Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45 #include <asm/prom.h>
46
47 extern void device_scan(void);
48
49 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
50 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
51 #define KPTE_BITMAP_BYTES       \
52         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
57  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59  */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 /* A special kernel TSB for 4MB and 256MB linear mappings.  */
63 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
64
65 #define MAX_BANKS       32
66
67 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
68 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
69 static int pavail_ents __initdata;
70 static int pavail_rescan_ents __initdata;
71
72 static int cmp_p64(const void *a, const void *b)
73 {
74         const struct linux_prom64_registers *x = a, *y = b;
75
76         if (x->phys_addr > y->phys_addr)
77                 return 1;
78         if (x->phys_addr < y->phys_addr)
79                 return -1;
80         return 0;
81 }
82
83 static void __init read_obp_memory(const char *property,
84                                    struct linux_prom64_registers *regs,
85                                    int *num_ents)
86 {
87         int node = prom_finddevice("/memory");
88         int prop_size = prom_getproplen(node, property);
89         int ents, ret, i;
90
91         ents = prop_size / sizeof(struct linux_prom64_registers);
92         if (ents > MAX_BANKS) {
93                 prom_printf("The machine has more %s property entries than "
94                             "this kernel can support (%d).\n",
95                             property, MAX_BANKS);
96                 prom_halt();
97         }
98
99         ret = prom_getproperty(node, property, (char *) regs, prop_size);
100         if (ret == -1) {
101                 prom_printf("Couldn't get %s property from /memory.\n");
102                 prom_halt();
103         }
104
105         /* Sanitize what we got from the firmware, by page aligning
106          * everything.
107          */
108         for (i = 0; i < ents; i++) {
109                 unsigned long base, size;
110
111                 base = regs[i].phys_addr;
112                 size = regs[i].reg_size;
113
114                 size &= PAGE_MASK;
115                 if (base & ~PAGE_MASK) {
116                         unsigned long new_base = PAGE_ALIGN(base);
117
118                         size -= new_base - base;
119                         if ((long) size < 0L)
120                                 size = 0UL;
121                         base = new_base;
122                 }
123                 regs[i].phys_addr = base;
124                 regs[i].reg_size = size;
125         }
126
127         for (i = 0; i < ents; i++) {
128                 if (regs[i].reg_size == 0UL) {
129                         int j;
130
131                         for (j = i; j < ents - 1; j++) {
132                                 regs[j].phys_addr =
133                                         regs[j+1].phys_addr;
134                                 regs[j].reg_size =
135                                         regs[j+1].reg_size;
136                         }
137
138                         ents--;
139                         i--;
140                 }
141         }
142
143         *num_ents = ents;
144
145         sort(regs, ents, sizeof(struct linux_prom64_registers),
146              cmp_p64, NULL);
147 }
148
149 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
150
151 /* Kernel physical address base and size in bytes.  */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154
155 /* get_new_mmu_context() uses "cache + 1".  */
156 DEFINE_SPINLOCK(ctx_alloc_lock);
157 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
158 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
159 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
160
161 /* References to special section boundaries */
162 extern char  _start[], _end[];
163
164 /* Initial ramdisk setup */
165 extern unsigned long sparc_ramdisk_image64;
166 extern unsigned int sparc_ramdisk_image;
167 extern unsigned int sparc_ramdisk_size;
168
169 struct page *mem_map_zero __read_mostly;
170
171 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
172
173 unsigned long sparc64_kern_pri_context __read_mostly;
174 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
175 unsigned long sparc64_kern_sec_context __read_mostly;
176
177 int bigkernel = 0;
178
179 struct kmem_cache *pgtable_cache __read_mostly;
180
181 static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
182 {
183         clear_page(addr);
184 }
185
186 extern void tsb_cache_init(void);
187
188 void pgtable_cache_init(void)
189 {
190         pgtable_cache = kmem_cache_create("pgtable_cache",
191                                           PAGE_SIZE, PAGE_SIZE,
192                                           SLAB_HWCACHE_ALIGN |
193                                           SLAB_MUST_HWCACHE_ALIGN,
194                                           zero_ctor,
195                                           NULL);
196         if (!pgtable_cache) {
197                 prom_printf("Could not create pgtable_cache\n");
198                 prom_halt();
199         }
200         tsb_cache_init();
201 }
202
203 #ifdef CONFIG_DEBUG_DCFLUSH
204 atomic_t dcpage_flushes = ATOMIC_INIT(0);
205 #ifdef CONFIG_SMP
206 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
207 #endif
208 #endif
209
210 inline void flush_dcache_page_impl(struct page *page)
211 {
212         BUG_ON(tlb_type == hypervisor);
213 #ifdef CONFIG_DEBUG_DCFLUSH
214         atomic_inc(&dcpage_flushes);
215 #endif
216
217 #ifdef DCACHE_ALIASING_POSSIBLE
218         __flush_dcache_page(page_address(page),
219                             ((tlb_type == spitfire) &&
220                              page_mapping(page) != NULL));
221 #else
222         if (page_mapping(page) != NULL &&
223             tlb_type == spitfire)
224                 __flush_icache_page(__pa(page_address(page)));
225 #endif
226 }
227
228 #define PG_dcache_dirty         PG_arch_1
229 #define PG_dcache_cpu_shift     24UL
230 #define PG_dcache_cpu_mask      (256UL - 1UL)
231
232 #if NR_CPUS > 256
233 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
234 #endif
235
236 #define dcache_dirty_cpu(page) \
237         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
238
239 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
240 {
241         unsigned long mask = this_cpu;
242         unsigned long non_cpu_bits;
243
244         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
245         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
246
247         __asm__ __volatile__("1:\n\t"
248                              "ldx       [%2], %%g7\n\t"
249                              "and       %%g7, %1, %%g1\n\t"
250                              "or        %%g1, %0, %%g1\n\t"
251                              "casx      [%2], %%g7, %%g1\n\t"
252                              "cmp       %%g7, %%g1\n\t"
253                              "membar    #StoreLoad | #StoreStore\n\t"
254                              "bne,pn    %%xcc, 1b\n\t"
255                              " nop"
256                              : /* no outputs */
257                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
258                              : "g1", "g7");
259 }
260
261 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
262 {
263         unsigned long mask = (1UL << PG_dcache_dirty);
264
265         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
266                              "1:\n\t"
267                              "ldx       [%2], %%g7\n\t"
268                              "srlx      %%g7, %4, %%g1\n\t"
269                              "and       %%g1, %3, %%g1\n\t"
270                              "cmp       %%g1, %0\n\t"
271                              "bne,pn    %%icc, 2f\n\t"
272                              " andn     %%g7, %1, %%g1\n\t"
273                              "casx      [%2], %%g7, %%g1\n\t"
274                              "cmp       %%g7, %%g1\n\t"
275                              "membar    #StoreLoad | #StoreStore\n\t"
276                              "bne,pn    %%xcc, 1b\n\t"
277                              " nop\n"
278                              "2:"
279                              : /* no outputs */
280                              : "r" (cpu), "r" (mask), "r" (&page->flags),
281                                "i" (PG_dcache_cpu_mask),
282                                "i" (PG_dcache_cpu_shift)
283                              : "g1", "g7");
284 }
285
286 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
287 {
288         unsigned long tsb_addr = (unsigned long) ent;
289
290         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
291                 tsb_addr = __pa(tsb_addr);
292
293         __tsb_insert(tsb_addr, tag, pte);
294 }
295
296 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
297 unsigned long _PAGE_SZBITS __read_mostly;
298
299 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
300 {
301         struct mm_struct *mm;
302         struct tsb *tsb;
303         unsigned long tag, flags;
304         unsigned long tsb_index, tsb_hash_shift;
305
306         if (tlb_type != hypervisor) {
307                 unsigned long pfn = pte_pfn(pte);
308                 unsigned long pg_flags;
309                 struct page *page;
310
311                 if (pfn_valid(pfn) &&
312                     (page = pfn_to_page(pfn), page_mapping(page)) &&
313                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
314                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
315                                    PG_dcache_cpu_mask);
316                         int this_cpu = get_cpu();
317
318                         /* This is just to optimize away some function calls
319                          * in the SMP case.
320                          */
321                         if (cpu == this_cpu)
322                                 flush_dcache_page_impl(page);
323                         else
324                                 smp_flush_dcache_page_impl(page, cpu);
325
326                         clear_dcache_dirty_cpu(page, cpu);
327
328                         put_cpu();
329                 }
330         }
331
332         mm = vma->vm_mm;
333
334         tsb_index = MM_TSB_BASE;
335         tsb_hash_shift = PAGE_SHIFT;
336
337         spin_lock_irqsave(&mm->context.lock, flags);
338
339 #ifdef CONFIG_HUGETLB_PAGE
340         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
341                 if ((tlb_type == hypervisor &&
342                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
343                     (tlb_type != hypervisor &&
344                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
345                         tsb_index = MM_TSB_HUGE;
346                         tsb_hash_shift = HPAGE_SHIFT;
347                 }
348         }
349 #endif
350
351         tsb = mm->context.tsb_block[tsb_index].tsb;
352         tsb += ((address >> tsb_hash_shift) &
353                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
354         tag = (address >> 22UL);
355         tsb_insert(tsb, tag, pte_val(pte));
356
357         spin_unlock_irqrestore(&mm->context.lock, flags);
358 }
359
360 void flush_dcache_page(struct page *page)
361 {
362         struct address_space *mapping;
363         int this_cpu;
364
365         if (tlb_type == hypervisor)
366                 return;
367
368         /* Do not bother with the expensive D-cache flush if it
369          * is merely the zero page.  The 'bigcore' testcase in GDB
370          * causes this case to run millions of times.
371          */
372         if (page == ZERO_PAGE(0))
373                 return;
374
375         this_cpu = get_cpu();
376
377         mapping = page_mapping(page);
378         if (mapping && !mapping_mapped(mapping)) {
379                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
380                 if (dirty) {
381                         int dirty_cpu = dcache_dirty_cpu(page);
382
383                         if (dirty_cpu == this_cpu)
384                                 goto out;
385                         smp_flush_dcache_page_impl(page, dirty_cpu);
386                 }
387                 set_dcache_dirty(page, this_cpu);
388         } else {
389                 /* We could delay the flush for the !page_mapping
390                  * case too.  But that case is for exec env/arg
391                  * pages and those are %99 certainly going to get
392                  * faulted into the tlb (and thus flushed) anyways.
393                  */
394                 flush_dcache_page_impl(page);
395         }
396
397 out:
398         put_cpu();
399 }
400
401 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
402 {
403         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
404         if (tlb_type == spitfire) {
405                 unsigned long kaddr;
406
407                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
408                         __flush_icache_page(__get_phys(kaddr));
409         }
410 }
411
412 void show_mem(void)
413 {
414         printk("Mem-info:\n");
415         show_free_areas();
416         printk("Free swap:       %6ldkB\n",
417                nr_swap_pages << (PAGE_SHIFT-10));
418         printk("%ld pages of RAM\n", num_physpages);
419         printk("%lu free pages\n", nr_free_pages());
420 }
421
422 void mmu_info(struct seq_file *m)
423 {
424         if (tlb_type == cheetah)
425                 seq_printf(m, "MMU Type\t: Cheetah\n");
426         else if (tlb_type == cheetah_plus)
427                 seq_printf(m, "MMU Type\t: Cheetah+\n");
428         else if (tlb_type == spitfire)
429                 seq_printf(m, "MMU Type\t: Spitfire\n");
430         else if (tlb_type == hypervisor)
431                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
432         else
433                 seq_printf(m, "MMU Type\t: ???\n");
434
435 #ifdef CONFIG_DEBUG_DCFLUSH
436         seq_printf(m, "DCPageFlushes\t: %d\n",
437                    atomic_read(&dcpage_flushes));
438 #ifdef CONFIG_SMP
439         seq_printf(m, "DCPageFlushesXC\t: %d\n",
440                    atomic_read(&dcpage_flushes_xcall));
441 #endif /* CONFIG_SMP */
442 #endif /* CONFIG_DEBUG_DCFLUSH */
443 }
444
445 struct linux_prom_translation {
446         unsigned long virt;
447         unsigned long size;
448         unsigned long data;
449 };
450
451 /* Exported for kernel TLB miss handling in ktlb.S */
452 struct linux_prom_translation prom_trans[512] __read_mostly;
453 unsigned int prom_trans_ents __read_mostly;
454
455 /* Exported for SMP bootup purposes. */
456 unsigned long kern_locked_tte_data;
457
458 /* The obp translations are saved based on 8k pagesize, since obp can
459  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
460  * HI_OBP_ADDRESS range are handled in ktlb.S.
461  */
462 static inline int in_obp_range(unsigned long vaddr)
463 {
464         return (vaddr >= LOW_OBP_ADDRESS &&
465                 vaddr < HI_OBP_ADDRESS);
466 }
467
468 static int cmp_ptrans(const void *a, const void *b)
469 {
470         const struct linux_prom_translation *x = a, *y = b;
471
472         if (x->virt > y->virt)
473                 return 1;
474         if (x->virt < y->virt)
475                 return -1;
476         return 0;
477 }
478
479 /* Read OBP translations property into 'prom_trans[]'.  */
480 static void __init read_obp_translations(void)
481 {
482         int n, node, ents, first, last, i;
483
484         node = prom_finddevice("/virtual-memory");
485         n = prom_getproplen(node, "translations");
486         if (unlikely(n == 0 || n == -1)) {
487                 prom_printf("prom_mappings: Couldn't get size.\n");
488                 prom_halt();
489         }
490         if (unlikely(n > sizeof(prom_trans))) {
491                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
492                 prom_halt();
493         }
494
495         if ((n = prom_getproperty(node, "translations",
496                                   (char *)&prom_trans[0],
497                                   sizeof(prom_trans))) == -1) {
498                 prom_printf("prom_mappings: Couldn't get property.\n");
499                 prom_halt();
500         }
501
502         n = n / sizeof(struct linux_prom_translation);
503
504         ents = n;
505
506         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
507              cmp_ptrans, NULL);
508
509         /* Now kick out all the non-OBP entries.  */
510         for (i = 0; i < ents; i++) {
511                 if (in_obp_range(prom_trans[i].virt))
512                         break;
513         }
514         first = i;
515         for (; i < ents; i++) {
516                 if (!in_obp_range(prom_trans[i].virt))
517                         break;
518         }
519         last = i;
520
521         for (i = 0; i < (last - first); i++) {
522                 struct linux_prom_translation *src = &prom_trans[i + first];
523                 struct linux_prom_translation *dest = &prom_trans[i];
524
525                 *dest = *src;
526         }
527         for (; i < ents; i++) {
528                 struct linux_prom_translation *dest = &prom_trans[i];
529                 dest->virt = dest->size = dest->data = 0x0UL;
530         }
531
532         prom_trans_ents = last - first;
533
534         if (tlb_type == spitfire) {
535                 /* Clear diag TTE bits. */
536                 for (i = 0; i < prom_trans_ents; i++)
537                         prom_trans[i].data &= ~0x0003fe0000000000UL;
538         }
539 }
540
541 static void __init hypervisor_tlb_lock(unsigned long vaddr,
542                                        unsigned long pte,
543                                        unsigned long mmu)
544 {
545         register unsigned long func asm("%o5");
546         register unsigned long arg0 asm("%o0");
547         register unsigned long arg1 asm("%o1");
548         register unsigned long arg2 asm("%o2");
549         register unsigned long arg3 asm("%o3");
550
551         func = HV_FAST_MMU_MAP_PERM_ADDR;
552         arg0 = vaddr;
553         arg1 = 0;
554         arg2 = pte;
555         arg3 = mmu;
556         __asm__ __volatile__("ta        0x80"
557                              : "=&r" (func), "=&r" (arg0),
558                                "=&r" (arg1), "=&r" (arg2),
559                                "=&r" (arg3)
560                              : "0" (func), "1" (arg0), "2" (arg1),
561                                "3" (arg2), "4" (arg3));
562         if (arg0 != 0) {
563                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
564                             "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
565                 prom_halt();
566         }
567 }
568
569 static unsigned long kern_large_tte(unsigned long paddr);
570
571 static void __init remap_kernel(void)
572 {
573         unsigned long phys_page, tte_vaddr, tte_data;
574         int tlb_ent = sparc64_highest_locked_tlbent();
575
576         tte_vaddr = (unsigned long) KERNBASE;
577         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
578         tte_data = kern_large_tte(phys_page);
579
580         kern_locked_tte_data = tte_data;
581
582         /* Now lock us into the TLBs via Hypervisor or OBP. */
583         if (tlb_type == hypervisor) {
584                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
585                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
586                 if (bigkernel) {
587                         tte_vaddr += 0x400000;
588                         tte_data += 0x400000;
589                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
590                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
591                 }
592         } else {
593                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
594                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
595                 if (bigkernel) {
596                         tlb_ent -= 1;
597                         prom_dtlb_load(tlb_ent,
598                                        tte_data + 0x400000, 
599                                        tte_vaddr + 0x400000);
600                         prom_itlb_load(tlb_ent,
601                                        tte_data + 0x400000, 
602                                        tte_vaddr + 0x400000);
603                 }
604                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
605         }
606         if (tlb_type == cheetah_plus) {
607                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
608                                             CTX_CHEETAH_PLUS_NUC);
609                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
610                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
611         }
612 }
613
614
615 static void __init inherit_prom_mappings(void)
616 {
617         read_obp_translations();
618
619         /* Now fixup OBP's idea about where we really are mapped. */
620         prom_printf("Remapping the kernel... ");
621         remap_kernel();
622         prom_printf("done.\n");
623 }
624
625 void prom_world(int enter)
626 {
627         if (!enter)
628                 set_fs((mm_segment_t) { get_thread_current_ds() });
629
630         __asm__ __volatile__("flushw");
631 }
632
633 #ifdef DCACHE_ALIASING_POSSIBLE
634 void __flush_dcache_range(unsigned long start, unsigned long end)
635 {
636         unsigned long va;
637
638         if (tlb_type == spitfire) {
639                 int n = 0;
640
641                 for (va = start; va < end; va += 32) {
642                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
643                         if (++n >= 512)
644                                 break;
645                 }
646         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647                 start = __pa(start);
648                 end = __pa(end);
649                 for (va = start; va < end; va += 32)
650                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
651                                              "membar #Sync"
652                                              : /* no outputs */
653                                              : "r" (va),
654                                                "i" (ASI_DCACHE_INVALIDATE));
655         }
656 }
657 #endif /* DCACHE_ALIASING_POSSIBLE */
658
659 /* Caller does TLB context flushing on local CPU if necessary.
660  * The caller also ensures that CTX_VALID(mm->context) is false.
661  *
662  * We must be careful about boundary cases so that we never
663  * let the user have CTX 0 (nucleus) or we ever use a CTX
664  * version of zero (and thus NO_CONTEXT would not be caught
665  * by version mis-match tests in mmu_context.h).
666  *
667  * Always invoked with interrupts disabled.
668  */
669 void get_new_mmu_context(struct mm_struct *mm)
670 {
671         unsigned long ctx, new_ctx;
672         unsigned long orig_pgsz_bits;
673         unsigned long flags;
674         int new_version;
675
676         spin_lock_irqsave(&ctx_alloc_lock, flags);
677         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
680         new_version = 0;
681         if (new_ctx >= (1 << CTX_NR_BITS)) {
682                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683                 if (new_ctx >= ctx) {
684                         int i;
685                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
686                                 CTX_FIRST_VERSION;
687                         if (new_ctx == 1)
688                                 new_ctx = CTX_FIRST_VERSION;
689
690                         /* Don't call memset, for 16 entries that's just
691                          * plain silly...
692                          */
693                         mmu_context_bmap[0] = 3;
694                         mmu_context_bmap[1] = 0;
695                         mmu_context_bmap[2] = 0;
696                         mmu_context_bmap[3] = 0;
697                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698                                 mmu_context_bmap[i + 0] = 0;
699                                 mmu_context_bmap[i + 1] = 0;
700                                 mmu_context_bmap[i + 2] = 0;
701                                 mmu_context_bmap[i + 3] = 0;
702                         }
703                         new_version = 1;
704                         goto out;
705                 }
706         }
707         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
709 out:
710         tlb_context_cache = new_ctx;
711         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
712         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
713
714         if (unlikely(new_version))
715                 smp_new_mmu_context_version();
716 }
717
718 void sparc_ultra_dump_itlb(void)
719 {
720         int slot;
721
722         if (tlb_type == spitfire) {
723                 printk ("Contents of itlb: ");
724                 for (slot = 0; slot < 14; slot++) printk ("    ");
725                 printk ("%2x:%016lx,%016lx\n",
726                         0,
727                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
728                 for (slot = 1; slot < 64; slot+=3) {
729                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
730                                 slot,
731                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
732                                 slot+1,
733                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
734                                 slot+2,
735                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
736                 }
737         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
738                 printk ("Contents of itlb0:\n");
739                 for (slot = 0; slot < 16; slot+=2) {
740                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
741                                 slot,
742                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
743                                 slot+1,
744                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
745                 }
746                 printk ("Contents of itlb2:\n");
747                 for (slot = 0; slot < 128; slot+=2) {
748                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
749                                 slot,
750                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
751                                 slot+1,
752                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
753                 }
754         }
755 }
756
757 void sparc_ultra_dump_dtlb(void)
758 {
759         int slot;
760
761         if (tlb_type == spitfire) {
762                 printk ("Contents of dtlb: ");
763                 for (slot = 0; slot < 14; slot++) printk ("    ");
764                 printk ("%2x:%016lx,%016lx\n", 0,
765                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
766                 for (slot = 1; slot < 64; slot+=3) {
767                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
768                                 slot,
769                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
770                                 slot+1,
771                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
772                                 slot+2,
773                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
774                 }
775         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
776                 printk ("Contents of dtlb0:\n");
777                 for (slot = 0; slot < 16; slot+=2) {
778                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
779                                 slot,
780                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
781                                 slot+1,
782                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
783                 }
784                 printk ("Contents of dtlb2:\n");
785                 for (slot = 0; slot < 512; slot+=2) {
786                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
787                                 slot,
788                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
789                                 slot+1,
790                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
791                 }
792                 if (tlb_type == cheetah_plus) {
793                         printk ("Contents of dtlb3:\n");
794                         for (slot = 0; slot < 512; slot+=2) {
795                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
796                                         slot,
797                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
798                                         slot+1,
799                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
800                         }
801                 }
802         }
803 }
804
805 extern unsigned long cmdline_memory_size;
806
807 /* Find a free area for the bootmem map, avoiding the kernel image
808  * and the initial ramdisk.
809  */
810 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
811                                                unsigned long end_pfn)
812 {
813         unsigned long avoid_start, avoid_end, bootmap_size;
814         int i;
815
816         bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
817         bootmap_size = ALIGN(bootmap_size, sizeof(long));
818
819         avoid_start = avoid_end = 0;
820 #ifdef CONFIG_BLK_DEV_INITRD
821         avoid_start = initrd_start;
822         avoid_end = PAGE_ALIGN(initrd_end);
823 #endif
824
825 #ifdef CONFIG_DEBUG_BOOTMEM
826         prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
827                     kern_base, PAGE_ALIGN(kern_base + kern_size),
828                     avoid_start, avoid_end);
829 #endif
830         for (i = 0; i < pavail_ents; i++) {
831                 unsigned long start, end;
832
833                 start = pavail[i].phys_addr;
834                 end = start + pavail[i].reg_size;
835
836                 while (start < end) {
837                         if (start >= kern_base &&
838                             start < PAGE_ALIGN(kern_base + kern_size)) {
839                                 start = PAGE_ALIGN(kern_base + kern_size);
840                                 continue;
841                         }
842                         if (start >= avoid_start && start < avoid_end) {
843                                 start = avoid_end;
844                                 continue;
845                         }
846
847                         if ((end - start) < bootmap_size)
848                                 break;
849
850                         if (start < kern_base &&
851                             (start + bootmap_size) > kern_base) {
852                                 start = PAGE_ALIGN(kern_base + kern_size);
853                                 continue;
854                         }
855
856                         if (start < avoid_start &&
857                             (start + bootmap_size) > avoid_start) {
858                                 start = avoid_end;
859                                 continue;
860                         }
861
862                         /* OK, it doesn't overlap anything, use it.  */
863 #ifdef CONFIG_DEBUG_BOOTMEM
864                         prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
865                                     start >> PAGE_SHIFT, start);
866 #endif
867                         return start >> PAGE_SHIFT;
868                 }
869         }
870
871         prom_printf("Cannot find free area for bootmap, aborting.\n");
872         prom_halt();
873 }
874
875 static void __init trim_pavail(unsigned long *cur_size_p,
876                                unsigned long *end_of_phys_p)
877 {
878         unsigned long to_trim = *cur_size_p - cmdline_memory_size;
879         unsigned long avoid_start, avoid_end;
880         int i;
881
882         to_trim = PAGE_ALIGN(to_trim);
883
884         avoid_start = avoid_end = 0;
885 #ifdef CONFIG_BLK_DEV_INITRD
886         avoid_start = initrd_start;
887         avoid_end = PAGE_ALIGN(initrd_end);
888 #endif
889
890         /* Trim some pavail[] entries in order to satisfy the
891          * requested "mem=xxx" kernel command line specification.
892          *
893          * We must not trim off the kernel image area nor the
894          * initial ramdisk range (if any).  Also, we must not trim
895          * any pavail[] entry down to zero in order to preserve
896          * the invariant that all pavail[] entries have a non-zero
897          * size which is assumed by all of the code in here.
898          */
899         for (i = 0; i < pavail_ents; i++) {
900                 unsigned long start, end, kern_end;
901                 unsigned long trim_low, trim_high, n;
902
903                 kern_end = PAGE_ALIGN(kern_base + kern_size);
904
905                 trim_low = start = pavail[i].phys_addr;
906                 trim_high = end = start + pavail[i].reg_size;
907
908                 if (kern_base >= start &&
909                     kern_base < end) {
910                         trim_low = kern_base;
911                         if (kern_end >= end)
912                                 continue;
913                 }
914                 if (kern_end >= start &&
915                     kern_end < end) {
916                         trim_high = kern_end;
917                 }
918                 if (avoid_start &&
919                     avoid_start >= start &&
920                     avoid_start < end) {
921                         if (trim_low > avoid_start)
922                                 trim_low = avoid_start;
923                         if (avoid_end >= end)
924                                 continue;
925                 }
926                 if (avoid_end &&
927                     avoid_end >= start &&
928                     avoid_end < end) {
929                         if (trim_high < avoid_end)
930                                 trim_high = avoid_end;
931                 }
932
933                 if (trim_high <= trim_low)
934                         continue;
935
936                 if (trim_low == start && trim_high == end) {
937                         /* Whole chunk is available for trimming.
938                          * Trim all except one page, in order to keep
939                          * entry non-empty.
940                          */
941                         n = (end - start) - PAGE_SIZE;
942                         if (n > to_trim)
943                                 n = to_trim;
944
945                         if (n) {
946                                 pavail[i].phys_addr += n;
947                                 pavail[i].reg_size -= n;
948                                 to_trim -= n;
949                         }
950                 } else {
951                         n = (trim_low - start);
952                         if (n > to_trim)
953                                 n = to_trim;
954
955                         if (n) {
956                                 pavail[i].phys_addr += n;
957                                 pavail[i].reg_size -= n;
958                                 to_trim -= n;
959                         }
960                         if (to_trim) {
961                                 n = end - trim_high;
962                                 if (n > to_trim)
963                                         n = to_trim;
964                                 if (n) {
965                                         pavail[i].reg_size -= n;
966                                         to_trim -= n;
967                                 }
968                         }
969                 }
970
971                 if (!to_trim)
972                         break;
973         }
974
975         /* Recalculate.  */
976         *cur_size_p = 0UL;
977         for (i = 0; i < pavail_ents; i++) {
978                 *end_of_phys_p = pavail[i].phys_addr +
979                         pavail[i].reg_size;
980                 *cur_size_p += pavail[i].reg_size;
981         }
982 }
983
984 static unsigned long __init bootmem_init(unsigned long *pages_avail,
985                                          unsigned long phys_base)
986 {
987         unsigned long bootmap_size, end_pfn;
988         unsigned long end_of_phys_memory = 0UL;
989         unsigned long bootmap_pfn, bytes_avail, size;
990         int i;
991
992 #ifdef CONFIG_DEBUG_BOOTMEM
993         prom_printf("bootmem_init: Scan pavail, ");
994 #endif
995
996         bytes_avail = 0UL;
997         for (i = 0; i < pavail_ents; i++) {
998                 end_of_phys_memory = pavail[i].phys_addr +
999                         pavail[i].reg_size;
1000                 bytes_avail += pavail[i].reg_size;
1001         }
1002
1003         /* Determine the location of the initial ramdisk before trying
1004          * to honor the "mem=xxx" command line argument.  We must know
1005          * where the kernel image and the ramdisk image are so that we
1006          * do not trim those two areas from the physical memory map.
1007          */
1008
1009 #ifdef CONFIG_BLK_DEV_INITRD
1010         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
1011         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
1012                 unsigned long ramdisk_image = sparc_ramdisk_image ?
1013                         sparc_ramdisk_image : sparc_ramdisk_image64;
1014                 ramdisk_image -= KERNBASE;
1015                 initrd_start = ramdisk_image + phys_base;
1016                 initrd_end = initrd_start + sparc_ramdisk_size;
1017                 if (initrd_end > end_of_phys_memory) {
1018                         printk(KERN_CRIT "initrd extends beyond end of memory "
1019                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
1020                                initrd_end, end_of_phys_memory);
1021                         initrd_start = 0;
1022                         initrd_end = 0;
1023                 }
1024         }
1025 #endif  
1026
1027         if (cmdline_memory_size &&
1028             bytes_avail > cmdline_memory_size)
1029                 trim_pavail(&bytes_avail,
1030                             &end_of_phys_memory);
1031
1032         *pages_avail = bytes_avail >> PAGE_SHIFT;
1033
1034         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
1035
1036         /* Initialize the boot-time allocator. */
1037         max_pfn = max_low_pfn = end_pfn;
1038         min_low_pfn = (phys_base >> PAGE_SHIFT);
1039
1040         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
1041
1042 #ifdef CONFIG_DEBUG_BOOTMEM
1043         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1044                     min_low_pfn, bootmap_pfn, max_low_pfn);
1045 #endif
1046         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
1047                                          min_low_pfn, end_pfn);
1048
1049         /* Now register the available physical memory with the
1050          * allocator.
1051          */
1052         for (i = 0; i < pavail_ents; i++) {
1053 #ifdef CONFIG_DEBUG_BOOTMEM
1054                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
1055                             i, pavail[i].phys_addr, pavail[i].reg_size);
1056 #endif
1057                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
1058         }
1059
1060 #ifdef CONFIG_BLK_DEV_INITRD
1061         if (initrd_start) {
1062                 size = initrd_end - initrd_start;
1063
1064                 /* Resert the initrd image area. */
1065 #ifdef CONFIG_DEBUG_BOOTMEM
1066                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1067                         initrd_start, initrd_end);
1068 #endif
1069                 reserve_bootmem(initrd_start, size);
1070                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1071
1072                 initrd_start += PAGE_OFFSET;
1073                 initrd_end += PAGE_OFFSET;
1074         }
1075 #endif
1076         /* Reserve the kernel text/data/bss. */
1077 #ifdef CONFIG_DEBUG_BOOTMEM
1078         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1079 #endif
1080         reserve_bootmem(kern_base, kern_size);
1081         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1082
1083         /* Reserve the bootmem map.   We do not account for it
1084          * in pages_avail because we will release that memory
1085          * in free_all_bootmem.
1086          */
1087         size = bootmap_size;
1088 #ifdef CONFIG_DEBUG_BOOTMEM
1089         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1090                     (bootmap_pfn << PAGE_SHIFT), size);
1091 #endif
1092         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1093         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1094
1095         for (i = 0; i < pavail_ents; i++) {
1096                 unsigned long start_pfn, end_pfn;
1097
1098                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1099                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1100 #ifdef CONFIG_DEBUG_BOOTMEM
1101                 prom_printf("memory_present(0, %lx, %lx)\n",
1102                             start_pfn, end_pfn);
1103 #endif
1104                 memory_present(0, start_pfn, end_pfn);
1105         }
1106
1107         sparse_init();
1108
1109         return end_pfn;
1110 }
1111
1112 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1113 static int pall_ents __initdata;
1114
1115 #ifdef CONFIG_DEBUG_PAGEALLOC
1116 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1117 {
1118         unsigned long vstart = PAGE_OFFSET + pstart;
1119         unsigned long vend = PAGE_OFFSET + pend;
1120         unsigned long alloc_bytes = 0UL;
1121
1122         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1123                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1124                             vstart, vend);
1125                 prom_halt();
1126         }
1127
1128         while (vstart < vend) {
1129                 unsigned long this_end, paddr = __pa(vstart);
1130                 pgd_t *pgd = pgd_offset_k(vstart);
1131                 pud_t *pud;
1132                 pmd_t *pmd;
1133                 pte_t *pte;
1134
1135                 pud = pud_offset(pgd, vstart);
1136                 if (pud_none(*pud)) {
1137                         pmd_t *new;
1138
1139                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1140                         alloc_bytes += PAGE_SIZE;
1141                         pud_populate(&init_mm, pud, new);
1142                 }
1143
1144                 pmd = pmd_offset(pud, vstart);
1145                 if (!pmd_present(*pmd)) {
1146                         pte_t *new;
1147
1148                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1149                         alloc_bytes += PAGE_SIZE;
1150                         pmd_populate_kernel(&init_mm, pmd, new);
1151                 }
1152
1153                 pte = pte_offset_kernel(pmd, vstart);
1154                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1155                 if (this_end > vend)
1156                         this_end = vend;
1157
1158                 while (vstart < this_end) {
1159                         pte_val(*pte) = (paddr | pgprot_val(prot));
1160
1161                         vstart += PAGE_SIZE;
1162                         paddr += PAGE_SIZE;
1163                         pte++;
1164                 }
1165         }
1166
1167         return alloc_bytes;
1168 }
1169
1170 extern unsigned int kvmap_linear_patch[1];
1171 #endif /* CONFIG_DEBUG_PAGEALLOC */
1172
1173 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1174 {
1175         const unsigned long shift_256MB = 28;
1176         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1177         const unsigned long size_256MB = (1UL << shift_256MB);
1178
1179         while (start < end) {
1180                 long remains;
1181
1182                 remains = end - start;
1183                 if (remains < size_256MB)
1184                         break;
1185
1186                 if (start & mask_256MB) {
1187                         start = (start + size_256MB) & ~mask_256MB;
1188                         continue;
1189                 }
1190
1191                 while (remains >= size_256MB) {
1192                         unsigned long index = start >> shift_256MB;
1193
1194                         __set_bit(index, kpte_linear_bitmap);
1195
1196                         start += size_256MB;
1197                         remains -= size_256MB;
1198                 }
1199         }
1200 }
1201
1202 static void __init kernel_physical_mapping_init(void)
1203 {
1204         unsigned long i;
1205 #ifdef CONFIG_DEBUG_PAGEALLOC
1206         unsigned long mem_alloced = 0UL;
1207 #endif
1208
1209         read_obp_memory("reg", &pall[0], &pall_ents);
1210
1211         for (i = 0; i < pall_ents; i++) {
1212                 unsigned long phys_start, phys_end;
1213
1214                 phys_start = pall[i].phys_addr;
1215                 phys_end = phys_start + pall[i].reg_size;
1216
1217                 mark_kpte_bitmap(phys_start, phys_end);
1218
1219 #ifdef CONFIG_DEBUG_PAGEALLOC
1220                 mem_alloced += kernel_map_range(phys_start, phys_end,
1221                                                 PAGE_KERNEL);
1222 #endif
1223         }
1224
1225 #ifdef CONFIG_DEBUG_PAGEALLOC
1226         printk("Allocated %ld bytes for kernel page tables.\n",
1227                mem_alloced);
1228
1229         kvmap_linear_patch[0] = 0x01000000; /* nop */
1230         flushi(&kvmap_linear_patch[0]);
1231
1232         __flush_tlb_all();
1233 #endif
1234 }
1235
1236 #ifdef CONFIG_DEBUG_PAGEALLOC
1237 void kernel_map_pages(struct page *page, int numpages, int enable)
1238 {
1239         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1240         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1241
1242         kernel_map_range(phys_start, phys_end,
1243                          (enable ? PAGE_KERNEL : __pgprot(0)));
1244
1245         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1246                                PAGE_OFFSET + phys_end);
1247
1248         /* we should perform an IPI and flush all tlbs,
1249          * but that can deadlock->flush only current cpu.
1250          */
1251         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1252                                  PAGE_OFFSET + phys_end);
1253 }
1254 #endif
1255
1256 unsigned long __init find_ecache_flush_span(unsigned long size)
1257 {
1258         int i;
1259
1260         for (i = 0; i < pavail_ents; i++) {
1261                 if (pavail[i].reg_size >= size)
1262                         return pavail[i].phys_addr;
1263         }
1264
1265         return ~0UL;
1266 }
1267
1268 static void __init tsb_phys_patch(void)
1269 {
1270         struct tsb_ldquad_phys_patch_entry *pquad;
1271         struct tsb_phys_patch_entry *p;
1272
1273         pquad = &__tsb_ldquad_phys_patch;
1274         while (pquad < &__tsb_ldquad_phys_patch_end) {
1275                 unsigned long addr = pquad->addr;
1276
1277                 if (tlb_type == hypervisor)
1278                         *(unsigned int *) addr = pquad->sun4v_insn;
1279                 else
1280                         *(unsigned int *) addr = pquad->sun4u_insn;
1281                 wmb();
1282                 __asm__ __volatile__("flush     %0"
1283                                      : /* no outputs */
1284                                      : "r" (addr));
1285
1286                 pquad++;
1287         }
1288
1289         p = &__tsb_phys_patch;
1290         while (p < &__tsb_phys_patch_end) {
1291                 unsigned long addr = p->addr;
1292
1293                 *(unsigned int *) addr = p->insn;
1294                 wmb();
1295                 __asm__ __volatile__("flush     %0"
1296                                      : /* no outputs */
1297                                      : "r" (addr));
1298
1299                 p++;
1300         }
1301 }
1302
1303 /* Don't mark as init, we give this to the Hypervisor.  */
1304 static struct hv_tsb_descr ktsb_descr[2];
1305 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1306
1307 static void __init sun4v_ktsb_init(void)
1308 {
1309         unsigned long ktsb_pa;
1310
1311         /* First KTSB for PAGE_SIZE mappings.  */
1312         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1313
1314         switch (PAGE_SIZE) {
1315         case 8 * 1024:
1316         default:
1317                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1318                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1319                 break;
1320
1321         case 64 * 1024:
1322                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1323                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1324                 break;
1325
1326         case 512 * 1024:
1327                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1328                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1329                 break;
1330
1331         case 4 * 1024 * 1024:
1332                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1333                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1334                 break;
1335         };
1336
1337         ktsb_descr[0].assoc = 1;
1338         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1339         ktsb_descr[0].ctx_idx = 0;
1340         ktsb_descr[0].tsb_base = ktsb_pa;
1341         ktsb_descr[0].resv = 0;
1342
1343         /* Second KTSB for 4MB/256MB mappings.  */
1344         ktsb_pa = (kern_base +
1345                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1346
1347         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1348         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1349                                    HV_PGSZ_MASK_256MB);
1350         ktsb_descr[1].assoc = 1;
1351         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1352         ktsb_descr[1].ctx_idx = 0;
1353         ktsb_descr[1].tsb_base = ktsb_pa;
1354         ktsb_descr[1].resv = 0;
1355 }
1356
1357 void __cpuinit sun4v_ktsb_register(void)
1358 {
1359         register unsigned long func asm("%o5");
1360         register unsigned long arg0 asm("%o0");
1361         register unsigned long arg1 asm("%o1");
1362         unsigned long pa;
1363
1364         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1365
1366         func = HV_FAST_MMU_TSB_CTX0;
1367         arg0 = 2;
1368         arg1 = pa;
1369         __asm__ __volatile__("ta        %6"
1370                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1371                              : "0" (func), "1" (arg0), "2" (arg1),
1372                                "i" (HV_FAST_TRAP));
1373 }
1374
1375 /* paging_init() sets up the page tables */
1376
1377 extern void cheetah_ecache_flush_init(void);
1378 extern void sun4v_patch_tlb_handlers(void);
1379
1380 static unsigned long last_valid_pfn;
1381 pgd_t swapper_pg_dir[2048];
1382
1383 static void sun4u_pgprot_init(void);
1384 static void sun4v_pgprot_init(void);
1385
1386 void __init paging_init(void)
1387 {
1388         unsigned long end_pfn, pages_avail, shift, phys_base;
1389         unsigned long real_end, i;
1390
1391         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1392         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1393
1394         /* Invalidate both kernel TSBs.  */
1395         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1396         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1397
1398         if (tlb_type == hypervisor)
1399                 sun4v_pgprot_init();
1400         else
1401                 sun4u_pgprot_init();
1402
1403         if (tlb_type == cheetah_plus ||
1404             tlb_type == hypervisor)
1405                 tsb_phys_patch();
1406
1407         if (tlb_type == hypervisor) {
1408                 sun4v_patch_tlb_handlers();
1409                 sun4v_ktsb_init();
1410         }
1411
1412         /* Find available physical memory... */
1413         read_obp_memory("available", &pavail[0], &pavail_ents);
1414
1415         phys_base = 0xffffffffffffffffUL;
1416         for (i = 0; i < pavail_ents; i++)
1417                 phys_base = min(phys_base, pavail[i].phys_addr);
1418
1419         set_bit(0, mmu_context_bmap);
1420
1421         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1422
1423         real_end = (unsigned long)_end;
1424         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1425                 bigkernel = 1;
1426         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1427                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1428                 prom_halt();
1429         }
1430
1431         /* Set kernel pgd to upper alias so physical page computations
1432          * work.
1433          */
1434         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1435         
1436         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1437
1438         /* Now can init the kernel/bad page tables. */
1439         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1440                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1441         
1442         inherit_prom_mappings();
1443         
1444         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1445         setup_tba();
1446
1447         __flush_tlb_all();
1448
1449         if (tlb_type == hypervisor)
1450                 sun4v_ktsb_register();
1451
1452         /* Setup bootmem... */
1453         pages_avail = 0;
1454         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1455
1456         max_mapnr = last_valid_pfn;
1457
1458         kernel_physical_mapping_init();
1459
1460         prom_build_devicetree();
1461
1462         {
1463                 unsigned long zones_size[MAX_NR_ZONES];
1464                 unsigned long zholes_size[MAX_NR_ZONES];
1465                 int znum;
1466
1467                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1468                         zones_size[znum] = zholes_size[znum] = 0;
1469
1470                 zones_size[ZONE_DMA] = end_pfn;
1471                 zholes_size[ZONE_DMA] = end_pfn - pages_avail;
1472
1473                 free_area_init_node(0, &contig_page_data, zones_size,
1474                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1475                                     zholes_size);
1476         }
1477
1478         device_scan();
1479 }
1480
1481 static void __init taint_real_pages(void)
1482 {
1483         int i;
1484
1485         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1486
1487         /* Find changes discovered in the physmem available rescan and
1488          * reserve the lost portions in the bootmem maps.
1489          */
1490         for (i = 0; i < pavail_ents; i++) {
1491                 unsigned long old_start, old_end;
1492
1493                 old_start = pavail[i].phys_addr;
1494                 old_end = old_start +
1495                         pavail[i].reg_size;
1496                 while (old_start < old_end) {
1497                         int n;
1498
1499                         for (n = 0; n < pavail_rescan_ents; n++) {
1500                                 unsigned long new_start, new_end;
1501
1502                                 new_start = pavail_rescan[n].phys_addr;
1503                                 new_end = new_start +
1504                                         pavail_rescan[n].reg_size;
1505
1506                                 if (new_start <= old_start &&
1507                                     new_end >= (old_start + PAGE_SIZE)) {
1508                                         set_bit(old_start >> 22,
1509                                                 sparc64_valid_addr_bitmap);
1510                                         goto do_next_page;
1511                                 }
1512                         }
1513                         reserve_bootmem(old_start, PAGE_SIZE);
1514
1515                 do_next_page:
1516                         old_start += PAGE_SIZE;
1517                 }
1518         }
1519 }
1520
1521 int __init page_in_phys_avail(unsigned long paddr)
1522 {
1523         int i;
1524
1525         paddr &= PAGE_MASK;
1526
1527         for (i = 0; i < pavail_rescan_ents; i++) {
1528                 unsigned long start, end;
1529
1530                 start = pavail_rescan[i].phys_addr;
1531                 end = start + pavail_rescan[i].reg_size;
1532
1533                 if (paddr >= start && paddr < end)
1534                         return 1;
1535         }
1536         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1537                 return 1;
1538 #ifdef CONFIG_BLK_DEV_INITRD
1539         if (paddr >= __pa(initrd_start) &&
1540             paddr < __pa(PAGE_ALIGN(initrd_end)))
1541                 return 1;
1542 #endif
1543
1544         return 0;
1545 }
1546
1547 void __init mem_init(void)
1548 {
1549         unsigned long codepages, datapages, initpages;
1550         unsigned long addr, last;
1551         int i;
1552
1553         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1554         i += 1;
1555         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1556         if (sparc64_valid_addr_bitmap == NULL) {
1557                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1558                 prom_halt();
1559         }
1560         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1561
1562         addr = PAGE_OFFSET + kern_base;
1563         last = PAGE_ALIGN(kern_size) + addr;
1564         while (addr < last) {
1565                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1566                 addr += PAGE_SIZE;
1567         }
1568
1569         taint_real_pages();
1570
1571         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1572
1573 #ifdef CONFIG_DEBUG_BOOTMEM
1574         prom_printf("mem_init: Calling free_all_bootmem().\n");
1575 #endif
1576         totalram_pages = num_physpages = free_all_bootmem() - 1;
1577
1578         /*
1579          * Set up the zero page, mark it reserved, so that page count
1580          * is not manipulated when freeing the page from user ptes.
1581          */
1582         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1583         if (mem_map_zero == NULL) {
1584                 prom_printf("paging_init: Cannot alloc zero page.\n");
1585                 prom_halt();
1586         }
1587         SetPageReserved(mem_map_zero);
1588
1589         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1590         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1591         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1592         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1593         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1594         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1595
1596         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1597                nr_free_pages() << (PAGE_SHIFT-10),
1598                codepages << (PAGE_SHIFT-10),
1599                datapages << (PAGE_SHIFT-10), 
1600                initpages << (PAGE_SHIFT-10), 
1601                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1602
1603         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1604                 cheetah_ecache_flush_init();
1605 }
1606
1607 void free_initmem(void)
1608 {
1609         unsigned long addr, initend;
1610
1611         /*
1612          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1613          */
1614         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1615         initend = (unsigned long)(__init_end) & PAGE_MASK;
1616         for (; addr < initend; addr += PAGE_SIZE) {
1617                 unsigned long page;
1618                 struct page *p;
1619
1620                 page = (addr +
1621                         ((unsigned long) __va(kern_base)) -
1622                         ((unsigned long) KERNBASE));
1623                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1624                 p = virt_to_page(page);
1625
1626                 ClearPageReserved(p);
1627                 init_page_count(p);
1628                 __free_page(p);
1629                 num_physpages++;
1630                 totalram_pages++;
1631         }
1632 }
1633
1634 #ifdef CONFIG_BLK_DEV_INITRD
1635 void free_initrd_mem(unsigned long start, unsigned long end)
1636 {
1637         if (start < end)
1638                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1639         for (; start < end; start += PAGE_SIZE) {
1640                 struct page *p = virt_to_page(start);
1641
1642                 ClearPageReserved(p);
1643                 init_page_count(p);
1644                 __free_page(p);
1645                 num_physpages++;
1646                 totalram_pages++;
1647         }
1648 }
1649 #endif
1650
1651 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1652 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1653 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1654 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1655 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1656 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1657
1658 pgprot_t PAGE_KERNEL __read_mostly;
1659 EXPORT_SYMBOL(PAGE_KERNEL);
1660
1661 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1662 pgprot_t PAGE_COPY __read_mostly;
1663
1664 pgprot_t PAGE_SHARED __read_mostly;
1665 EXPORT_SYMBOL(PAGE_SHARED);
1666
1667 pgprot_t PAGE_EXEC __read_mostly;
1668 unsigned long pg_iobits __read_mostly;
1669
1670 unsigned long _PAGE_IE __read_mostly;
1671 EXPORT_SYMBOL(_PAGE_IE);
1672
1673 unsigned long _PAGE_E __read_mostly;
1674 EXPORT_SYMBOL(_PAGE_E);
1675
1676 unsigned long _PAGE_CACHE __read_mostly;
1677 EXPORT_SYMBOL(_PAGE_CACHE);
1678
1679 static void prot_init_common(unsigned long page_none,
1680                              unsigned long page_shared,
1681                              unsigned long page_copy,
1682                              unsigned long page_readonly,
1683                              unsigned long page_exec_bit)
1684 {
1685         PAGE_COPY = __pgprot(page_copy);
1686         PAGE_SHARED = __pgprot(page_shared);
1687
1688         protection_map[0x0] = __pgprot(page_none);
1689         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1690         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1691         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1692         protection_map[0x4] = __pgprot(page_readonly);
1693         protection_map[0x5] = __pgprot(page_readonly);
1694         protection_map[0x6] = __pgprot(page_copy);
1695         protection_map[0x7] = __pgprot(page_copy);
1696         protection_map[0x8] = __pgprot(page_none);
1697         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1698         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1699         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1700         protection_map[0xc] = __pgprot(page_readonly);
1701         protection_map[0xd] = __pgprot(page_readonly);
1702         protection_map[0xe] = __pgprot(page_shared);
1703         protection_map[0xf] = __pgprot(page_shared);
1704 }
1705
1706 static void __init sun4u_pgprot_init(void)
1707 {
1708         unsigned long page_none, page_shared, page_copy, page_readonly;
1709         unsigned long page_exec_bit;
1710
1711         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1712                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1713                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1714                                 _PAGE_EXEC_4U);
1715         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1716                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1717                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1718                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1719         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1720
1721         _PAGE_IE = _PAGE_IE_4U;
1722         _PAGE_E = _PAGE_E_4U;
1723         _PAGE_CACHE = _PAGE_CACHE_4U;
1724
1725         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1726                      __ACCESS_BITS_4U | _PAGE_E_4U);
1727
1728         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1729                 0xfffff80000000000;
1730         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1731                                    _PAGE_P_4U | _PAGE_W_4U);
1732
1733         /* XXX Should use 256MB on Panther. XXX */
1734         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1735
1736         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1737         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1738                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1739                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1740
1741
1742         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1743         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1744                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1745         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1746                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1747         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1748                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1749
1750         page_exec_bit = _PAGE_EXEC_4U;
1751
1752         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1753                          page_exec_bit);
1754 }
1755
1756 static void __init sun4v_pgprot_init(void)
1757 {
1758         unsigned long page_none, page_shared, page_copy, page_readonly;
1759         unsigned long page_exec_bit;
1760
1761         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1762                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1763                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1764                                 _PAGE_EXEC_4V);
1765         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1766         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1767
1768         _PAGE_IE = _PAGE_IE_4V;
1769         _PAGE_E = _PAGE_E_4V;
1770         _PAGE_CACHE = _PAGE_CACHE_4V;
1771
1772         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1773                 0xfffff80000000000;
1774         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1775                                    _PAGE_P_4V | _PAGE_W_4V);
1776
1777         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1778                 0xfffff80000000000;
1779         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1780                                    _PAGE_P_4V | _PAGE_W_4V);
1781
1782         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1783                      __ACCESS_BITS_4V | _PAGE_E_4V);
1784
1785         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1786         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1787                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1788                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1789                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1790
1791         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1792         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1793                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1794         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1795                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1796         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1797                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1798
1799         page_exec_bit = _PAGE_EXEC_4V;
1800
1801         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1802                          page_exec_bit);
1803 }
1804
1805 unsigned long pte_sz_bits(unsigned long sz)
1806 {
1807         if (tlb_type == hypervisor) {
1808                 switch (sz) {
1809                 case 8 * 1024:
1810                 default:
1811                         return _PAGE_SZ8K_4V;
1812                 case 64 * 1024:
1813                         return _PAGE_SZ64K_4V;
1814                 case 512 * 1024:
1815                         return _PAGE_SZ512K_4V;
1816                 case 4 * 1024 * 1024:
1817                         return _PAGE_SZ4MB_4V;
1818                 };
1819         } else {
1820                 switch (sz) {
1821                 case 8 * 1024:
1822                 default:
1823                         return _PAGE_SZ8K_4U;
1824                 case 64 * 1024:
1825                         return _PAGE_SZ64K_4U;
1826                 case 512 * 1024:
1827                         return _PAGE_SZ512K_4U;
1828                 case 4 * 1024 * 1024:
1829                         return _PAGE_SZ4MB_4U;
1830                 };
1831         }
1832 }
1833
1834 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1835 {
1836         pte_t pte;
1837
1838         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1839         pte_val(pte) |= (((unsigned long)space) << 32);
1840         pte_val(pte) |= pte_sz_bits(page_size);
1841
1842         return pte;
1843 }
1844
1845 static unsigned long kern_large_tte(unsigned long paddr)
1846 {
1847         unsigned long val;
1848
1849         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1850                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1851                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1852         if (tlb_type == hypervisor)
1853                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1854                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1855                        _PAGE_EXEC_4V | _PAGE_W_4V);
1856
1857         return val | paddr;
1858 }
1859
1860 /*
1861  * Translate PROM's mapping we capture at boot time into physical address.
1862  * The second parameter is only set from prom_callback() invocations.
1863  */
1864 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1865 {
1866         unsigned long mask;
1867         int i;
1868
1869         mask = _PAGE_PADDR_4U;
1870         if (tlb_type == hypervisor)
1871                 mask = _PAGE_PADDR_4V;
1872
1873         for (i = 0; i < prom_trans_ents; i++) {
1874                 struct linux_prom_translation *p = &prom_trans[i];
1875
1876                 if (promva >= p->virt &&
1877                     promva < (p->virt + p->size)) {
1878                         unsigned long base = p->data & mask;
1879
1880                         if (error)
1881                                 *error = 0;
1882                         return base + (promva & (8192 - 1));
1883                 }
1884         }
1885         if (error)
1886                 *error = 1;
1887         return 0UL;
1888 }
1889
1890 /* XXX We should kill off this ugly thing at so me point. XXX */
1891 unsigned long sun4u_get_pte(unsigned long addr)
1892 {
1893         pgd_t *pgdp;
1894         pud_t *pudp;
1895         pmd_t *pmdp;
1896         pte_t *ptep;
1897         unsigned long mask = _PAGE_PADDR_4U;
1898
1899         if (tlb_type == hypervisor)
1900                 mask = _PAGE_PADDR_4V;
1901
1902         if (addr >= PAGE_OFFSET)
1903                 return addr & mask;
1904
1905         if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1906                 return prom_virt_to_phys(addr, NULL);
1907
1908         pgdp = pgd_offset_k(addr);
1909         pudp = pud_offset(pgdp, addr);
1910         pmdp = pmd_offset(pudp, addr);
1911         ptep = pte_offset_kernel(pmdp, addr);
1912
1913         return pte_val(*ptep) & mask;
1914 }
1915
1916 /* If not locked, zap it. */
1917 void __flush_tlb_all(void)
1918 {
1919         unsigned long pstate;
1920         int i;
1921
1922         __asm__ __volatile__("flushw\n\t"
1923                              "rdpr      %%pstate, %0\n\t"
1924                              "wrpr      %0, %1, %%pstate"
1925                              : "=r" (pstate)
1926                              : "i" (PSTATE_IE));
1927         if (tlb_type == spitfire) {
1928                 for (i = 0; i < 64; i++) {
1929                         /* Spitfire Errata #32 workaround */
1930                         /* NOTE: Always runs on spitfire, so no
1931                          *       cheetah+ page size encodings.
1932                          */
1933                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1934                                              "flush     %%g6"
1935                                              : /* No outputs */
1936                                              : "r" (0),
1937                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1938
1939                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1940                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1941                                                      "membar #Sync"
1942                                                      : /* no outputs */
1943                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1944                                 spitfire_put_dtlb_data(i, 0x0UL);
1945                         }
1946
1947                         /* Spitfire Errata #32 workaround */
1948                         /* NOTE: Always runs on spitfire, so no
1949                          *       cheetah+ page size encodings.
1950                          */
1951                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1952                                              "flush     %%g6"
1953                                              : /* No outputs */
1954                                              : "r" (0),
1955                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1956
1957                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1958                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1959                                                      "membar #Sync"
1960                                                      : /* no outputs */
1961                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1962                                 spitfire_put_itlb_data(i, 0x0UL);
1963                         }
1964                 }
1965         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1966                 cheetah_flush_dtlb_all();
1967                 cheetah_flush_itlb_all();
1968         }
1969         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1970                              : : "r" (pstate));
1971 }
1972
1973 #ifdef CONFIG_MEMORY_HOTPLUG
1974
1975 void online_page(struct page *page)
1976 {
1977         ClearPageReserved(page);
1978         init_page_count(page);
1979         __free_page(page);
1980         totalram_pages++;
1981         num_physpages++;
1982 }
1983
1984 int remove_memory(u64 start, u64 size)
1985 {
1986         return -EINVAL;
1987 }
1988
1989 #endif /* CONFIG_MEMORY_HOTPLUG */