Merge branch 'drm-patches' of master.kernel.org:/pub/scm/linux/kernel/git/airlied...
[linux-drm-fsl-dcu.git] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include "linux/kernel.h"
8 #include "linux/sched.h"
9 #include "linux/interrupt.h"
10 #include "linux/string.h"
11 #include "linux/mm.h"
12 #include "linux/slab.h"
13 #include "linux/utsname.h"
14 #include "linux/fs.h"
15 #include "linux/utime.h"
16 #include "linux/smp_lock.h"
17 #include "linux/module.h"
18 #include "linux/init.h"
19 #include "linux/capability.h"
20 #include "linux/vmalloc.h"
21 #include "linux/spinlock.h"
22 #include "linux/proc_fs.h"
23 #include "linux/ptrace.h"
24 #include "linux/random.h"
25 #include "linux/personality.h"
26 #include "asm/unistd.h"
27 #include "asm/mman.h"
28 #include "asm/segment.h"
29 #include "asm/stat.h"
30 #include "asm/pgtable.h"
31 #include "asm/processor.h"
32 #include "asm/tlbflush.h"
33 #include "asm/uaccess.h"
34 #include "asm/user.h"
35 #include "kern_util.h"
36 #include "as-layout.h"
37 #include "kern.h"
38 #include "signal_kern.h"
39 #include "init.h"
40 #include "irq_user.h"
41 #include "mem_user.h"
42 #include "tlb.h"
43 #include "frame_kern.h"
44 #include "sigcontext.h"
45 #include "os.h"
46 #include "mode.h"
47 #include "mode_kern.h"
48 #include "choose-mode.h"
49 #include "um_malloc.h"
50
51 /* This is a per-cpu array.  A processor only modifies its entry and it only
52  * cares about its entry, so it's OK if another processor is modifying its
53  * entry.
54  */
55 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
56
57 static inline int external_pid(struct task_struct *task)
58 {
59         return CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task);
60 }
61
62 int pid_to_processor_id(int pid)
63 {
64         int i;
65
66         for(i = 0; i < ncpus; i++){
67                 if(cpu_tasks[i].pid == pid)
68                         return i;
69         }
70         return -1;
71 }
72
73 void free_stack(unsigned long stack, int order)
74 {
75         free_pages(stack, order);
76 }
77
78 unsigned long alloc_stack(int order, int atomic)
79 {
80         unsigned long page;
81         gfp_t flags = GFP_KERNEL;
82
83         if (atomic)
84                 flags = GFP_ATOMIC;
85         page = __get_free_pages(flags, order);
86         if(page == 0)
87                 return 0;
88         stack_protections(page);
89         return page;
90 }
91
92 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
93 {
94         int pid;
95
96         current->thread.request.u.thread.proc = fn;
97         current->thread.request.u.thread.arg = arg;
98         pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
99                       &current->thread.regs, 0, NULL, NULL);
100         return pid;
101 }
102
103 static inline void set_current(struct task_struct *task)
104 {
105         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
106                 { external_pid(task), task });
107 }
108
109 void *_switch_to(void *prev, void *next, void *last)
110 {
111         struct task_struct *from = prev;
112         struct task_struct *to= next;
113
114         to->thread.prev_sched = from;
115         set_current(to);
116
117         do {
118                 current->thread.saved_task = NULL ;
119                 CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
120                 if(current->thread.saved_task)
121                         show_regs(&(current->thread.regs));
122                 next= current->thread.saved_task;
123                 prev= current;
124         } while(current->thread.saved_task);
125
126         return current->thread.prev_sched;
127
128 }
129
130 void interrupt_end(void)
131 {
132         if(need_resched())
133                 schedule();
134         if(test_tsk_thread_flag(current, TIF_SIGPENDING))
135                 do_signal();
136 }
137
138 void release_thread(struct task_struct *task)
139 {
140         CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
141 }
142
143 void exit_thread(void)
144 {
145         unprotect_stack((unsigned long) current_thread);
146 }
147
148 void *get_current(void)
149 {
150         return current;
151 }
152
153 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
154                 unsigned long stack_top, struct task_struct * p,
155                 struct pt_regs *regs)
156 {
157         int ret;
158
159         p->thread = (struct thread_struct) INIT_THREAD;
160         ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
161                                 clone_flags, sp, stack_top, p, regs);
162
163         if (ret || !current->thread.forking)
164                 goto out;
165
166         clear_flushed_tls(p);
167
168         /*
169          * Set a new TLS for the child thread?
170          */
171         if (clone_flags & CLONE_SETTLS)
172                 ret = arch_copy_tls(p);
173
174 out:
175         return ret;
176 }
177
178 void initial_thread_cb(void (*proc)(void *), void *arg)
179 {
180         int save_kmalloc_ok = kmalloc_ok;
181
182         kmalloc_ok = 0;
183         CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
184                          arg);
185         kmalloc_ok = save_kmalloc_ok;
186 }
187
188 #ifdef CONFIG_MODE_TT
189 unsigned long stack_sp(unsigned long page)
190 {
191         return page + PAGE_SIZE - sizeof(void *);
192 }
193 #endif
194
195 void default_idle(void)
196 {
197         CHOOSE_MODE(uml_idle_timer(), (void) 0);
198
199         while(1){
200                 /* endless idle loop with no priority at all */
201
202                 /*
203                  * although we are an idle CPU, we do not want to
204                  * get into the scheduler unnecessarily.
205                  */
206                 if(need_resched())
207                         schedule();
208
209                 idle_sleep(10);
210         }
211 }
212
213 void cpu_idle(void)
214 {
215         CHOOSE_MODE(init_idle_tt(), init_idle_skas());
216 }
217
218 void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
219                       pte_t *pte_out)
220 {
221         pgd_t *pgd;
222         pud_t *pud;
223         pmd_t *pmd;
224         pte_t *pte;
225         pte_t ptent;
226
227         if(task->mm == NULL)
228                 return ERR_PTR(-EINVAL);
229         pgd = pgd_offset(task->mm, addr);
230         if(!pgd_present(*pgd))
231                 return ERR_PTR(-EINVAL);
232
233         pud = pud_offset(pgd, addr);
234         if(!pud_present(*pud))
235                 return ERR_PTR(-EINVAL);
236
237         pmd = pmd_offset(pud, addr);
238         if(!pmd_present(*pmd))
239                 return ERR_PTR(-EINVAL);
240
241         pte = pte_offset_kernel(pmd, addr);
242         ptent = *pte;
243         if(!pte_present(ptent))
244                 return ERR_PTR(-EINVAL);
245
246         if(pte_out != NULL)
247                 *pte_out = ptent;
248         return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
249 }
250
251 char *current_cmd(void)
252 {
253 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
254         return "(Unknown)";
255 #else
256         void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
257         return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
258 #endif
259 }
260
261 void dump_thread(struct pt_regs *regs, struct user *u)
262 {
263 }
264
265 void *um_kmalloc(int size)
266 {
267         return kmalloc(size, GFP_KERNEL);
268 }
269
270 void *um_kmalloc_atomic(int size)
271 {
272         return kmalloc(size, GFP_ATOMIC);
273 }
274
275 void *um_vmalloc(int size)
276 {
277         return vmalloc(size);
278 }
279
280 int __cant_sleep(void) {
281         return in_atomic() || irqs_disabled() || in_interrupt();
282         /* Is in_interrupt() really needed? */
283 }
284
285 int user_context(unsigned long sp)
286 {
287         unsigned long stack;
288
289         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
290         return stack != (unsigned long) current_thread;
291 }
292
293 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
294
295 void do_uml_exitcalls(void)
296 {
297         exitcall_t *call;
298
299         call = &__uml_exitcall_end;
300         while (--call >= &__uml_exitcall_begin)
301                 (*call)();
302 }
303
304 char *uml_strdup(char *string)
305 {
306         return kstrdup(string, GFP_KERNEL);
307 }
308
309 int copy_to_user_proc(void __user *to, void *from, int size)
310 {
311         return copy_to_user(to, from, size);
312 }
313
314 int copy_from_user_proc(void *to, void __user *from, int size)
315 {
316         return copy_from_user(to, from, size);
317 }
318
319 int clear_user_proc(void __user *buf, int size)
320 {
321         return clear_user(buf, size);
322 }
323
324 int strlen_user_proc(char __user *str)
325 {
326         return strlen_user(str);
327 }
328
329 int smp_sigio_handler(void)
330 {
331 #ifdef CONFIG_SMP
332         int cpu = current_thread->cpu;
333         IPI_handler(cpu);
334         if(cpu != 0)
335                 return 1;
336 #endif
337         return 0;
338 }
339
340 int cpu(void)
341 {
342         return current_thread->cpu;
343 }
344
345 static atomic_t using_sysemu = ATOMIC_INIT(0);
346 int sysemu_supported;
347
348 void set_using_sysemu(int value)
349 {
350         if (value > sysemu_supported)
351                 return;
352         atomic_set(&using_sysemu, value);
353 }
354
355 int get_using_sysemu(void)
356 {
357         return atomic_read(&using_sysemu);
358 }
359
360 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
361 {
362         if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
363                 *eof = 1;
364
365         return strlen(buf);
366 }
367
368 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
369 {
370         char tmp[2];
371
372         if (copy_from_user(tmp, buf, 1))
373                 return -EFAULT;
374
375         if (tmp[0] >= '0' && tmp[0] <= '2')
376                 set_using_sysemu(tmp[0] - '0');
377         return count; /*We use the first char, but pretend to write everything*/
378 }
379
380 int __init make_proc_sysemu(void)
381 {
382         struct proc_dir_entry *ent;
383         if (!sysemu_supported)
384                 return 0;
385
386         ent = create_proc_entry("sysemu", 0600, &proc_root);
387
388         if (ent == NULL)
389         {
390                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
391                 return 0;
392         }
393
394         ent->read_proc  = proc_read_sysemu;
395         ent->write_proc = proc_write_sysemu;
396
397         return 0;
398 }
399
400 late_initcall(make_proc_sysemu);
401
402 int singlestepping(void * t)
403 {
404         struct task_struct *task = t ? t : current;
405
406         if ( ! (task->ptrace & PT_DTRACE) )
407                 return(0);
408
409         if (task->thread.singlestep_syscall)
410                 return(1);
411
412         return 2;
413 }
414
415 /*
416  * Only x86 and x86_64 have an arch_align_stack().
417  * All other arches have "#define arch_align_stack(x) (x)"
418  * in their asm/system.h
419  * As this is included in UML from asm-um/system-generic.h,
420  * we can use it to behave as the subarch does.
421  */
422 #ifndef arch_align_stack
423 unsigned long arch_align_stack(unsigned long sp)
424 {
425         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
426                 sp -= get_random_int() % 8192;
427         return sp & ~0xf;
428 }
429 #endif