Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 extern int  data_start;
35 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
36
37 #if PT_NLEVELS == 3
38 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
39  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
40  * guarantee that global objects will be laid out in memory in the same order
41  * as the order of declaration, so put these in different sections and use
42  * the linker script to order them. */
43 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
44 #endif
45
46 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
47 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
48
49 #ifdef CONFIG_DISCONTIGMEM
50 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
51 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
52 #endif
53
54 static struct resource data_resource = {
55         .name   = "Kernel data",
56         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
57 };
58
59 static struct resource code_resource = {
60         .name   = "Kernel code",
61         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
62 };
63
64 static struct resource pdcdata_resource = {
65         .name   = "PDC data (Page Zero)",
66         .start  = 0,
67         .end    = 0x9ff,
68         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
69 };
70
71 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
72
73 /* The following array is initialized from the firmware specific
74  * information retrieved in kernel/inventory.c.
75  */
76
77 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
78 int npmem_ranges __read_mostly;
79
80 #ifdef CONFIG_64BIT
81 #define MAX_MEM         (~0UL)
82 #else /* !CONFIG_64BIT */
83 #define MAX_MEM         (3584U*1024U*1024U)
84 #endif /* !CONFIG_64BIT */
85
86 static unsigned long mem_limit __read_mostly = MAX_MEM;
87
88 static void __init mem_limit_func(void)
89 {
90         char *cp, *end;
91         unsigned long limit;
92
93         /* We need this before __setup() functions are called */
94
95         limit = MAX_MEM;
96         for (cp = boot_command_line; *cp; ) {
97                 if (memcmp(cp, "mem=", 4) == 0) {
98                         cp += 4;
99                         limit = memparse(cp, &end);
100                         if (end != cp)
101                                 break;
102                         cp = end;
103                 } else {
104                         while (*cp != ' ' && *cp)
105                                 ++cp;
106                         while (*cp == ' ')
107                                 ++cp;
108                 }
109         }
110
111         if (limit < mem_limit)
112                 mem_limit = limit;
113 }
114
115 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
116
117 static void __init setup_bootmem(void)
118 {
119         unsigned long bootmap_size;
120         unsigned long mem_max;
121         unsigned long bootmap_pages;
122         unsigned long bootmap_start_pfn;
123         unsigned long bootmap_pfn;
124 #ifndef CONFIG_DISCONTIGMEM
125         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
126         int npmem_holes;
127 #endif
128         int i, sysram_resource_count;
129
130         disable_sr_hashing(); /* Turn off space register hashing */
131
132         /*
133          * Sort the ranges. Since the number of ranges is typically
134          * small, and performance is not an issue here, just do
135          * a simple insertion sort.
136          */
137
138         for (i = 1; i < npmem_ranges; i++) {
139                 int j;
140
141                 for (j = i; j > 0; j--) {
142                         unsigned long tmp;
143
144                         if (pmem_ranges[j-1].start_pfn <
145                             pmem_ranges[j].start_pfn) {
146
147                                 break;
148                         }
149                         tmp = pmem_ranges[j-1].start_pfn;
150                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
151                         pmem_ranges[j].start_pfn = tmp;
152                         tmp = pmem_ranges[j-1].pages;
153                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
154                         pmem_ranges[j].pages = tmp;
155                 }
156         }
157
158 #ifndef CONFIG_DISCONTIGMEM
159         /*
160          * Throw out ranges that are too far apart (controlled by
161          * MAX_GAP).
162          */
163
164         for (i = 1; i < npmem_ranges; i++) {
165                 if (pmem_ranges[i].start_pfn -
166                         (pmem_ranges[i-1].start_pfn +
167                          pmem_ranges[i-1].pages) > MAX_GAP) {
168                         npmem_ranges = i;
169                         printk("Large gap in memory detected (%ld pages). "
170                                "Consider turning on CONFIG_DISCONTIGMEM\n",
171                                pmem_ranges[i].start_pfn -
172                                (pmem_ranges[i-1].start_pfn +
173                                 pmem_ranges[i-1].pages));
174                         break;
175                 }
176         }
177 #endif
178
179         if (npmem_ranges > 1) {
180
181                 /* Print the memory ranges */
182
183                 printk(KERN_INFO "Memory Ranges:\n");
184
185                 for (i = 0; i < npmem_ranges; i++) {
186                         unsigned long start;
187                         unsigned long size;
188
189                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
190                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
191                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
192                                 i,start, start + (size - 1), size >> 20);
193                 }
194         }
195
196         sysram_resource_count = npmem_ranges;
197         for (i = 0; i < sysram_resource_count; i++) {
198                 struct resource *res = &sysram_resources[i];
199                 res->name = "System RAM";
200                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
201                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
202                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
203                 request_resource(&iomem_resource, res);
204         }
205
206         /*
207          * For 32 bit kernels we limit the amount of memory we can
208          * support, in order to preserve enough kernel address space
209          * for other purposes. For 64 bit kernels we don't normally
210          * limit the memory, but this mechanism can be used to
211          * artificially limit the amount of memory (and it is written
212          * to work with multiple memory ranges).
213          */
214
215         mem_limit_func();       /* check for "mem=" argument */
216
217         mem_max = 0;
218         for (i = 0; i < npmem_ranges; i++) {
219                 unsigned long rsize;
220
221                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222                 if ((mem_max + rsize) > mem_limit) {
223                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224                         if (mem_max == mem_limit)
225                                 npmem_ranges = i;
226                         else {
227                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
228                                                        - (mem_max >> PAGE_SHIFT);
229                                 npmem_ranges = i + 1;
230                                 mem_max = mem_limit;
231                         }
232                         break;
233                 }
234                 mem_max += rsize;
235         }
236
237         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
238
239 #ifndef CONFIG_DISCONTIGMEM
240         /* Merge the ranges, keeping track of the holes */
241
242         {
243                 unsigned long end_pfn;
244                 unsigned long hole_pages;
245
246                 npmem_holes = 0;
247                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
248                 for (i = 1; i < npmem_ranges; i++) {
249
250                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
251                         if (hole_pages) {
252                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
253                                 pmem_holes[npmem_holes++].pages = hole_pages;
254                                 end_pfn += hole_pages;
255                         }
256                         end_pfn += pmem_ranges[i].pages;
257                 }
258
259                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
260                 npmem_ranges = 1;
261         }
262 #endif
263
264         bootmap_pages = 0;
265         for (i = 0; i < npmem_ranges; i++)
266                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
267
268         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
269
270 #ifdef CONFIG_DISCONTIGMEM
271         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
272                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
273                 NODE_DATA(i)->bdata = &bootmem_node_data[i];
274         }
275         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
276
277         for (i = 0; i < npmem_ranges; i++) {
278                 node_set_state(i, N_NORMAL_MEMORY);
279                 node_set_online(i);
280         }
281 #endif
282
283         /*
284          * Initialize and free the full range of memory in each range.
285          * Note that the only writing these routines do are to the bootmap,
286          * and we've made sure to locate the bootmap properly so that they
287          * won't be writing over anything important.
288          */
289
290         bootmap_pfn = bootmap_start_pfn;
291         max_pfn = 0;
292         for (i = 0; i < npmem_ranges; i++) {
293                 unsigned long start_pfn;
294                 unsigned long npages;
295
296                 start_pfn = pmem_ranges[i].start_pfn;
297                 npages = pmem_ranges[i].pages;
298
299                 bootmap_size = init_bootmem_node(NODE_DATA(i),
300                                                 bootmap_pfn,
301                                                 start_pfn,
302                                                 (start_pfn + npages) );
303                 free_bootmem_node(NODE_DATA(i),
304                                   (start_pfn << PAGE_SHIFT),
305                                   (npages << PAGE_SHIFT) );
306                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
307                 if ((start_pfn + npages) > max_pfn)
308                         max_pfn = start_pfn + npages;
309         }
310
311         /* IOMMU is always used to access "high mem" on those boxes
312          * that can support enough mem that a PCI device couldn't
313          * directly DMA to any physical addresses.
314          * ISA DMA support will need to revisit this.
315          */
316         max_low_pfn = max_pfn;
317
318         /* bootmap sizing messed up? */
319         BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
320
321         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
322
323 #define PDC_CONSOLE_IO_IODC_SIZE 32768
324
325         reserve_bootmem_node(NODE_DATA(0), 0UL,
326                         (unsigned long)(PAGE0->mem_free +
327                                 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
328         reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
329                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
330                         BOOTMEM_DEFAULT);
331         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
332                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
333                         BOOTMEM_DEFAULT);
334
335 #ifndef CONFIG_DISCONTIGMEM
336
337         /* reserve the holes */
338
339         for (i = 0; i < npmem_holes; i++) {
340                 reserve_bootmem_node(NODE_DATA(0),
341                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
342                                 (pmem_holes[i].pages << PAGE_SHIFT),
343                                 BOOTMEM_DEFAULT);
344         }
345 #endif
346
347 #ifdef CONFIG_BLK_DEV_INITRD
348         if (initrd_start) {
349                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
350                 if (__pa(initrd_start) < mem_max) {
351                         unsigned long initrd_reserve;
352
353                         if (__pa(initrd_end) > mem_max) {
354                                 initrd_reserve = mem_max - __pa(initrd_start);
355                         } else {
356                                 initrd_reserve = initrd_end - initrd_start;
357                         }
358                         initrd_below_start_ok = 1;
359                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
360
361                         reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
362                                         initrd_reserve, BOOTMEM_DEFAULT);
363                 }
364         }
365 #endif
366
367         data_resource.start =  virt_to_phys(&data_start);
368         data_resource.end = virt_to_phys(_end) - 1;
369         code_resource.start = virt_to_phys(_text);
370         code_resource.end = virt_to_phys(&data_start)-1;
371
372         /* We don't know which region the kernel will be in, so try
373          * all of them.
374          */
375         for (i = 0; i < sysram_resource_count; i++) {
376                 struct resource *res = &sysram_resources[i];
377                 request_resource(res, &code_resource);
378                 request_resource(res, &data_resource);
379         }
380         request_resource(&sysram_resources[0], &pdcdata_resource);
381 }
382
383 static int __init parisc_text_address(unsigned long vaddr)
384 {
385         static unsigned long head_ptr __initdata;
386
387         if (!head_ptr)
388                 head_ptr = PAGE_MASK & (unsigned long)
389                         dereference_function_descriptor(&parisc_kernel_start);
390
391         return core_kernel_text(vaddr) || vaddr == head_ptr;
392 }
393
394 static void __init map_pages(unsigned long start_vaddr,
395                              unsigned long start_paddr, unsigned long size,
396                              pgprot_t pgprot, int force)
397 {
398         pgd_t *pg_dir;
399         pmd_t *pmd;
400         pte_t *pg_table;
401         unsigned long end_paddr;
402         unsigned long start_pmd;
403         unsigned long start_pte;
404         unsigned long tmp1;
405         unsigned long tmp2;
406         unsigned long address;
407         unsigned long vaddr;
408         unsigned long ro_start;
409         unsigned long ro_end;
410         unsigned long fv_addr;
411         unsigned long gw_addr;
412         extern const unsigned long fault_vector_20;
413         extern void * const linux_gateway_page;
414
415         ro_start = __pa((unsigned long)_text);
416         ro_end   = __pa((unsigned long)&data_start);
417         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
418         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
419
420         end_paddr = start_paddr + size;
421
422         pg_dir = pgd_offset_k(start_vaddr);
423
424 #if PTRS_PER_PMD == 1
425         start_pmd = 0;
426 #else
427         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
428 #endif
429         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
430
431         address = start_paddr;
432         vaddr = start_vaddr;
433         while (address < end_paddr) {
434 #if PTRS_PER_PMD == 1
435                 pmd = (pmd_t *)__pa(pg_dir);
436 #else
437                 pmd = (pmd_t *)pgd_address(*pg_dir);
438
439                 /*
440                  * pmd is physical at this point
441                  */
442
443                 if (!pmd) {
444                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
445                         pmd = (pmd_t *) __pa(pmd);
446                 }
447
448                 pgd_populate(NULL, pg_dir, __va(pmd));
449 #endif
450                 pg_dir++;
451
452                 /* now change pmd to kernel virtual addresses */
453
454                 pmd = (pmd_t *)__va(pmd) + start_pmd;
455                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
456
457                         /*
458                          * pg_table is physical at this point
459                          */
460
461                         pg_table = (pte_t *)pmd_address(*pmd);
462                         if (!pg_table) {
463                                 pg_table = (pte_t *)
464                                         alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
465                                 pg_table = (pte_t *) __pa(pg_table);
466                         }
467
468                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
469
470                         /* now change pg_table to kernel virtual addresses */
471
472                         pg_table = (pte_t *) __va(pg_table) + start_pte;
473                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
474                                 pte_t pte;
475
476                                 /*
477                                  * Map the fault vector writable so we can
478                                  * write the HPMC checksum.
479                                  */
480                                 if (force)
481                                         pte =  __mk_pte(address, pgprot);
482                                 else if (parisc_text_address(vaddr) &&
483                                          address != fv_addr)
484                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485                                 else
486 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
487                                 if (address >= ro_start && address < ro_end
488                                                         && address != fv_addr
489                                                         && address != gw_addr)
490                                         pte = __mk_pte(address, PAGE_KERNEL_RO);
491                                 else
492 #endif
493                                         pte = __mk_pte(address, pgprot);
494
495                                 if (address >= end_paddr) {
496                                         if (force)
497                                                 break;
498                                         else
499                                                 pte_val(pte) = 0;
500                                 }
501
502                                 set_pte(pg_table, pte);
503
504                                 address += PAGE_SIZE;
505                                 vaddr += PAGE_SIZE;
506                         }
507                         start_pte = 0;
508
509                         if (address >= end_paddr)
510                             break;
511                 }
512                 start_pmd = 0;
513         }
514 }
515
516 void free_initmem(void)
517 {
518         unsigned long init_begin = (unsigned long)__init_begin;
519         unsigned long init_end = (unsigned long)__init_end;
520
521         /* The init text pages are marked R-X.  We have to
522          * flush the icache and mark them RW-
523          *
524          * This is tricky, because map_pages is in the init section.
525          * Do a dummy remap of the data section first (the data
526          * section is already PAGE_KERNEL) to pull in the TLB entries
527          * for map_kernel */
528         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
529                   PAGE_KERNEL_RWX, 1);
530         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
531          * map_pages */
532         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
533                   PAGE_KERNEL, 1);
534
535         /* force the kernel to see the new TLB entries */
536         __flush_tlb_range(0, init_begin, init_end);
537         /* Attempt to catch anyone trying to execute code here
538          * by filling the page with BRK insns.
539          */
540         memset((void *)init_begin, 0x00, init_end - init_begin);
541         /* finally dump all the instructions which were cached, since the
542          * pages are no-longer executable */
543         flush_icache_range(init_begin, init_end);
544         
545         free_initmem_default(-1);
546
547         /* set up a new led state on systems shipped LED State panel */
548         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
549 }
550
551
552 #ifdef CONFIG_DEBUG_RODATA
553 void mark_rodata_ro(void)
554 {
555         /* rodata memory was already mapped with KERNEL_RO access rights by
556            pagetable_init() and map_pages(). No need to do additional stuff here */
557         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
559 }
560 #endif
561
562
563 /*
564  * Just an arbitrary offset to serve as a "hole" between mapping areas
565  * (between top of physical memory and a potential pcxl dma mapping
566  * area, and below the vmalloc mapping area).
567  *
568  * The current 32K value just means that there will be a 32K "hole"
569  * between mapping areas. That means that  any out-of-bounds memory
570  * accesses will hopefully be caught. The vmalloc() routines leaves
571  * a hole of 4kB between each vmalloced area for the same reason.
572  */
573
574  /* Leave room for gateway page expansion */
575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576 #error KERNEL_MAP_START is in gateway reserved region
577 #endif
578 #define MAP_START (KERNEL_MAP_START)
579
580 #define VM_MAP_OFFSET  (32*1024)
581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582                                      & ~(VM_MAP_OFFSET-1)))
583
584 void *parisc_vmalloc_start __read_mostly;
585 EXPORT_SYMBOL(parisc_vmalloc_start);
586
587 #ifdef CONFIG_PA11
588 unsigned long pcxl_dma_start __read_mostly;
589 #endif
590
591 void __init mem_init(void)
592 {
593         /* Do sanity checks on page table constants */
594         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
595         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
596         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
597         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
598                         > BITS_PER_LONG);
599
600         high_memory = __va((max_pfn << PAGE_SHIFT));
601         set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
602         free_all_bootmem();
603
604 #ifdef CONFIG_PA11
605         if (hppa_dma_ops == &pcxl_dma_ops) {
606                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
607                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
608                                                 + PCXL_DMA_MAP_SIZE);
609         } else {
610                 pcxl_dma_start = 0;
611                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
612         }
613 #else
614         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
615 #endif
616
617         mem_init_print_info(NULL);
618 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
619         printk("virtual kernel memory layout:\n"
620                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
621                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
622                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
623                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
624                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
625
626                (void*)VMALLOC_START, (void*)VMALLOC_END,
627                (VMALLOC_END - VMALLOC_START) >> 20,
628
629                __va(0), high_memory,
630                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
631
632                __init_begin, __init_end,
633                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
634
635                _etext, _edata,
636                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
637
638                _text, _etext,
639                ((unsigned long)_etext - (unsigned long)_text) >> 10);
640 #endif
641 }
642
643 unsigned long *empty_zero_page __read_mostly;
644 EXPORT_SYMBOL(empty_zero_page);
645
646 void show_mem(unsigned int filter)
647 {
648         int i,free = 0,total = 0,reserved = 0;
649         int shared = 0, cached = 0;
650
651         printk(KERN_INFO "Mem-info:\n");
652         show_free_areas(filter);
653         if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
654                 return;
655 #ifndef CONFIG_DISCONTIGMEM
656         i = max_mapnr;
657         while (i-- > 0) {
658                 total++;
659                 if (PageReserved(mem_map+i))
660                         reserved++;
661                 else if (PageSwapCache(mem_map+i))
662                         cached++;
663                 else if (!page_count(&mem_map[i]))
664                         free++;
665                 else
666                         shared += page_count(&mem_map[i]) - 1;
667         }
668 #else
669         for (i = 0; i < npmem_ranges; i++) {
670                 int j;
671
672                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
673                         struct page *p;
674                         unsigned long flags;
675
676                         pgdat_resize_lock(NODE_DATA(i), &flags);
677                         p = nid_page_nr(i, j) - node_start_pfn(i);
678
679                         total++;
680                         if (PageReserved(p))
681                                 reserved++;
682                         else if (PageSwapCache(p))
683                                 cached++;
684                         else if (!page_count(p))
685                                 free++;
686                         else
687                                 shared += page_count(p) - 1;
688                         pgdat_resize_unlock(NODE_DATA(i), &flags);
689                 }
690         }
691 #endif
692         printk(KERN_INFO "%d pages of RAM\n", total);
693         printk(KERN_INFO "%d reserved pages\n", reserved);
694         printk(KERN_INFO "%d pages shared\n", shared);
695         printk(KERN_INFO "%d pages swap cached\n", cached);
696
697
698 #ifdef CONFIG_DISCONTIGMEM
699         {
700                 struct zonelist *zl;
701                 int i, j;
702
703                 for (i = 0; i < npmem_ranges; i++) {
704                         zl = node_zonelist(i, 0);
705                         for (j = 0; j < MAX_NR_ZONES; j++) {
706                                 struct zoneref *z;
707                                 struct zone *zone;
708
709                                 printk("Zone list for zone %d on node %d: ", j, i);
710                                 for_each_zone_zonelist(zone, z, zl, j)
711                                         printk("[%d/%s] ", zone_to_nid(zone),
712                                                                 zone->name);
713                                 printk("\n");
714                         }
715                 }
716         }
717 #endif
718 }
719
720 /*
721  * pagetable_init() sets up the page tables
722  *
723  * Note that gateway_init() places the Linux gateway page at page 0.
724  * Since gateway pages cannot be dereferenced this has the desirable
725  * side effect of trapping those pesky NULL-reference errors in the
726  * kernel.
727  */
728 static void __init pagetable_init(void)
729 {
730         int range;
731
732         /* Map each physical memory range to its kernel vaddr */
733
734         for (range = 0; range < npmem_ranges; range++) {
735                 unsigned long start_paddr;
736                 unsigned long end_paddr;
737                 unsigned long size;
738
739                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
740                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
741                 size = pmem_ranges[range].pages << PAGE_SHIFT;
742
743                 map_pages((unsigned long)__va(start_paddr), start_paddr,
744                           size, PAGE_KERNEL, 0);
745         }
746
747 #ifdef CONFIG_BLK_DEV_INITRD
748         if (initrd_end && initrd_end > mem_limit) {
749                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
750                 map_pages(initrd_start, __pa(initrd_start),
751                           initrd_end - initrd_start, PAGE_KERNEL, 0);
752         }
753 #endif
754
755         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
756         memset(empty_zero_page, 0, PAGE_SIZE);
757 }
758
759 static void __init gateway_init(void)
760 {
761         unsigned long linux_gateway_page_addr;
762         /* FIXME: This is 'const' in order to trick the compiler
763            into not treating it as DP-relative data. */
764         extern void * const linux_gateway_page;
765
766         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
767
768         /*
769          * Setup Linux Gateway page.
770          *
771          * The Linux gateway page will reside in kernel space (on virtual
772          * page 0), so it doesn't need to be aliased into user space.
773          */
774
775         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
776                   PAGE_SIZE, PAGE_GATEWAY, 1);
777 }
778
779 #ifdef CONFIG_HPUX
780 void
781 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
782 {
783         pgd_t *pg_dir;
784         pmd_t *pmd;
785         pte_t *pg_table;
786         unsigned long start_pmd;
787         unsigned long start_pte;
788         unsigned long address;
789         unsigned long hpux_gw_page_addr;
790         /* FIXME: This is 'const' in order to trick the compiler
791            into not treating it as DP-relative data. */
792         extern void * const hpux_gateway_page;
793
794         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
795
796         /*
797          * Setup HP-UX Gateway page.
798          *
799          * The HP-UX gateway page resides in the user address space,
800          * so it needs to be aliased into each process.
801          */
802
803         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
804
805 #if PTRS_PER_PMD == 1
806         start_pmd = 0;
807 #else
808         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
809 #endif
810         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
811
812         address = __pa(&hpux_gateway_page);
813 #if PTRS_PER_PMD == 1
814         pmd = (pmd_t *)__pa(pg_dir);
815 #else
816         pmd = (pmd_t *) pgd_address(*pg_dir);
817
818         /*
819          * pmd is physical at this point
820          */
821
822         if (!pmd) {
823                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
824                 pmd = (pmd_t *) __pa(pmd);
825         }
826
827         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
828 #endif
829         /* now change pmd to kernel virtual addresses */
830
831         pmd = (pmd_t *)__va(pmd) + start_pmd;
832
833         /*
834          * pg_table is physical at this point
835          */
836
837         pg_table = (pte_t *) pmd_address(*pmd);
838         if (!pg_table)
839                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
840
841         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
842
843         /* now change pg_table to kernel virtual addresses */
844
845         pg_table = (pte_t *) __va(pg_table) + start_pte;
846         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
847 }
848 EXPORT_SYMBOL(map_hpux_gateway_page);
849 #endif
850
851 void __init paging_init(void)
852 {
853         int i;
854
855         setup_bootmem();
856         pagetable_init();
857         gateway_init();
858         flush_cache_all_local(); /* start with known state */
859         flush_tlb_all_local(NULL);
860
861         for (i = 0; i < npmem_ranges; i++) {
862                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
863
864                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
865
866 #ifdef CONFIG_DISCONTIGMEM
867                 /* Need to initialize the pfnnid_map before we can initialize
868                    the zone */
869                 {
870                     int j;
871                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
872                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
873                          j++) {
874                         pfnnid_map[j] = i;
875                     }
876                 }
877 #endif
878
879                 free_area_init_node(i, zones_size,
880                                 pmem_ranges[i].start_pfn, NULL);
881         }
882 }
883
884 #ifdef CONFIG_PA20
885
886 /*
887  * Currently, all PA20 chips have 18 bit protection IDs, which is the
888  * limiting factor (space ids are 32 bits).
889  */
890
891 #define NR_SPACE_IDS 262144
892
893 #else
894
895 /*
896  * Currently we have a one-to-one relationship between space IDs and
897  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
898  * support 15 bit protection IDs, so that is the limiting factor.
899  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
900  * probably not worth the effort for a special case here.
901  */
902
903 #define NR_SPACE_IDS 32768
904
905 #endif  /* !CONFIG_PA20 */
906
907 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
908 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
909
910 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
911 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
912 static unsigned long space_id_index;
913 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
914 static unsigned long dirty_space_ids = 0;
915
916 static DEFINE_SPINLOCK(sid_lock);
917
918 unsigned long alloc_sid(void)
919 {
920         unsigned long index;
921
922         spin_lock(&sid_lock);
923
924         if (free_space_ids == 0) {
925                 if (dirty_space_ids != 0) {
926                         spin_unlock(&sid_lock);
927                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
928                         spin_lock(&sid_lock);
929                 }
930                 BUG_ON(free_space_ids == 0);
931         }
932
933         free_space_ids--;
934
935         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
936         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
937         space_id_index = index;
938
939         spin_unlock(&sid_lock);
940
941         return index << SPACEID_SHIFT;
942 }
943
944 void free_sid(unsigned long spaceid)
945 {
946         unsigned long index = spaceid >> SPACEID_SHIFT;
947         unsigned long *dirty_space_offset;
948
949         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
950         index &= (BITS_PER_LONG - 1);
951
952         spin_lock(&sid_lock);
953
954         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
955
956         *dirty_space_offset |= (1L << index);
957         dirty_space_ids++;
958
959         spin_unlock(&sid_lock);
960 }
961
962
963 #ifdef CONFIG_SMP
964 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
965 {
966         int i;
967
968         /* NOTE: sid_lock must be held upon entry */
969
970         *ndirtyptr = dirty_space_ids;
971         if (dirty_space_ids != 0) {
972             for (i = 0; i < SID_ARRAY_SIZE; i++) {
973                 dirty_array[i] = dirty_space_id[i];
974                 dirty_space_id[i] = 0;
975             }
976             dirty_space_ids = 0;
977         }
978
979         return;
980 }
981
982 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
983 {
984         int i;
985
986         /* NOTE: sid_lock must be held upon entry */
987
988         if (ndirty != 0) {
989                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
990                         space_id[i] ^= dirty_array[i];
991                 }
992
993                 free_space_ids += ndirty;
994                 space_id_index = 0;
995         }
996 }
997
998 #else /* CONFIG_SMP */
999
1000 static void recycle_sids(void)
1001 {
1002         int i;
1003
1004         /* NOTE: sid_lock must be held upon entry */
1005
1006         if (dirty_space_ids != 0) {
1007                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1008                         space_id[i] ^= dirty_space_id[i];
1009                         dirty_space_id[i] = 0;
1010                 }
1011
1012                 free_space_ids += dirty_space_ids;
1013                 dirty_space_ids = 0;
1014                 space_id_index = 0;
1015         }
1016 }
1017 #endif
1018
1019 /*
1020  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1021  * purged, we can safely reuse the space ids that were released but
1022  * not flushed from the tlb.
1023  */
1024
1025 #ifdef CONFIG_SMP
1026
1027 static unsigned long recycle_ndirty;
1028 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1029 static unsigned int recycle_inuse;
1030
1031 void flush_tlb_all(void)
1032 {
1033         int do_recycle;
1034
1035         __inc_irq_stat(irq_tlb_count);
1036         do_recycle = 0;
1037         spin_lock(&sid_lock);
1038         if (dirty_space_ids > RECYCLE_THRESHOLD) {
1039             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1040             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1041             recycle_inuse++;
1042             do_recycle++;
1043         }
1044         spin_unlock(&sid_lock);
1045         on_each_cpu(flush_tlb_all_local, NULL, 1);
1046         if (do_recycle) {
1047             spin_lock(&sid_lock);
1048             recycle_sids(recycle_ndirty,recycle_dirty_array);
1049             recycle_inuse = 0;
1050             spin_unlock(&sid_lock);
1051         }
1052 }
1053 #else
1054 void flush_tlb_all(void)
1055 {
1056         __inc_irq_stat(irq_tlb_count);
1057         spin_lock(&sid_lock);
1058         flush_tlb_all_local(NULL);
1059         recycle_sids();
1060         spin_unlock(&sid_lock);
1061 }
1062 #endif
1063
1064 #ifdef CONFIG_BLK_DEV_INITRD
1065 void free_initrd_mem(unsigned long start, unsigned long end)
1066 {
1067         free_reserved_area((void *)start, (void *)end, -1, "initrd");
1068 }
1069 #endif