Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / arch / x86 / kernel / vm86_32.c
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/smp.h>
43 #include <linux/highmem.h>
44 #include <linux/ptrace.h>
45 #include <linux/audit.h>
46 #include <linux/stddef.h>
47 #include <linux/slab.h>
48 #include <linux/security.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/io.h>
52 #include <asm/tlbflush.h>
53 #include <asm/irq.h>
54 #include <asm/traps.h>
55 #include <asm/vm86.h>
56
57 /*
58  * Known problems:
59  *
60  * Interrupt handling is not guaranteed:
61  * - a real x86 will disable all interrupts for one instruction
62  *   after a "mov ss,xx" to make stack handling atomic even without
63  *   the 'lss' instruction. We can't guarantee this in v86 mode,
64  *   as the next instruction might result in a page fault or similar.
65  * - a real x86 will have interrupts disabled for one instruction
66  *   past the 'sti' that enables them. We don't bother with all the
67  *   details yet.
68  *
69  * Let's hope these problems do not actually matter for anything.
70  */
71
72
73 /*
74  * 8- and 16-bit register defines..
75  */
76 #define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
80
81 /*
82  * virtual flags (16 and 32-bit versions)
83  */
84 #define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
85 #define VEFLAGS (current->thread.vm86->veflags)
86
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89
90 #define SAFE_MASK       (0xDD5)
91 #define RETURN_MASK     (0xDFF)
92
93 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
94 {
95         struct tss_struct *tss;
96         struct task_struct *tsk = current;
97         struct vm86plus_struct __user *user;
98         struct vm86 *vm86 = current->thread.vm86;
99         long err = 0;
100
101         /*
102          * This gets called from entry.S with interrupts disabled, but
103          * from process context. Enable interrupts here, before trying
104          * to access user space.
105          */
106         local_irq_enable();
107
108         if (!vm86 || !vm86->user_vm86) {
109                 pr_alert("no user_vm86: BAD\n");
110                 do_exit(SIGSEGV);
111         }
112         set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
113         user = vm86->user_vm86;
114
115         if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
116                        sizeof(struct vm86plus_struct) :
117                        sizeof(struct vm86_struct))) {
118                 pr_alert("could not access userspace vm86 info\n");
119                 do_exit(SIGSEGV);
120         }
121
122         put_user_try {
123                 put_user_ex(regs->pt.bx, &user->regs.ebx);
124                 put_user_ex(regs->pt.cx, &user->regs.ecx);
125                 put_user_ex(regs->pt.dx, &user->regs.edx);
126                 put_user_ex(regs->pt.si, &user->regs.esi);
127                 put_user_ex(regs->pt.di, &user->regs.edi);
128                 put_user_ex(regs->pt.bp, &user->regs.ebp);
129                 put_user_ex(regs->pt.ax, &user->regs.eax);
130                 put_user_ex(regs->pt.ip, &user->regs.eip);
131                 put_user_ex(regs->pt.cs, &user->regs.cs);
132                 put_user_ex(regs->pt.flags, &user->regs.eflags);
133                 put_user_ex(regs->pt.sp, &user->regs.esp);
134                 put_user_ex(regs->pt.ss, &user->regs.ss);
135                 put_user_ex(regs->es, &user->regs.es);
136                 put_user_ex(regs->ds, &user->regs.ds);
137                 put_user_ex(regs->fs, &user->regs.fs);
138                 put_user_ex(regs->gs, &user->regs.gs);
139
140                 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
141         } put_user_catch(err);
142         if (err) {
143                 pr_alert("could not access userspace vm86 info\n");
144                 do_exit(SIGSEGV);
145         }
146
147         tss = &per_cpu(cpu_tss, get_cpu());
148         tsk->thread.sp0 = vm86->saved_sp0;
149         tsk->thread.sysenter_cs = __KERNEL_CS;
150         load_sp0(tss, &tsk->thread);
151         vm86->saved_sp0 = 0;
152         put_cpu();
153
154         memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
155
156         lazy_load_gs(vm86->regs32.gs);
157
158         regs->pt.ax = retval;
159 }
160
161 static void mark_screen_rdonly(struct mm_struct *mm)
162 {
163         pgd_t *pgd;
164         pud_t *pud;
165         pmd_t *pmd;
166         pte_t *pte;
167         spinlock_t *ptl;
168         int i;
169
170         down_write(&mm->mmap_sem);
171         pgd = pgd_offset(mm, 0xA0000);
172         if (pgd_none_or_clear_bad(pgd))
173                 goto out;
174         pud = pud_offset(pgd, 0xA0000);
175         if (pud_none_or_clear_bad(pud))
176                 goto out;
177         pmd = pmd_offset(pud, 0xA0000);
178         split_huge_page_pmd_mm(mm, 0xA0000, pmd);
179         if (pmd_none_or_clear_bad(pmd))
180                 goto out;
181         pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
182         for (i = 0; i < 32; i++) {
183                 if (pte_present(*pte))
184                         set_pte(pte, pte_wrprotect(*pte));
185                 pte++;
186         }
187         pte_unmap_unlock(pte, ptl);
188 out:
189         up_write(&mm->mmap_sem);
190         flush_tlb();
191 }
192
193
194
195 static int do_vm86_irq_handling(int subfunction, int irqnumber);
196 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
197
198 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
199 {
200         return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
201 }
202
203
204 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
205 {
206         switch (cmd) {
207         case VM86_REQUEST_IRQ:
208         case VM86_FREE_IRQ:
209         case VM86_GET_IRQ_BITS:
210         case VM86_GET_AND_RESET_IRQ:
211                 return do_vm86_irq_handling(cmd, (int)arg);
212         case VM86_PLUS_INSTALL_CHECK:
213                 /*
214                  * NOTE: on old vm86 stuff this will return the error
215                  *  from access_ok(), because the subfunction is
216                  *  interpreted as (invalid) address to vm86_struct.
217                  *  So the installation check works.
218                  */
219                 return 0;
220         }
221
222         /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
223         return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
224 }
225
226
227 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
228 {
229         struct tss_struct *tss;
230         struct task_struct *tsk = current;
231         struct vm86 *vm86 = tsk->thread.vm86;
232         struct kernel_vm86_regs vm86regs;
233         struct pt_regs *regs = current_pt_regs();
234         unsigned long err = 0;
235
236         err = security_mmap_addr(0);
237         if (err) {
238                 /*
239                  * vm86 cannot virtualize the address space, so vm86 users
240                  * need to manage the low 1MB themselves using mmap.  Given
241                  * that BIOS places important data in the first page, vm86
242                  * is essentially useless if mmap_min_addr != 0.  DOSEMU,
243                  * for example, won't even bother trying to use vm86 if it
244                  * can't map a page at virtual address 0.
245                  *
246                  * To reduce the available kernel attack surface, simply
247                  * disallow vm86(old) for users who cannot mmap at va 0.
248                  *
249                  * The implementation of security_mmap_addr will allow
250                  * suitably privileged users to map va 0 even if
251                  * vm.mmap_min_addr is set above 0, and we want this
252                  * behavior for vm86 as well, as it ensures that legacy
253                  * tools like vbetool will not fail just because of
254                  * vm.mmap_min_addr.
255                  */
256                 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
257                              current->comm, task_pid_nr(current),
258                              from_kuid_munged(&init_user_ns, current_uid()));
259                 return -EPERM;
260         }
261
262         if (!vm86) {
263                 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
264                         return -ENOMEM;
265                 tsk->thread.vm86 = vm86;
266         }
267         if (vm86->saved_sp0)
268                 return -EPERM;
269
270         if (!access_ok(VERIFY_READ, user_vm86, plus ?
271                        sizeof(struct vm86_struct) :
272                        sizeof(struct vm86plus_struct)))
273                 return -EFAULT;
274
275         memset(&vm86regs, 0, sizeof(vm86regs));
276         get_user_try {
277                 unsigned short seg;
278                 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
279                 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
280                 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
281                 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
282                 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
283                 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
284                 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
285                 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
286                 get_user_ex(seg, &user_vm86->regs.cs);
287                 vm86regs.pt.cs = seg;
288                 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
289                 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
290                 get_user_ex(seg, &user_vm86->regs.ss);
291                 vm86regs.pt.ss = seg;
292                 get_user_ex(vm86regs.es, &user_vm86->regs.es);
293                 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
294                 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
295                 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
296
297                 get_user_ex(vm86->flags, &user_vm86->flags);
298                 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
299                 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
300         } get_user_catch(err);
301         if (err)
302                 return err;
303
304         if (copy_from_user(&vm86->int_revectored,
305                            &user_vm86->int_revectored,
306                            sizeof(struct revectored_struct)))
307                 return -EFAULT;
308         if (copy_from_user(&vm86->int21_revectored,
309                            &user_vm86->int21_revectored,
310                            sizeof(struct revectored_struct)))
311                 return -EFAULT;
312         if (plus) {
313                 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
314                                    sizeof(struct vm86plus_info_struct)))
315                         return -EFAULT;
316                 vm86->vm86plus.is_vm86pus = 1;
317         } else
318                 memset(&vm86->vm86plus, 0,
319                        sizeof(struct vm86plus_info_struct));
320
321         memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
322         vm86->user_vm86 = user_vm86;
323
324 /*
325  * The flags register is also special: we cannot trust that the user
326  * has set it up safely, so this makes sure interrupt etc flags are
327  * inherited from protected mode.
328  */
329         VEFLAGS = vm86regs.pt.flags;
330         vm86regs.pt.flags &= SAFE_MASK;
331         vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
332         vm86regs.pt.flags |= X86_VM_MASK;
333
334         vm86regs.pt.orig_ax = regs->orig_ax;
335
336         switch (vm86->cpu_type) {
337         case CPU_286:
338                 vm86->veflags_mask = 0;
339                 break;
340         case CPU_386:
341                 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
342                 break;
343         case CPU_486:
344                 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
345                 break;
346         default:
347                 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
348                 break;
349         }
350
351 /*
352  * Save old state
353  */
354         vm86->saved_sp0 = tsk->thread.sp0;
355         lazy_save_gs(vm86->regs32.gs);
356
357         tss = &per_cpu(cpu_tss, get_cpu());
358         /* make room for real-mode segments */
359         tsk->thread.sp0 += 16;
360         if (cpu_has_sep)
361                 tsk->thread.sysenter_cs = 0;
362         load_sp0(tss, &tsk->thread);
363         put_cpu();
364
365         if (vm86->flags & VM86_SCREEN_BITMAP)
366                 mark_screen_rdonly(tsk->mm);
367
368         memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
369         force_iret();
370         return regs->ax;
371 }
372
373 static inline void set_IF(struct kernel_vm86_regs *regs)
374 {
375         VEFLAGS |= X86_EFLAGS_VIF;
376 }
377
378 static inline void clear_IF(struct kernel_vm86_regs *regs)
379 {
380         VEFLAGS &= ~X86_EFLAGS_VIF;
381 }
382
383 static inline void clear_TF(struct kernel_vm86_regs *regs)
384 {
385         regs->pt.flags &= ~X86_EFLAGS_TF;
386 }
387
388 static inline void clear_AC(struct kernel_vm86_regs *regs)
389 {
390         regs->pt.flags &= ~X86_EFLAGS_AC;
391 }
392
393 /*
394  * It is correct to call set_IF(regs) from the set_vflags_*
395  * functions. However someone forgot to call clear_IF(regs)
396  * in the opposite case.
397  * After the command sequence CLI PUSHF STI POPF you should
398  * end up with interrupts disabled, but you ended up with
399  * interrupts enabled.
400  *  ( I was testing my own changes, but the only bug I
401  *    could find was in a function I had not changed. )
402  * [KD]
403  */
404
405 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
406 {
407         set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
408         set_flags(regs->pt.flags, flags, SAFE_MASK);
409         if (flags & X86_EFLAGS_IF)
410                 set_IF(regs);
411         else
412                 clear_IF(regs);
413 }
414
415 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
416 {
417         set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
418         set_flags(regs->pt.flags, flags, SAFE_MASK);
419         if (flags & X86_EFLAGS_IF)
420                 set_IF(regs);
421         else
422                 clear_IF(regs);
423 }
424
425 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
426 {
427         unsigned long flags = regs->pt.flags & RETURN_MASK;
428
429         if (VEFLAGS & X86_EFLAGS_VIF)
430                 flags |= X86_EFLAGS_IF;
431         flags |= X86_EFLAGS_IOPL;
432         return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
433 }
434
435 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
436 {
437         __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
438                 :"=r" (nr)
439                 :"m" (*bitmap), "r" (nr));
440         return nr;
441 }
442
443 #define val_byte(val, n) (((__u8 *)&val)[n])
444
445 #define pushb(base, ptr, val, err_label) \
446         do { \
447                 __u8 __val = val; \
448                 ptr--; \
449                 if (put_user(__val, base + ptr) < 0) \
450                         goto err_label; \
451         } while (0)
452
453 #define pushw(base, ptr, val, err_label) \
454         do { \
455                 __u16 __val = val; \
456                 ptr--; \
457                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
458                         goto err_label; \
459                 ptr--; \
460                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
461                         goto err_label; \
462         } while (0)
463
464 #define pushl(base, ptr, val, err_label) \
465         do { \
466                 __u32 __val = val; \
467                 ptr--; \
468                 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
469                         goto err_label; \
470                 ptr--; \
471                 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
472                         goto err_label; \
473                 ptr--; \
474                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
475                         goto err_label; \
476                 ptr--; \
477                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
478                         goto err_label; \
479         } while (0)
480
481 #define popb(base, ptr, err_label) \
482         ({ \
483                 __u8 __res; \
484                 if (get_user(__res, base + ptr) < 0) \
485                         goto err_label; \
486                 ptr++; \
487                 __res; \
488         })
489
490 #define popw(base, ptr, err_label) \
491         ({ \
492                 __u16 __res; \
493                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
494                         goto err_label; \
495                 ptr++; \
496                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
497                         goto err_label; \
498                 ptr++; \
499                 __res; \
500         })
501
502 #define popl(base, ptr, err_label) \
503         ({ \
504                 __u32 __res; \
505                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
506                         goto err_label; \
507                 ptr++; \
508                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
509                         goto err_label; \
510                 ptr++; \
511                 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
512                         goto err_label; \
513                 ptr++; \
514                 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
515                         goto err_label; \
516                 ptr++; \
517                 __res; \
518         })
519
520 /* There are so many possible reasons for this function to return
521  * VM86_INTx, so adding another doesn't bother me. We can expect
522  * userspace programs to be able to handle it. (Getting a problem
523  * in userspace is always better than an Oops anyway.) [KD]
524  */
525 static void do_int(struct kernel_vm86_regs *regs, int i,
526     unsigned char __user *ssp, unsigned short sp)
527 {
528         unsigned long __user *intr_ptr;
529         unsigned long segoffs;
530         struct vm86 *vm86 = current->thread.vm86;
531
532         if (regs->pt.cs == BIOSSEG)
533                 goto cannot_handle;
534         if (is_revectored(i, &vm86->int_revectored))
535                 goto cannot_handle;
536         if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
537                 goto cannot_handle;
538         intr_ptr = (unsigned long __user *) (i << 2);
539         if (get_user(segoffs, intr_ptr))
540                 goto cannot_handle;
541         if ((segoffs >> 16) == BIOSSEG)
542                 goto cannot_handle;
543         pushw(ssp, sp, get_vflags(regs), cannot_handle);
544         pushw(ssp, sp, regs->pt.cs, cannot_handle);
545         pushw(ssp, sp, IP(regs), cannot_handle);
546         regs->pt.cs = segoffs >> 16;
547         SP(regs) -= 6;
548         IP(regs) = segoffs & 0xffff;
549         clear_TF(regs);
550         clear_IF(regs);
551         clear_AC(regs);
552         return;
553
554 cannot_handle:
555         save_v86_state(regs, VM86_INTx + (i << 8));
556 }
557
558 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
559 {
560         struct vm86 *vm86 = current->thread.vm86;
561
562         if (vm86->vm86plus.is_vm86pus) {
563                 if ((trapno == 3) || (trapno == 1)) {
564                         save_v86_state(regs, VM86_TRAP + (trapno << 8));
565                         return 0;
566                 }
567                 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
568                 return 0;
569         }
570         if (trapno != 1)
571                 return 1; /* we let this handle by the calling routine */
572         current->thread.trap_nr = trapno;
573         current->thread.error_code = error_code;
574         force_sig(SIGTRAP, current);
575         return 0;
576 }
577
578 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
579 {
580         unsigned char opcode;
581         unsigned char __user *csp;
582         unsigned char __user *ssp;
583         unsigned short ip, sp, orig_flags;
584         int data32, pref_done;
585         struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
586
587 #define CHECK_IF_IN_TRAP \
588         if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
589                 newflags |= X86_EFLAGS_TF
590
591         orig_flags = *(unsigned short *)&regs->pt.flags;
592
593         csp = (unsigned char __user *) (regs->pt.cs << 4);
594         ssp = (unsigned char __user *) (regs->pt.ss << 4);
595         sp = SP(regs);
596         ip = IP(regs);
597
598         data32 = 0;
599         pref_done = 0;
600         do {
601                 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
602                 case 0x66:      /* 32-bit data */     data32 = 1; break;
603                 case 0x67:      /* 32-bit address */  break;
604                 case 0x2e:      /* CS */              break;
605                 case 0x3e:      /* DS */              break;
606                 case 0x26:      /* ES */              break;
607                 case 0x36:      /* SS */              break;
608                 case 0x65:      /* GS */              break;
609                 case 0x64:      /* FS */              break;
610                 case 0xf2:      /* repnz */       break;
611                 case 0xf3:      /* rep */             break;
612                 default: pref_done = 1;
613                 }
614         } while (!pref_done);
615
616         switch (opcode) {
617
618         /* pushf */
619         case 0x9c:
620                 if (data32) {
621                         pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
622                         SP(regs) -= 4;
623                 } else {
624                         pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
625                         SP(regs) -= 2;
626                 }
627                 IP(regs) = ip;
628                 goto vm86_fault_return;
629
630         /* popf */
631         case 0x9d:
632                 {
633                 unsigned long newflags;
634                 if (data32) {
635                         newflags = popl(ssp, sp, simulate_sigsegv);
636                         SP(regs) += 4;
637                 } else {
638                         newflags = popw(ssp, sp, simulate_sigsegv);
639                         SP(regs) += 2;
640                 }
641                 IP(regs) = ip;
642                 CHECK_IF_IN_TRAP;
643                 if (data32)
644                         set_vflags_long(newflags, regs);
645                 else
646                         set_vflags_short(newflags, regs);
647
648                 goto check_vip;
649                 }
650
651         /* int xx */
652         case 0xcd: {
653                 int intno = popb(csp, ip, simulate_sigsegv);
654                 IP(regs) = ip;
655                 if (vmpi->vm86dbg_active) {
656                         if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
657                                 save_v86_state(regs, VM86_INTx + (intno << 8));
658                                 return;
659                         }
660                 }
661                 do_int(regs, intno, ssp, sp);
662                 return;
663         }
664
665         /* iret */
666         case 0xcf:
667                 {
668                 unsigned long newip;
669                 unsigned long newcs;
670                 unsigned long newflags;
671                 if (data32) {
672                         newip = popl(ssp, sp, simulate_sigsegv);
673                         newcs = popl(ssp, sp, simulate_sigsegv);
674                         newflags = popl(ssp, sp, simulate_sigsegv);
675                         SP(regs) += 12;
676                 } else {
677                         newip = popw(ssp, sp, simulate_sigsegv);
678                         newcs = popw(ssp, sp, simulate_sigsegv);
679                         newflags = popw(ssp, sp, simulate_sigsegv);
680                         SP(regs) += 6;
681                 }
682                 IP(regs) = newip;
683                 regs->pt.cs = newcs;
684                 CHECK_IF_IN_TRAP;
685                 if (data32) {
686                         set_vflags_long(newflags, regs);
687                 } else {
688                         set_vflags_short(newflags, regs);
689                 }
690                 goto check_vip;
691                 }
692
693         /* cli */
694         case 0xfa:
695                 IP(regs) = ip;
696                 clear_IF(regs);
697                 goto vm86_fault_return;
698
699         /* sti */
700         /*
701          * Damn. This is incorrect: the 'sti' instruction should actually
702          * enable interrupts after the /next/ instruction. Not good.
703          *
704          * Probably needs some horsing around with the TF flag. Aiee..
705          */
706         case 0xfb:
707                 IP(regs) = ip;
708                 set_IF(regs);
709                 goto check_vip;
710
711         default:
712                 save_v86_state(regs, VM86_UNKNOWN);
713         }
714
715         return;
716
717 check_vip:
718         if (VEFLAGS & X86_EFLAGS_VIP) {
719                 save_v86_state(regs, VM86_STI);
720                 return;
721         }
722
723 vm86_fault_return:
724         if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
725                 save_v86_state(regs, VM86_PICRETURN);
726                 return;
727         }
728         if (orig_flags & X86_EFLAGS_TF)
729                 handle_vm86_trap(regs, 0, X86_TRAP_DB);
730         return;
731
732 simulate_sigsegv:
733         /* FIXME: After a long discussion with Stas we finally
734          *        agreed, that this is wrong. Here we should
735          *        really send a SIGSEGV to the user program.
736          *        But how do we create the correct context? We
737          *        are inside a general protection fault handler
738          *        and has just returned from a page fault handler.
739          *        The correct context for the signal handler
740          *        should be a mixture of the two, but how do we
741          *        get the information? [KD]
742          */
743         save_v86_state(regs, VM86_UNKNOWN);
744 }
745
746 /* ---------------- vm86 special IRQ passing stuff ----------------- */
747
748 #define VM86_IRQNAME            "vm86irq"
749
750 static struct vm86_irqs {
751         struct task_struct *tsk;
752         int sig;
753 } vm86_irqs[16];
754
755 static DEFINE_SPINLOCK(irqbits_lock);
756 static int irqbits;
757
758 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
759         | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
760         | (1 << SIGUNUSED))
761
762 static irqreturn_t irq_handler(int intno, void *dev_id)
763 {
764         int irq_bit;
765         unsigned long flags;
766
767         spin_lock_irqsave(&irqbits_lock, flags);
768         irq_bit = 1 << intno;
769         if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
770                 goto out;
771         irqbits |= irq_bit;
772         if (vm86_irqs[intno].sig)
773                 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
774         /*
775          * IRQ will be re-enabled when user asks for the irq (whether
776          * polling or as a result of the signal)
777          */
778         disable_irq_nosync(intno);
779         spin_unlock_irqrestore(&irqbits_lock, flags);
780         return IRQ_HANDLED;
781
782 out:
783         spin_unlock_irqrestore(&irqbits_lock, flags);
784         return IRQ_NONE;
785 }
786
787 static inline void free_vm86_irq(int irqnumber)
788 {
789         unsigned long flags;
790
791         free_irq(irqnumber, NULL);
792         vm86_irqs[irqnumber].tsk = NULL;
793
794         spin_lock_irqsave(&irqbits_lock, flags);
795         irqbits &= ~(1 << irqnumber);
796         spin_unlock_irqrestore(&irqbits_lock, flags);
797 }
798
799 void release_vm86_irqs(struct task_struct *task)
800 {
801         int i;
802         for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
803             if (vm86_irqs[i].tsk == task)
804                 free_vm86_irq(i);
805 }
806
807 static inline int get_and_reset_irq(int irqnumber)
808 {
809         int bit;
810         unsigned long flags;
811         int ret = 0;
812
813         if (invalid_vm86_irq(irqnumber)) return 0;
814         if (vm86_irqs[irqnumber].tsk != current) return 0;
815         spin_lock_irqsave(&irqbits_lock, flags);
816         bit = irqbits & (1 << irqnumber);
817         irqbits &= ~bit;
818         if (bit) {
819                 enable_irq(irqnumber);
820                 ret = 1;
821         }
822
823         spin_unlock_irqrestore(&irqbits_lock, flags);
824         return ret;
825 }
826
827
828 static int do_vm86_irq_handling(int subfunction, int irqnumber)
829 {
830         int ret;
831         switch (subfunction) {
832                 case VM86_GET_AND_RESET_IRQ: {
833                         return get_and_reset_irq(irqnumber);
834                 }
835                 case VM86_GET_IRQ_BITS: {
836                         return irqbits;
837                 }
838                 case VM86_REQUEST_IRQ: {
839                         int sig = irqnumber >> 8;
840                         int irq = irqnumber & 255;
841                         if (!capable(CAP_SYS_ADMIN)) return -EPERM;
842                         if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
843                         if (invalid_vm86_irq(irq)) return -EPERM;
844                         if (vm86_irqs[irq].tsk) return -EPERM;
845                         ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
846                         if (ret) return ret;
847                         vm86_irqs[irq].sig = sig;
848                         vm86_irqs[irq].tsk = current;
849                         return irq;
850                 }
851                 case  VM86_FREE_IRQ: {
852                         if (invalid_vm86_irq(irqnumber)) return -EPERM;
853                         if (!vm86_irqs[irqnumber].tsk) return 0;
854                         if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
855                         free_vm86_irq(irqnumber);
856                         return 0;
857                 }
858         }
859         return -EINVAL;
860 }
861