Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / arch / powerpc / kernel / smp.c
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17
18 #undef DEBUG
19
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/cache.h>
29 #include <linux/err.h>
30 #include <linux/device.h>
31 #include <linux/cpu.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34
35 #include <asm/ptrace.h>
36 #include <linux/atomic.h>
37 #include <asm/irq.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/prom.h>
41 #include <asm/smp.h>
42 #include <asm/time.h>
43 #include <asm/machdep.h>
44 #include <asm/cputhreads.h>
45 #include <asm/cputable.h>
46 #include <asm/mpic.h>
47 #include <asm/vdso_datapage.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/paca.h>
50 #endif
51 #include <asm/vdso.h>
52 #include <asm/debug.h>
53
54 #ifdef DEBUG
55 #include <asm/udbg.h>
56 #define DBG(fmt...) udbg_printf(fmt)
57 #else
58 #define DBG(fmt...)
59 #endif
60
61 #ifdef CONFIG_HOTPLUG_CPU
62 /* State of each CPU during hotplug phases */
63 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
64 #endif
65
66 struct thread_info *secondary_ti;
67
68 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
69 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
70
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
73
74 /* SMP operations for this machine */
75 struct smp_ops_t *smp_ops;
76
77 /* Can't be static due to PowerMac hackery */
78 volatile unsigned int cpu_callin_map[NR_CPUS];
79
80 int smt_enabled_at_boot = 1;
81
82 static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
83
84 /*
85  * Returns 1 if the specified cpu should be brought up during boot.
86  * Used to inhibit booting threads if they've been disabled or
87  * limited on the command line
88  */
89 int smp_generic_cpu_bootable(unsigned int nr)
90 {
91         /* Special case - we inhibit secondary thread startup
92          * during boot if the user requests it.
93          */
94         if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
95                 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
96                         return 0;
97                 if (smt_enabled_at_boot
98                     && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
99                         return 0;
100         }
101
102         return 1;
103 }
104
105
106 #ifdef CONFIG_PPC64
107 int smp_generic_kick_cpu(int nr)
108 {
109         BUG_ON(nr < 0 || nr >= NR_CPUS);
110
111         /*
112          * The processor is currently spinning, waiting for the
113          * cpu_start field to become non-zero After we set cpu_start,
114          * the processor will continue on to secondary_start
115          */
116         if (!paca[nr].cpu_start) {
117                 paca[nr].cpu_start = 1;
118                 smp_mb();
119                 return 0;
120         }
121
122 #ifdef CONFIG_HOTPLUG_CPU
123         /*
124          * Ok it's not there, so it might be soft-unplugged, let's
125          * try to bring it back
126          */
127         generic_set_cpu_up(nr);
128         smp_wmb();
129         smp_send_reschedule(nr);
130 #endif /* CONFIG_HOTPLUG_CPU */
131
132         return 0;
133 }
134 #endif /* CONFIG_PPC64 */
135
136 static irqreturn_t call_function_action(int irq, void *data)
137 {
138         generic_smp_call_function_interrupt();
139         return IRQ_HANDLED;
140 }
141
142 static irqreturn_t reschedule_action(int irq, void *data)
143 {
144         scheduler_ipi();
145         return IRQ_HANDLED;
146 }
147
148 static irqreturn_t call_function_single_action(int irq, void *data)
149 {
150         generic_smp_call_function_single_interrupt();
151         return IRQ_HANDLED;
152 }
153
154 static irqreturn_t debug_ipi_action(int irq, void *data)
155 {
156         if (crash_ipi_function_ptr) {
157                 crash_ipi_function_ptr(get_irq_regs());
158                 return IRQ_HANDLED;
159         }
160
161 #ifdef CONFIG_DEBUGGER
162         debugger_ipi(get_irq_regs());
163 #endif /* CONFIG_DEBUGGER */
164
165         return IRQ_HANDLED;
166 }
167
168 static irq_handler_t smp_ipi_action[] = {
169         [PPC_MSG_CALL_FUNCTION] =  call_function_action,
170         [PPC_MSG_RESCHEDULE] = reschedule_action,
171         [PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
172         [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
173 };
174
175 const char *smp_ipi_name[] = {
176         [PPC_MSG_CALL_FUNCTION] =  "ipi call function",
177         [PPC_MSG_RESCHEDULE] = "ipi reschedule",
178         [PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
179         [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
180 };
181
182 /* optional function to request ipi, for controllers with >= 4 ipis */
183 int smp_request_message_ipi(int virq, int msg)
184 {
185         int err;
186
187         if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
188                 return -EINVAL;
189         }
190 #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
191         if (msg == PPC_MSG_DEBUGGER_BREAK) {
192                 return 1;
193         }
194 #endif
195         err = request_irq(virq, smp_ipi_action[msg],
196                           IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
197                           smp_ipi_name[msg], NULL);
198         WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
199                 virq, smp_ipi_name[msg], err);
200
201         return err;
202 }
203
204 #ifdef CONFIG_PPC_SMP_MUXED_IPI
205 struct cpu_messages {
206         int messages;                   /* current messages */
207         unsigned long data;             /* data for cause ipi */
208 };
209 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
210
211 void smp_muxed_ipi_set_data(int cpu, unsigned long data)
212 {
213         struct cpu_messages *info = &per_cpu(ipi_message, cpu);
214
215         info->data = data;
216 }
217
218 void smp_muxed_ipi_message_pass(int cpu, int msg)
219 {
220         struct cpu_messages *info = &per_cpu(ipi_message, cpu);
221         char *message = (char *)&info->messages;
222
223         /*
224          * Order previous accesses before accesses in the IPI handler.
225          */
226         smp_mb();
227         message[msg] = 1;
228         /*
229          * cause_ipi functions are required to include a full barrier
230          * before doing whatever causes the IPI.
231          */
232         smp_ops->cause_ipi(cpu, info->data);
233 }
234
235 #ifdef __BIG_ENDIAN__
236 #define IPI_MESSAGE(A) (1 << (24 - 8 * (A)))
237 #else
238 #define IPI_MESSAGE(A) (1 << (8 * (A)))
239 #endif
240
241 irqreturn_t smp_ipi_demux(void)
242 {
243         struct cpu_messages *info = &__get_cpu_var(ipi_message);
244         unsigned int all;
245
246         mb();   /* order any irq clear */
247
248         do {
249                 all = xchg(&info->messages, 0);
250                 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
251                         generic_smp_call_function_interrupt();
252                 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
253                         scheduler_ipi();
254                 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNC_SINGLE))
255                         generic_smp_call_function_single_interrupt();
256                 if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK))
257                         debug_ipi_action(0, NULL);
258         } while (info->messages);
259
260         return IRQ_HANDLED;
261 }
262 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
263
264 static inline void do_message_pass(int cpu, int msg)
265 {
266         if (smp_ops->message_pass)
267                 smp_ops->message_pass(cpu, msg);
268 #ifdef CONFIG_PPC_SMP_MUXED_IPI
269         else
270                 smp_muxed_ipi_message_pass(cpu, msg);
271 #endif
272 }
273
274 void smp_send_reschedule(int cpu)
275 {
276         if (likely(smp_ops))
277                 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
278 }
279 EXPORT_SYMBOL_GPL(smp_send_reschedule);
280
281 void arch_send_call_function_single_ipi(int cpu)
282 {
283         do_message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
284 }
285
286 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
287 {
288         unsigned int cpu;
289
290         for_each_cpu(cpu, mask)
291                 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
292 }
293
294 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
295 void smp_send_debugger_break(void)
296 {
297         int cpu;
298         int me = raw_smp_processor_id();
299
300         if (unlikely(!smp_ops))
301                 return;
302
303         for_each_online_cpu(cpu)
304                 if (cpu != me)
305                         do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
306 }
307 #endif
308
309 #ifdef CONFIG_KEXEC
310 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
311 {
312         crash_ipi_function_ptr = crash_ipi_callback;
313         if (crash_ipi_callback) {
314                 mb();
315                 smp_send_debugger_break();
316         }
317 }
318 #endif
319
320 static void stop_this_cpu(void *dummy)
321 {
322         /* Remove this CPU */
323         set_cpu_online(smp_processor_id(), false);
324
325         local_irq_disable();
326         while (1)
327                 ;
328 }
329
330 void smp_send_stop(void)
331 {
332         smp_call_function(stop_this_cpu, NULL, 0);
333 }
334
335 struct thread_info *current_set[NR_CPUS];
336
337 static void smp_store_cpu_info(int id)
338 {
339         per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
340 #ifdef CONFIG_PPC_FSL_BOOK3E
341         per_cpu(next_tlbcam_idx, id)
342                 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
343 #endif
344 }
345
346 void __init smp_prepare_cpus(unsigned int max_cpus)
347 {
348         unsigned int cpu;
349
350         DBG("smp_prepare_cpus\n");
351
352         /* 
353          * setup_cpu may need to be called on the boot cpu. We havent
354          * spun any cpus up but lets be paranoid.
355          */
356         BUG_ON(boot_cpuid != smp_processor_id());
357
358         /* Fixup boot cpu */
359         smp_store_cpu_info(boot_cpuid);
360         cpu_callin_map[boot_cpuid] = 1;
361
362         for_each_possible_cpu(cpu) {
363                 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
364                                         GFP_KERNEL, cpu_to_node(cpu));
365                 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
366                                         GFP_KERNEL, cpu_to_node(cpu));
367         }
368
369         cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
370         cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
371
372         if (smp_ops)
373                 if (smp_ops->probe)
374                         max_cpus = smp_ops->probe();
375                 else
376                         max_cpus = NR_CPUS;
377         else
378                 max_cpus = 1;
379 }
380
381 void smp_prepare_boot_cpu(void)
382 {
383         BUG_ON(smp_processor_id() != boot_cpuid);
384 #ifdef CONFIG_PPC64
385         paca[boot_cpuid].__current = current;
386 #endif
387         current_set[boot_cpuid] = task_thread_info(current);
388 }
389
390 #ifdef CONFIG_HOTPLUG_CPU
391
392 int generic_cpu_disable(void)
393 {
394         unsigned int cpu = smp_processor_id();
395
396         if (cpu == boot_cpuid)
397                 return -EBUSY;
398
399         set_cpu_online(cpu, false);
400 #ifdef CONFIG_PPC64
401         vdso_data->processorCount--;
402 #endif
403         migrate_irqs();
404         return 0;
405 }
406
407 void generic_cpu_die(unsigned int cpu)
408 {
409         int i;
410
411         for (i = 0; i < 100; i++) {
412                 smp_rmb();
413                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
414                         return;
415                 msleep(100);
416         }
417         printk(KERN_ERR "CPU%d didn't die...\n", cpu);
418 }
419
420 void generic_mach_cpu_die(void)
421 {
422         unsigned int cpu;
423
424         local_irq_disable();
425         idle_task_exit();
426         cpu = smp_processor_id();
427         printk(KERN_DEBUG "CPU%d offline\n", cpu);
428         __get_cpu_var(cpu_state) = CPU_DEAD;
429         smp_wmb();
430         while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
431                 cpu_relax();
432 }
433
434 void generic_set_cpu_dead(unsigned int cpu)
435 {
436         per_cpu(cpu_state, cpu) = CPU_DEAD;
437 }
438
439 /*
440  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
441  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
442  * which makes the delay in generic_cpu_die() not happen.
443  */
444 void generic_set_cpu_up(unsigned int cpu)
445 {
446         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
447 }
448
449 int generic_check_cpu_restart(unsigned int cpu)
450 {
451         return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
452 }
453
454 static atomic_t secondary_inhibit_count;
455
456 /*
457  * Don't allow secondary CPU threads to come online
458  */
459 void inhibit_secondary_onlining(void)
460 {
461         /*
462          * This makes secondary_inhibit_count stable during cpu
463          * online/offline operations.
464          */
465         get_online_cpus();
466
467         atomic_inc(&secondary_inhibit_count);
468         put_online_cpus();
469 }
470 EXPORT_SYMBOL_GPL(inhibit_secondary_onlining);
471
472 /*
473  * Allow secondary CPU threads to come online again
474  */
475 void uninhibit_secondary_onlining(void)
476 {
477         get_online_cpus();
478         atomic_dec(&secondary_inhibit_count);
479         put_online_cpus();
480 }
481 EXPORT_SYMBOL_GPL(uninhibit_secondary_onlining);
482
483 static int secondaries_inhibited(void)
484 {
485         return atomic_read(&secondary_inhibit_count);
486 }
487
488 #else /* HOTPLUG_CPU */
489
490 #define secondaries_inhibited()         0
491
492 #endif
493
494 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
495 {
496         struct thread_info *ti = task_thread_info(idle);
497
498 #ifdef CONFIG_PPC64
499         paca[cpu].__current = idle;
500         paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
501 #endif
502         ti->cpu = cpu;
503         secondary_ti = current_set[cpu] = ti;
504 }
505
506 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
507 {
508         int rc, c;
509
510         /*
511          * Don't allow secondary threads to come online if inhibited
512          */
513         if (threads_per_core > 1 && secondaries_inhibited() &&
514             cpu % threads_per_core != 0)
515                 return -EBUSY;
516
517         if (smp_ops == NULL ||
518             (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
519                 return -EINVAL;
520
521         cpu_idle_thread_init(cpu, tidle);
522
523         /* Make sure callin-map entry is 0 (can be leftover a CPU
524          * hotplug
525          */
526         cpu_callin_map[cpu] = 0;
527
528         /* The information for processor bringup must
529          * be written out to main store before we release
530          * the processor.
531          */
532         smp_mb();
533
534         /* wake up cpus */
535         DBG("smp: kicking cpu %d\n", cpu);
536         rc = smp_ops->kick_cpu(cpu);
537         if (rc) {
538                 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
539                 return rc;
540         }
541
542         /*
543          * wait to see if the cpu made a callin (is actually up).
544          * use this value that I found through experimentation.
545          * -- Cort
546          */
547         if (system_state < SYSTEM_RUNNING)
548                 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
549                         udelay(100);
550 #ifdef CONFIG_HOTPLUG_CPU
551         else
552                 /*
553                  * CPUs can take much longer to come up in the
554                  * hotplug case.  Wait five seconds.
555                  */
556                 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
557                         msleep(1);
558 #endif
559
560         if (!cpu_callin_map[cpu]) {
561                 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
562                 return -ENOENT;
563         }
564
565         DBG("Processor %u found.\n", cpu);
566
567         if (smp_ops->give_timebase)
568                 smp_ops->give_timebase();
569
570         /* Wait until cpu puts itself in the online map */
571         while (!cpu_online(cpu))
572                 cpu_relax();
573
574         return 0;
575 }
576
577 /* Return the value of the reg property corresponding to the given
578  * logical cpu.
579  */
580 int cpu_to_core_id(int cpu)
581 {
582         struct device_node *np;
583         const __be32 *reg;
584         int id = -1;
585
586         np = of_get_cpu_node(cpu, NULL);
587         if (!np)
588                 goto out;
589
590         reg = of_get_property(np, "reg", NULL);
591         if (!reg)
592                 goto out;
593
594         id = be32_to_cpup(reg);
595 out:
596         of_node_put(np);
597         return id;
598 }
599
600 /* Helper routines for cpu to core mapping */
601 int cpu_core_index_of_thread(int cpu)
602 {
603         return cpu >> threads_shift;
604 }
605 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
606
607 int cpu_first_thread_of_core(int core)
608 {
609         return core << threads_shift;
610 }
611 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
612
613 static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
614 {
615         const struct cpumask *mask;
616         struct device_node *np;
617         int i, plen;
618         const __be32 *prop;
619
620         mask = add ? cpu_online_mask : cpu_present_mask;
621         for_each_cpu(i, mask) {
622                 np = of_get_cpu_node(i, NULL);
623                 if (!np)
624                         continue;
625                 prop = of_get_property(np, "ibm,chip-id", &plen);
626                 if (prop && plen == sizeof(int) &&
627                     of_read_number(prop, 1) == chipid) {
628                         if (add) {
629                                 cpumask_set_cpu(cpu, cpu_core_mask(i));
630                                 cpumask_set_cpu(i, cpu_core_mask(cpu));
631                         } else {
632                                 cpumask_clear_cpu(cpu, cpu_core_mask(i));
633                                 cpumask_clear_cpu(i, cpu_core_mask(cpu));
634                         }
635                 }
636                 of_node_put(np);
637         }
638 }
639
640 /* Must be called when no change can occur to cpu_present_mask,
641  * i.e. during cpu online or offline.
642  */
643 static struct device_node *cpu_to_l2cache(int cpu)
644 {
645         struct device_node *np;
646         struct device_node *cache;
647
648         if (!cpu_present(cpu))
649                 return NULL;
650
651         np = of_get_cpu_node(cpu, NULL);
652         if (np == NULL)
653                 return NULL;
654
655         cache = of_find_next_cache_node(np);
656
657         of_node_put(np);
658
659         return cache;
660 }
661
662 static void traverse_core_siblings(int cpu, bool add)
663 {
664         struct device_node *l2_cache, *np;
665         const struct cpumask *mask;
666         int i, chip, plen;
667         const __be32 *prop;
668
669         /* First see if we have ibm,chip-id properties in cpu nodes */
670         np = of_get_cpu_node(cpu, NULL);
671         if (np) {
672                 chip = -1;
673                 prop = of_get_property(np, "ibm,chip-id", &plen);
674                 if (prop && plen == sizeof(int))
675                         chip = of_read_number(prop, 1);
676                 of_node_put(np);
677                 if (chip >= 0) {
678                         traverse_siblings_chip_id(cpu, add, chip);
679                         return;
680                 }
681         }
682
683         l2_cache = cpu_to_l2cache(cpu);
684         mask = add ? cpu_online_mask : cpu_present_mask;
685         for_each_cpu(i, mask) {
686                 np = cpu_to_l2cache(i);
687                 if (!np)
688                         continue;
689                 if (np == l2_cache) {
690                         if (add) {
691                                 cpumask_set_cpu(cpu, cpu_core_mask(i));
692                                 cpumask_set_cpu(i, cpu_core_mask(cpu));
693                         } else {
694                                 cpumask_clear_cpu(cpu, cpu_core_mask(i));
695                                 cpumask_clear_cpu(i, cpu_core_mask(cpu));
696                         }
697                 }
698                 of_node_put(np);
699         }
700         of_node_put(l2_cache);
701 }
702
703 /* Activate a secondary processor. */
704 void start_secondary(void *unused)
705 {
706         unsigned int cpu = smp_processor_id();
707         int i, base;
708
709         atomic_inc(&init_mm.mm_count);
710         current->active_mm = &init_mm;
711
712         smp_store_cpu_info(cpu);
713         set_dec(tb_ticks_per_jiffy);
714         preempt_disable();
715         cpu_callin_map[cpu] = 1;
716
717         if (smp_ops->setup_cpu)
718                 smp_ops->setup_cpu(cpu);
719         if (smp_ops->take_timebase)
720                 smp_ops->take_timebase();
721
722         secondary_cpu_time_init();
723
724 #ifdef CONFIG_PPC64
725         if (system_state == SYSTEM_RUNNING)
726                 vdso_data->processorCount++;
727
728         vdso_getcpu_init();
729 #endif
730         /* Update sibling maps */
731         base = cpu_first_thread_sibling(cpu);
732         for (i = 0; i < threads_per_core; i++) {
733                 if (cpu_is_offline(base + i) && (cpu != base + i))
734                         continue;
735                 cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
736                 cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
737
738                 /* cpu_core_map should be a superset of
739                  * cpu_sibling_map even if we don't have cache
740                  * information, so update the former here, too.
741                  */
742                 cpumask_set_cpu(cpu, cpu_core_mask(base + i));
743                 cpumask_set_cpu(base + i, cpu_core_mask(cpu));
744         }
745         traverse_core_siblings(cpu, true);
746
747         smp_wmb();
748         notify_cpu_starting(cpu);
749         set_cpu_online(cpu, true);
750
751         local_irq_enable();
752
753         cpu_startup_entry(CPUHP_ONLINE);
754
755         BUG();
756 }
757
758 int setup_profiling_timer(unsigned int multiplier)
759 {
760         return 0;
761 }
762
763 void __init smp_cpus_done(unsigned int max_cpus)
764 {
765         cpumask_var_t old_mask;
766
767         /* We want the setup_cpu() here to be called from CPU 0, but our
768          * init thread may have been "borrowed" by another CPU in the meantime
769          * se we pin us down to CPU 0 for a short while
770          */
771         alloc_cpumask_var(&old_mask, GFP_NOWAIT);
772         cpumask_copy(old_mask, tsk_cpus_allowed(current));
773         set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
774         
775         if (smp_ops && smp_ops->setup_cpu)
776                 smp_ops->setup_cpu(boot_cpuid);
777
778         set_cpus_allowed_ptr(current, old_mask);
779
780         free_cpumask_var(old_mask);
781
782         if (smp_ops && smp_ops->bringup_done)
783                 smp_ops->bringup_done();
784
785         dump_numa_cpu_topology();
786
787 }
788
789 int arch_sd_sibling_asym_packing(void)
790 {
791         if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
792                 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
793                 return SD_ASYM_PACKING;
794         }
795         return 0;
796 }
797
798 #ifdef CONFIG_HOTPLUG_CPU
799 int __cpu_disable(void)
800 {
801         int cpu = smp_processor_id();
802         int base, i;
803         int err;
804
805         if (!smp_ops->cpu_disable)
806                 return -ENOSYS;
807
808         err = smp_ops->cpu_disable();
809         if (err)
810                 return err;
811
812         /* Update sibling maps */
813         base = cpu_first_thread_sibling(cpu);
814         for (i = 0; i < threads_per_core; i++) {
815                 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
816                 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
817                 cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
818                 cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
819         }
820         traverse_core_siblings(cpu, false);
821
822         return 0;
823 }
824
825 void __cpu_die(unsigned int cpu)
826 {
827         if (smp_ops->cpu_die)
828                 smp_ops->cpu_die(cpu);
829 }
830
831 void cpu_die(void)
832 {
833         if (ppc_md.cpu_die)
834                 ppc_md.cpu_die();
835
836         /* If we return, we re-enter start_secondary */
837         start_secondary_resume();
838 }
839
840 #endif