Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23  * Intel PerfMon, used on Core and later.
24  */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
28         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
29         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
30         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
31         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
32         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
33         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
34         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45         EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87         EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99         EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134         /*
135          * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136          * siblings; disable these events because they can corrupt unrelated
137          * counters.
138          */
139         INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140         INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141         INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142         INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143         EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152         EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157         EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165         EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181         EVENT_EXTRA_END
182 };
183
184 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189         EVENT_EXTRA_END
190 };
191
192 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
193 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
194 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
195
196 struct attribute *nhm_events_attrs[] = {
197         EVENT_PTR(mem_ld_nhm),
198         NULL,
199 };
200
201 struct attribute *snb_events_attrs[] = {
202         EVENT_PTR(mem_ld_snb),
203         EVENT_PTR(mem_st_snb),
204         NULL,
205 };
206
207 static struct event_constraint intel_hsw_event_constraints[] = {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215         INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
216         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217         INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
218         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219         INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
220         EVENT_CONSTRAINT_END
221 };
222
223 static u64 intel_pmu_event_map(int hw_event)
224 {
225         return intel_perfmon_event_map[hw_event];
226 }
227
228 #define SNB_DMND_DATA_RD        (1ULL << 0)
229 #define SNB_DMND_RFO            (1ULL << 1)
230 #define SNB_DMND_IFETCH         (1ULL << 2)
231 #define SNB_DMND_WB             (1ULL << 3)
232 #define SNB_PF_DATA_RD          (1ULL << 4)
233 #define SNB_PF_RFO              (1ULL << 5)
234 #define SNB_PF_IFETCH           (1ULL << 6)
235 #define SNB_LLC_DATA_RD         (1ULL << 7)
236 #define SNB_LLC_RFO             (1ULL << 8)
237 #define SNB_LLC_IFETCH          (1ULL << 9)
238 #define SNB_BUS_LOCKS           (1ULL << 10)
239 #define SNB_STRM_ST             (1ULL << 11)
240 #define SNB_OTHER               (1ULL << 15)
241 #define SNB_RESP_ANY            (1ULL << 16)
242 #define SNB_NO_SUPP             (1ULL << 17)
243 #define SNB_LLC_HITM            (1ULL << 18)
244 #define SNB_LLC_HITE            (1ULL << 19)
245 #define SNB_LLC_HITS            (1ULL << 20)
246 #define SNB_LLC_HITF            (1ULL << 21)
247 #define SNB_LOCAL               (1ULL << 22)
248 #define SNB_REMOTE              (0xffULL << 23)
249 #define SNB_SNP_NONE            (1ULL << 31)
250 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
251 #define SNB_SNP_MISS            (1ULL << 33)
252 #define SNB_NO_FWD              (1ULL << 34)
253 #define SNB_SNP_FWD             (1ULL << 35)
254 #define SNB_HITM                (1ULL << 36)
255 #define SNB_NON_DRAM            (1ULL << 37)
256
257 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
258 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
259 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
260
261 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
262                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
263                                  SNB_HITM)
264
265 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
266 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
267
268 #define SNB_L3_ACCESS           SNB_RESP_ANY
269 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
270
271 static __initconst const u64 snb_hw_cache_extra_regs
272                                 [PERF_COUNT_HW_CACHE_MAX]
273                                 [PERF_COUNT_HW_CACHE_OP_MAX]
274                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
275 {
276  [ C(LL  ) ] = {
277         [ C(OP_READ) ] = {
278                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
279                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
280         },
281         [ C(OP_WRITE) ] = {
282                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
283                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
284         },
285         [ C(OP_PREFETCH) ] = {
286                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
287                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
288         },
289  },
290  [ C(NODE) ] = {
291         [ C(OP_READ) ] = {
292                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
293                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
294         },
295         [ C(OP_WRITE) ] = {
296                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
297                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
298         },
299         [ C(OP_PREFETCH) ] = {
300                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
301                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
302         },
303  },
304 };
305
306 static __initconst const u64 snb_hw_cache_event_ids
307                                 [PERF_COUNT_HW_CACHE_MAX]
308                                 [PERF_COUNT_HW_CACHE_OP_MAX]
309                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
310 {
311  [ C(L1D) ] = {
312         [ C(OP_READ) ] = {
313                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
314                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
315         },
316         [ C(OP_WRITE) ] = {
317                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
318                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
319         },
320         [ C(OP_PREFETCH) ] = {
321                 [ C(RESULT_ACCESS) ] = 0x0,
322                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
323         },
324  },
325  [ C(L1I ) ] = {
326         [ C(OP_READ) ] = {
327                 [ C(RESULT_ACCESS) ] = 0x0,
328                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
329         },
330         [ C(OP_WRITE) ] = {
331                 [ C(RESULT_ACCESS) ] = -1,
332                 [ C(RESULT_MISS)   ] = -1,
333         },
334         [ C(OP_PREFETCH) ] = {
335                 [ C(RESULT_ACCESS) ] = 0x0,
336                 [ C(RESULT_MISS)   ] = 0x0,
337         },
338  },
339  [ C(LL  ) ] = {
340         [ C(OP_READ) ] = {
341                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
342                 [ C(RESULT_ACCESS) ] = 0x01b7,
343                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
344                 [ C(RESULT_MISS)   ] = 0x01b7,
345         },
346         [ C(OP_WRITE) ] = {
347                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
348                 [ C(RESULT_ACCESS) ] = 0x01b7,
349                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
350                 [ C(RESULT_MISS)   ] = 0x01b7,
351         },
352         [ C(OP_PREFETCH) ] = {
353                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
354                 [ C(RESULT_ACCESS) ] = 0x01b7,
355                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
356                 [ C(RESULT_MISS)   ] = 0x01b7,
357         },
358  },
359  [ C(DTLB) ] = {
360         [ C(OP_READ) ] = {
361                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
362                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
363         },
364         [ C(OP_WRITE) ] = {
365                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
366                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
367         },
368         [ C(OP_PREFETCH) ] = {
369                 [ C(RESULT_ACCESS) ] = 0x0,
370                 [ C(RESULT_MISS)   ] = 0x0,
371         },
372  },
373  [ C(ITLB) ] = {
374         [ C(OP_READ) ] = {
375                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
376                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
377         },
378         [ C(OP_WRITE) ] = {
379                 [ C(RESULT_ACCESS) ] = -1,
380                 [ C(RESULT_MISS)   ] = -1,
381         },
382         [ C(OP_PREFETCH) ] = {
383                 [ C(RESULT_ACCESS) ] = -1,
384                 [ C(RESULT_MISS)   ] = -1,
385         },
386  },
387  [ C(BPU ) ] = {
388         [ C(OP_READ) ] = {
389                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
390                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
391         },
392         [ C(OP_WRITE) ] = {
393                 [ C(RESULT_ACCESS) ] = -1,
394                 [ C(RESULT_MISS)   ] = -1,
395         },
396         [ C(OP_PREFETCH) ] = {
397                 [ C(RESULT_ACCESS) ] = -1,
398                 [ C(RESULT_MISS)   ] = -1,
399         },
400  },
401  [ C(NODE) ] = {
402         [ C(OP_READ) ] = {
403                 [ C(RESULT_ACCESS) ] = 0x01b7,
404                 [ C(RESULT_MISS)   ] = 0x01b7,
405         },
406         [ C(OP_WRITE) ] = {
407                 [ C(RESULT_ACCESS) ] = 0x01b7,
408                 [ C(RESULT_MISS)   ] = 0x01b7,
409         },
410         [ C(OP_PREFETCH) ] = {
411                 [ C(RESULT_ACCESS) ] = 0x01b7,
412                 [ C(RESULT_MISS)   ] = 0x01b7,
413         },
414  },
415
416 };
417
418 static __initconst const u64 westmere_hw_cache_event_ids
419                                 [PERF_COUNT_HW_CACHE_MAX]
420                                 [PERF_COUNT_HW_CACHE_OP_MAX]
421                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
422 {
423  [ C(L1D) ] = {
424         [ C(OP_READ) ] = {
425                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
426                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
427         },
428         [ C(OP_WRITE) ] = {
429                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
430                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
431         },
432         [ C(OP_PREFETCH) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
434                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
435         },
436  },
437  [ C(L1I ) ] = {
438         [ C(OP_READ) ] = {
439                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
440                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
441         },
442         [ C(OP_WRITE) ] = {
443                 [ C(RESULT_ACCESS) ] = -1,
444                 [ C(RESULT_MISS)   ] = -1,
445         },
446         [ C(OP_PREFETCH) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x0,
448                 [ C(RESULT_MISS)   ] = 0x0,
449         },
450  },
451  [ C(LL  ) ] = {
452         [ C(OP_READ) ] = {
453                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
454                 [ C(RESULT_ACCESS) ] = 0x01b7,
455                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
456                 [ C(RESULT_MISS)   ] = 0x01b7,
457         },
458         /*
459          * Use RFO, not WRITEBACK, because a write miss would typically occur
460          * on RFO.
461          */
462         [ C(OP_WRITE) ] = {
463                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
464                 [ C(RESULT_ACCESS) ] = 0x01b7,
465                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
466                 [ C(RESULT_MISS)   ] = 0x01b7,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
470                 [ C(RESULT_ACCESS) ] = 0x01b7,
471                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
472                 [ C(RESULT_MISS)   ] = 0x01b7,
473         },
474  },
475  [ C(DTLB) ] = {
476         [ C(OP_READ) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
478                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
479         },
480         [ C(OP_WRITE) ] = {
481                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
482                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
483         },
484         [ C(OP_PREFETCH) ] = {
485                 [ C(RESULT_ACCESS) ] = 0x0,
486                 [ C(RESULT_MISS)   ] = 0x0,
487         },
488  },
489  [ C(ITLB) ] = {
490         [ C(OP_READ) ] = {
491                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
492                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
493         },
494         [ C(OP_WRITE) ] = {
495                 [ C(RESULT_ACCESS) ] = -1,
496                 [ C(RESULT_MISS)   ] = -1,
497         },
498         [ C(OP_PREFETCH) ] = {
499                 [ C(RESULT_ACCESS) ] = -1,
500                 [ C(RESULT_MISS)   ] = -1,
501         },
502  },
503  [ C(BPU ) ] = {
504         [ C(OP_READ) ] = {
505                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
506                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
507         },
508         [ C(OP_WRITE) ] = {
509                 [ C(RESULT_ACCESS) ] = -1,
510                 [ C(RESULT_MISS)   ] = -1,
511         },
512         [ C(OP_PREFETCH) ] = {
513                 [ C(RESULT_ACCESS) ] = -1,
514                 [ C(RESULT_MISS)   ] = -1,
515         },
516  },
517  [ C(NODE) ] = {
518         [ C(OP_READ) ] = {
519                 [ C(RESULT_ACCESS) ] = 0x01b7,
520                 [ C(RESULT_MISS)   ] = 0x01b7,
521         },
522         [ C(OP_WRITE) ] = {
523                 [ C(RESULT_ACCESS) ] = 0x01b7,
524                 [ C(RESULT_MISS)   ] = 0x01b7,
525         },
526         [ C(OP_PREFETCH) ] = {
527                 [ C(RESULT_ACCESS) ] = 0x01b7,
528                 [ C(RESULT_MISS)   ] = 0x01b7,
529         },
530  },
531 };
532
533 /*
534  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
535  * See IA32 SDM Vol 3B 30.6.1.3
536  */
537
538 #define NHM_DMND_DATA_RD        (1 << 0)
539 #define NHM_DMND_RFO            (1 << 1)
540 #define NHM_DMND_IFETCH         (1 << 2)
541 #define NHM_DMND_WB             (1 << 3)
542 #define NHM_PF_DATA_RD          (1 << 4)
543 #define NHM_PF_DATA_RFO         (1 << 5)
544 #define NHM_PF_IFETCH           (1 << 6)
545 #define NHM_OFFCORE_OTHER       (1 << 7)
546 #define NHM_UNCORE_HIT          (1 << 8)
547 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
548 #define NHM_OTHER_CORE_HITM     (1 << 10)
549                                 /* reserved */
550 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
551 #define NHM_REMOTE_DRAM         (1 << 13)
552 #define NHM_LOCAL_DRAM          (1 << 14)
553 #define NHM_NON_DRAM            (1 << 15)
554
555 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
556 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
557
558 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
559 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
560 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
561
562 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
563 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
564 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
565
566 static __initconst const u64 nehalem_hw_cache_extra_regs
567                                 [PERF_COUNT_HW_CACHE_MAX]
568                                 [PERF_COUNT_HW_CACHE_OP_MAX]
569                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
570 {
571  [ C(LL  ) ] = {
572         [ C(OP_READ) ] = {
573                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
574                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
575         },
576         [ C(OP_WRITE) ] = {
577                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
578                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
579         },
580         [ C(OP_PREFETCH) ] = {
581                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
582                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
583         },
584  },
585  [ C(NODE) ] = {
586         [ C(OP_READ) ] = {
587                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
588                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
589         },
590         [ C(OP_WRITE) ] = {
591                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
592                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
593         },
594         [ C(OP_PREFETCH) ] = {
595                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
596                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
597         },
598  },
599 };
600
601 static __initconst const u64 nehalem_hw_cache_event_ids
602                                 [PERF_COUNT_HW_CACHE_MAX]
603                                 [PERF_COUNT_HW_CACHE_OP_MAX]
604                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
605 {
606  [ C(L1D) ] = {
607         [ C(OP_READ) ] = {
608                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
609                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
610         },
611         [ C(OP_WRITE) ] = {
612                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
613                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
614         },
615         [ C(OP_PREFETCH) ] = {
616                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
617                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
618         },
619  },
620  [ C(L1I ) ] = {
621         [ C(OP_READ) ] = {
622                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
623                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
624         },
625         [ C(OP_WRITE) ] = {
626                 [ C(RESULT_ACCESS) ] = -1,
627                 [ C(RESULT_MISS)   ] = -1,
628         },
629         [ C(OP_PREFETCH) ] = {
630                 [ C(RESULT_ACCESS) ] = 0x0,
631                 [ C(RESULT_MISS)   ] = 0x0,
632         },
633  },
634  [ C(LL  ) ] = {
635         [ C(OP_READ) ] = {
636                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
637                 [ C(RESULT_ACCESS) ] = 0x01b7,
638                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
639                 [ C(RESULT_MISS)   ] = 0x01b7,
640         },
641         /*
642          * Use RFO, not WRITEBACK, because a write miss would typically occur
643          * on RFO.
644          */
645         [ C(OP_WRITE) ] = {
646                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
647                 [ C(RESULT_ACCESS) ] = 0x01b7,
648                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
649                 [ C(RESULT_MISS)   ] = 0x01b7,
650         },
651         [ C(OP_PREFETCH) ] = {
652                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
653                 [ C(RESULT_ACCESS) ] = 0x01b7,
654                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
655                 [ C(RESULT_MISS)   ] = 0x01b7,
656         },
657  },
658  [ C(DTLB) ] = {
659         [ C(OP_READ) ] = {
660                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
661                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
662         },
663         [ C(OP_WRITE) ] = {
664                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
665                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
666         },
667         [ C(OP_PREFETCH) ] = {
668                 [ C(RESULT_ACCESS) ] = 0x0,
669                 [ C(RESULT_MISS)   ] = 0x0,
670         },
671  },
672  [ C(ITLB) ] = {
673         [ C(OP_READ) ] = {
674                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
675                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
676         },
677         [ C(OP_WRITE) ] = {
678                 [ C(RESULT_ACCESS) ] = -1,
679                 [ C(RESULT_MISS)   ] = -1,
680         },
681         [ C(OP_PREFETCH) ] = {
682                 [ C(RESULT_ACCESS) ] = -1,
683                 [ C(RESULT_MISS)   ] = -1,
684         },
685  },
686  [ C(BPU ) ] = {
687         [ C(OP_READ) ] = {
688                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
689                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
690         },
691         [ C(OP_WRITE) ] = {
692                 [ C(RESULT_ACCESS) ] = -1,
693                 [ C(RESULT_MISS)   ] = -1,
694         },
695         [ C(OP_PREFETCH) ] = {
696                 [ C(RESULT_ACCESS) ] = -1,
697                 [ C(RESULT_MISS)   ] = -1,
698         },
699  },
700  [ C(NODE) ] = {
701         [ C(OP_READ) ] = {
702                 [ C(RESULT_ACCESS) ] = 0x01b7,
703                 [ C(RESULT_MISS)   ] = 0x01b7,
704         },
705         [ C(OP_WRITE) ] = {
706                 [ C(RESULT_ACCESS) ] = 0x01b7,
707                 [ C(RESULT_MISS)   ] = 0x01b7,
708         },
709         [ C(OP_PREFETCH) ] = {
710                 [ C(RESULT_ACCESS) ] = 0x01b7,
711                 [ C(RESULT_MISS)   ] = 0x01b7,
712         },
713  },
714 };
715
716 static __initconst const u64 core2_hw_cache_event_ids
717                                 [PERF_COUNT_HW_CACHE_MAX]
718                                 [PERF_COUNT_HW_CACHE_OP_MAX]
719                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
720 {
721  [ C(L1D) ] = {
722         [ C(OP_READ) ] = {
723                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
724                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
725         },
726         [ C(OP_WRITE) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
728                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
729         },
730         [ C(OP_PREFETCH) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
732                 [ C(RESULT_MISS)   ] = 0,
733         },
734  },
735  [ C(L1I ) ] = {
736         [ C(OP_READ) ] = {
737                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
738                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
739         },
740         [ C(OP_WRITE) ] = {
741                 [ C(RESULT_ACCESS) ] = -1,
742                 [ C(RESULT_MISS)   ] = -1,
743         },
744         [ C(OP_PREFETCH) ] = {
745                 [ C(RESULT_ACCESS) ] = 0,
746                 [ C(RESULT_MISS)   ] = 0,
747         },
748  },
749  [ C(LL  ) ] = {
750         [ C(OP_READ) ] = {
751                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
752                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
753         },
754         [ C(OP_WRITE) ] = {
755                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
756                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
757         },
758         [ C(OP_PREFETCH) ] = {
759                 [ C(RESULT_ACCESS) ] = 0,
760                 [ C(RESULT_MISS)   ] = 0,
761         },
762  },
763  [ C(DTLB) ] = {
764         [ C(OP_READ) ] = {
765                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
766                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
767         },
768         [ C(OP_WRITE) ] = {
769                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
770                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
771         },
772         [ C(OP_PREFETCH) ] = {
773                 [ C(RESULT_ACCESS) ] = 0,
774                 [ C(RESULT_MISS)   ] = 0,
775         },
776  },
777  [ C(ITLB) ] = {
778         [ C(OP_READ) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
780                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
781         },
782         [ C(OP_WRITE) ] = {
783                 [ C(RESULT_ACCESS) ] = -1,
784                 [ C(RESULT_MISS)   ] = -1,
785         },
786         [ C(OP_PREFETCH) ] = {
787                 [ C(RESULT_ACCESS) ] = -1,
788                 [ C(RESULT_MISS)   ] = -1,
789         },
790  },
791  [ C(BPU ) ] = {
792         [ C(OP_READ) ] = {
793                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
794                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
795         },
796         [ C(OP_WRITE) ] = {
797                 [ C(RESULT_ACCESS) ] = -1,
798                 [ C(RESULT_MISS)   ] = -1,
799         },
800         [ C(OP_PREFETCH) ] = {
801                 [ C(RESULT_ACCESS) ] = -1,
802                 [ C(RESULT_MISS)   ] = -1,
803         },
804  },
805 };
806
807 static __initconst const u64 atom_hw_cache_event_ids
808                                 [PERF_COUNT_HW_CACHE_MAX]
809                                 [PERF_COUNT_HW_CACHE_OP_MAX]
810                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
811 {
812  [ C(L1D) ] = {
813         [ C(OP_READ) ] = {
814                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
815                 [ C(RESULT_MISS)   ] = 0,
816         },
817         [ C(OP_WRITE) ] = {
818                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
819                 [ C(RESULT_MISS)   ] = 0,
820         },
821         [ C(OP_PREFETCH) ] = {
822                 [ C(RESULT_ACCESS) ] = 0x0,
823                 [ C(RESULT_MISS)   ] = 0,
824         },
825  },
826  [ C(L1I ) ] = {
827         [ C(OP_READ) ] = {
828                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
829                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
830         },
831         [ C(OP_WRITE) ] = {
832                 [ C(RESULT_ACCESS) ] = -1,
833                 [ C(RESULT_MISS)   ] = -1,
834         },
835         [ C(OP_PREFETCH) ] = {
836                 [ C(RESULT_ACCESS) ] = 0,
837                 [ C(RESULT_MISS)   ] = 0,
838         },
839  },
840  [ C(LL  ) ] = {
841         [ C(OP_READ) ] = {
842                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
843                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
844         },
845         [ C(OP_WRITE) ] = {
846                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
847                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
848         },
849         [ C(OP_PREFETCH) ] = {
850                 [ C(RESULT_ACCESS) ] = 0,
851                 [ C(RESULT_MISS)   ] = 0,
852         },
853  },
854  [ C(DTLB) ] = {
855         [ C(OP_READ) ] = {
856                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
857                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
858         },
859         [ C(OP_WRITE) ] = {
860                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
861                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
862         },
863         [ C(OP_PREFETCH) ] = {
864                 [ C(RESULT_ACCESS) ] = 0,
865                 [ C(RESULT_MISS)   ] = 0,
866         },
867  },
868  [ C(ITLB) ] = {
869         [ C(OP_READ) ] = {
870                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
871                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
872         },
873         [ C(OP_WRITE) ] = {
874                 [ C(RESULT_ACCESS) ] = -1,
875                 [ C(RESULT_MISS)   ] = -1,
876         },
877         [ C(OP_PREFETCH) ] = {
878                 [ C(RESULT_ACCESS) ] = -1,
879                 [ C(RESULT_MISS)   ] = -1,
880         },
881  },
882  [ C(BPU ) ] = {
883         [ C(OP_READ) ] = {
884                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
885                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
886         },
887         [ C(OP_WRITE) ] = {
888                 [ C(RESULT_ACCESS) ] = -1,
889                 [ C(RESULT_MISS)   ] = -1,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = -1,
893                 [ C(RESULT_MISS)   ] = -1,
894         },
895  },
896 };
897
898 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
899 {
900         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
901         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
902         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
903         EVENT_EXTRA_END
904 };
905
906 #define SLM_DMND_READ           SNB_DMND_DATA_RD
907 #define SLM_DMND_WRITE          SNB_DMND_RFO
908 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
909
910 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
911 #define SLM_LLC_ACCESS          SNB_RESP_ANY
912 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
913
914 static __initconst const u64 slm_hw_cache_extra_regs
915                                 [PERF_COUNT_HW_CACHE_MAX]
916                                 [PERF_COUNT_HW_CACHE_OP_MAX]
917                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
918 {
919  [ C(LL  ) ] = {
920         [ C(OP_READ) ] = {
921                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
922                 [ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
923         },
924         [ C(OP_WRITE) ] = {
925                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
926                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
927         },
928         [ C(OP_PREFETCH) ] = {
929                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
930                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
931         },
932  },
933 };
934
935 static __initconst const u64 slm_hw_cache_event_ids
936                                 [PERF_COUNT_HW_CACHE_MAX]
937                                 [PERF_COUNT_HW_CACHE_OP_MAX]
938                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
939 {
940  [ C(L1D) ] = {
941         [ C(OP_READ) ] = {
942                 [ C(RESULT_ACCESS) ] = 0,
943                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
944         },
945         [ C(OP_WRITE) ] = {
946                 [ C(RESULT_ACCESS) ] = 0,
947                 [ C(RESULT_MISS)   ] = 0,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = 0,
951                 [ C(RESULT_MISS)   ] = 0,
952         },
953  },
954  [ C(L1I ) ] = {
955         [ C(OP_READ) ] = {
956                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
957                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
958         },
959         [ C(OP_WRITE) ] = {
960                 [ C(RESULT_ACCESS) ] = -1,
961                 [ C(RESULT_MISS)   ] = -1,
962         },
963         [ C(OP_PREFETCH) ] = {
964                 [ C(RESULT_ACCESS) ] = 0,
965                 [ C(RESULT_MISS)   ] = 0,
966         },
967  },
968  [ C(LL  ) ] = {
969         [ C(OP_READ) ] = {
970                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
971                 [ C(RESULT_ACCESS) ] = 0x01b7,
972                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
973                 [ C(RESULT_MISS)   ] = 0x01b7,
974         },
975         [ C(OP_WRITE) ] = {
976                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
977                 [ C(RESULT_ACCESS) ] = 0x01b7,
978                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
979                 [ C(RESULT_MISS)   ] = 0x01b7,
980         },
981         [ C(OP_PREFETCH) ] = {
982                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
983                 [ C(RESULT_ACCESS) ] = 0x01b7,
984                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
985                 [ C(RESULT_MISS)   ] = 0x01b7,
986         },
987  },
988  [ C(DTLB) ] = {
989         [ C(OP_READ) ] = {
990                 [ C(RESULT_ACCESS) ] = 0,
991                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
992         },
993         [ C(OP_WRITE) ] = {
994                 [ C(RESULT_ACCESS) ] = 0,
995                 [ C(RESULT_MISS)   ] = 0,
996         },
997         [ C(OP_PREFETCH) ] = {
998                 [ C(RESULT_ACCESS) ] = 0,
999                 [ C(RESULT_MISS)   ] = 0,
1000         },
1001  },
1002  [ C(ITLB) ] = {
1003         [ C(OP_READ) ] = {
1004                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1005                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
1006         },
1007         [ C(OP_WRITE) ] = {
1008                 [ C(RESULT_ACCESS) ] = -1,
1009                 [ C(RESULT_MISS)   ] = -1,
1010         },
1011         [ C(OP_PREFETCH) ] = {
1012                 [ C(RESULT_ACCESS) ] = -1,
1013                 [ C(RESULT_MISS)   ] = -1,
1014         },
1015  },
1016  [ C(BPU ) ] = {
1017         [ C(OP_READ) ] = {
1018                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1019                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1020         },
1021         [ C(OP_WRITE) ] = {
1022                 [ C(RESULT_ACCESS) ] = -1,
1023                 [ C(RESULT_MISS)   ] = -1,
1024         },
1025         [ C(OP_PREFETCH) ] = {
1026                 [ C(RESULT_ACCESS) ] = -1,
1027                 [ C(RESULT_MISS)   ] = -1,
1028         },
1029  },
1030 };
1031
1032 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1033 {
1034         /* user explicitly requested branch sampling */
1035         if (has_branch_stack(event))
1036                 return true;
1037
1038         /* implicit branch sampling to correct PEBS skid */
1039         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1040             x86_pmu.intel_cap.pebs_format < 2)
1041                 return true;
1042
1043         return false;
1044 }
1045
1046 static void intel_pmu_disable_all(void)
1047 {
1048         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1049
1050         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1051
1052         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1053                 intel_pmu_disable_bts();
1054
1055         intel_pmu_pebs_disable_all();
1056         intel_pmu_lbr_disable_all();
1057 }
1058
1059 static void intel_pmu_enable_all(int added)
1060 {
1061         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1062
1063         intel_pmu_pebs_enable_all();
1064         intel_pmu_lbr_enable_all();
1065         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1066                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1067
1068         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1069                 struct perf_event *event =
1070                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1071
1072                 if (WARN_ON_ONCE(!event))
1073                         return;
1074
1075                 intel_pmu_enable_bts(event->hw.config);
1076         }
1077 }
1078
1079 /*
1080  * Workaround for:
1081  *   Intel Errata AAK100 (model 26)
1082  *   Intel Errata AAP53  (model 30)
1083  *   Intel Errata BD53   (model 44)
1084  *
1085  * The official story:
1086  *   These chips need to be 'reset' when adding counters by programming the
1087  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1088  *   in sequence on the same PMC or on different PMCs.
1089  *
1090  * In practise it appears some of these events do in fact count, and
1091  * we need to programm all 4 events.
1092  */
1093 static void intel_pmu_nhm_workaround(void)
1094 {
1095         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1096         static const unsigned long nhm_magic[4] = {
1097                 0x4300B5,
1098                 0x4300D2,
1099                 0x4300B1,
1100                 0x4300B1
1101         };
1102         struct perf_event *event;
1103         int i;
1104
1105         /*
1106          * The Errata requires below steps:
1107          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1108          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1109          *    the corresponding PMCx;
1110          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1111          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1112          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1113          */
1114
1115         /*
1116          * The real steps we choose are a little different from above.
1117          * A) To reduce MSR operations, we don't run step 1) as they
1118          *    are already cleared before this function is called;
1119          * B) Call x86_perf_event_update to save PMCx before configuring
1120          *    PERFEVTSELx with magic number;
1121          * C) With step 5), we do clear only when the PERFEVTSELx is
1122          *    not used currently.
1123          * D) Call x86_perf_event_set_period to restore PMCx;
1124          */
1125
1126         /* We always operate 4 pairs of PERF Counters */
1127         for (i = 0; i < 4; i++) {
1128                 event = cpuc->events[i];
1129                 if (event)
1130                         x86_perf_event_update(event);
1131         }
1132
1133         for (i = 0; i < 4; i++) {
1134                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1135                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1136         }
1137
1138         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1139         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1140
1141         for (i = 0; i < 4; i++) {
1142                 event = cpuc->events[i];
1143
1144                 if (event) {
1145                         x86_perf_event_set_period(event);
1146                         __x86_pmu_enable_event(&event->hw,
1147                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1148                 } else
1149                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1150         }
1151 }
1152
1153 static void intel_pmu_nhm_enable_all(int added)
1154 {
1155         if (added)
1156                 intel_pmu_nhm_workaround();
1157         intel_pmu_enable_all(added);
1158 }
1159
1160 static inline u64 intel_pmu_get_status(void)
1161 {
1162         u64 status;
1163
1164         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1165
1166         return status;
1167 }
1168
1169 static inline void intel_pmu_ack_status(u64 ack)
1170 {
1171         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1172 }
1173
1174 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1175 {
1176         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1177         u64 ctrl_val, mask;
1178
1179         mask = 0xfULL << (idx * 4);
1180
1181         rdmsrl(hwc->config_base, ctrl_val);
1182         ctrl_val &= ~mask;
1183         wrmsrl(hwc->config_base, ctrl_val);
1184 }
1185
1186 static inline bool event_is_checkpointed(struct perf_event *event)
1187 {
1188         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1189 }
1190
1191 static void intel_pmu_disable_event(struct perf_event *event)
1192 {
1193         struct hw_perf_event *hwc = &event->hw;
1194         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195
1196         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1197                 intel_pmu_disable_bts();
1198                 intel_pmu_drain_bts_buffer();
1199                 return;
1200         }
1201
1202         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1203         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1204         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1205
1206         /*
1207          * must disable before any actual event
1208          * because any event may be combined with LBR
1209          */
1210         if (intel_pmu_needs_lbr_smpl(event))
1211                 intel_pmu_lbr_disable(event);
1212
1213         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1214                 intel_pmu_disable_fixed(hwc);
1215                 return;
1216         }
1217
1218         x86_pmu_disable_event(event);
1219
1220         if (unlikely(event->attr.precise_ip))
1221                 intel_pmu_pebs_disable(event);
1222 }
1223
1224 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1225 {
1226         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1227         u64 ctrl_val, bits, mask;
1228
1229         /*
1230          * Enable IRQ generation (0x8),
1231          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1232          * if requested:
1233          */
1234         bits = 0x8ULL;
1235         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1236                 bits |= 0x2;
1237         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1238                 bits |= 0x1;
1239
1240         /*
1241          * ANY bit is supported in v3 and up
1242          */
1243         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1244                 bits |= 0x4;
1245
1246         bits <<= (idx * 4);
1247         mask = 0xfULL << (idx * 4);
1248
1249         rdmsrl(hwc->config_base, ctrl_val);
1250         ctrl_val &= ~mask;
1251         ctrl_val |= bits;
1252         wrmsrl(hwc->config_base, ctrl_val);
1253 }
1254
1255 static void intel_pmu_enable_event(struct perf_event *event)
1256 {
1257         struct hw_perf_event *hwc = &event->hw;
1258         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1259
1260         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1261                 if (!__this_cpu_read(cpu_hw_events.enabled))
1262                         return;
1263
1264                 intel_pmu_enable_bts(hwc->config);
1265                 return;
1266         }
1267         /*
1268          * must enabled before any actual event
1269          * because any event may be combined with LBR
1270          */
1271         if (intel_pmu_needs_lbr_smpl(event))
1272                 intel_pmu_lbr_enable(event);
1273
1274         if (event->attr.exclude_host)
1275                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1276         if (event->attr.exclude_guest)
1277                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1278
1279         if (unlikely(event_is_checkpointed(event)))
1280                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1281
1282         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1283                 intel_pmu_enable_fixed(hwc);
1284                 return;
1285         }
1286
1287         if (unlikely(event->attr.precise_ip))
1288                 intel_pmu_pebs_enable(event);
1289
1290         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1291 }
1292
1293 /*
1294  * Save and restart an expired event. Called by NMI contexts,
1295  * so it has to be careful about preempting normal event ops:
1296  */
1297 int intel_pmu_save_and_restart(struct perf_event *event)
1298 {
1299         x86_perf_event_update(event);
1300         /*
1301          * For a checkpointed counter always reset back to 0.  This
1302          * avoids a situation where the counter overflows, aborts the
1303          * transaction and is then set back to shortly before the
1304          * overflow, and overflows and aborts again.
1305          */
1306         if (unlikely(event_is_checkpointed(event))) {
1307                 /* No race with NMIs because the counter should not be armed */
1308                 wrmsrl(event->hw.event_base, 0);
1309                 local64_set(&event->hw.prev_count, 0);
1310         }
1311         return x86_perf_event_set_period(event);
1312 }
1313
1314 static void intel_pmu_reset(void)
1315 {
1316         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1317         unsigned long flags;
1318         int idx;
1319
1320         if (!x86_pmu.num_counters)
1321                 return;
1322
1323         local_irq_save(flags);
1324
1325         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1326
1327         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1328                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1329                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1330         }
1331         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1332                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1333
1334         if (ds)
1335                 ds->bts_index = ds->bts_buffer_base;
1336
1337         local_irq_restore(flags);
1338 }
1339
1340 /*
1341  * This handler is triggered by the local APIC, so the APIC IRQ handling
1342  * rules apply:
1343  */
1344 static int intel_pmu_handle_irq(struct pt_regs *regs)
1345 {
1346         struct perf_sample_data data;
1347         struct cpu_hw_events *cpuc;
1348         int bit, loops;
1349         u64 status;
1350         int handled;
1351
1352         cpuc = this_cpu_ptr(&cpu_hw_events);
1353
1354         /*
1355          * No known reason to not always do late ACK,
1356          * but just in case do it opt-in.
1357          */
1358         if (!x86_pmu.late_ack)
1359                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1360         intel_pmu_disable_all();
1361         handled = intel_pmu_drain_bts_buffer();
1362         status = intel_pmu_get_status();
1363         if (!status)
1364                 goto done;
1365
1366         loops = 0;
1367 again:
1368         intel_pmu_ack_status(status);
1369         if (++loops > 100) {
1370                 static bool warned = false;
1371                 if (!warned) {
1372                         WARN(1, "perfevents: irq loop stuck!\n");
1373                         perf_event_print_debug();
1374                         warned = true;
1375                 }
1376                 intel_pmu_reset();
1377                 goto done;
1378         }
1379
1380         inc_irq_stat(apic_perf_irqs);
1381
1382         intel_pmu_lbr_read();
1383
1384         /*
1385          * CondChgd bit 63 doesn't mean any overflow status. Ignore
1386          * and clear the bit.
1387          */
1388         if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1389                 if (!status)
1390                         goto done;
1391         }
1392
1393         /*
1394          * PEBS overflow sets bit 62 in the global status register
1395          */
1396         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1397                 handled++;
1398                 x86_pmu.drain_pebs(regs);
1399         }
1400
1401         /*
1402          * Checkpointed counters can lead to 'spurious' PMIs because the
1403          * rollback caused by the PMI will have cleared the overflow status
1404          * bit. Therefore always force probe these counters.
1405          */
1406         status |= cpuc->intel_cp_status;
1407
1408         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1409                 struct perf_event *event = cpuc->events[bit];
1410
1411                 handled++;
1412
1413                 if (!test_bit(bit, cpuc->active_mask))
1414                         continue;
1415
1416                 if (!intel_pmu_save_and_restart(event))
1417                         continue;
1418
1419                 perf_sample_data_init(&data, 0, event->hw.last_period);
1420
1421                 if (has_branch_stack(event))
1422                         data.br_stack = &cpuc->lbr_stack;
1423
1424                 if (perf_event_overflow(event, &data, regs))
1425                         x86_pmu_stop(event, 0);
1426         }
1427
1428         /*
1429          * Repeat if there is more work to be done:
1430          */
1431         status = intel_pmu_get_status();
1432         if (status)
1433                 goto again;
1434
1435 done:
1436         intel_pmu_enable_all(0);
1437         /*
1438          * Only unmask the NMI after the overflow counters
1439          * have been reset. This avoids spurious NMIs on
1440          * Haswell CPUs.
1441          */
1442         if (x86_pmu.late_ack)
1443                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1444         return handled;
1445 }
1446
1447 static struct event_constraint *
1448 intel_bts_constraints(struct perf_event *event)
1449 {
1450         struct hw_perf_event *hwc = &event->hw;
1451         unsigned int hw_event, bts_event;
1452
1453         if (event->attr.freq)
1454                 return NULL;
1455
1456         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1457         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1458
1459         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1460                 return &bts_constraint;
1461
1462         return NULL;
1463 }
1464
1465 static int intel_alt_er(int idx)
1466 {
1467         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1468                 return idx;
1469
1470         if (idx == EXTRA_REG_RSP_0)
1471                 return EXTRA_REG_RSP_1;
1472
1473         if (idx == EXTRA_REG_RSP_1)
1474                 return EXTRA_REG_RSP_0;
1475
1476         return idx;
1477 }
1478
1479 static void intel_fixup_er(struct perf_event *event, int idx)
1480 {
1481         event->hw.extra_reg.idx = idx;
1482
1483         if (idx == EXTRA_REG_RSP_0) {
1484                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1485                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1486                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1487         } else if (idx == EXTRA_REG_RSP_1) {
1488                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1489                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1490                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1491         }
1492 }
1493
1494 /*
1495  * manage allocation of shared extra msr for certain events
1496  *
1497  * sharing can be:
1498  * per-cpu: to be shared between the various events on a single PMU
1499  * per-core: per-cpu + shared by HT threads
1500  */
1501 static struct event_constraint *
1502 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1503                                    struct perf_event *event,
1504                                    struct hw_perf_event_extra *reg)
1505 {
1506         struct event_constraint *c = &emptyconstraint;
1507         struct er_account *era;
1508         unsigned long flags;
1509         int idx = reg->idx;
1510
1511         /*
1512          * reg->alloc can be set due to existing state, so for fake cpuc we
1513          * need to ignore this, otherwise we might fail to allocate proper fake
1514          * state for this extra reg constraint. Also see the comment below.
1515          */
1516         if (reg->alloc && !cpuc->is_fake)
1517                 return NULL; /* call x86_get_event_constraint() */
1518
1519 again:
1520         era = &cpuc->shared_regs->regs[idx];
1521         /*
1522          * we use spin_lock_irqsave() to avoid lockdep issues when
1523          * passing a fake cpuc
1524          */
1525         raw_spin_lock_irqsave(&era->lock, flags);
1526
1527         if (!atomic_read(&era->ref) || era->config == reg->config) {
1528
1529                 /*
1530                  * If its a fake cpuc -- as per validate_{group,event}() we
1531                  * shouldn't touch event state and we can avoid doing so
1532                  * since both will only call get_event_constraints() once
1533                  * on each event, this avoids the need for reg->alloc.
1534                  *
1535                  * Not doing the ER fixup will only result in era->reg being
1536                  * wrong, but since we won't actually try and program hardware
1537                  * this isn't a problem either.
1538                  */
1539                 if (!cpuc->is_fake) {
1540                         if (idx != reg->idx)
1541                                 intel_fixup_er(event, idx);
1542
1543                         /*
1544                          * x86_schedule_events() can call get_event_constraints()
1545                          * multiple times on events in the case of incremental
1546                          * scheduling(). reg->alloc ensures we only do the ER
1547                          * allocation once.
1548                          */
1549                         reg->alloc = 1;
1550                 }
1551
1552                 /* lock in msr value */
1553                 era->config = reg->config;
1554                 era->reg = reg->reg;
1555
1556                 /* one more user */
1557                 atomic_inc(&era->ref);
1558
1559                 /*
1560                  * need to call x86_get_event_constraint()
1561                  * to check if associated event has constraints
1562                  */
1563                 c = NULL;
1564         } else {
1565                 idx = intel_alt_er(idx);
1566                 if (idx != reg->idx) {
1567                         raw_spin_unlock_irqrestore(&era->lock, flags);
1568                         goto again;
1569                 }
1570         }
1571         raw_spin_unlock_irqrestore(&era->lock, flags);
1572
1573         return c;
1574 }
1575
1576 static void
1577 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1578                                    struct hw_perf_event_extra *reg)
1579 {
1580         struct er_account *era;
1581
1582         /*
1583          * Only put constraint if extra reg was actually allocated. Also takes
1584          * care of event which do not use an extra shared reg.
1585          *
1586          * Also, if this is a fake cpuc we shouldn't touch any event state
1587          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1588          * either since it'll be thrown out.
1589          */
1590         if (!reg->alloc || cpuc->is_fake)
1591                 return;
1592
1593         era = &cpuc->shared_regs->regs[reg->idx];
1594
1595         /* one fewer user */
1596         atomic_dec(&era->ref);
1597
1598         /* allocate again next time */
1599         reg->alloc = 0;
1600 }
1601
1602 static struct event_constraint *
1603 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1604                               struct perf_event *event)
1605 {
1606         struct event_constraint *c = NULL, *d;
1607         struct hw_perf_event_extra *xreg, *breg;
1608
1609         xreg = &event->hw.extra_reg;
1610         if (xreg->idx != EXTRA_REG_NONE) {
1611                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1612                 if (c == &emptyconstraint)
1613                         return c;
1614         }
1615         breg = &event->hw.branch_reg;
1616         if (breg->idx != EXTRA_REG_NONE) {
1617                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1618                 if (d == &emptyconstraint) {
1619                         __intel_shared_reg_put_constraints(cpuc, xreg);
1620                         c = d;
1621                 }
1622         }
1623         return c;
1624 }
1625
1626 struct event_constraint *
1627 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1628 {
1629         struct event_constraint *c;
1630
1631         if (x86_pmu.event_constraints) {
1632                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1633                         if ((event->hw.config & c->cmask) == c->code) {
1634                                 event->hw.flags |= c->flags;
1635                                 return c;
1636                         }
1637                 }
1638         }
1639
1640         return &unconstrained;
1641 }
1642
1643 static struct event_constraint *
1644 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1645 {
1646         struct event_constraint *c;
1647
1648         c = intel_bts_constraints(event);
1649         if (c)
1650                 return c;
1651
1652         c = intel_pebs_constraints(event);
1653         if (c)
1654                 return c;
1655
1656         c = intel_shared_regs_constraints(cpuc, event);
1657         if (c)
1658                 return c;
1659
1660         return x86_get_event_constraints(cpuc, event);
1661 }
1662
1663 static void
1664 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1665                                         struct perf_event *event)
1666 {
1667         struct hw_perf_event_extra *reg;
1668
1669         reg = &event->hw.extra_reg;
1670         if (reg->idx != EXTRA_REG_NONE)
1671                 __intel_shared_reg_put_constraints(cpuc, reg);
1672
1673         reg = &event->hw.branch_reg;
1674         if (reg->idx != EXTRA_REG_NONE)
1675                 __intel_shared_reg_put_constraints(cpuc, reg);
1676 }
1677
1678 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1679                                         struct perf_event *event)
1680 {
1681         intel_put_shared_regs_event_constraints(cpuc, event);
1682 }
1683
1684 static void intel_pebs_aliases_core2(struct perf_event *event)
1685 {
1686         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1687                 /*
1688                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1689                  * (0x003c) so that we can use it with PEBS.
1690                  *
1691                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1692                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1693                  * (0x00c0), which is a PEBS capable event, to get the same
1694                  * count.
1695                  *
1696                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1697                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1698                  * larger than the maximum number of instructions that can be
1699                  * retired per cycle (4) and then inverting the condition, we
1700                  * count all cycles that retire 16 or less instructions, which
1701                  * is every cycle.
1702                  *
1703                  * Thereby we gain a PEBS capable cycle counter.
1704                  */
1705                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1706
1707                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1708                 event->hw.config = alt_config;
1709         }
1710 }
1711
1712 static void intel_pebs_aliases_snb(struct perf_event *event)
1713 {
1714         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1715                 /*
1716                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1717                  * (0x003c) so that we can use it with PEBS.
1718                  *
1719                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1720                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1721                  * (0x01c2), which is a PEBS capable event, to get the same
1722                  * count.
1723                  *
1724                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1725                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1726                  * larger than the maximum number of micro-ops that can be
1727                  * retired per cycle (4) and then inverting the condition, we
1728                  * count all cycles that retire 16 or less micro-ops, which
1729                  * is every cycle.
1730                  *
1731                  * Thereby we gain a PEBS capable cycle counter.
1732                  */
1733                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1734
1735                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1736                 event->hw.config = alt_config;
1737         }
1738 }
1739
1740 static int intel_pmu_hw_config(struct perf_event *event)
1741 {
1742         int ret = x86_pmu_hw_config(event);
1743
1744         if (ret)
1745                 return ret;
1746
1747         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1748                 x86_pmu.pebs_aliases(event);
1749
1750         if (intel_pmu_needs_lbr_smpl(event)) {
1751                 ret = intel_pmu_setup_lbr_filter(event);
1752                 if (ret)
1753                         return ret;
1754         }
1755
1756         if (event->attr.type != PERF_TYPE_RAW)
1757                 return 0;
1758
1759         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1760                 return 0;
1761
1762         if (x86_pmu.version < 3)
1763                 return -EINVAL;
1764
1765         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1766                 return -EACCES;
1767
1768         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1769
1770         return 0;
1771 }
1772
1773 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1774 {
1775         if (x86_pmu.guest_get_msrs)
1776                 return x86_pmu.guest_get_msrs(nr);
1777         *nr = 0;
1778         return NULL;
1779 }
1780 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1781
1782 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1783 {
1784         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1785         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1786
1787         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1788         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1789         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1790         /*
1791          * If PMU counter has PEBS enabled it is not enough to disable counter
1792          * on a guest entry since PEBS memory write can overshoot guest entry
1793          * and corrupt guest memory. Disabling PEBS solves the problem.
1794          */
1795         arr[1].msr = MSR_IA32_PEBS_ENABLE;
1796         arr[1].host = cpuc->pebs_enabled;
1797         arr[1].guest = 0;
1798
1799         *nr = 2;
1800         return arr;
1801 }
1802
1803 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1804 {
1805         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1806         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1807         int idx;
1808
1809         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1810                 struct perf_event *event = cpuc->events[idx];
1811
1812                 arr[idx].msr = x86_pmu_config_addr(idx);
1813                 arr[idx].host = arr[idx].guest = 0;
1814
1815                 if (!test_bit(idx, cpuc->active_mask))
1816                         continue;
1817
1818                 arr[idx].host = arr[idx].guest =
1819                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1820
1821                 if (event->attr.exclude_host)
1822                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1823                 else if (event->attr.exclude_guest)
1824                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1825         }
1826
1827         *nr = x86_pmu.num_counters;
1828         return arr;
1829 }
1830
1831 static void core_pmu_enable_event(struct perf_event *event)
1832 {
1833         if (!event->attr.exclude_host)
1834                 x86_pmu_enable_event(event);
1835 }
1836
1837 static void core_pmu_enable_all(int added)
1838 {
1839         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1840         int idx;
1841
1842         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1843                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1844
1845                 if (!test_bit(idx, cpuc->active_mask) ||
1846                                 cpuc->events[idx]->attr.exclude_host)
1847                         continue;
1848
1849                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1850         }
1851 }
1852
1853 static int hsw_hw_config(struct perf_event *event)
1854 {
1855         int ret = intel_pmu_hw_config(event);
1856
1857         if (ret)
1858                 return ret;
1859         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1860                 return 0;
1861         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1862
1863         /*
1864          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1865          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1866          * this combination.
1867          */
1868         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1869              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1870               event->attr.precise_ip > 0))
1871                 return -EOPNOTSUPP;
1872
1873         if (event_is_checkpointed(event)) {
1874                 /*
1875                  * Sampling of checkpointed events can cause situations where
1876                  * the CPU constantly aborts because of a overflow, which is
1877                  * then checkpointed back and ignored. Forbid checkpointing
1878                  * for sampling.
1879                  *
1880                  * But still allow a long sampling period, so that perf stat
1881                  * from KVM works.
1882                  */
1883                 if (event->attr.sample_period > 0 &&
1884                     event->attr.sample_period < 0x7fffffff)
1885                         return -EOPNOTSUPP;
1886         }
1887         return 0;
1888 }
1889
1890 static struct event_constraint counter2_constraint =
1891                         EVENT_CONSTRAINT(0, 0x4, 0);
1892
1893 static struct event_constraint *
1894 hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1895 {
1896         struct event_constraint *c = intel_get_event_constraints(cpuc, event);
1897
1898         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
1899         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
1900                 if (c->idxmsk64 & (1U << 2))
1901                         return &counter2_constraint;
1902                 return &emptyconstraint;
1903         }
1904
1905         return c;
1906 }
1907
1908 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1909 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1910 PMU_FORMAT_ATTR(edge,   "config:18"     );
1911 PMU_FORMAT_ATTR(pc,     "config:19"     );
1912 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1913 PMU_FORMAT_ATTR(inv,    "config:23"     );
1914 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1915 PMU_FORMAT_ATTR(in_tx,  "config:32");
1916 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1917
1918 static struct attribute *intel_arch_formats_attr[] = {
1919         &format_attr_event.attr,
1920         &format_attr_umask.attr,
1921         &format_attr_edge.attr,
1922         &format_attr_pc.attr,
1923         &format_attr_inv.attr,
1924         &format_attr_cmask.attr,
1925         NULL,
1926 };
1927
1928 ssize_t intel_event_sysfs_show(char *page, u64 config)
1929 {
1930         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1931
1932         return x86_event_sysfs_show(page, config, event);
1933 }
1934
1935 static __initconst const struct x86_pmu core_pmu = {
1936         .name                   = "core",
1937         .handle_irq             = x86_pmu_handle_irq,
1938         .disable_all            = x86_pmu_disable_all,
1939         .enable_all             = core_pmu_enable_all,
1940         .enable                 = core_pmu_enable_event,
1941         .disable                = x86_pmu_disable_event,
1942         .hw_config              = x86_pmu_hw_config,
1943         .schedule_events        = x86_schedule_events,
1944         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1945         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1946         .event_map              = intel_pmu_event_map,
1947         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1948         .apic                   = 1,
1949         /*
1950          * Intel PMCs cannot be accessed sanely above 32 bit width,
1951          * so we install an artificial 1<<31 period regardless of
1952          * the generic event period:
1953          */
1954         .max_period             = (1ULL << 31) - 1,
1955         .get_event_constraints  = intel_get_event_constraints,
1956         .put_event_constraints  = intel_put_event_constraints,
1957         .event_constraints      = intel_core_event_constraints,
1958         .guest_get_msrs         = core_guest_get_msrs,
1959         .format_attrs           = intel_arch_formats_attr,
1960         .events_sysfs_show      = intel_event_sysfs_show,
1961 };
1962
1963 struct intel_shared_regs *allocate_shared_regs(int cpu)
1964 {
1965         struct intel_shared_regs *regs;
1966         int i;
1967
1968         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1969                             GFP_KERNEL, cpu_to_node(cpu));
1970         if (regs) {
1971                 /*
1972                  * initialize the locks to keep lockdep happy
1973                  */
1974                 for (i = 0; i < EXTRA_REG_MAX; i++)
1975                         raw_spin_lock_init(&regs->regs[i].lock);
1976
1977                 regs->core_id = -1;
1978         }
1979         return regs;
1980 }
1981
1982 static int intel_pmu_cpu_prepare(int cpu)
1983 {
1984         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1985
1986         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1987                 return NOTIFY_OK;
1988
1989         cpuc->shared_regs = allocate_shared_regs(cpu);
1990         if (!cpuc->shared_regs)
1991                 return NOTIFY_BAD;
1992
1993         return NOTIFY_OK;
1994 }
1995
1996 static void intel_pmu_cpu_starting(int cpu)
1997 {
1998         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1999         int core_id = topology_core_id(cpu);
2000         int i;
2001
2002         init_debug_store_on_cpu(cpu);
2003         /*
2004          * Deal with CPUs that don't clear their LBRs on power-up.
2005          */
2006         intel_pmu_lbr_reset();
2007
2008         cpuc->lbr_sel = NULL;
2009
2010         if (!cpuc->shared_regs)
2011                 return;
2012
2013         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2014                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2015                         struct intel_shared_regs *pc;
2016
2017                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2018                         if (pc && pc->core_id == core_id) {
2019                                 cpuc->kfree_on_online = cpuc->shared_regs;
2020                                 cpuc->shared_regs = pc;
2021                                 break;
2022                         }
2023                 }
2024                 cpuc->shared_regs->core_id = core_id;
2025                 cpuc->shared_regs->refcnt++;
2026         }
2027
2028         if (x86_pmu.lbr_sel_map)
2029                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2030 }
2031
2032 static void intel_pmu_cpu_dying(int cpu)
2033 {
2034         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2035         struct intel_shared_regs *pc;
2036
2037         pc = cpuc->shared_regs;
2038         if (pc) {
2039                 if (pc->core_id == -1 || --pc->refcnt == 0)
2040                         kfree(pc);
2041                 cpuc->shared_regs = NULL;
2042         }
2043
2044         fini_debug_store_on_cpu(cpu);
2045 }
2046
2047 static void intel_pmu_flush_branch_stack(void)
2048 {
2049         /*
2050          * Intel LBR does not tag entries with the
2051          * PID of the current task, then we need to
2052          * flush it on ctxsw
2053          * For now, we simply reset it
2054          */
2055         if (x86_pmu.lbr_nr)
2056                 intel_pmu_lbr_reset();
2057 }
2058
2059 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2060
2061 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2062
2063 static struct attribute *intel_arch3_formats_attr[] = {
2064         &format_attr_event.attr,
2065         &format_attr_umask.attr,
2066         &format_attr_edge.attr,
2067         &format_attr_pc.attr,
2068         &format_attr_any.attr,
2069         &format_attr_inv.attr,
2070         &format_attr_cmask.attr,
2071         &format_attr_in_tx.attr,
2072         &format_attr_in_tx_cp.attr,
2073
2074         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2075         &format_attr_ldlat.attr, /* PEBS load latency */
2076         NULL,
2077 };
2078
2079 static __initconst const struct x86_pmu intel_pmu = {
2080         .name                   = "Intel",
2081         .handle_irq             = intel_pmu_handle_irq,
2082         .disable_all            = intel_pmu_disable_all,
2083         .enable_all             = intel_pmu_enable_all,
2084         .enable                 = intel_pmu_enable_event,
2085         .disable                = intel_pmu_disable_event,
2086         .hw_config              = intel_pmu_hw_config,
2087         .schedule_events        = x86_schedule_events,
2088         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2089         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2090         .event_map              = intel_pmu_event_map,
2091         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2092         .apic                   = 1,
2093         /*
2094          * Intel PMCs cannot be accessed sanely above 32 bit width,
2095          * so we install an artificial 1<<31 period regardless of
2096          * the generic event period:
2097          */
2098         .max_period             = (1ULL << 31) - 1,
2099         .get_event_constraints  = intel_get_event_constraints,
2100         .put_event_constraints  = intel_put_event_constraints,
2101         .pebs_aliases           = intel_pebs_aliases_core2,
2102
2103         .format_attrs           = intel_arch3_formats_attr,
2104         .events_sysfs_show      = intel_event_sysfs_show,
2105
2106         .cpu_prepare            = intel_pmu_cpu_prepare,
2107         .cpu_starting           = intel_pmu_cpu_starting,
2108         .cpu_dying              = intel_pmu_cpu_dying,
2109         .guest_get_msrs         = intel_guest_get_msrs,
2110         .flush_branch_stack     = intel_pmu_flush_branch_stack,
2111 };
2112
2113 static __init void intel_clovertown_quirk(void)
2114 {
2115         /*
2116          * PEBS is unreliable due to:
2117          *
2118          *   AJ67  - PEBS may experience CPL leaks
2119          *   AJ68  - PEBS PMI may be delayed by one event
2120          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2121          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2122          *
2123          * AJ67 could be worked around by restricting the OS/USR flags.
2124          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2125          *
2126          * AJ106 could possibly be worked around by not allowing LBR
2127          *       usage from PEBS, including the fixup.
2128          * AJ68  could possibly be worked around by always programming
2129          *       a pebs_event_reset[0] value and coping with the lost events.
2130          *
2131          * But taken together it might just make sense to not enable PEBS on
2132          * these chips.
2133          */
2134         pr_warn("PEBS disabled due to CPU errata\n");
2135         x86_pmu.pebs = 0;
2136         x86_pmu.pebs_constraints = NULL;
2137 }
2138
2139 static int intel_snb_pebs_broken(int cpu)
2140 {
2141         u32 rev = UINT_MAX; /* default to broken for unknown models */
2142
2143         switch (cpu_data(cpu).x86_model) {
2144         case 42: /* SNB */
2145                 rev = 0x28;
2146                 break;
2147
2148         case 45: /* SNB-EP */
2149                 switch (cpu_data(cpu).x86_mask) {
2150                 case 6: rev = 0x618; break;
2151                 case 7: rev = 0x70c; break;
2152                 }
2153         }
2154
2155         return (cpu_data(cpu).microcode < rev);
2156 }
2157
2158 static void intel_snb_check_microcode(void)
2159 {
2160         int pebs_broken = 0;
2161         int cpu;
2162
2163         get_online_cpus();
2164         for_each_online_cpu(cpu) {
2165                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2166                         break;
2167         }
2168         put_online_cpus();
2169
2170         if (pebs_broken == x86_pmu.pebs_broken)
2171                 return;
2172
2173         /*
2174          * Serialized by the microcode lock..
2175          */
2176         if (x86_pmu.pebs_broken) {
2177                 pr_info("PEBS enabled due to microcode update\n");
2178                 x86_pmu.pebs_broken = 0;
2179         } else {
2180                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2181                 x86_pmu.pebs_broken = 1;
2182         }
2183 }
2184
2185 /*
2186  * Under certain circumstances, access certain MSR may cause #GP.
2187  * The function tests if the input MSR can be safely accessed.
2188  */
2189 static bool check_msr(unsigned long msr, u64 mask)
2190 {
2191         u64 val_old, val_new, val_tmp;
2192
2193         /*
2194          * Read the current value, change it and read it back to see if it
2195          * matches, this is needed to detect certain hardware emulators
2196          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2197          */
2198         if (rdmsrl_safe(msr, &val_old))
2199                 return false;
2200
2201         /*
2202          * Only change the bits which can be updated by wrmsrl.
2203          */
2204         val_tmp = val_old ^ mask;
2205         if (wrmsrl_safe(msr, val_tmp) ||
2206             rdmsrl_safe(msr, &val_new))
2207                 return false;
2208
2209         if (val_new != val_tmp)
2210                 return false;
2211
2212         /* Here it's sure that the MSR can be safely accessed.
2213          * Restore the old value and return.
2214          */
2215         wrmsrl(msr, val_old);
2216
2217         return true;
2218 }
2219
2220 static __init void intel_sandybridge_quirk(void)
2221 {
2222         x86_pmu.check_microcode = intel_snb_check_microcode;
2223         intel_snb_check_microcode();
2224 }
2225
2226 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2227         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2228         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2229         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2230         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2231         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2232         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2233         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2234 };
2235
2236 static __init void intel_arch_events_quirk(void)
2237 {
2238         int bit;
2239
2240         /* disable event that reported as not presend by cpuid */
2241         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2242                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2243                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2244                         intel_arch_events_map[bit].name);
2245         }
2246 }
2247
2248 static __init void intel_nehalem_quirk(void)
2249 {
2250         union cpuid10_ebx ebx;
2251
2252         ebx.full = x86_pmu.events_maskl;
2253         if (ebx.split.no_branch_misses_retired) {
2254                 /*
2255                  * Erratum AAJ80 detected, we work it around by using
2256                  * the BR_MISP_EXEC.ANY event. This will over-count
2257                  * branch-misses, but it's still much better than the
2258                  * architectural event which is often completely bogus:
2259                  */
2260                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2261                 ebx.split.no_branch_misses_retired = 0;
2262                 x86_pmu.events_maskl = ebx.full;
2263                 pr_info("CPU erratum AAJ80 worked around\n");
2264         }
2265 }
2266
2267 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2268 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
2269
2270 /* Haswell special events */
2271 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
2272 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
2273 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
2274 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
2275 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
2276 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
2277 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
2278 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
2279 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
2280 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
2281 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
2282 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
2283
2284 static struct attribute *hsw_events_attrs[] = {
2285         EVENT_PTR(tx_start),
2286         EVENT_PTR(tx_commit),
2287         EVENT_PTR(tx_abort),
2288         EVENT_PTR(tx_capacity),
2289         EVENT_PTR(tx_conflict),
2290         EVENT_PTR(el_start),
2291         EVENT_PTR(el_commit),
2292         EVENT_PTR(el_abort),
2293         EVENT_PTR(el_capacity),
2294         EVENT_PTR(el_conflict),
2295         EVENT_PTR(cycles_t),
2296         EVENT_PTR(cycles_ct),
2297         EVENT_PTR(mem_ld_hsw),
2298         EVENT_PTR(mem_st_hsw),
2299         NULL
2300 };
2301
2302 __init int intel_pmu_init(void)
2303 {
2304         union cpuid10_edx edx;
2305         union cpuid10_eax eax;
2306         union cpuid10_ebx ebx;
2307         struct event_constraint *c;
2308         unsigned int unused;
2309         struct extra_reg *er;
2310         int version, i;
2311
2312         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2313                 switch (boot_cpu_data.x86) {
2314                 case 0x6:
2315                         return p6_pmu_init();
2316                 case 0xb:
2317                         return knc_pmu_init();
2318                 case 0xf:
2319                         return p4_pmu_init();
2320                 }
2321                 return -ENODEV;
2322         }
2323
2324         /*
2325          * Check whether the Architectural PerfMon supports
2326          * Branch Misses Retired hw_event or not.
2327          */
2328         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2329         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2330                 return -ENODEV;
2331
2332         version = eax.split.version_id;
2333         if (version < 2)
2334                 x86_pmu = core_pmu;
2335         else
2336                 x86_pmu = intel_pmu;
2337
2338         x86_pmu.version                 = version;
2339         x86_pmu.num_counters            = eax.split.num_counters;
2340         x86_pmu.cntval_bits             = eax.split.bit_width;
2341         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
2342
2343         x86_pmu.events_maskl            = ebx.full;
2344         x86_pmu.events_mask_len         = eax.split.mask_length;
2345
2346         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2347
2348         /*
2349          * Quirk: v2 perfmon does not report fixed-purpose events, so
2350          * assume at least 3 events:
2351          */
2352         if (version > 1)
2353                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2354
2355         if (boot_cpu_has(X86_FEATURE_PDCM)) {
2356                 u64 capabilities;
2357
2358                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2359                 x86_pmu.intel_cap.capabilities = capabilities;
2360         }
2361
2362         intel_ds_init();
2363
2364         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2365
2366         /*
2367          * Install the hw-cache-events table:
2368          */
2369         switch (boot_cpu_data.x86_model) {
2370         case 14: /* 65nm Core "Yonah" */
2371                 pr_cont("Core events, ");
2372                 break;
2373
2374         case 15: /* 65nm Core2 "Merom"          */
2375                 x86_add_quirk(intel_clovertown_quirk);
2376         case 22: /* 65nm Core2 "Merom-L"        */
2377         case 23: /* 45nm Core2 "Penryn"         */
2378         case 29: /* 45nm Core2 "Dunnington (MP) */
2379                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2380                        sizeof(hw_cache_event_ids));
2381
2382                 intel_pmu_lbr_init_core();
2383
2384                 x86_pmu.event_constraints = intel_core2_event_constraints;
2385                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2386                 pr_cont("Core2 events, ");
2387                 break;
2388
2389         case 30: /* 45nm Nehalem    */
2390         case 26: /* 45nm Nehalem-EP */
2391         case 46: /* 45nm Nehalem-EX */
2392                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2393                        sizeof(hw_cache_event_ids));
2394                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2395                        sizeof(hw_cache_extra_regs));
2396
2397                 intel_pmu_lbr_init_nhm();
2398
2399                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2400                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2401                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2402                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2403
2404                 x86_pmu.cpu_events = nhm_events_attrs;
2405
2406                 /* UOPS_ISSUED.STALLED_CYCLES */
2407                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2408                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2409                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2410                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2411                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2412
2413                 x86_add_quirk(intel_nehalem_quirk);
2414
2415                 pr_cont("Nehalem events, ");
2416                 break;
2417
2418         case 28: /* 45nm Atom "Pineview"   */
2419         case 38: /* 45nm Atom "Lincroft"   */
2420         case 39: /* 32nm Atom "Penwell"    */
2421         case 53: /* 32nm Atom "Cloverview" */
2422         case 54: /* 32nm Atom "Cedarview"  */
2423                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2424                        sizeof(hw_cache_event_ids));
2425
2426                 intel_pmu_lbr_init_atom();
2427
2428                 x86_pmu.event_constraints = intel_gen_event_constraints;
2429                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2430                 pr_cont("Atom events, ");
2431                 break;
2432
2433         case 55: /* 22nm Atom "Silvermont"                */
2434         case 76: /* 14nm Atom "Airmont"                   */
2435         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
2436                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2437                         sizeof(hw_cache_event_ids));
2438                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2439                        sizeof(hw_cache_extra_regs));
2440
2441                 intel_pmu_lbr_init_atom();
2442
2443                 x86_pmu.event_constraints = intel_slm_event_constraints;
2444                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2445                 x86_pmu.extra_regs = intel_slm_extra_regs;
2446                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2447                 pr_cont("Silvermont events, ");
2448                 break;
2449
2450         case 37: /* 32nm Westmere    */
2451         case 44: /* 32nm Westmere-EP */
2452         case 47: /* 32nm Westmere-EX */
2453                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2454                        sizeof(hw_cache_event_ids));
2455                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2456                        sizeof(hw_cache_extra_regs));
2457
2458                 intel_pmu_lbr_init_nhm();
2459
2460                 x86_pmu.event_constraints = intel_westmere_event_constraints;
2461                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2462                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2463                 x86_pmu.extra_regs = intel_westmere_extra_regs;
2464                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2465
2466                 x86_pmu.cpu_events = nhm_events_attrs;
2467
2468                 /* UOPS_ISSUED.STALLED_CYCLES */
2469                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2470                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2471                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2472                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2473                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2474
2475                 pr_cont("Westmere events, ");
2476                 break;
2477
2478         case 42: /* 32nm SandyBridge         */
2479         case 45: /* 32nm SandyBridge-E/EN/EP */
2480                 x86_add_quirk(intel_sandybridge_quirk);
2481                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2482                        sizeof(hw_cache_event_ids));
2483                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2484                        sizeof(hw_cache_extra_regs));
2485
2486                 intel_pmu_lbr_init_snb();
2487
2488                 x86_pmu.event_constraints = intel_snb_event_constraints;
2489                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2490                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2491                 if (boot_cpu_data.x86_model == 45)
2492                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2493                 else
2494                         x86_pmu.extra_regs = intel_snb_extra_regs;
2495                 /* all extra regs are per-cpu when HT is on */
2496                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2497                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2498
2499                 x86_pmu.cpu_events = snb_events_attrs;
2500
2501                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2502                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2503                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2504                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2505                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2506                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2507
2508                 pr_cont("SandyBridge events, ");
2509                 break;
2510
2511         case 58: /* 22nm IvyBridge       */
2512         case 62: /* 22nm IvyBridge-EP/EX */
2513                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2514                        sizeof(hw_cache_event_ids));
2515                 /* dTLB-load-misses on IVB is different than SNB */
2516                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
2517
2518                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2519                        sizeof(hw_cache_extra_regs));
2520
2521                 intel_pmu_lbr_init_snb();
2522
2523                 x86_pmu.event_constraints = intel_ivb_event_constraints;
2524                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2525                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2526                 if (boot_cpu_data.x86_model == 62)
2527                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2528                 else
2529                         x86_pmu.extra_regs = intel_snb_extra_regs;
2530                 /* all extra regs are per-cpu when HT is on */
2531                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2532                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2533
2534                 x86_pmu.cpu_events = snb_events_attrs;
2535
2536                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2537                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2538                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2539
2540                 pr_cont("IvyBridge events, ");
2541                 break;
2542
2543
2544         case 60: /* 22nm Haswell Core */
2545         case 63: /* 22nm Haswell Server */
2546         case 69: /* 22nm Haswell ULT */
2547         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
2548                 x86_pmu.late_ack = true;
2549                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2550                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2551
2552                 intel_pmu_lbr_init_snb();
2553
2554                 x86_pmu.event_constraints = intel_hsw_event_constraints;
2555                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2556                 x86_pmu.extra_regs = intel_snbep_extra_regs;
2557                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2558                 /* all extra regs are per-cpu when HT is on */
2559                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2560                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2561
2562                 x86_pmu.hw_config = hsw_hw_config;
2563                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2564                 x86_pmu.cpu_events = hsw_events_attrs;
2565                 x86_pmu.lbr_double_abort = true;
2566                 pr_cont("Haswell events, ");
2567                 break;
2568
2569         default:
2570                 switch (x86_pmu.version) {
2571                 case 1:
2572                         x86_pmu.event_constraints = intel_v1_event_constraints;
2573                         pr_cont("generic architected perfmon v1, ");
2574                         break;
2575                 default:
2576                         /*
2577                          * default constraints for v2 and up
2578                          */
2579                         x86_pmu.event_constraints = intel_gen_event_constraints;
2580                         pr_cont("generic architected perfmon, ");
2581                         break;
2582                 }
2583         }
2584
2585         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2586                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2587                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2588                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2589         }
2590         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2591
2592         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2593                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2594                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2595                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2596         }
2597
2598         x86_pmu.intel_ctrl |=
2599                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2600
2601         if (x86_pmu.event_constraints) {
2602                 /*
2603                  * event on fixed counter2 (REF_CYCLES) only works on this
2604                  * counter, so do not extend mask to generic counters
2605                  */
2606                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2607                         if (c->cmask != FIXED_EVENT_FLAGS
2608                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2609                                 continue;
2610                         }
2611
2612                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2613                         c->weight += x86_pmu.num_counters;
2614                 }
2615         }
2616
2617         /*
2618          * Access LBR MSR may cause #GP under certain circumstances.
2619          * E.g. KVM doesn't support LBR MSR
2620          * Check all LBT MSR here.
2621          * Disable LBR access if any LBR MSRs can not be accessed.
2622          */
2623         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
2624                 x86_pmu.lbr_nr = 0;
2625         for (i = 0; i < x86_pmu.lbr_nr; i++) {
2626                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
2627                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
2628                         x86_pmu.lbr_nr = 0;
2629         }
2630
2631         /*
2632          * Access extra MSR may cause #GP under certain circumstances.
2633          * E.g. KVM doesn't support offcore event
2634          * Check all extra_regs here.
2635          */
2636         if (x86_pmu.extra_regs) {
2637                 for (er = x86_pmu.extra_regs; er->msr; er++) {
2638                         er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
2639                         /* Disable LBR select mapping */
2640                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
2641                                 x86_pmu.lbr_sel_map = NULL;
2642                 }
2643         }
2644
2645         /* Support full width counters using alternative MSR range */
2646         if (x86_pmu.intel_cap.full_width_write) {
2647                 x86_pmu.max_period = x86_pmu.cntval_mask;
2648                 x86_pmu.perfctr = MSR_IA32_PMC0;
2649                 pr_cont("full-width counters, ");
2650         }
2651
2652         return 0;
2653 }