Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49
50 enum {
51         ec_schedule = 0,
52         ec_call_function_single,
53         ec_stop_cpu,
54 };
55
56 enum {
57         CPU_STATE_STANDBY,
58         CPU_STATE_CONFIGURED,
59 };
60
61 struct pcpu {
62         struct cpu cpu;
63         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
64         unsigned long async_stack;      /* async stack for the cpu */
65         unsigned long panic_stack;      /* panic stack for the cpu */
66         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
67         int state;                      /* physical cpu state */
68         int polarization;               /* physical polarization */
69         u16 address;                    /* physical cpu address */
70 };
71
72 static u8 boot_cpu_type;
73 static u16 boot_cpu_address;
74 static struct pcpu pcpu_devices[NR_CPUS];
75
76 /*
77  * The smp_cpu_state_mutex must be held when changing the state or polarization
78  * member of a pcpu data structure within the pcpu_devices arreay.
79  */
80 DEFINE_MUTEX(smp_cpu_state_mutex);
81
82 /*
83  * Signal processor helper functions.
84  */
85 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
86 {
87         register unsigned int reg1 asm ("1") = parm;
88         int cc;
89
90         asm volatile(
91                 "       sigp    %1,%2,0(%3)\n"
92                 "       ipm     %0\n"
93                 "       srl     %0,28\n"
94                 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
95         if (status && cc == 1)
96                 *status = reg1;
97         return cc;
98 }
99
100 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
101 {
102         int cc;
103
104         while (1) {
105                 cc = __pcpu_sigp(addr, order, parm, NULL);
106                 if (cc != SIGP_CC_BUSY)
107                         return cc;
108                 cpu_relax();
109         }
110 }
111
112 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
113 {
114         int cc, retry;
115
116         for (retry = 0; ; retry++) {
117                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
118                 if (cc != SIGP_CC_BUSY)
119                         break;
120                 if (retry >= 3)
121                         udelay(10);
122         }
123         return cc;
124 }
125
126 static inline int pcpu_stopped(struct pcpu *pcpu)
127 {
128         u32 uninitialized_var(status);
129
130         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
131                         0, &status) != SIGP_CC_STATUS_STORED)
132                 return 0;
133         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
134 }
135
136 static inline int pcpu_running(struct pcpu *pcpu)
137 {
138         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
139                         0, NULL) != SIGP_CC_STATUS_STORED)
140                 return 1;
141         /* Status stored condition code is equivalent to cpu not running. */
142         return 0;
143 }
144
145 /*
146  * Find struct pcpu by cpu address.
147  */
148 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
149 {
150         int cpu;
151
152         for_each_cpu(cpu, mask)
153                 if (pcpu_devices[cpu].address == address)
154                         return pcpu_devices + cpu;
155         return NULL;
156 }
157
158 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
159 {
160         int order;
161
162         set_bit(ec_bit, &pcpu->ec_mask);
163         order = pcpu_running(pcpu) ?
164                 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
165         pcpu_sigp_retry(pcpu, order, 0);
166 }
167
168 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
169 {
170         struct _lowcore *lc;
171
172         if (pcpu != &pcpu_devices[0]) {
173                 pcpu->lowcore = (struct _lowcore *)
174                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
175                 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
176                 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
177                 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
178                         goto out;
179         }
180         lc = pcpu->lowcore;
181         memcpy(lc, &S390_lowcore, 512);
182         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
183         lc->async_stack = pcpu->async_stack + ASYNC_SIZE
184                 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
185         lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
186                 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
187         lc->cpu_nr = cpu;
188 #ifndef CONFIG_64BIT
189         if (MACHINE_HAS_IEEE) {
190                 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
191                 if (!lc->extended_save_area_addr)
192                         goto out;
193         }
194 #else
195         if (vdso_alloc_per_cpu(lc))
196                 goto out;
197 #endif
198         lowcore_ptr[cpu] = lc;
199         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
200         return 0;
201 out:
202         if (pcpu != &pcpu_devices[0]) {
203                 free_page(pcpu->panic_stack);
204                 free_pages(pcpu->async_stack, ASYNC_ORDER);
205                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
206         }
207         return -ENOMEM;
208 }
209
210 #ifdef CONFIG_HOTPLUG_CPU
211
212 static void pcpu_free_lowcore(struct pcpu *pcpu)
213 {
214         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
215         lowcore_ptr[pcpu - pcpu_devices] = NULL;
216 #ifndef CONFIG_64BIT
217         if (MACHINE_HAS_IEEE) {
218                 struct _lowcore *lc = pcpu->lowcore;
219
220                 free_page((unsigned long) lc->extended_save_area_addr);
221                 lc->extended_save_area_addr = 0;
222         }
223 #else
224         vdso_free_per_cpu(pcpu->lowcore);
225 #endif
226         if (pcpu != &pcpu_devices[0]) {
227                 free_page(pcpu->panic_stack);
228                 free_pages(pcpu->async_stack, ASYNC_ORDER);
229                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230         }
231 }
232
233 #endif /* CONFIG_HOTPLUG_CPU */
234
235 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
236 {
237         struct _lowcore *lc = pcpu->lowcore;
238
239         atomic_inc(&init_mm.context.attach_count);
240         lc->cpu_nr = cpu;
241         lc->percpu_offset = __per_cpu_offset[cpu];
242         lc->kernel_asce = S390_lowcore.kernel_asce;
243         lc->machine_flags = S390_lowcore.machine_flags;
244         lc->ftrace_func = S390_lowcore.ftrace_func;
245         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
246         __ctl_store(lc->cregs_save_area, 0, 15);
247         save_access_regs((unsigned int *) lc->access_regs_save_area);
248         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
249                MAX_FACILITY_BIT/8);
250 }
251
252 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
253 {
254         struct _lowcore *lc = pcpu->lowcore;
255         struct thread_info *ti = task_thread_info(tsk);
256
257         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
258                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
259         lc->thread_info = (unsigned long) task_thread_info(tsk);
260         lc->current_task = (unsigned long) tsk;
261         lc->user_timer = ti->user_timer;
262         lc->system_timer = ti->system_timer;
263         lc->steal_timer = 0;
264 }
265
266 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
267 {
268         struct _lowcore *lc = pcpu->lowcore;
269
270         lc->restart_stack = lc->kernel_stack;
271         lc->restart_fn = (unsigned long) func;
272         lc->restart_data = (unsigned long) data;
273         lc->restart_source = -1UL;
274         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
275 }
276
277 /*
278  * Call function via PSW restart on pcpu and stop the current cpu.
279  */
280 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
281                           void *data, unsigned long stack)
282 {
283         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
284         unsigned long source_cpu = stap();
285
286         __load_psw_mask(PSW_KERNEL_BITS);
287         if (pcpu->address == source_cpu)
288                 func(data);     /* should not return */
289         /* Stop target cpu (if func returns this stops the current cpu). */
290         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
291         /* Restart func on the target cpu and stop the current cpu. */
292         mem_assign_absolute(lc->restart_stack, stack);
293         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
294         mem_assign_absolute(lc->restart_data, (unsigned long) data);
295         mem_assign_absolute(lc->restart_source, source_cpu);
296         asm volatile(
297                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
298                 "       brc     2,0b    # busy, try again\n"
299                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
300                 "       brc     2,1b    # busy, try again\n"
301                 : : "d" (pcpu->address), "d" (source_cpu),
302                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
303                 : "0", "1", "cc");
304         for (;;) ;
305 }
306
307 /*
308  * Call function on an online CPU.
309  */
310 void smp_call_online_cpu(void (*func)(void *), void *data)
311 {
312         struct pcpu *pcpu;
313
314         /* Use the current cpu if it is online. */
315         pcpu = pcpu_find_address(cpu_online_mask, stap());
316         if (!pcpu)
317                 /* Use the first online cpu. */
318                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
319         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
320 }
321
322 /*
323  * Call function on the ipl CPU.
324  */
325 void smp_call_ipl_cpu(void (*func)(void *), void *data)
326 {
327         pcpu_delegate(&pcpu_devices[0], func, data,
328                       pcpu_devices->panic_stack + PAGE_SIZE);
329 }
330
331 int smp_find_processor_id(u16 address)
332 {
333         int cpu;
334
335         for_each_present_cpu(cpu)
336                 if (pcpu_devices[cpu].address == address)
337                         return cpu;
338         return -1;
339 }
340
341 int smp_vcpu_scheduled(int cpu)
342 {
343         return pcpu_running(pcpu_devices + cpu);
344 }
345
346 void smp_yield(void)
347 {
348         if (MACHINE_HAS_DIAG44)
349                 asm volatile("diag 0,0,0x44");
350 }
351
352 void smp_yield_cpu(int cpu)
353 {
354         if (MACHINE_HAS_DIAG9C)
355                 asm volatile("diag %0,0,0x9c"
356                              : : "d" (pcpu_devices[cpu].address));
357         else if (MACHINE_HAS_DIAG44)
358                 asm volatile("diag 0,0,0x44");
359 }
360
361 /*
362  * Send cpus emergency shutdown signal. This gives the cpus the
363  * opportunity to complete outstanding interrupts.
364  */
365 static void smp_emergency_stop(cpumask_t *cpumask)
366 {
367         u64 end;
368         int cpu;
369
370         end = get_tod_clock() + (1000000UL << 12);
371         for_each_cpu(cpu, cpumask) {
372                 struct pcpu *pcpu = pcpu_devices + cpu;
373                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
374                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
375                                    0, NULL) == SIGP_CC_BUSY &&
376                        get_tod_clock() < end)
377                         cpu_relax();
378         }
379         while (get_tod_clock() < end) {
380                 for_each_cpu(cpu, cpumask)
381                         if (pcpu_stopped(pcpu_devices + cpu))
382                                 cpumask_clear_cpu(cpu, cpumask);
383                 if (cpumask_empty(cpumask))
384                         break;
385                 cpu_relax();
386         }
387 }
388
389 /*
390  * Stop all cpus but the current one.
391  */
392 void smp_send_stop(void)
393 {
394         cpumask_t cpumask;
395         int cpu;
396
397         /* Disable all interrupts/machine checks */
398         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
399         trace_hardirqs_off();
400
401         debug_set_critical();
402         cpumask_copy(&cpumask, cpu_online_mask);
403         cpumask_clear_cpu(smp_processor_id(), &cpumask);
404
405         if (oops_in_progress)
406                 smp_emergency_stop(&cpumask);
407
408         /* stop all processors */
409         for_each_cpu(cpu, &cpumask) {
410                 struct pcpu *pcpu = pcpu_devices + cpu;
411                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
412                 while (!pcpu_stopped(pcpu))
413                         cpu_relax();
414         }
415 }
416
417 /*
418  * Stop the current cpu.
419  */
420 void smp_stop_cpu(void)
421 {
422         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
423         for (;;) ;
424 }
425
426 /*
427  * This is the main routine where commands issued by other
428  * cpus are handled.
429  */
430 static void smp_handle_ext_call(void)
431 {
432         unsigned long bits;
433
434         /* handle bit signal external calls */
435         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
436         if (test_bit(ec_stop_cpu, &bits))
437                 smp_stop_cpu();
438         if (test_bit(ec_schedule, &bits))
439                 scheduler_ipi();
440         if (test_bit(ec_call_function_single, &bits))
441                 generic_smp_call_function_single_interrupt();
442 }
443
444 static void do_ext_call_interrupt(struct ext_code ext_code,
445                                   unsigned int param32, unsigned long param64)
446 {
447         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
448         smp_handle_ext_call();
449 }
450
451 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
452 {
453         int cpu;
454
455         for_each_cpu(cpu, mask)
456                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
457 }
458
459 void arch_send_call_function_single_ipi(int cpu)
460 {
461         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
462 }
463
464 #ifndef CONFIG_64BIT
465 /*
466  * this function sends a 'purge tlb' signal to another CPU.
467  */
468 static void smp_ptlb_callback(void *info)
469 {
470         __tlb_flush_local();
471 }
472
473 void smp_ptlb_all(void)
474 {
475         on_each_cpu(smp_ptlb_callback, NULL, 1);
476 }
477 EXPORT_SYMBOL(smp_ptlb_all);
478 #endif /* ! CONFIG_64BIT */
479
480 /*
481  * this function sends a 'reschedule' IPI to another CPU.
482  * it goes straight through and wastes no time serializing
483  * anything. Worst case is that we lose a reschedule ...
484  */
485 void smp_send_reschedule(int cpu)
486 {
487         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
488 }
489
490 /*
491  * parameter area for the set/clear control bit callbacks
492  */
493 struct ec_creg_mask_parms {
494         unsigned long orval;
495         unsigned long andval;
496         int cr;
497 };
498
499 /*
500  * callback for setting/clearing control bits
501  */
502 static void smp_ctl_bit_callback(void *info)
503 {
504         struct ec_creg_mask_parms *pp = info;
505         unsigned long cregs[16];
506
507         __ctl_store(cregs, 0, 15);
508         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
509         __ctl_load(cregs, 0, 15);
510 }
511
512 /*
513  * Set a bit in a control register of all cpus
514  */
515 void smp_ctl_set_bit(int cr, int bit)
516 {
517         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
518
519         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
520 }
521 EXPORT_SYMBOL(smp_ctl_set_bit);
522
523 /*
524  * Clear a bit in a control register of all cpus
525  */
526 void smp_ctl_clear_bit(int cr, int bit)
527 {
528         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
529
530         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
531 }
532 EXPORT_SYMBOL(smp_ctl_clear_bit);
533
534 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
535
536 static void __init smp_get_save_area(int cpu, u16 address)
537 {
538         void *lc = pcpu_devices[0].lowcore;
539         struct save_area *save_area;
540
541         if (is_kdump_kernel())
542                 return;
543         if (!OLDMEM_BASE && (address == boot_cpu_address ||
544                              ipl_info.type != IPL_TYPE_FCP_DUMP))
545                 return;
546         save_area = dump_save_area_create(cpu);
547         if (!save_area)
548                 panic("could not allocate memory for save area\n");
549 #ifdef CONFIG_CRASH_DUMP
550         if (address == boot_cpu_address) {
551                 /* Copy the registers of the boot cpu. */
552                 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
553                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
554                 return;
555         }
556 #endif
557         /* Get the registers of a non-boot cpu. */
558         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
559         memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
560 }
561
562 int smp_store_status(int cpu)
563 {
564         struct pcpu *pcpu;
565
566         pcpu = pcpu_devices + cpu;
567         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
568                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
569                 return -EIO;
570         return 0;
571 }
572
573 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
574
575 static inline void smp_get_save_area(int cpu, u16 address) { }
576
577 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
578
579 void smp_cpu_set_polarization(int cpu, int val)
580 {
581         pcpu_devices[cpu].polarization = val;
582 }
583
584 int smp_cpu_get_polarization(int cpu)
585 {
586         return pcpu_devices[cpu].polarization;
587 }
588
589 static struct sclp_cpu_info *smp_get_cpu_info(void)
590 {
591         static int use_sigp_detection;
592         struct sclp_cpu_info *info;
593         int address;
594
595         info = kzalloc(sizeof(*info), GFP_KERNEL);
596         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
597                 use_sigp_detection = 1;
598                 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
599                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
600                             SIGP_CC_NOT_OPERATIONAL)
601                                 continue;
602                         info->cpu[info->configured].address = address;
603                         info->configured++;
604                 }
605                 info->combined = info->configured;
606         }
607         return info;
608 }
609
610 static int smp_add_present_cpu(int cpu);
611
612 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
613 {
614         struct pcpu *pcpu;
615         cpumask_t avail;
616         int cpu, nr, i;
617
618         nr = 0;
619         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
620         cpu = cpumask_first(&avail);
621         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
622                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
623                         continue;
624                 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
625                         continue;
626                 pcpu = pcpu_devices + cpu;
627                 pcpu->address = info->cpu[i].address;
628                 pcpu->state = (i >= info->configured) ?
629                         CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
630                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
631                 set_cpu_present(cpu, true);
632                 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
633                         set_cpu_present(cpu, false);
634                 else
635                         nr++;
636                 cpu = cpumask_next(cpu, &avail);
637         }
638         return nr;
639 }
640
641 static void __init smp_detect_cpus(void)
642 {
643         unsigned int cpu, c_cpus, s_cpus;
644         struct sclp_cpu_info *info;
645
646         info = smp_get_cpu_info();
647         if (!info)
648                 panic("smp_detect_cpus failed to allocate memory\n");
649         if (info->has_cpu_type) {
650                 for (cpu = 0; cpu < info->combined; cpu++) {
651                         if (info->cpu[cpu].address != boot_cpu_address)
652                                 continue;
653                         /* The boot cpu dictates the cpu type. */
654                         boot_cpu_type = info->cpu[cpu].type;
655                         break;
656                 }
657         }
658         c_cpus = s_cpus = 0;
659         for (cpu = 0; cpu < info->combined; cpu++) {
660                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
661                         continue;
662                 if (cpu < info->configured) {
663                         smp_get_save_area(c_cpus, info->cpu[cpu].address);
664                         c_cpus++;
665                 } else
666                         s_cpus++;
667         }
668         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
669         get_online_cpus();
670         __smp_rescan_cpus(info, 0);
671         put_online_cpus();
672         kfree(info);
673 }
674
675 /*
676  *      Activate a secondary processor.
677  */
678 static void smp_start_secondary(void *cpuvoid)
679 {
680         S390_lowcore.last_update_clock = get_tod_clock();
681         S390_lowcore.restart_stack = (unsigned long) restart_stack;
682         S390_lowcore.restart_fn = (unsigned long) do_restart;
683         S390_lowcore.restart_data = 0;
684         S390_lowcore.restart_source = -1UL;
685         restore_access_regs(S390_lowcore.access_regs_save_area);
686         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
687         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
688         cpu_init();
689         preempt_disable();
690         init_cpu_timer();
691         init_cpu_vtimer();
692         pfault_init();
693         notify_cpu_starting(smp_processor_id());
694         set_cpu_online(smp_processor_id(), true);
695         inc_irq_stat(CPU_RST);
696         local_irq_enable();
697         cpu_startup_entry(CPUHP_ONLINE);
698 }
699
700 /* Upping and downing of CPUs */
701 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
702 {
703         struct pcpu *pcpu;
704         int rc;
705
706         pcpu = pcpu_devices + cpu;
707         if (pcpu->state != CPU_STATE_CONFIGURED)
708                 return -EIO;
709         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
710             SIGP_CC_ORDER_CODE_ACCEPTED)
711                 return -EIO;
712
713         rc = pcpu_alloc_lowcore(pcpu, cpu);
714         if (rc)
715                 return rc;
716         pcpu_prepare_secondary(pcpu, cpu);
717         pcpu_attach_task(pcpu, tidle);
718         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
719         while (!cpu_online(cpu))
720                 cpu_relax();
721         return 0;
722 }
723
724 static unsigned int setup_possible_cpus __initdata;
725
726 static int __init _setup_possible_cpus(char *s)
727 {
728         get_option(&s, &setup_possible_cpus);
729         return 0;
730 }
731 early_param("possible_cpus", _setup_possible_cpus);
732
733 #ifdef CONFIG_HOTPLUG_CPU
734
735 int __cpu_disable(void)
736 {
737         unsigned long cregs[16];
738
739         /* Handle possible pending IPIs */
740         smp_handle_ext_call();
741         set_cpu_online(smp_processor_id(), false);
742         /* Disable pseudo page faults on this cpu. */
743         pfault_fini();
744         /* Disable interrupt sources via control register. */
745         __ctl_store(cregs, 0, 15);
746         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
747         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
748         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
749         __ctl_load(cregs, 0, 15);
750         return 0;
751 }
752
753 void __cpu_die(unsigned int cpu)
754 {
755         struct pcpu *pcpu;
756
757         /* Wait until target cpu is down */
758         pcpu = pcpu_devices + cpu;
759         while (!pcpu_stopped(pcpu))
760                 cpu_relax();
761         pcpu_free_lowcore(pcpu);
762         atomic_dec(&init_mm.context.attach_count);
763 }
764
765 void __noreturn cpu_die(void)
766 {
767         idle_task_exit();
768         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
769         for (;;) ;
770 }
771
772 #endif /* CONFIG_HOTPLUG_CPU */
773
774 void __init smp_fill_possible_mask(void)
775 {
776         unsigned int possible, cpu;
777
778         possible = setup_possible_cpus;
779         if (!possible)
780                 possible = MACHINE_IS_VM ? 64 : nr_cpu_ids;
781         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
782                 set_cpu_possible(cpu, true);
783 }
784
785 void __init smp_prepare_cpus(unsigned int max_cpus)
786 {
787         /* request the 0x1201 emergency signal external interrupt */
788         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
789                 panic("Couldn't request external interrupt 0x1201");
790         /* request the 0x1202 external call external interrupt */
791         if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
792                 panic("Couldn't request external interrupt 0x1202");
793         smp_detect_cpus();
794 }
795
796 void __init smp_prepare_boot_cpu(void)
797 {
798         struct pcpu *pcpu = pcpu_devices;
799
800         boot_cpu_address = stap();
801         pcpu->state = CPU_STATE_CONFIGURED;
802         pcpu->address = boot_cpu_address;
803         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
804         pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
805                 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
806         pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
807                 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
808         S390_lowcore.percpu_offset = __per_cpu_offset[0];
809         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
810         set_cpu_present(0, true);
811         set_cpu_online(0, true);
812 }
813
814 void __init smp_cpus_done(unsigned int max_cpus)
815 {
816 }
817
818 void __init smp_setup_processor_id(void)
819 {
820         S390_lowcore.cpu_nr = 0;
821 }
822
823 /*
824  * the frequency of the profiling timer can be changed
825  * by writing a multiplier value into /proc/profile.
826  *
827  * usually you want to run this on all CPUs ;)
828  */
829 int setup_profiling_timer(unsigned int multiplier)
830 {
831         return 0;
832 }
833
834 #ifdef CONFIG_HOTPLUG_CPU
835 static ssize_t cpu_configure_show(struct device *dev,
836                                   struct device_attribute *attr, char *buf)
837 {
838         ssize_t count;
839
840         mutex_lock(&smp_cpu_state_mutex);
841         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
842         mutex_unlock(&smp_cpu_state_mutex);
843         return count;
844 }
845
846 static ssize_t cpu_configure_store(struct device *dev,
847                                    struct device_attribute *attr,
848                                    const char *buf, size_t count)
849 {
850         struct pcpu *pcpu;
851         int cpu, val, rc;
852         char delim;
853
854         if (sscanf(buf, "%d %c", &val, &delim) != 1)
855                 return -EINVAL;
856         if (val != 0 && val != 1)
857                 return -EINVAL;
858         get_online_cpus();
859         mutex_lock(&smp_cpu_state_mutex);
860         rc = -EBUSY;
861         /* disallow configuration changes of online cpus and cpu 0 */
862         cpu = dev->id;
863         if (cpu_online(cpu) || cpu == 0)
864                 goto out;
865         pcpu = pcpu_devices + cpu;
866         rc = 0;
867         switch (val) {
868         case 0:
869                 if (pcpu->state != CPU_STATE_CONFIGURED)
870                         break;
871                 rc = sclp_cpu_deconfigure(pcpu->address);
872                 if (rc)
873                         break;
874                 pcpu->state = CPU_STATE_STANDBY;
875                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
876                 topology_expect_change();
877                 break;
878         case 1:
879                 if (pcpu->state != CPU_STATE_STANDBY)
880                         break;
881                 rc = sclp_cpu_configure(pcpu->address);
882                 if (rc)
883                         break;
884                 pcpu->state = CPU_STATE_CONFIGURED;
885                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
886                 topology_expect_change();
887                 break;
888         default:
889                 break;
890         }
891 out:
892         mutex_unlock(&smp_cpu_state_mutex);
893         put_online_cpus();
894         return rc ? rc : count;
895 }
896 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
897 #endif /* CONFIG_HOTPLUG_CPU */
898
899 static ssize_t show_cpu_address(struct device *dev,
900                                 struct device_attribute *attr, char *buf)
901 {
902         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
903 }
904 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
905
906 static struct attribute *cpu_common_attrs[] = {
907 #ifdef CONFIG_HOTPLUG_CPU
908         &dev_attr_configure.attr,
909 #endif
910         &dev_attr_address.attr,
911         NULL,
912 };
913
914 static struct attribute_group cpu_common_attr_group = {
915         .attrs = cpu_common_attrs,
916 };
917
918 static ssize_t show_idle_count(struct device *dev,
919                                 struct device_attribute *attr, char *buf)
920 {
921         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
922         unsigned long long idle_count;
923         unsigned int sequence;
924
925         do {
926                 sequence = ACCESS_ONCE(idle->sequence);
927                 idle_count = ACCESS_ONCE(idle->idle_count);
928                 if (ACCESS_ONCE(idle->clock_idle_enter))
929                         idle_count++;
930         } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
931         return sprintf(buf, "%llu\n", idle_count);
932 }
933 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
934
935 static ssize_t show_idle_time(struct device *dev,
936                                 struct device_attribute *attr, char *buf)
937 {
938         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
939         unsigned long long now, idle_time, idle_enter, idle_exit;
940         unsigned int sequence;
941
942         do {
943                 now = get_tod_clock();
944                 sequence = ACCESS_ONCE(idle->sequence);
945                 idle_time = ACCESS_ONCE(idle->idle_time);
946                 idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
947                 idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
948         } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
949         idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
950         return sprintf(buf, "%llu\n", idle_time >> 12);
951 }
952 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
953
954 static struct attribute *cpu_online_attrs[] = {
955         &dev_attr_idle_count.attr,
956         &dev_attr_idle_time_us.attr,
957         NULL,
958 };
959
960 static struct attribute_group cpu_online_attr_group = {
961         .attrs = cpu_online_attrs,
962 };
963
964 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
965                           void *hcpu)
966 {
967         unsigned int cpu = (unsigned int)(long)hcpu;
968         struct cpu *c = &pcpu_devices[cpu].cpu;
969         struct device *s = &c->dev;
970         int err = 0;
971
972         switch (action & ~CPU_TASKS_FROZEN) {
973         case CPU_ONLINE:
974                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
975                 break;
976         case CPU_DEAD:
977                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
978                 break;
979         }
980         return notifier_from_errno(err);
981 }
982
983 static int smp_add_present_cpu(int cpu)
984 {
985         struct cpu *c = &pcpu_devices[cpu].cpu;
986         struct device *s = &c->dev;
987         int rc;
988
989         c->hotpluggable = 1;
990         rc = register_cpu(c, cpu);
991         if (rc)
992                 goto out;
993         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
994         if (rc)
995                 goto out_cpu;
996         if (cpu_online(cpu)) {
997                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
998                 if (rc)
999                         goto out_online;
1000         }
1001         rc = topology_cpu_init(c);
1002         if (rc)
1003                 goto out_topology;
1004         return 0;
1005
1006 out_topology:
1007         if (cpu_online(cpu))
1008                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1009 out_online:
1010         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1011 out_cpu:
1012 #ifdef CONFIG_HOTPLUG_CPU
1013         unregister_cpu(c);
1014 #endif
1015 out:
1016         return rc;
1017 }
1018
1019 #ifdef CONFIG_HOTPLUG_CPU
1020
1021 int __ref smp_rescan_cpus(void)
1022 {
1023         struct sclp_cpu_info *info;
1024         int nr;
1025
1026         info = smp_get_cpu_info();
1027         if (!info)
1028                 return -ENOMEM;
1029         get_online_cpus();
1030         mutex_lock(&smp_cpu_state_mutex);
1031         nr = __smp_rescan_cpus(info, 1);
1032         mutex_unlock(&smp_cpu_state_mutex);
1033         put_online_cpus();
1034         kfree(info);
1035         if (nr)
1036                 topology_schedule_update();
1037         return 0;
1038 }
1039
1040 static ssize_t __ref rescan_store(struct device *dev,
1041                                   struct device_attribute *attr,
1042                                   const char *buf,
1043                                   size_t count)
1044 {
1045         int rc;
1046
1047         rc = smp_rescan_cpus();
1048         return rc ? rc : count;
1049 }
1050 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1051 #endif /* CONFIG_HOTPLUG_CPU */
1052
1053 static int __init s390_smp_init(void)
1054 {
1055         int cpu, rc;
1056
1057         hotcpu_notifier(smp_cpu_notify, 0);
1058 #ifdef CONFIG_HOTPLUG_CPU
1059         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1060         if (rc)
1061                 return rc;
1062 #endif
1063         for_each_present_cpu(cpu) {
1064                 rc = smp_add_present_cpu(cpu);
1065                 if (rc)
1066                         return rc;
1067         }
1068         return 0;
1069 }
1070 subsys_initcall(s390_smp_init);