Merge ../linux-2.6-watchdog-mm
[linux-drm-fsl-dcu.git] / arch / sparc64 / kernel / pci_sabre.c
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2  * pci_sabre.c: Sabre specific PCI controller support.
3  *
4  * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
6  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
23
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26
27 /* All SABRE registers are 64-bits.  The following accessor
28  * routines are how they are accessed.  The REG parameter
29  * is a physical address.
30  */
31 #define sabre_read(__reg) \
32 ({      u64 __ret; \
33         __asm__ __volatile__("ldxa [%1] %2, %0" \
34                              : "=r" (__ret) \
35                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36                              : "memory"); \
37         __ret; \
38 })
39 #define sabre_write(__reg, __val) \
40         __asm__ __volatile__("stxa %0, [%1] %2" \
41                              : /* no outputs */ \
42                              : "r" (__val), "r" (__reg), \
43                                "i" (ASI_PHYS_BYPASS_EC_E) \
44                              : "memory")
45
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR           0x0030UL
48 #define  SABRE_UEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
49 #define  SABRE_UEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
50 #define  SABRE_UEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
51 #define  SABRE_UEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
52 #define  SABRE_UEAFSR_SDTE       0x0200000000000000UL   /* Secondary DMA Translation Error */
53 #define  SABRE_UEAFSR_PDTE       0x0100000000000000UL   /* Primary DMA Translation Error */
54 #define  SABRE_UEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
55 #define  SABRE_UEAFSR_OFF        0x00000000e0000000UL   /* Offset (AFAR bits [5:3] */
56 #define  SABRE_UEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
57 #define SABRE_UECE_AFAR         0x0038UL
58 #define SABRE_CE_AFSR           0x0040UL
59 #define  SABRE_CEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
60 #define  SABRE_CEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
61 #define  SABRE_CEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
62 #define  SABRE_CEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
63 #define  SABRE_CEAFSR_ESYND      0x00ff000000000000UL   /* ECC Syndrome */
64 #define  SABRE_CEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
65 #define  SABRE_CEAFSR_OFF        0x00000000e0000000UL   /* Offset */
66 #define  SABRE_CEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS   0x0048UL        /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL     0x0200UL
69 #define  SABRE_IOMMUCTRL_ERRSTS  0x0000000006000000UL   /* Error status bits */
70 #define  SABRE_IOMMUCTRL_ERR     0x0000000001000000UL   /* Error present in IOTLB */
71 #define  SABRE_IOMMUCTRL_LCKEN   0x0000000000800000UL   /* IOTLB lock enable */
72 #define  SABRE_IOMMUCTRL_LCKPTR  0x0000000000780000UL   /* IOTLB lock pointer */
73 #define  SABRE_IOMMUCTRL_TSBSZ   0x0000000000070000UL   /* TSB Size */
74 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
75 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
76 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
77 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
78 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
79 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
80 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
81 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define  SABRE_IOMMUCTRL_TBWSZ   0x0000000000000004UL   /* TSB assumed page size */
83 #define  SABRE_IOMMUCTRL_DENAB   0x0000000000000002UL   /* Diagnostic Mode Enable */
84 #define  SABRE_IOMMUCTRL_ENAB    0x0000000000000001UL   /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE     0x0208UL
86 #define SABRE_IOMMU_FLUSH       0x0210UL
87 #define SABRE_IMAP_A_SLOT0      0x0c00UL
88 #define SABRE_IMAP_B_SLOT0      0x0c20UL
89 #define SABRE_IMAP_SCSI         0x1000UL
90 #define SABRE_IMAP_ETH          0x1008UL
91 #define SABRE_IMAP_BPP          0x1010UL
92 #define SABRE_IMAP_AU_REC       0x1018UL
93 #define SABRE_IMAP_AU_PLAY      0x1020UL
94 #define SABRE_IMAP_PFAIL        0x1028UL
95 #define SABRE_IMAP_KMS          0x1030UL
96 #define SABRE_IMAP_FLPY         0x1038UL
97 #define SABRE_IMAP_SHW          0x1040UL
98 #define SABRE_IMAP_KBD          0x1048UL
99 #define SABRE_IMAP_MS           0x1050UL
100 #define SABRE_IMAP_SER          0x1058UL
101 #define SABRE_IMAP_UE           0x1070UL
102 #define SABRE_IMAP_CE           0x1078UL
103 #define SABRE_IMAP_PCIERR       0x1080UL
104 #define SABRE_IMAP_GFX          0x1098UL
105 #define SABRE_IMAP_EUPA         0x10a0UL
106 #define SABRE_ICLR_A_SLOT0      0x1400UL
107 #define SABRE_ICLR_B_SLOT0      0x1480UL
108 #define SABRE_ICLR_SCSI         0x1800UL
109 #define SABRE_ICLR_ETH          0x1808UL
110 #define SABRE_ICLR_BPP          0x1810UL
111 #define SABRE_ICLR_AU_REC       0x1818UL
112 #define SABRE_ICLR_AU_PLAY      0x1820UL
113 #define SABRE_ICLR_PFAIL        0x1828UL
114 #define SABRE_ICLR_KMS          0x1830UL
115 #define SABRE_ICLR_FLPY         0x1838UL
116 #define SABRE_ICLR_SHW          0x1840UL
117 #define SABRE_ICLR_KBD          0x1848UL
118 #define SABRE_ICLR_MS           0x1850UL
119 #define SABRE_ICLR_SER          0x1858UL
120 #define SABRE_ICLR_UE           0x1870UL
121 #define SABRE_ICLR_CE           0x1878UL
122 #define SABRE_ICLR_PCIERR       0x1880UL
123 #define SABRE_WRSYNC            0x1c20UL
124 #define SABRE_PCICTRL           0x2000UL
125 #define  SABRE_PCICTRL_MRLEN     0x0000001000000000UL   /* Use MemoryReadLine for block loads/stores */
126 #define  SABRE_PCICTRL_SERR      0x0000000400000000UL   /* Set when SERR asserted on PCI bus */
127 #define  SABRE_PCICTRL_ARBPARK   0x0000000000200000UL   /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define  SABRE_PCICTRL_CPUPRIO   0x0000000000100000UL   /* Ultra-IIi granted every other bus cycle */
129 #define  SABRE_PCICTRL_ARBPRIO   0x00000000000f0000UL   /* Slot which is granted every other bus cycle */
130 #define  SABRE_PCICTRL_ERREN     0x0000000000000100UL   /* PCI Error Interrupt Enable */
131 #define  SABRE_PCICTRL_RTRYWE    0x0000000000000080UL   /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define  SABRE_PCICTRL_AEN       0x000000000000000fUL   /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR           0x2010UL
134 #define  SABRE_PIOAFSR_PMA       0x8000000000000000UL   /* Primary Master Abort */
135 #define  SABRE_PIOAFSR_PTA       0x4000000000000000UL   /* Primary Target Abort */
136 #define  SABRE_PIOAFSR_PRTRY     0x2000000000000000UL   /* Primary Excessive Retries */
137 #define  SABRE_PIOAFSR_PPERR     0x1000000000000000UL   /* Primary Parity Error */
138 #define  SABRE_PIOAFSR_SMA       0x0800000000000000UL   /* Secondary Master Abort */
139 #define  SABRE_PIOAFSR_STA       0x0400000000000000UL   /* Secondary Target Abort */
140 #define  SABRE_PIOAFSR_SRTRY     0x0200000000000000UL   /* Secondary Excessive Retries */
141 #define  SABRE_PIOAFSR_SPERR     0x0100000000000000UL   /* Secondary Parity Error */
142 #define  SABRE_PIOAFSR_BMSK      0x0000ffff00000000UL   /* Byte Mask */
143 #define  SABRE_PIOAFSR_BLK       0x0000000080000000UL   /* Was Block Operation */
144 #define SABRE_PIOAFAR           0x2018UL
145 #define SABRE_PCIDIAG           0x2020UL
146 #define  SABRE_PCIDIAG_DRTRY     0x0000000000000040UL   /* Disable PIO Retry Limit */
147 #define  SABRE_PCIDIAG_IPAPAR    0x0000000000000008UL   /* Invert PIO Address Parity */
148 #define  SABRE_PCIDIAG_IPDPAR    0x0000000000000004UL   /* Invert PIO Data Parity */
149 #define  SABRE_PCIDIAG_IDDPAR    0x0000000000000002UL   /* Invert DMA Data Parity */
150 #define  SABRE_PCIDIAG_ELPBK     0x0000000000000001UL   /* Loopback Enable - not supported */
151 #define SABRE_PCITASR           0x2028UL
152 #define  SABRE_PCITASR_EF        0x0000000000000080UL   /* Respond to 0xe0000000-0xffffffff */
153 #define  SABRE_PCITASR_CD        0x0000000000000040UL   /* Respond to 0xc0000000-0xdfffffff */
154 #define  SABRE_PCITASR_AB        0x0000000000000020UL   /* Respond to 0xa0000000-0xbfffffff */
155 #define  SABRE_PCITASR_89        0x0000000000000010UL   /* Respond to 0x80000000-0x9fffffff */
156 #define  SABRE_PCITASR_67        0x0000000000000008UL   /* Respond to 0x60000000-0x7fffffff */
157 #define  SABRE_PCITASR_45        0x0000000000000004UL   /* Respond to 0x40000000-0x5fffffff */
158 #define  SABRE_PCITASR_23        0x0000000000000002UL   /* Respond to 0x20000000-0x3fffffff */
159 #define  SABRE_PCITASR_01        0x0000000000000001UL   /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG       0x5000UL
161 #define SABRE_DMABUF_DIAGLO     0x5100UL
162 #define SABRE_DMABUF_DIAGHI     0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS    0x6000UL        /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS   0x8000UL        /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG      0xa400UL
166 #define SABRE_IOMMU_TCDIAG      0xa408UL
167 #define SABRE_IOMMU_TAG         0xa580UL
168 #define  SABRE_IOMMUTAG_ERRSTS   0x0000000001800000UL   /* Error status bits */
169 #define  SABRE_IOMMUTAG_ERR      0x0000000000400000UL   /* Error present */
170 #define  SABRE_IOMMUTAG_WRITE    0x0000000000200000UL   /* Page is writable */
171 #define  SABRE_IOMMUTAG_STREAM   0x0000000000100000UL   /* Streamable bit - unused */
172 #define  SABRE_IOMMUTAG_SIZE     0x0000000000080000UL   /* 0=8k 1=16k */
173 #define  SABRE_IOMMUTAG_VPN      0x000000000007ffffUL   /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA        0xa600UL
175 #define SABRE_IOMMUDATA_VALID    0x0000000040000000UL   /* Valid */
176 #define SABRE_IOMMUDATA_USED     0x0000000020000000UL   /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE    0x0000000010000000UL   /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN      0x00000000001fffffUL   /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE      0xa800UL
180 #define SABRE_OBIO_IRQSTATE     0xa808UL
181 #define SABRE_FFBCFG            0xf000UL
182 #define  SABRE_FFBCFG_SPRQS      0x000000000f000000     /* Slave P_RQST queue size */
183 #define  SABRE_FFBCFG_ONEREAD    0x0000000000004000     /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0           0xf010UL
185 #define  SABRE_MCCTRL0_RENAB     0x0000000080000000     /* Refresh Enable */
186 #define  SABRE_MCCTRL0_EENAB     0x0000000010000000     /* Enable all ECC functions */
187 #define  SABRE_MCCTRL0_11BIT     0x0000000000001000     /* Enable 11-bit column addressing */
188 #define  SABRE_MCCTRL0_DPP       0x0000000000000f00     /* DIMM Pair Present Bits */
189 #define  SABRE_MCCTRL0_RINTVL    0x00000000000000ff     /* Refresh Interval */
190 #define SABRE_MCCTRL1           0xf018UL
191 #define  SABRE_MCCTRL1_AMDC      0x0000000038000000     /* Advance Memdata Clock */
192 #define  SABRE_MCCTRL1_ARDC      0x0000000007000000     /* Advance DRAM Read Data Clock */
193 #define  SABRE_MCCTRL1_CSR       0x0000000000e00000     /* CAS to RAS delay for CBR refresh */
194 #define  SABRE_MCCTRL1_CASRW     0x00000000001c0000     /* CAS length for read/write */
195 #define  SABRE_MCCTRL1_RCD       0x0000000000038000     /* RAS to CAS delay */
196 #define  SABRE_MCCTRL1_CP        0x0000000000007000     /* CAS Precharge */
197 #define  SABRE_MCCTRL1_RP        0x0000000000000e00     /* RAS Precharge */
198 #define  SABRE_MCCTRL1_RAS       0x00000000000001c0     /* Length of RAS for refresh */
199 #define  SABRE_MCCTRL1_CASRW2    0x0000000000000038     /* Must be same as CASRW */
200 #define  SABRE_MCCTRL1_RSC       0x0000000000000007     /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL         0xf020UL
202
203 #define SABRE_CONFIGSPACE       0x001000000UL
204 #define SABRE_IOSPACE           0x002000000UL
205 #define SABRE_IOSPACE_SIZE      0x000ffffffUL
206 #define SABRE_MEMSPACE          0x100000000UL
207 #define SABRE_MEMSPACE_SIZE     0x07fffffffUL
208
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210  * configuration space address format:
211  * 
212  *  32             24 23 16 15    11 10       8 7   2  1 0
213  * ---------------------------------------------------------
214  * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215  * ---------------------------------------------------------
216  */
217 #define SABRE_CONFIG_BASE(PBM)  \
218         ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
220         (((unsigned long)(BUS)   << 16) |       \
221          ((unsigned long)(DEVFN) << 8)  |       \
222          ((unsigned long)(REG)))
223
224 static int hummingbird_p;
225 static struct pci_bus *sabre_root_bus;
226
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228                                      unsigned char bus,
229                                      unsigned int devfn,
230                                      int where)
231 {
232         if (!pbm)
233                 return NULL;
234         return (void *)
235                 (SABRE_CONFIG_BASE(pbm) |
236                  SABRE_CONFIG_ENCODE(bus, devfn, where));
237 }
238
239 static int sabre_out_of_range(unsigned char devfn)
240 {
241         if (hummingbird_p)
242                 return 0;
243
244         return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245                 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246                 (PCI_SLOT(devfn) > 1));
247 }
248
249 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250                                 unsigned char bus,
251                                 unsigned char devfn)
252 {
253         if (hummingbird_p)
254                 return 0;
255
256         return ((pbm->parent == 0) ||
257                 ((pbm == &pbm->parent->pbm_B) &&
258                  (bus == pbm->pci_first_busno) &&
259                  PCI_SLOT(devfn) > 8) ||
260                 ((pbm == &pbm->parent->pbm_A) &&
261                  (bus == pbm->pci_first_busno) &&
262                  PCI_SLOT(devfn) > 8));
263 }
264
265 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
266                                 int where, int size, u32 *value)
267 {
268         struct pci_pbm_info *pbm = bus_dev->sysdata;
269         unsigned char bus = bus_dev->number;
270         u32 *addr;
271         u16 tmp16;
272         u8 tmp8;
273
274         switch (size) {
275         case 1:
276                 *value = 0xff;
277                 break;
278         case 2:
279                 *value = 0xffff;
280                 break;
281         case 4:
282                 *value = 0xffffffff;
283                 break;
284         }
285
286         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
287         if (!addr)
288                 return PCIBIOS_SUCCESSFUL;
289
290         if (__sabre_out_of_range(pbm, bus, devfn))
291                 return PCIBIOS_SUCCESSFUL;
292
293         switch (size) {
294         case 1:
295                 pci_config_read8((u8 *) addr, &tmp8);
296                 *value = tmp8;
297                 break;
298
299         case 2:
300                 if (where & 0x01) {
301                         printk("pci_read_config_word: misaligned reg [%x]\n",
302                                where);
303                         return PCIBIOS_SUCCESSFUL;
304                 }
305                 pci_config_read16((u16 *) addr, &tmp16);
306                 *value = tmp16;
307                 break;
308
309         case 4:
310                 if (where & 0x03) {
311                         printk("pci_read_config_dword: misaligned reg [%x]\n",
312                                where);
313                         return PCIBIOS_SUCCESSFUL;
314                 }
315                 pci_config_read32(addr, value);
316                 break;
317         }
318
319         return PCIBIOS_SUCCESSFUL;
320 }
321
322 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
323                               int where, int size, u32 *value)
324 {
325         if (!bus->number && sabre_out_of_range(devfn)) {
326                 switch (size) {
327                 case 1:
328                         *value = 0xff;
329                         break;
330                 case 2:
331                         *value = 0xffff;
332                         break;
333                 case 4:
334                         *value = 0xffffffff;
335                         break;
336                 }
337                 return PCIBIOS_SUCCESSFUL;
338         }
339
340         if (bus->number || PCI_SLOT(devfn))
341                 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
342
343         /* When accessing PCI config space of the PCI controller itself (bus
344          * 0, device slot 0, function 0) there are restrictions.  Each
345          * register must be accessed as it's natural size.  Thus, for example
346          * the Vendor ID must be accessed as a 16-bit quantity.
347          */
348
349         switch (size) {
350         case 1:
351                 if (where < 8) {
352                         u32 tmp32;
353                         u16 tmp16;
354
355                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
356                         tmp16 = (u16) tmp32;
357                         if (where & 1)
358                                 *value = tmp16 >> 8;
359                         else
360                                 *value = tmp16 & 0xff;
361                 } else
362                         return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
363                 break;
364
365         case 2:
366                 if (where < 8)
367                         return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
368                 else {
369                         u32 tmp32;
370                         u8 tmp8;
371
372                         __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
373                         tmp8 = (u8) tmp32;
374                         *value = tmp8;
375                         __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
376                         tmp8 = (u8) tmp32;
377                         *value |= tmp8 << 8;
378                 }
379                 break;
380
381         case 4: {
382                 u32 tmp32;
383                 u16 tmp16;
384
385                 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
386                 tmp16 = (u16) tmp32;
387                 *value = tmp16;
388                 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
389                 tmp16 = (u16) tmp32;
390                 *value |= tmp16 << 16;
391                 break;
392         }
393         }
394         return PCIBIOS_SUCCESSFUL;
395 }
396
397 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
398                                  int where, int size, u32 value)
399 {
400         struct pci_pbm_info *pbm = bus_dev->sysdata;
401         unsigned char bus = bus_dev->number;
402         u32 *addr;
403
404         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
405         if (!addr)
406                 return PCIBIOS_SUCCESSFUL;
407
408         if (__sabre_out_of_range(pbm, bus, devfn))
409                 return PCIBIOS_SUCCESSFUL;
410
411         switch (size) {
412         case 1:
413                 pci_config_write8((u8 *) addr, value);
414                 break;
415
416         case 2:
417                 if (where & 0x01) {
418                         printk("pci_write_config_word: misaligned reg [%x]\n",
419                                where);
420                         return PCIBIOS_SUCCESSFUL;
421                 }
422                 pci_config_write16((u16 *) addr, value);
423                 break;
424
425         case 4:
426                 if (where & 0x03) {
427                         printk("pci_write_config_dword: misaligned reg [%x]\n",
428                                where);
429                         return PCIBIOS_SUCCESSFUL;
430                 }
431                 pci_config_write32(addr, value);
432                 break;
433         }
434
435         return PCIBIOS_SUCCESSFUL;
436 }
437
438 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
439                                int where, int size, u32 value)
440 {
441         if (bus->number)
442                 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
443
444         if (sabre_out_of_range(devfn))
445                 return PCIBIOS_SUCCESSFUL;
446
447         switch (size) {
448         case 1:
449                 if (where < 8) {
450                         u32 tmp32;
451                         u16 tmp16;
452
453                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
454                         tmp16 = (u16) tmp32;
455                         if (where & 1) {
456                                 value &= 0x00ff;
457                                 value |= tmp16 << 8;
458                         } else {
459                                 value &= 0xff00;
460                                 value |= tmp16;
461                         }
462                         tmp32 = (u32) tmp16;
463                         return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
464                 } else
465                         return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
466                 break;
467         case 2:
468                 if (where < 8)
469                         return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
470                 else {
471                         __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
472                         __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
473                 }
474                 break;
475         case 4:
476                 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
477                 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
478                 break;
479         }
480         return PCIBIOS_SUCCESSFUL;
481 }
482
483 static struct pci_ops sabre_ops = {
484         .read =         sabre_read_pci_cfg,
485         .write =        sabre_write_pci_cfg,
486 };
487
488 /* SABRE error handling support. */
489 static void sabre_check_iommu_error(struct pci_controller_info *p,
490                                     unsigned long afsr,
491                                     unsigned long afar)
492 {
493         struct pci_iommu *iommu = p->pbm_A.iommu;
494         unsigned long iommu_tag[16];
495         unsigned long iommu_data[16];
496         unsigned long flags;
497         u64 control;
498         int i;
499
500         spin_lock_irqsave(&iommu->lock, flags);
501         control = sabre_read(iommu->iommu_control);
502         if (control & SABRE_IOMMUCTRL_ERR) {
503                 char *type_string;
504
505                 /* Clear the error encountered bit.
506                  * NOTE: On Sabre this is write 1 to clear,
507                  *       which is different from Psycho.
508                  */
509                 sabre_write(iommu->iommu_control, control);
510                 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
511                 case 1:
512                         type_string = "Invalid Error";
513                         break;
514                 case 3:
515                         type_string = "ECC Error";
516                         break;
517                 default:
518                         type_string = "Unknown";
519                         break;
520                 };
521                 printk("SABRE%d: IOMMU Error, type[%s]\n",
522                        p->index, type_string);
523
524                 /* Enter diagnostic mode and probe for error'd
525                  * entries in the IOTLB.
526                  */
527                 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
528                 sabre_write(iommu->iommu_control,
529                             (control | SABRE_IOMMUCTRL_DENAB));
530                 for (i = 0; i < 16; i++) {
531                         unsigned long base = p->pbm_A.controller_regs;
532
533                         iommu_tag[i] =
534                                 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
535                         iommu_data[i] =
536                                 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
537                         sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
538                         sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
539                 }
540                 sabre_write(iommu->iommu_control, control);
541
542                 for (i = 0; i < 16; i++) {
543                         unsigned long tag, data;
544
545                         tag = iommu_tag[i];
546                         if (!(tag & SABRE_IOMMUTAG_ERR))
547                                 continue;
548
549                         data = iommu_data[i];
550                         switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
551                         case 1:
552                                 type_string = "Invalid Error";
553                                 break;
554                         case 3:
555                                 type_string = "ECC Error";
556                                 break;
557                         default:
558                                 type_string = "Unknown";
559                                 break;
560                         };
561                         printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
562                                p->index, i, tag, type_string,
563                                ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
564                                ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
565                                ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
566                         printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
567                                p->index, i, data,
568                                ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
569                                ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
570                                ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
571                                ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
572                 }
573         }
574         spin_unlock_irqrestore(&iommu->lock, flags);
575 }
576
577 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
578 {
579         struct pci_controller_info *p = dev_id;
580         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
581         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
582         unsigned long afsr, afar, error_bits;
583         int reported;
584
585         /* Latch uncorrectable error status. */
586         afar = sabre_read(afar_reg);
587         afsr = sabre_read(afsr_reg);
588
589         /* Clear the primary/secondary error status bits. */
590         error_bits = afsr &
591                 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
592                  SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
593                  SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
594         if (!error_bits)
595                 return IRQ_NONE;
596         sabre_write(afsr_reg, error_bits);
597
598         /* Log the error. */
599         printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
600                p->index,
601                ((error_bits & SABRE_UEAFSR_PDRD) ?
602                 "DMA Read" :
603                 ((error_bits & SABRE_UEAFSR_PDWR) ?
604                  "DMA Write" : "???")),
605                ((error_bits & SABRE_UEAFSR_PDTE) ?
606                 ":Translation Error" : ""));
607         printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
608                p->index,
609                (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
610                (afsr & SABRE_UEAFSR_OFF) >> 29UL,
611                ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
612         printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
613         printk("SABRE%d: UE Secondary errors [", p->index);
614         reported = 0;
615         if (afsr & SABRE_UEAFSR_SDRD) {
616                 reported++;
617                 printk("(DMA Read)");
618         }
619         if (afsr & SABRE_UEAFSR_SDWR) {
620                 reported++;
621                 printk("(DMA Write)");
622         }
623         if (afsr & SABRE_UEAFSR_SDTE) {
624                 reported++;
625                 printk("(Translation Error)");
626         }
627         if (!reported)
628                 printk("(none)");
629         printk("]\n");
630
631         /* Interrogate IOMMU for error status. */
632         sabre_check_iommu_error(p, afsr, afar);
633
634         return IRQ_HANDLED;
635 }
636
637 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
638 {
639         struct pci_controller_info *p = dev_id;
640         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
641         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
642         unsigned long afsr, afar, error_bits;
643         int reported;
644
645         /* Latch error status. */
646         afar = sabre_read(afar_reg);
647         afsr = sabre_read(afsr_reg);
648
649         /* Clear primary/secondary error status bits. */
650         error_bits = afsr &
651                 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
652                  SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
653         if (!error_bits)
654                 return IRQ_NONE;
655         sabre_write(afsr_reg, error_bits);
656
657         /* Log the error. */
658         printk("SABRE%d: Correctable Error, primary error type[%s]\n",
659                p->index,
660                ((error_bits & SABRE_CEAFSR_PDRD) ?
661                 "DMA Read" :
662                 ((error_bits & SABRE_CEAFSR_PDWR) ?
663                  "DMA Write" : "???")));
664
665         /* XXX Use syndrome and afar to print out module string just like
666          * XXX UDB CE trap handler does... -DaveM
667          */
668         printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
669                "was_block(%d)\n",
670                p->index,
671                (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
672                (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
673                (afsr & SABRE_CEAFSR_OFF) >> 29UL,
674                ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
675         printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
676         printk("SABRE%d: CE Secondary errors [", p->index);
677         reported = 0;
678         if (afsr & SABRE_CEAFSR_SDRD) {
679                 reported++;
680                 printk("(DMA Read)");
681         }
682         if (afsr & SABRE_CEAFSR_SDWR) {
683                 reported++;
684                 printk("(DMA Write)");
685         }
686         if (!reported)
687                 printk("(none)");
688         printk("]\n");
689
690         return IRQ_HANDLED;
691 }
692
693 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
694 {
695         unsigned long csr_reg, csr, csr_error_bits;
696         irqreturn_t ret = IRQ_NONE;
697         u16 stat;
698
699         csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
700         csr = sabre_read(csr_reg);
701         csr_error_bits =
702                 csr & SABRE_PCICTRL_SERR;
703         if (csr_error_bits) {
704                 /* Clear the errors.  */
705                 sabre_write(csr_reg, csr);
706
707                 /* Log 'em.  */
708                 if (csr_error_bits & SABRE_PCICTRL_SERR)
709                         printk("SABRE%d: PCI SERR signal asserted.\n",
710                                p->index);
711                 ret = IRQ_HANDLED;
712         }
713         pci_read_config_word(sabre_root_bus->self,
714                              PCI_STATUS, &stat);
715         if (stat & (PCI_STATUS_PARITY |
716                     PCI_STATUS_SIG_TARGET_ABORT |
717                     PCI_STATUS_REC_TARGET_ABORT |
718                     PCI_STATUS_REC_MASTER_ABORT |
719                     PCI_STATUS_SIG_SYSTEM_ERROR)) {
720                 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
721                        p->index, stat);
722                 pci_write_config_word(sabre_root_bus->self,
723                                       PCI_STATUS, 0xffff);
724                 ret = IRQ_HANDLED;
725         }
726         return ret;
727 }
728
729 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
730 {
731         struct pci_controller_info *p = dev_id;
732         unsigned long afsr_reg, afar_reg;
733         unsigned long afsr, afar, error_bits;
734         int reported;
735
736         afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
737         afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
738
739         /* Latch error status. */
740         afar = sabre_read(afar_reg);
741         afsr = sabre_read(afsr_reg);
742
743         /* Clear primary/secondary error status bits. */
744         error_bits = afsr &
745                 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
746                  SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
747                  SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
748                  SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
749         if (!error_bits)
750                 return sabre_pcierr_intr_other(p);
751         sabre_write(afsr_reg, error_bits);
752
753         /* Log the error. */
754         printk("SABRE%d: PCI Error, primary error type[%s]\n",
755                p->index,
756                (((error_bits & SABRE_PIOAFSR_PMA) ?
757                  "Master Abort" :
758                  ((error_bits & SABRE_PIOAFSR_PTA) ?
759                   "Target Abort" :
760                   ((error_bits & SABRE_PIOAFSR_PRTRY) ?
761                    "Excessive Retries" :
762                    ((error_bits & SABRE_PIOAFSR_PPERR) ?
763                     "Parity Error" : "???"))))));
764         printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
765                p->index,
766                (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
767                (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
768         printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
769         printk("SABRE%d: PCI Secondary errors [", p->index);
770         reported = 0;
771         if (afsr & SABRE_PIOAFSR_SMA) {
772                 reported++;
773                 printk("(Master Abort)");
774         }
775         if (afsr & SABRE_PIOAFSR_STA) {
776                 reported++;
777                 printk("(Target Abort)");
778         }
779         if (afsr & SABRE_PIOAFSR_SRTRY) {
780                 reported++;
781                 printk("(Excessive Retries)");
782         }
783         if (afsr & SABRE_PIOAFSR_SPERR) {
784                 reported++;
785                 printk("(Parity Error)");
786         }
787         if (!reported)
788                 printk("(none)");
789         printk("]\n");
790
791         /* For the error types shown, scan both PCI buses for devices
792          * which have logged that error type.
793          */
794
795         /* If we see a Target Abort, this could be the result of an
796          * IOMMU translation error of some sort.  It is extremely
797          * useful to log this information as usually it indicates
798          * a bug in the IOMMU support code or a PCI device driver.
799          */
800         if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
801                 sabre_check_iommu_error(p, afsr, afar);
802                 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
803                 pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
804         }
805         if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
806                 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
807                 pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
808         }
809         /* For excessive retries, SABRE/PBM will abort the device
810          * and there is no way to specifically check for excessive
811          * retries in the config space status registers.  So what
812          * we hope is that we'll catch it via the master/target
813          * abort events.
814          */
815
816         if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
817                 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
818                 pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
819         }
820
821         return IRQ_HANDLED;
822 }
823
824 static void sabre_register_error_handlers(struct pci_controller_info *p)
825 {
826         struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
827         struct device_node *dp = pbm->prom_node;
828         struct of_device *op;
829         unsigned long base = pbm->controller_regs;
830         u64 tmp;
831
832         if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
833                 dp = dp->parent;
834
835         op = of_find_device_by_node(dp);
836         if (!op)
837                 return;
838
839         /* Sabre/Hummingbird IRQ property layout is:
840          * 0: PCI ERR
841          * 1: UE ERR
842          * 2: CE ERR
843          * 3: POWER FAIL
844          */
845         if (op->num_irqs < 4)
846                 return;
847
848         /* We clear the error bits in the appropriate AFSR before
849          * registering the handler so that we don't get spurious
850          * interrupts.
851          */
852         sabre_write(base + SABRE_UE_AFSR,
853                     (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
854                      SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
855                      SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
856
857         request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
858
859         sabre_write(base + SABRE_CE_AFSR,
860                     (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
861                      SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
862
863         request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
864         request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
865                     "SABRE PCIERR", p);
866
867         tmp = sabre_read(base + SABRE_PCICTRL);
868         tmp |= SABRE_PCICTRL_ERREN;
869         sabre_write(base + SABRE_PCICTRL, tmp);
870 }
871
872 static void sabre_resource_adjust(struct pci_dev *pdev,
873                                   struct resource *res,
874                                   struct resource *root)
875 {
876         struct pci_pbm_info *pbm = pdev->bus->sysdata;
877         unsigned long base;
878
879         if (res->flags & IORESOURCE_IO)
880                 base = pbm->controller_regs + SABRE_IOSPACE;
881         else
882                 base = pbm->controller_regs + SABRE_MEMSPACE;
883
884         res->start += base;
885         res->end += base;
886 }
887
888 static void sabre_base_address_update(struct pci_dev *pdev, int resource)
889 {
890         struct pcidev_cookie *pcp = pdev->sysdata;
891         struct pci_pbm_info *pbm = pcp->pbm;
892         struct resource *res;
893         unsigned long base;
894         u32 reg;
895         int where, size, is_64bit;
896
897         res = &pdev->resource[resource];
898         if (resource < 6) {
899                 where = PCI_BASE_ADDRESS_0 + (resource * 4);
900         } else if (resource == PCI_ROM_RESOURCE) {
901                 where = pdev->rom_base_reg;
902         } else {
903                 /* Somebody might have asked allocation of a non-standard resource */
904                 return;
905         }
906
907         is_64bit = 0;
908         if (res->flags & IORESOURCE_IO)
909                 base = pbm->controller_regs + SABRE_IOSPACE;
910         else {
911                 base = pbm->controller_regs + SABRE_MEMSPACE;
912                 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
913                     == PCI_BASE_ADDRESS_MEM_TYPE_64)
914                         is_64bit = 1;
915         }
916
917         size = res->end - res->start;
918         pci_read_config_dword(pdev, where, &reg);
919         reg = ((reg & size) |
920                (((u32)(res->start - base)) & ~size));
921         if (resource == PCI_ROM_RESOURCE) {
922                 reg |= PCI_ROM_ADDRESS_ENABLE;
923                 res->flags |= IORESOURCE_ROM_ENABLE;
924         }
925         pci_write_config_dword(pdev, where, reg);
926
927         /* This knows that the upper 32-bits of the address
928          * must be zero.  Our PCI common layer enforces this.
929          */
930         if (is_64bit)
931                 pci_write_config_dword(pdev, where + 4, 0);
932 }
933
934 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
935 {
936         struct pci_dev *pdev;
937
938         list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
939
940                 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
941                     pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
942                         u32 word32;
943                         u16 word16;
944
945                         sabre_read_pci_cfg(pdev->bus, pdev->devfn,
946                                            PCI_COMMAND, 2, &word32);
947                         word16 = (u16) word32;
948                         word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
949                                 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
950                                 PCI_COMMAND_IO;
951                         word32 = (u32) word16;
952                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
953                                             PCI_COMMAND, 2, word32);
954
955                         /* Status register bits are "write 1 to clear". */
956                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
957                                             PCI_STATUS, 2, 0xffff);
958                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
959                                             PCI_SEC_STATUS, 2, 0xffff);
960
961                         /* Use a primary/seconday latency timer value
962                          * of 64.
963                          */
964                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
965                                             PCI_LATENCY_TIMER, 1, 64);
966                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
967                                             PCI_SEC_LATENCY_TIMER, 1, 64);
968
969                         /* Enable reporting/forwarding of master aborts,
970                          * parity, and SERR.
971                          */
972                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
973                                             PCI_BRIDGE_CONTROL, 1,
974                                             (PCI_BRIDGE_CTL_PARITY |
975                                              PCI_BRIDGE_CTL_SERR |
976                                              PCI_BRIDGE_CTL_MASTER_ABORT));
977                 }
978         }
979 }
980
981 static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
982 {
983         struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
984
985         if (!cookie) {
986                 prom_printf("SABRE: Critical allocation failure.\n");
987                 prom_halt();
988         }
989
990         /* All we care about is the PBM. */
991         cookie->pbm = pbm;
992
993         return cookie;
994 }
995
996 static void sabre_scan_bus(struct pci_controller_info *p)
997 {
998         static int once;
999         struct pci_bus *sabre_bus, *pbus;
1000         struct pci_pbm_info *pbm;
1001         struct pcidev_cookie *cookie;
1002         int sabres_scanned;
1003
1004         /* The APB bridge speaks to the Sabre host PCI bridge
1005          * at 66Mhz, but the front side of APB runs at 33Mhz
1006          * for both segments.
1007          */
1008         p->pbm_A.is_66mhz_capable = 0;
1009         p->pbm_B.is_66mhz_capable = 0;
1010
1011         /* This driver has not been verified to handle
1012          * multiple SABREs yet, so trap this.
1013          *
1014          * Also note that the SABRE host bridge is hardwired
1015          * to live at bus 0.
1016          */
1017         if (once != 0) {
1018                 prom_printf("SABRE: Multiple controllers unsupported.\n");
1019                 prom_halt();
1020         }
1021         once++;
1022
1023         cookie = alloc_bridge_cookie(&p->pbm_A);
1024
1025         sabre_bus = pci_scan_bus(p->pci_first_busno,
1026                                  p->pci_ops,
1027                                  &p->pbm_A);
1028         pci_fixup_host_bridge_self(sabre_bus);
1029         sabre_bus->self->sysdata = cookie;
1030
1031         sabre_root_bus = sabre_bus;
1032
1033         apb_init(p, sabre_bus);
1034
1035         sabres_scanned = 0;
1036
1037         list_for_each_entry(pbus, &sabre_bus->children, node) {
1038
1039                 if (pbus->number == p->pbm_A.pci_first_busno) {
1040                         pbm = &p->pbm_A;
1041                 } else if (pbus->number == p->pbm_B.pci_first_busno) {
1042                         pbm = &p->pbm_B;
1043                 } else
1044                         continue;
1045
1046                 cookie = alloc_bridge_cookie(pbm);
1047                 pbus->self->sysdata = cookie;
1048
1049                 sabres_scanned++;
1050
1051                 pbus->sysdata = pbm;
1052                 pbm->pci_bus = pbus;
1053                 pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
1054                 pci_record_assignments(pbm, pbus);
1055                 pci_assign_unassigned(pbm, pbus);
1056                 pci_fixup_irq(pbm, pbus);
1057                 pci_determine_66mhz_disposition(pbm, pbus);
1058                 pci_setup_busmastering(pbm, pbus);
1059         }
1060
1061         if (!sabres_scanned) {
1062                 /* Hummingbird, no APBs. */
1063                 pbm = &p->pbm_A;
1064                 sabre_bus->sysdata = pbm;
1065                 pbm->pci_bus = sabre_bus;
1066                 pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node);
1067                 pci_record_assignments(pbm, sabre_bus);
1068                 pci_assign_unassigned(pbm, sabre_bus);
1069                 pci_fixup_irq(pbm, sabre_bus);
1070                 pci_determine_66mhz_disposition(pbm, sabre_bus);
1071                 pci_setup_busmastering(pbm, sabre_bus);
1072         }
1073
1074         sabre_register_error_handlers(p);
1075 }
1076
1077 static void sabre_iommu_init(struct pci_controller_info *p,
1078                              int tsbsize, unsigned long dvma_offset,
1079                              u32 dma_mask)
1080 {
1081         struct pci_iommu *iommu = p->pbm_A.iommu;
1082         unsigned long i;
1083         u64 control;
1084
1085         /* Register addresses. */
1086         iommu->iommu_control  = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
1087         iommu->iommu_tsbbase  = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
1088         iommu->iommu_flush    = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
1089         iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
1090         /* Sabre's IOMMU lacks ctx flushing. */
1091         iommu->iommu_ctxflush = 0;
1092                                         
1093         /* Invalidate TLB Entries. */
1094         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1095         control |= SABRE_IOMMUCTRL_DENAB;
1096         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1097
1098         for(i = 0; i < 16; i++) {
1099                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1100                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1101         }
1102
1103         /* Leave diag mode enabled for full-flushing done
1104          * in pci_iommu.c
1105          */
1106         pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
1107
1108         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1109                     __pa(iommu->page_table));
1110
1111         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1112         control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1113         control |= SABRE_IOMMUCTRL_ENAB;
1114         switch(tsbsize) {
1115         case 64:
1116                 control |= SABRE_IOMMU_TSBSZ_64K;
1117                 break;
1118         case 128:
1119                 control |= SABRE_IOMMU_TSBSZ_128K;
1120                 break;
1121         default:
1122                 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1123                 prom_halt();
1124                 break;
1125         }
1126         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1127 }
1128
1129 static void pbm_register_toplevel_resources(struct pci_controller_info *p,
1130                                             struct pci_pbm_info *pbm)
1131 {
1132         char *name = pbm->name;
1133         unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
1134         unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1135         unsigned int devfn;
1136         unsigned long first, last, i;
1137         u8 *addr, map;
1138
1139         sprintf(name, "SABRE%d PBM%c",
1140                 p->index,
1141                 (pbm == &p->pbm_A ? 'A' : 'B'));
1142         pbm->io_space.name = pbm->mem_space.name = name;
1143
1144         devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
1145         addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
1146         map = 0;
1147         pci_config_read8(addr, &map);
1148
1149         first = 8;
1150         last = 0;
1151         for (i = 0; i < 8; i++) {
1152                 if ((map & (1 << i)) != 0) {
1153                         if (first > i)
1154                                 first = i;
1155                         if (last < i)
1156                                 last = i;
1157                 }
1158         }
1159         pbm->io_space.start = ibase + (first << 21UL);
1160         pbm->io_space.end   = ibase + (last << 21UL) + ((1 << 21UL) - 1);
1161         pbm->io_space.flags = IORESOURCE_IO;
1162
1163         addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
1164         map = 0;
1165         pci_config_read8(addr, &map);
1166
1167         first = 8;
1168         last = 0;
1169         for (i = 0; i < 8; i++) {
1170                 if ((map & (1 << i)) != 0) {
1171                         if (first > i)
1172                                 first = i;
1173                         if (last < i)
1174                                 last = i;
1175                 }
1176         }
1177         pbm->mem_space.start = mbase + (first << 29UL);
1178         pbm->mem_space.end   = mbase + (last << 29UL) + ((1 << 29UL) - 1);
1179         pbm->mem_space.flags = IORESOURCE_MEM;
1180
1181         if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1182                 prom_printf("Cannot register PBM-%c's IO space.\n",
1183                             (pbm == &p->pbm_A ? 'A' : 'B'));
1184                 prom_halt();
1185         }
1186         if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1187                 prom_printf("Cannot register PBM-%c's MEM space.\n",
1188                             (pbm == &p->pbm_A ? 'A' : 'B'));
1189                 prom_halt();
1190         }
1191
1192         /* Register legacy regions if this PBM covers that area. */
1193         if (pbm->io_space.start == ibase &&
1194             pbm->mem_space.start == mbase)
1195                 pci_register_legacy_regions(&pbm->io_space,
1196                                             &pbm->mem_space);
1197 }
1198
1199 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_start, u32 dma_end)
1200 {
1201         struct pci_pbm_info *pbm;
1202         struct device_node *node;
1203         struct property *prop;
1204         u32 *busrange;
1205         int len, simbas_found;
1206
1207         simbas_found = 0;
1208         node = dp->child;
1209         while (node != NULL) {
1210                 if (strcmp(node->name, "pci"))
1211                         goto next_pci;
1212
1213                 prop = of_find_property(node, "model", NULL);
1214                 if (!prop || strncmp(prop->value, "SUNW,simba", prop->length))
1215                         goto next_pci;
1216
1217                 simbas_found++;
1218
1219                 prop = of_find_property(node, "bus-range", NULL);
1220                 busrange = prop->value;
1221                 if (busrange[0] == 1)
1222                         pbm = &p->pbm_B;
1223                 else
1224                         pbm = &p->pbm_A;
1225
1226                 pbm->name = node->full_name;
1227                 printk("%s: SABRE PCI Bus Module\n", pbm->name);
1228
1229                 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1230                 pbm->parent = p;
1231                 pbm->prom_node = node;
1232                 pbm->pci_first_slot = 1;
1233                 pbm->pci_first_busno = busrange[0];
1234                 pbm->pci_last_busno = busrange[1];
1235
1236                 prop = of_find_property(node, "ranges", &len);
1237                 if (prop) {
1238                         pbm->pbm_ranges = prop->value;
1239                         pbm->num_pbm_ranges =
1240                                 (len / sizeof(struct linux_prom_pci_ranges));
1241                 } else {
1242                         pbm->num_pbm_ranges = 0;
1243                 }
1244
1245                 prop = of_find_property(node, "interrupt-map", &len);
1246                 if (prop) {
1247                         pbm->pbm_intmap = prop->value;
1248                         pbm->num_pbm_intmap =
1249                                 (len / sizeof(struct linux_prom_pci_intmap));
1250
1251                         prop = of_find_property(node, "interrupt-map-mask",
1252                                                 NULL);
1253                         pbm->pbm_intmask = prop->value;
1254                 } else {
1255                         pbm->num_pbm_intmap = 0;
1256                 }
1257
1258                 pbm_register_toplevel_resources(p, pbm);
1259
1260         next_pci:
1261                 node = node->sibling;
1262         }
1263         if (simbas_found == 0) {
1264                 struct resource *rp;
1265
1266                 /* No APBs underneath, probably this is a hummingbird
1267                  * system.
1268                  */
1269                 pbm = &p->pbm_A;
1270                 pbm->parent = p;
1271                 pbm->prom_node = dp;
1272                 pbm->pci_first_busno = p->pci_first_busno;
1273                 pbm->pci_last_busno = p->pci_last_busno;
1274
1275                 prop = of_find_property(dp, "ranges", &len);
1276                 if (prop) {
1277                         pbm->pbm_ranges = prop->value;
1278                         pbm->num_pbm_ranges =
1279                                 (len / sizeof(struct linux_prom_pci_ranges));
1280                 } else {
1281                         pbm->num_pbm_ranges = 0;
1282                 }
1283
1284                 prop = of_find_property(dp, "interrupt-map", &len);
1285                 if (prop) {
1286                         pbm->pbm_intmap = prop->value;
1287                         pbm->num_pbm_intmap =
1288                                 (len / sizeof(struct linux_prom_pci_intmap));
1289
1290                         prop = of_find_property(dp, "interrupt-map-mask",
1291                                                 NULL);
1292                         pbm->pbm_intmask = prop->value;
1293                 } else {
1294                         pbm->num_pbm_intmap = 0;
1295                 }
1296
1297                 pbm->name = dp->full_name;
1298                 printk("%s: SABRE PCI Bus Module\n", pbm->name);
1299
1300                 pbm->io_space.name = pbm->mem_space.name = pbm->name;
1301
1302                 /* Hack up top-level resources. */
1303                 pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
1304                 pbm->io_space.end   = pbm->io_space.start + (1UL << 24) - 1UL;
1305                 pbm->io_space.flags = IORESOURCE_IO;
1306
1307                 pbm->mem_space.start =
1308                         (p->pbm_A.controller_regs + SABRE_MEMSPACE);
1309                 pbm->mem_space.end =
1310                         (pbm->mem_space.start + ((1UL << 32UL) - 1UL));
1311                 pbm->mem_space.flags = IORESOURCE_MEM;
1312
1313                 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1314                         prom_printf("Cannot register Hummingbird's IO space.\n");
1315                         prom_halt();
1316                 }
1317                 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1318                         prom_printf("Cannot register Hummingbird's MEM space.\n");
1319                         prom_halt();
1320                 }
1321
1322                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1323                 if (!rp) {
1324                         prom_printf("Cannot allocate IOMMU resource.\n");
1325                         prom_halt();
1326                 }
1327                 rp->name = "IOMMU";
1328                 rp->start = pbm->mem_space.start + (unsigned long) dma_start;
1329                 rp->end = pbm->mem_space.start + (unsigned long) dma_end - 1UL;
1330                 rp->flags = IORESOURCE_BUSY;
1331                 request_resource(&pbm->mem_space, rp);
1332
1333                 pci_register_legacy_regions(&pbm->io_space,
1334                                             &pbm->mem_space);
1335         }
1336 }
1337
1338 void sabre_init(struct device_node *dp, char *model_name)
1339 {
1340         struct linux_prom64_registers *pr_regs;
1341         struct pci_controller_info *p;
1342         struct pci_iommu *iommu;
1343         struct property *prop;
1344         int tsbsize;
1345         u32 *busrange;
1346         u32 *vdma;
1347         u32 upa_portid, dma_mask;
1348         u64 clear_irq;
1349
1350         hummingbird_p = 0;
1351         if (!strcmp(model_name, "pci108e,a001"))
1352                 hummingbird_p = 1;
1353         else if (!strcmp(model_name, "SUNW,sabre")) {
1354                 prop = of_find_property(dp, "compatible", NULL);
1355                 if (prop) {
1356                         const char *compat = prop->value;
1357
1358                         if (!strcmp(compat, "pci108e,a001"))
1359                                 hummingbird_p = 1;
1360                 }
1361                 if (!hummingbird_p) {
1362                         struct device_node *dp;
1363
1364                         /* Of course, Sun has to encode things a thousand
1365                          * different ways, inconsistently.
1366                          */
1367                         cpu_find_by_instance(0, &dp, NULL);
1368                         if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
1369                                 hummingbird_p = 1;
1370                 }
1371         }
1372
1373         p = kzalloc(sizeof(*p), GFP_ATOMIC);
1374         if (!p) {
1375                 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1376                 prom_halt();
1377         }
1378
1379         iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1380         if (!iommu) {
1381                 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1382                 prom_halt();
1383         }
1384         p->pbm_A.iommu = p->pbm_B.iommu = iommu;
1385
1386         upa_portid = 0xff;
1387         prop = of_find_property(dp, "upa-portid", NULL);
1388         if (prop)
1389                 upa_portid = *(u32 *) prop->value;
1390
1391         p->next = pci_controller_root;
1392         pci_controller_root = p;
1393
1394         p->pbm_A.portid = upa_portid;
1395         p->pbm_B.portid = upa_portid;
1396         p->index = pci_num_controllers++;
1397         p->pbms_same_domain = 1;
1398         p->scan_bus = sabre_scan_bus;
1399         p->base_address_update = sabre_base_address_update;
1400         p->resource_adjust = sabre_resource_adjust;
1401         p->pci_ops = &sabre_ops;
1402
1403         /*
1404          * Map in SABRE register set and report the presence of this SABRE.
1405          */
1406         
1407         prop = of_find_property(dp, "reg", NULL);
1408         pr_regs = prop->value;
1409
1410         /*
1411          * First REG in property is base of entire SABRE register space.
1412          */
1413         p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1414         p->pbm_B.controller_regs = pr_regs[0].phys_addr;
1415
1416         /* Clear interrupts */
1417
1418         /* PCI first */
1419         for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1420                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1421
1422         /* Then OBIO */
1423         for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1424                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1425
1426         /* Error interrupts are enabled later after the bus scan. */
1427         sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1428                     (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
1429                      SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1430
1431         /* Now map in PCI config space for entire SABRE. */
1432         p->pbm_A.config_space = p->pbm_B.config_space =
1433                 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1434
1435         prop = of_find_property(dp, "virtual-dma", NULL);
1436         vdma = prop->value;
1437
1438         dma_mask = vdma[0];
1439         switch(vdma[1]) {
1440                 case 0x20000000:
1441                         dma_mask |= 0x1fffffff;
1442                         tsbsize = 64;
1443                         break;
1444                 case 0x40000000:
1445                         dma_mask |= 0x3fffffff;
1446                         tsbsize = 128;
1447                         break;
1448
1449                 case 0x80000000:
1450                         dma_mask |= 0x7fffffff;
1451                         tsbsize = 128;
1452                         break;
1453                 default:
1454                         prom_printf("SABRE: strange virtual-dma size.\n");
1455                         prom_halt();
1456         }
1457
1458         sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1459
1460         prop = of_find_property(dp, "bus-range", NULL);
1461         busrange = prop->value;
1462         p->pci_first_busno = busrange[0];
1463         p->pci_last_busno = busrange[1];
1464
1465         /*
1466          * Look for APB underneath.
1467          */
1468         sabre_pbm_init(p, dp, vdma[0], vdma[0] + vdma[1]);
1469 }