selector, save->ldtr.attrib,
3575                save->ldtr.limit, save->ldtr.base);
3576         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3577                "idtr:",
3578                save->idtr.selector, save->idtr.attrib,
3579                save->idtr.limit, save->idtr.base);
3580         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3581                "tr:",
3582                save->tr.selector, save->tr.attrib,
3583                save->tr.limit, save->tr.base);
3584         pr_err("cpl:            %d                efer:         %016llx\n",
3585                 save->cpl, save->efer);
3586         pr_err("%-15s %016llx %-13s %016llx\n",
3587                "cr0:", save->cr0, "cr2:", save->cr2);
3588         pr_err("%-15s %016llx %-13s %016llx\n",
3589                "cr3:", save->cr3, "cr4:", save->cr4);
3590         pr_err("%-15s %016llx %-13s %016llx\n",
3591                "dr6:", save->dr6, "dr7:", save->dr7);
3592         pr_err("%-15s %016llx %-13s %016llx\n",
3593                "rip:", save->rip, "rflags:", save->rflags);
3594         pr_err("%-15s %016llx %-13s %016llx\n",
3595                "rsp:", save->rsp, "rax:", save->rax);
3596         pr_err("%-15s %016llx %-13s %016llx\n",
3597                "star:", save->star, "lstar:", save->lstar);
3598         pr_err("%-15s %016llx %-13s %016llx\n",
3599                "cstar:", save->cstar, "sfmask:", save->sfmask);
3600         pr_err("%-15s %016llx %-13s %016llx\n",
3601                "kernel_gs_base:", save->kernel_gs_base,
3602                "sysenter_cs:", save->sysenter_cs);
3603         pr_err("%-15s %016llx %-13s %016llx\n",
3604                "sysenter_esp:", save->sysenter_esp,
3605                "sysenter_eip:", save->sysenter_eip);
3606         pr_err("%-15s %016llx %-13s %016llx\n",
3607                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3608         pr_err("%-15s %016llx %-13s %016llx\n",
3609                "br_from:", save->br_from, "br_to:", save->br_to);
3610         pr_err("%-15s %016llx %-13s %016llx\n",
3611                "excp_from:", save->last_excp_from,
3612                "excp_to:", save->last_excp_to);
3613 }
3614
3615 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3616 {
3617         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3618
3619         *info1 = control->exit_info_1;
3620         *info2 = control->exit_info_2;
3621 }
3622
3623 static int handle_exit(struct kvm_vcpu *vcpu)
3624 {
3625         struct vcpu_svm *svm = to_svm(vcpu);
3626         struct kvm_run *kvm_run = vcpu->run;
3627         u32 exit_code = svm->vmcb->control.exit_code;
3628
3629         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3630                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3631         if (npt_enabled)
3632                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3633
3634         if (unlikely(svm->nested.exit_required)) {
3635                 nested_svm_vmexit(svm);
3636                 svm->nested.exit_required = false;
3637
3638                 return 1;
3639         }
3640
3641         if (is_guest_mode(vcpu)) {
3642                 int vmexit;
3643
3644                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3645                                         svm->vmcb->control.exit_info_1,
3646                                         svm->vmcb->control.exit_info_2,
3647                                         svm->vmcb->control.exit_int_info,
3648                                         svm->vmcb->control.exit_int_info_err,
3649                                         KVM_ISA_SVM);
3650
3651                 vmexit = nested_svm_exit_special(svm);
3652
3653                 if (vmexit == NESTED_EXIT_CONTINUE)
3654                         vmexit = nested_svm_exit_handled(svm);
3655
3656                 if (vmexit == NESTED_EXIT_DONE)
3657                         return 1;
3658         }
3659
3660         svm_complete_interrupts(svm);
3661
3662         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3663                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3664                 kvm_run->fail_entry.hardware_entry_failure_reason
3665                         = svm->vmcb->control.exit_code;
3666                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3667                 dump_vmcb(vcpu);
3668                 return 0;
3669         }
3670
3671         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3672             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3673             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3674             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3675                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3676                        "exit_code 0x%x\n",
3677                        __func__, svm->vmcb->control.exit_int_info,
3678                        exit_code);
3679
3680         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3681             || !svm_exit_handlers[exit_code]) {
3682                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3683                 kvm_queue_exception(vcpu, UD_VECTOR);
3684                 return 1;
3685         }
3686
3687         return svm_exit_handlers[exit_code](svm);
3688 }
3689
3690 static void reload_tss(struct kvm_vcpu *vcpu)
3691 {
3692         int cpu = raw_smp_processor_id();
3693
3694         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3695         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3696         load_TR_desc();
3697 }
3698
3699 static void pre_svm_run(struct vcpu_svm *svm)
3700 {
3701         int cpu = raw_smp_processor_id();
3702
3703         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3704
3705         /* FIXME: handle wraparound of asid_generation */
3706         if (svm->asid_generation != sd->asid_generation)
3707                 new_asid(svm, sd);
3708 }
3709
3710 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3711 {
3712         struct vcpu_svm *svm = to_svm(vcpu);
3713
3714         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3715         vcpu->arch.hflags |= HF_NMI_MASK;
3716         set_intercept(svm, INTERCEPT_IRET);
3717         ++vcpu->stat.nmi_injections;
3718 }
3719
3720 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3721 {
3722         struct vmcb_control_area *control;
3723
3724         control = &svm->vmcb->control;
3725         control->int_vector = irq;
3726         control->int_ctl &= ~V_INTR_PRIO_MASK;
3727         control->int_ctl |= V_IRQ_MASK |
3728                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3729         mark_dirty(svm->vmcb, VMCB_INTR);
3730 }
3731
3732 static void svm_set_irq(struct kvm_vcpu *vcpu)
3733 {
3734         struct vcpu_svm *svm = to_svm(vcpu);
3735
3736         BUG_ON(!(gif_set(svm)));
3737
3738         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3739         ++vcpu->stat.irq_injections;
3740
3741         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3742                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3743 }
3744
3745 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3746 {
3747         struct vcpu_svm *svm = to_svm(vcpu);
3748
3749         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3750                 return;
3751
3752         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3753
3754         if (irr == -1)
3755                 return;
3756
3757         if (tpr >= irr)
3758                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3759 }
3760
3761 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3762 {
3763         return;
3764 }
3765
3766 static int svm_vm_has_apicv(struct kvm *kvm)
3767 {
3768         return 0;
3769 }
3770
3771 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3772 {
3773         return;
3774 }
3775
3776 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3777 {
3778         return;
3779 }
3780
3781 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3782 {
3783         struct vcpu_svm *svm = to_svm(vcpu);
3784         struct vmcb *vmcb = svm->vmcb;
3785         int ret;
3786         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3787               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3788         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3789
3790         return ret;
3791 }
3792
3793 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3794 {
3795         struct vcpu_svm *svm = to_svm(vcpu);
3796
3797         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3798 }
3799
3800 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3801 {
3802         struct vcpu_svm *svm = to_svm(vcpu);
3803
3804         if (masked) {
3805                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3806                 set_intercept(svm, INTERCEPT_IRET);
3807         } else {
3808                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3809                 clr_intercept(svm, INTERCEPT_IRET);
3810         }
3811 }
3812
3813 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3814 {
3815         struct vcpu_svm *svm = to_svm(vcpu);
3816         struct vmcb *vmcb = svm->vmcb;
3817         int ret;
3818
3819         if (!gif_set(svm) ||
3820              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3821                 return 0;
3822
3823         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3824
3825         if (is_guest_mode(vcpu))
3826                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3827
3828         return ret;
3829 }
3830
3831 static void enable_irq_window(struct kvm_vcpu *vcpu)
3832 {
3833         struct vcpu_svm *svm = to_svm(vcpu);
3834
3835         /*
3836          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3837          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3838          * get that intercept, this function will be called again though and
3839          * we'll get the vintr intercept.
3840          */
3841         if (gif_set(svm) && nested_svm_intr(svm)) {
3842                 svm_set_vintr(svm);
3843                 svm_inject_irq(svm, 0x0);
3844         }
3845 }
3846
3847 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3848 {
3849         struct vcpu_svm *svm = to_svm(vcpu);
3850
3851         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3852             == HF_NMI_MASK)
3853                 return; /* IRET will cause a vm exit */
3854
3855         /*
3856          * Something prevents NMI from been injected. Single step over possible
3857          * problem (IRET or exception injection or interrupt shadow)
3858          */
3859         svm->nmi_singlestep = true;
3860         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3861         update_db_bp_intercept(vcpu);
3862 }
3863
3864 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3865 {
3866         return 0;
3867 }
3868
3869 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3870 {
3871         struct vcpu_svm *svm = to_svm(vcpu);
3872
3873         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3874                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3875         else
3876                 svm->asid_generation--;
3877 }
3878
3879 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3880 {
3881 }
3882
3883 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3884 {
3885         struct vcpu_svm *svm = to_svm(vcpu);
3886
3887         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3888                 return;
3889
3890         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3891                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3892                 kvm_set_cr8(vcpu, cr8);
3893         }
3894 }
3895
3896 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3897 {
3898         struct vcpu_svm *svm = to_svm(vcpu);
3899         u64 cr8;
3900
3901         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3902                 return;
3903
3904         cr8 = kvm_get_cr8(vcpu);
3905         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3906         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3907 }
3908
3909 static void svm_complete_interrupts(struct vcpu_svm *svm)
3910 {
3911         u8 vector;
3912         int type;
3913         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3914         unsigned int3_injected = svm->int3_injected;
3915
3916         svm->int3_injected = 0;
3917
3918         /*
3919          * If we've made progress since setting HF_IRET_MASK, we've
3920          * executed an IRET and can allow NMI injection.
3921          */
3922         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3923             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3924                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3925                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3926         }
3927
3928         svm->vcpu.arch.nmi_injected = false;
3929         kvm_clear_exception_queue(&svm->vcpu);
3930         kvm_clear_interrupt_queue(&svm->vcpu);
3931
3932         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3933                 return;
3934
3935         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3936
3937         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3938         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3939
3940         switch (type) {
3941         case SVM_EXITINTINFO_TYPE_NMI:
3942                 svm->vcpu.arch.nmi_injected = true;
3943                 break;
3944         case SVM_EXITINTINFO_TYPE_EXEPT:
3945                 /*
3946                  * In case of software exceptions, do not reinject the vector,
3947                  * but re-execute the instruction instead. Rewind RIP first
3948                  * if we emulated INT3 before.
3949                  */
3950                 if (kvm_exception_is_soft(vector)) {
3951                         if (vector == BP_VECTOR && int3_injected &&
3952                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3953                                 kvm_rip_write(&svm->vcpu,
3954                                               kvm_rip_read(&svm->vcpu) -
3955                                               int3_injected);
3956                         break;
3957                 }
3958                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3959                         u32 err = svm->vmcb->control.exit_int_info_err;
3960                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3961
3962                 } else
3963                         kvm_requeue_exception(&svm->vcpu, vector);
3964                 break;
3965         case SVM_EXITINTINFO_TYPE_INTR:
3966                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3967                 break;
3968         default:
3969                 break;
3970         }
3971 }
3972
3973 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3974 {
3975         struct vcpu_svm *svm = to_svm(vcpu);
3976         struct vmcb_control_area *control = &svm->vmcb->control;
3977
3978         control->exit_int_info = control->event_inj;
3979         control->exit_int_info_err = control->event_inj_err;
3980         control->event_inj = 0;
3981         svm_complete_interrupts(svm);
3982 }
3983
3984 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3985 {
3986         struct vcpu_svm *svm = to_svm(vcpu);
3987
3988         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3989         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3990         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3991
3992         /*
3993          * A vmexit emulation is required before the vcpu can be executed
3994          * again.
3995          */
3996         if (unlikely(svm->nested.exit_required))
3997                 return;
3998
3999         pre_svm_run(svm);
4000
4001         sync_lapic_to_cr8(vcpu);
4002
4003         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4004
4005         clgi();
4006
4007         local_irq_enable();
4008
4009         asm volatile (
4010                 "push %%" _ASM_BP "; \n\t"
4011                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4012                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4013                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4014                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4015                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4016                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4017 #ifdef CONFIG_X86_64
4018                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4019                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4020                 "mov %c[r10](%[svm]), %%r10 \n\t"
4021                 "mov %c[r11](%[svm]), %%r11 \n\t"
4022                 "mov %c[r12](%[svm]), %%r12 \n\t"
4023                 "mov %c[r13](%[svm]), %%r13 \n\t"
4024                 "mov %c[r14](%[svm]), %%r14 \n\t"
4025                 "mov %c[r15](%[svm]), %%r15 \n\t"
4026 #endif
4027
4028                 /* Enter guest mode */
4029                 "push %%" _ASM_AX " \n\t"
4030                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4031                 __ex(SVM_VMLOAD) "\n\t"
4032                 __ex(SVM_VMRUN) "\n\t"
4033                 __ex(SVM_VMSAVE) "\n\t"
4034                 "pop %%" _ASM_AX " \n\t"
4035
4036                 /* Save guest registers, load host registers */
4037                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4038                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4039                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4040                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4041                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4042                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4043 #ifdef CONFIG_X86_64
4044                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4045                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4046                 "mov %%r10, %c[r10](%[svm]) \n\t"
4047                 "mov %%r11, %c[r11](%[svm]) \n\t"
4048                 "mov %%r12, %c[r12](%[svm]) \n\t"
4049                 "mov %%r13, %c[r13](%[svm]) \n\t"
4050                 "mov %%r14, %c[r14](%[svm]) \n\t"
4051                 "mov %%r15, %c[r15](%[svm]) \n\t"
4052 #endif
4053                 "pop %%" _ASM_BP
4054                 :
4055                 : [svm]"a"(svm),
4056                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4057                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4058                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4059                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4060                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4061                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4062                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4063 #ifdef CONFIG_X86_64
4064                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4065                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4066                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4067                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4068                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4069                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4070                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4071                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4072 #endif
4073                 : "cc", "memory"
4074 #ifdef CONFIG_X86_64
4075                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4076                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4077 #else
4078                 , "ebx", "ecx", "edx", "esi", "edi"
4079 #endif
4080                 );
4081
4082 #ifdef CONFIG_X86_64
4083         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4084 #else
4085         loadsegment(fs, svm->host.fs);
4086 #ifndef CONFIG_X86_32_LAZY_GS
4087         loadsegment(gs, svm->host.gs);
4088 #endif
4089 #endif
4090
4091         reload_tss(vcpu);
4092
4093         local_irq_disable();
4094
4095         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4096         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4097         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4098         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4099
4100         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4101
4102         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4103                 kvm_before_handle_nmi(&svm->vcpu);
4104
4105         stgi();
4106
4107         /* Any pending NMI will happen here */
4108
4109         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4110                 kvm_after_handle_nmi(&svm->vcpu);
4111
4112         sync_cr8_to_lapic(vcpu);
4113
4114         svm->next_rip = 0;
4115
4116         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4117
4118         /* if exit due to PF check for async PF */
4119         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4120                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4121
4122         if (npt_enabled) {
4123                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4124                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4125         }
4126
4127         /*
4128          * We need to handle MC intercepts here before the vcpu has a chance to
4129          * change the physical cpu
4130          */
4131         if (unlikely(svm->vmcb->control.exit_code ==
4132                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4133                 svm_handle_mce(svm);
4134
4135         mark_all_clean(svm->vmcb);
4136 }
4137
4138 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4139 {
4140         struct vcpu_svm *svm = to_svm(vcpu);
4141
4142         svm->vmcb->save.cr3 = root;
4143         mark_dirty(svm->vmcb, VMCB_CR);
4144         svm_flush_tlb(vcpu);
4145 }
4146
4147 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4148 {
4149         struct vcpu_svm *svm = to_svm(vcpu);
4150
4151         svm->vmcb->control.nested_cr3 = root;
4152         mark_dirty(svm->vmcb, VMCB_NPT);
4153
4154         /* Also sync guest cr3 here in case we live migrate */
4155         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4156         mark_dirty(svm->vmcb, VMCB_CR);
4157
4158         svm_flush_tlb(vcpu);
4159 }
4160
4161 static int is_disabled(void)
4162 {
4163         u64 vm_cr;
4164
4165         rdmsrl(MSR_VM_CR, vm_cr);
4166         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4167                 return 1;
4168
4169         return 0;
4170 }
4171
4172 static void
4173 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4174 {
4175         /*
4176          * Patch in the VMMCALL instruction:
4177          */
4178         hypercall[0] = 0x0f;
4179         hypercall[1] = 0x01;
4180         hypercall[2] = 0xd9;
4181 }
4182
4183 static void svm_check_processor_compat(void *rtn)
4184 {
4185         *(int *)rtn = 0;
4186 }
4187
4188 static bool svm_cpu_has_accelerated_tpr(void)
4189 {
4190         return false;
4191 }
4192
4193 static bool svm_has_high_real_mode_segbase(void)
4194 {
4195         return true;
4196 }
4197
4198 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4199 {
4200 }
4201
4202 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4203 {
4204         switch (func) {
4205         case 0x80000001:
4206                 if (nested)
4207                         entry->ecx |= (1 << 2); /* Set SVM bit */
4208                 break;
4209         case 0x8000000A:
4210                 entry->eax = 1; /* SVM revision 1 */
4211                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4212                                    ASID emulation to nested SVM */
4213                 entry->ecx = 0; /* Reserved */
4214                 entry->edx = 0; /* Per default do not support any
4215                                    additional features */
4216
4217                 /* Support next_rip if host supports it */
4218                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4219                         entry->edx |= SVM_FEATURE_NRIP;
4220
4221                 /* Support NPT for the guest if enabled */
4222                 if (npt_enabled)
4223                         entry->edx |= SVM_FEATURE_NPT;
4224
4225                 break;
4226         }
4227 }
4228
4229 static int svm_get_lpage_level(void)
4230 {
4231         return PT_PDPE_LEVEL;
4232 }
4233
4234 static bool svm_rdtscp_supported(void)
4235 {
4236         return false;
4237 }
4238
4239 static bool svm_invpcid_supported(void)
4240 {
4241         return false;
4242 }
4243
4244 static bool svm_mpx_supported(void)
4245 {
4246         return false;
4247 }
4248
4249 static bool svm_xsaves_supported(void)
4250 {
4251         return false;
4252 }
4253
4254 static bool svm_has_wbinvd_exit(void)
4255 {
4256         return true;
4257 }
4258
4259 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4260 {
4261         struct vcpu_svm *svm = to_svm(vcpu);
4262
4263         set_exception_intercept(svm, NM_VECTOR);
4264         update_cr0_intercept(svm);
4265 }
4266
4267 #define PRE_EX(exit)  { .exit_code = (exit), \
4268                         .stage = X86_ICPT_PRE_EXCEPT, }
4269 #define POST_EX(exit) { .exit_code = (exit), \
4270                         .stage = X86_ICPT_POST_EXCEPT, }
4271 #define POST_MEM(exit) { .exit_code = (exit), \
4272                         .stage = X86_ICPT_POST_MEMACCESS, }
4273
4274 static const struct __x86_intercept {
4275         u32 exit_code;
4276         enum x86_intercept_stage stage;
4277 } x86_intercept_map[] = {
4278         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4279         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4280         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4281         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4282         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4283         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4284         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4285         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4286         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4287         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4288         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4289         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4290         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4291         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4292         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4293         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4294         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4295         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4296         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4297         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4298         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4299         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4300         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4301         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4302         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4303         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4304         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4305         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4306         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4307         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4308         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4309         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4310         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4311         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4312         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4313         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4314         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4315         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4316         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4317         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4318         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4319         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4320         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4321         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4322         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4323         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4324 };
4325
4326 #undef PRE_EX
4327 #undef POST_EX
4328 #undef POST_MEM
4329
4330 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4331                                struct x86_instruction_info *info,
4332                                enum x86_intercept_stage stage)
4333 {
4334         struct vcpu_svm *svm = to_svm(vcpu);
4335         int vmexit, ret = X86EMUL_CONTINUE;
4336         struct __x86_intercept icpt_info;
4337         struct vmcb *vmcb = svm->vmcb;
4338
4339         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4340                 goto out;
4341
4342         icpt_info = x86_intercept_map[info->intercept];
4343
4344         if (stage != icpt_info.stage)
4345                 goto out;
4346
4347         switch (icpt_info.exit_code) {
4348         case SVM_EXIT_READ_CR0:
4349                 if (info->intercept == x86_intercept_cr_read)
4350                         icpt_info.exit_code += info->modrm_reg;
4351                 break;
4352         case SVM_EXIT_WRITE_CR0: {
4353                 unsigned long cr0, val;
4354                 u64 intercept;
4355
4356                 if (info->intercept == x86_intercept_cr_write)
4357                         icpt_info.exit_code += info->modrm_reg;
4358
4359                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4360                     info->intercept == x86_intercept_clts)
4361                         break;
4362
4363                 intercept = svm->nested.intercept;
4364
4365                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4366                         break;
4367
4368                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4369                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4370
4371                 if (info->intercept == x86_intercept_lmsw) {
4372                         cr0 &= 0xfUL;
4373                         val &= 0xfUL;
4374                         /* lmsw can't clear PE - catch this here */
4375                         if (cr0 & X86_CR0_PE)
4376                                 val |= X86_CR0_PE;
4377                 }
4378
4379                 if (cr0 ^ val)
4380                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4381
4382                 break;
4383         }
4384         case SVM_EXIT_READ_DR0:
4385         case SVM_EXIT_WRITE_DR0:
4386                 icpt_info.exit_code += info->modrm_reg;
4387                 break;
4388         case SVM_EXIT_MSR:
4389                 if (info->intercept == x86_intercept_wrmsr)
4390                         vmcb->control.exit_info_1 = 1;
4391                 else
4392                         vmcb->control.exit_info_1 = 0;
4393                 break;
4394         case SVM_EXIT_PAUSE:
4395                 /*
4396                  * We get this for NOP only, but pause
4397                  * is rep not, check this here
4398                  */
4399                 if (info->rep_prefix != REPE_PREFIX)
4400                         goto out;
4401         case SVM_EXIT_IOIO: {
4402                 u64 exit_info;
4403                 u32 bytes;
4404
4405                 if (info->intercept == x86_intercept_in ||
4406                     info->intercept == x86_intercept_ins) {
4407                         exit_info = ((info->src_val & 0xffff) << 16) |
4408                                 SVM_IOIO_TYPE_MASK;
4409                         bytes = info->dst_bytes;
4410                 } else {
4411                         exit_info = (info->dst_val & 0xffff) << 16;
4412                         bytes = info->src_bytes;
4413                 }
4414
4415                 if (info->intercept == x86_intercept_outs ||
4416                     info->intercept == x86_intercept_ins)
4417                         exit_info |= SVM_IOIO_STR_MASK;
4418
4419                 if (info->rep_prefix)
4420                         exit_info |= SVM_IOIO_REP_MASK;
4421
4422                 bytes = min(bytes, 4u);
4423
4424                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4425
4426                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4427
4428                 vmcb->control.exit_info_1 = exit_info;
4429                 vmcb->control.exit_info_2 = info->next_rip;
4430
4431                 break;
4432         }
4433         default:
4434                 break;
4435         }
4436
4437         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4438         if (static_cpu_has(X86_FEATURE_NRIPS))
4439                 vmcb->control.next_rip  = info->next_rip;
4440         vmcb->control.exit_code = icpt_info.exit_code;
4441         vmexit = nested_svm_exit_handled(svm);
4442
4443         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4444                                            : X86EMUL_CONTINUE;
4445
4446 out:
4447         return ret;
4448 }
4449
4450 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4451 {
4452         local_irq_enable();
4453 }
4454
4455 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4456 {
4457 }
4458
4459 static struct kvm_x86_ops svm_x86_ops = {
4460         .cpu_has_kvm_support = has_svm,
4461         .disabled_by_bios = is_disabled,
4462         .hardware_setup = svm_hardware_setup,
4463         .hardware_unsetup = svm_hardware_unsetup,
4464         .check_processor_compatibility = svm_check_processor_compat,
4465         .hardware_enable = svm_hardware_enable,
4466         .hardware_disable = svm_hardware_disable,
4467         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4468         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4469
4470         .vcpu_create = svm_create_vcpu,
4471         .vcpu_free = svm_free_vcpu,
4472         .vcpu_reset = svm_vcpu_reset,
4473
4474         .prepare_guest_switch = svm_prepare_guest_switch,
4475         .vcpu_load = svm_vcpu_load,
4476         .vcpu_put = svm_vcpu_put,
4477
4478         .update_db_bp_intercept = update_db_bp_intercept,
4479         .get_msr = svm_get_msr,
4480         .set_msr = svm_set_msr,
4481         .get_segment_base = svm_get_segment_base,
4482         .get_segment = svm_get_segment,
4483         .set_segment = svm_set_segment,
4484         .get_cpl = svm_get_cpl,
4485         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4486         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4487         .decache_cr3 = svm_decache_cr3,
4488         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4489         .set_cr0 = svm_set_cr0,
4490         .set_cr3 = svm_set_cr3,
4491         .set_cr4 = svm_set_cr4,
4492         .set_efer = svm_set_efer,
4493         .get_idt = svm_get_idt,
4494         .set_idt = svm_set_idt,
4495         .get_gdt = svm_get_gdt,
4496         .set_gdt = svm_set_gdt,
4497         .get_dr6 = svm_get_dr6,
4498         .set_dr6 = svm_set_dr6,
4499         .set_dr7 = svm_set_dr7,
4500         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4501         .cache_reg = svm_cache_reg,
4502         .get_rflags = svm_get_rflags,
4503         .set_rflags = svm_set_rflags,
4504         .fpu_activate = svm_fpu_activate,
4505         .fpu_deactivate = svm_fpu_deactivate,
4506
4507         .tlb_flush = svm_flush_tlb,
4508
4509         .run = svm_vcpu_run,
4510         .handle_exit = handle_exit,
4511         .skip_emulated_instruction = skip_emulated_instruction,
4512         .set_interrupt_shadow = svm_set_interrupt_shadow,
4513         .get_interrupt_shadow = svm_get_interrupt_shadow,
4514         .patch_hypercall = svm_patch_hypercall,
4515         .set_irq = svm_set_irq,
4516         .set_nmi = svm_inject_nmi,
4517         .queue_exception = svm_queue_exception,
4518         .cancel_injection = svm_cancel_injection,
4519         .interrupt_allowed = svm_interrupt_allowed,
4520         .nmi_allowed = svm_nmi_allowed,
4521         .get_nmi_mask = svm_get_nmi_mask,
4522         .set_nmi_mask = svm_set_nmi_mask,
4523         .enable_nmi_window = enable_nmi_window,
4524         .enable_irq_window = enable_irq_window,
4525         .update_cr8_intercept = update_cr8_intercept,
4526         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4527         .vm_has_apicv = svm_vm_has_apicv,
4528         .load_eoi_exitmap = svm_load_eoi_exitmap,
4529         .sync_pir_to_irr = svm_sync_pir_to_irr,
4530
4531         .set_tss_addr = svm_set_tss_addr,
4532         .get_tdp_level = get_npt_level,
4533         .get_mt_mask = svm_get_mt_mask,
4534
4535         .get_exit_info = svm_get_exit_info,
4536
4537         .get_lpage_level = svm_get_lpage_level,
4538
4539         .cpuid_update = svm_cpuid_update,
4540
4541         .rdtscp_supported = svm_rdtscp_supported,
4542         .invpcid_supported = svm_invpcid_supported,
4543         .mpx_supported = svm_mpx_supported,
4544         .xsaves_supported = svm_xsaves_supported,
4545
4546         .set_supported_cpuid = svm_set_supported_cpuid,
4547
4548         .has_wbinvd_exit = svm_has_wbinvd_exit,
4549
4550         .set_tsc_khz = svm_set_tsc_khz,
4551         .read_tsc_offset = svm_read_tsc_offset,
4552         .write_tsc_offset = svm_write_tsc_offset,
4553         .adjust_tsc_offset = svm_adjust_tsc_offset,
4554         .compute_tsc_offset = svm_compute_tsc_offset,
4555         .read_l1_tsc = svm_read_l1_tsc,
4556
4557         .set_tdp_cr3 = set_tdp_cr3,
4558
4559         .check_intercept = svm_check_intercept,
4560         .handle_external_intr = svm_handle_external_intr,
4561
4562         .sched_in = svm_sched_in,
4563
4564         .pmu_ops = &amd_pmu_ops,
4565 };
4566
4567 static int __init svm_init(void)
4568 {
4569         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4570                         __alignof__(struct vcpu_svm), THIS_MODULE);
4571 }
4572
4573 static void __exit svm_exit(void)
4574 {
4575         kvm_exit();
4576 }
4577
4578 module_init(svm_init)
4579 module_exit(svm_exit)