MIPS: Netlogic: Use chip_data for irq_chip methods
[linux-drm-fsl-dcu.git] / arch / mips / pci / msi-xlp.c
1 /*
2  * Copyright (c) 2003-2012 Broadcom Corporation
3  * All Rights Reserved
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the Broadcom
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/msi.h>
40 #include <linux/mm.h>
41 #include <linux/irq.h>
42 #include <linux/irqdesc.h>
43 #include <linux/console.h>
44
45 #include <asm/io.h>
46
47 #include <asm/netlogic/interrupt.h>
48 #include <asm/netlogic/haldefs.h>
49 #include <asm/netlogic/common.h>
50 #include <asm/netlogic/mips-extns.h>
51
52 #include <asm/netlogic/xlp-hal/iomap.h>
53 #include <asm/netlogic/xlp-hal/xlp.h>
54 #include <asm/netlogic/xlp-hal/pic.h>
55 #include <asm/netlogic/xlp-hal/pcibus.h>
56 #include <asm/netlogic/xlp-hal/bridge.h>
57
58 #define XLP_MSIVEC_PER_LINK     32
59 #define XLP_MSIXVEC_TOTAL       (cpu_is_xlp9xx() ? 128 : 32)
60 #define XLP_MSIXVEC_PER_LINK    (cpu_is_xlp9xx() ? 32 : 8)
61
62 /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
63 static inline int nlm_link_msiirq(int link, int msivec)
64 {
65         return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec;
66 }
67
68 /* get the link MSI vector from irq number */
69 static inline int nlm_irq_msivec(int irq)
70 {
71         return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK;
72 }
73
74 /* get the link from the irq number */
75 static inline int nlm_irq_msilink(int irq)
76 {
77         int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS;
78
79         return ((irq - NLM_MSI_VEC_BASE) % total_msivec) /
80                 XLP_MSIVEC_PER_LINK;
81 }
82
83 /*
84  * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because
85  * there are only 32 PIC interrupts for MSI. We split them statically
86  * and use 8 MSI-X vectors per link - this keeps the allocation and
87  * lookup simple.
88  * On XLP 9xx, there are 32 vectors per link, and the interrupts are
89  * not routed thru PIC, so we can use all 128 MSI-X vectors.
90  */
91 static inline int nlm_link_msixirq(int link, int bit)
92 {
93         return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit;
94 }
95
96 /* get the link MSI vector from irq number */
97 static inline int nlm_irq_msixvec(int irq)
98 {
99         return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL;
100 }
101
102 /* get the link from MSIX vec */
103 static inline int nlm_irq_msixlink(int msixvec)
104 {
105         return msixvec / XLP_MSIXVEC_PER_LINK;
106 }
107
108 /*
109  * Per link MSI and MSI-X information, set as IRQ handler data for
110  * MSI and MSI-X interrupts.
111  */
112 struct xlp_msi_data {
113         struct nlm_soc_info *node;
114         uint64_t        lnkbase;
115         uint32_t        msi_enabled_mask;
116         uint32_t        msi_alloc_mask;
117         uint32_t        msix_alloc_mask;
118         spinlock_t      msi_lock;
119 };
120
121 /*
122  * MSI Chip definitions
123  *
124  * On XLP, there is a PIC interrupt associated with each PCIe link on the
125  * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
126  * per link and 128 overall.
127  *
128  * When a device connected to the link raises a MSI interrupt, we get a
129  * link interrupt and we then have to look at PCIE_MSI_STATUS register at
130  * the bridge to map it to the IRQ
131  */
132 static void xlp_msi_enable(struct irq_data *d)
133 {
134         struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
135         unsigned long flags;
136         int vec;
137
138         vec = nlm_irq_msivec(d->irq);
139         spin_lock_irqsave(&md->msi_lock, flags);
140         md->msi_enabled_mask |= 1u << vec;
141         if (cpu_is_xlp9xx())
142                 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
143                                 md->msi_enabled_mask);
144         else
145                 nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
146         spin_unlock_irqrestore(&md->msi_lock, flags);
147 }
148
149 static void xlp_msi_disable(struct irq_data *d)
150 {
151         struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
152         unsigned long flags;
153         int vec;
154
155         vec = nlm_irq_msivec(d->irq);
156         spin_lock_irqsave(&md->msi_lock, flags);
157         md->msi_enabled_mask &= ~(1u << vec);
158         if (cpu_is_xlp9xx())
159                 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
160                                 md->msi_enabled_mask);
161         else
162                 nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
163         spin_unlock_irqrestore(&md->msi_lock, flags);
164 }
165
166 static void xlp_msi_mask_ack(struct irq_data *d)
167 {
168         struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
169         int link, vec;
170
171         link = nlm_irq_msilink(d->irq);
172         vec = nlm_irq_msivec(d->irq);
173         xlp_msi_disable(d);
174
175         /* Ack MSI on bridge */
176         if (cpu_is_xlp9xx())
177                 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec);
178         else
179                 nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec);
180
181 }
182
183 static struct irq_chip xlp_msi_chip = {
184         .name           = "XLP-MSI",
185         .irq_enable     = xlp_msi_enable,
186         .irq_disable    = xlp_msi_disable,
187         .irq_mask_ack   = xlp_msi_mask_ack,
188         .irq_unmask     = xlp_msi_enable,
189 };
190
191 /*
192  * XLP8XX/4XX/3XX/2XX:
193  * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X
194  * interrupts generated by the PIC and each of these correspond to a MSI-X
195  * vector (0-31) that can be assigned.
196  *
197  * We divide the MSI-X vectors to 8 per link and do a per-link allocation
198  *
199  * XLP9XX:
200  * 32 MSI-X vectors are available per link, and the interrupts are not routed
201  * thru the PIC. PIC ack not needed.
202  *
203  * Enable and disable done using standard MSI functions.
204  */
205 static void xlp_msix_mask_ack(struct irq_data *d)
206 {
207         struct xlp_msi_data *md;
208         int link, msixvec;
209         uint32_t status_reg, bit;
210
211         msixvec = nlm_irq_msixvec(d->irq);
212         link = nlm_irq_msixlink(msixvec);
213         pci_msi_mask_irq(d);
214         md = irq_data_get_irq_chip_data(d);
215
216         /* Ack MSI on bridge */
217         if (cpu_is_xlp9xx()) {
218                 status_reg = PCIE_9XX_MSIX_STATUSX(link);
219                 bit = msixvec % XLP_MSIXVEC_PER_LINK;
220         } else {
221                 status_reg = PCIE_MSIX_STATUS;
222                 bit = msixvec;
223         }
224         nlm_write_reg(md->lnkbase, status_reg, 1u << bit);
225
226         if (!cpu_is_xlp9xx())
227                 nlm_pic_ack(md->node->picbase,
228                                 PIC_IRT_PCIE_MSIX_INDEX(msixvec));
229 }
230
231 static struct irq_chip xlp_msix_chip = {
232         .name           = "XLP-MSIX",
233         .irq_enable     = pci_msi_unmask_irq,
234         .irq_disable    = pci_msi_mask_irq,
235         .irq_mask_ack   = xlp_msix_mask_ack,
236         .irq_unmask     = pci_msi_unmask_irq,
237 };
238
239 void arch_teardown_msi_irq(unsigned int irq)
240 {
241 }
242
243 /*
244  * Setup a PCIe link for MSI.  By default, the links are in
245  * legacy interrupt mode.  We will switch them to MSI mode
246  * at the first MSI request.
247  */
248 static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr)
249 {
250         u32 val;
251
252         if (cpu_is_xlp9xx()) {
253                 val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
254                 if ((val & 0x200) == 0) {
255                         val |= 0x200;           /* MSI Interrupt enable */
256                         nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
257                 }
258         } else {
259                 val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
260                 if ((val & 0x200) == 0) {
261                         val |= 0x200;
262                         nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
263                 }
264         }
265
266         val = nlm_read_reg(lnkbase, 0x1);       /* CMD */
267         if ((val & 0x0400) == 0) {
268                 val |= 0x0400;
269                 nlm_write_reg(lnkbase, 0x1, val);
270         }
271
272         /* Update IRQ in the PCI irq reg */
273         val = nlm_read_pci_reg(lnkbase, 0xf);
274         val &= ~0x1fu;
275         val |= (1 << 8) | lirq;
276         nlm_write_pci_reg(lnkbase, 0xf, val);
277
278         /* MSI addr */
279         nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32);
280         nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff);
281
282         /* MSI cap for bridge */
283         val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP);
284         if ((val & (1 << 16)) == 0) {
285                 val |= 0xb << 16;               /* mmc32, msi enable */
286                 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val);
287         }
288 }
289
290 /*
291  * Allocate a MSI vector on a link
292  */
293 static int xlp_setup_msi(uint64_t lnkbase, int node, int link,
294         struct msi_desc *desc)
295 {
296         struct xlp_msi_data *md;
297         struct msi_msg msg;
298         unsigned long flags;
299         int msivec, irt, lirq, xirq, ret;
300         uint64_t msiaddr;
301
302         /* Get MSI data for the link */
303         lirq = PIC_PCIE_LINK_MSI_IRQ(link);
304         xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
305         md = irq_get_chip_data(xirq);
306         msiaddr = MSI_LINK_ADDR(node, link);
307
308         spin_lock_irqsave(&md->msi_lock, flags);
309         if (md->msi_alloc_mask == 0) {
310                 xlp_config_link_msi(lnkbase, lirq, msiaddr);
311                 /* switch the link IRQ to MSI range */
312                 if (cpu_is_xlp9xx())
313                         irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link);
314                 else
315                         irt = PIC_IRT_PCIE_LINK_INDEX(link);
316                 nlm_setup_pic_irq(node, lirq, lirq, irt);
317                 nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq,
318                                  node * nlm_threads_per_node(), 1 /*en */);
319         }
320
321         /* allocate a MSI vec, and tell the bridge about it */
322         msivec = fls(md->msi_alloc_mask);
323         if (msivec == XLP_MSIVEC_PER_LINK) {
324                 spin_unlock_irqrestore(&md->msi_lock, flags);
325                 return -ENOMEM;
326         }
327         md->msi_alloc_mask |= (1u << msivec);
328         spin_unlock_irqrestore(&md->msi_lock, flags);
329
330         msg.address_hi = msiaddr >> 32;
331         msg.address_lo = msiaddr & 0xffffffff;
332         msg.data = 0xc00 | msivec;
333
334         xirq = xirq + msivec;           /* msi mapped to global irq space */
335         ret = irq_set_msi_desc(xirq, desc);
336         if (ret < 0)
337                 return ret;
338
339         pci_write_msi_msg(xirq, &msg);
340         return 0;
341 }
342
343 /*
344  * Switch a link to MSI-X mode
345  */
346 static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr)
347 {
348         u32 val;
349
350         val = nlm_read_reg(lnkbase, 0x2C);
351         if ((val & 0x80000000U) == 0) {
352                 val |= 0x80000000U;
353                 nlm_write_reg(lnkbase, 0x2C, val);
354         }
355
356         if (cpu_is_xlp9xx()) {
357                 val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
358                 if ((val & 0x200) == 0) {
359                         val |= 0x200;           /* MSI Interrupt enable */
360                         nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
361                 }
362         } else {
363                 val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
364                 if ((val & 0x200) == 0) {
365                         val |= 0x200;           /* MSI Interrupt enable */
366                         nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
367                 }
368         }
369
370         val = nlm_read_reg(lnkbase, 0x1);       /* CMD */
371         if ((val & 0x0400) == 0) {
372                 val |= 0x0400;
373                 nlm_write_reg(lnkbase, 0x1, val);
374         }
375
376         /* Update IRQ in the PCI irq reg */
377         val = nlm_read_pci_reg(lnkbase, 0xf);
378         val &= ~0x1fu;
379         val |= (1 << 8) | lirq;
380         nlm_write_pci_reg(lnkbase, 0xf, val);
381
382         if (cpu_is_xlp9xx()) {
383                 /* MSI-X addresses */
384                 nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE,
385                                 msixaddr >> 8);
386                 nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT,
387                                 (msixaddr + MSI_ADDR_SZ) >> 8);
388         } else {
389                 /* MSI-X addresses */
390                 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE,
391                                 msixaddr >> 8);
392                 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT,
393                                 (msixaddr + MSI_ADDR_SZ) >> 8);
394         }
395 }
396
397 /*
398  *  Allocate a MSI-X vector
399  */
400 static int xlp_setup_msix(uint64_t lnkbase, int node, int link,
401         struct msi_desc *desc)
402 {
403         struct xlp_msi_data *md;
404         struct msi_msg msg;
405         unsigned long flags;
406         int t, msixvec, lirq, xirq, ret;
407         uint64_t msixaddr;
408
409         /* Get MSI data for the link */
410         lirq = PIC_PCIE_MSIX_IRQ(link);
411         xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
412         md = irq_get_chip_data(xirq);
413         msixaddr = MSIX_LINK_ADDR(node, link);
414
415         spin_lock_irqsave(&md->msi_lock, flags);
416         /* switch the PCIe link to MSI-X mode at the first alloc */
417         if (md->msix_alloc_mask == 0)
418                 xlp_config_link_msix(lnkbase, lirq, msixaddr);
419
420         /* allocate a MSI-X vec, and tell the bridge about it */
421         t = fls(md->msix_alloc_mask);
422         if (t == XLP_MSIXVEC_PER_LINK) {
423                 spin_unlock_irqrestore(&md->msi_lock, flags);
424                 return -ENOMEM;
425         }
426         md->msix_alloc_mask |= (1u << t);
427         spin_unlock_irqrestore(&md->msi_lock, flags);
428
429         xirq += t;
430         msixvec = nlm_irq_msixvec(xirq);
431
432         msg.address_hi = msixaddr >> 32;
433         msg.address_lo = msixaddr & 0xffffffff;
434         msg.data = 0xc00 | msixvec;
435
436         ret = irq_set_msi_desc(xirq, desc);
437         if (ret < 0)
438                 return ret;
439
440         pci_write_msi_msg(xirq, &msg);
441         return 0;
442 }
443
444 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
445 {
446         struct pci_dev *lnkdev;
447         uint64_t lnkbase;
448         int node, link, slot;
449
450         lnkdev = xlp_get_pcie_link(dev);
451         if (lnkdev == NULL) {
452                 dev_err(&dev->dev, "Could not find bridge\n");
453                 return 1;
454         }
455         slot = PCI_SLOT(lnkdev->devfn);
456         link = PCI_FUNC(lnkdev->devfn);
457         node = slot / 8;
458         lnkbase = nlm_get_pcie_base(node, link);
459
460         if (desc->msi_attrib.is_msix)
461                 return xlp_setup_msix(lnkbase, node, link, desc);
462         else
463                 return xlp_setup_msi(lnkbase, node, link, desc);
464 }
465
466 void __init xlp_init_node_msi_irqs(int node, int link)
467 {
468         struct nlm_soc_info *nodep;
469         struct xlp_msi_data *md;
470         int irq, i, irt, msixvec, val;
471
472         pr_info("[%d %d] Init node PCI IRT\n", node, link);
473         nodep = nlm_get_node(node);
474
475         /* Alloc an MSI block for the link */
476         md = kzalloc(sizeof(*md), GFP_KERNEL);
477         spin_lock_init(&md->msi_lock);
478         md->msi_enabled_mask = 0;
479         md->msi_alloc_mask = 0;
480         md->msix_alloc_mask = 0;
481         md->node = nodep;
482         md->lnkbase = nlm_get_pcie_base(node, link);
483
484         /* extended space for MSI interrupts */
485         irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
486         for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) {
487                 irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq);
488                 irq_set_chip_data(i, md);
489         }
490
491         for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) {
492                 if (cpu_is_xlp9xx()) {
493                         val = ((node * nlm_threads_per_node()) << 7 |
494                                 PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0);
495                         nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i +
496                                         (link * XLP_MSIXVEC_PER_LINK)), val);
497                 } else {
498                         /* Initialize MSI-X irts to generate one interrupt
499                          * per link
500                          */
501                         msixvec = link * XLP_MSIXVEC_PER_LINK + i;
502                         irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec);
503                         nlm_pic_init_irt(nodep->picbase, irt,
504                                         PIC_PCIE_MSIX_IRQ(link),
505                                         node * nlm_threads_per_node(), 1);
506                 }
507
508                 /* Initialize MSI-X extended irq space for the link  */
509                 irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i));
510                 irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq);
511                 irq_set_chip_data(irq, md);
512         }
513 }
514
515 void nlm_dispatch_msi(int node, int lirq)
516 {
517         struct xlp_msi_data *md;
518         int link, i, irqbase;
519         u32 status;
520
521         link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE;
522         irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
523         md = irq_get_chip_data(irqbase);
524         if (cpu_is_xlp9xx())
525                 status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) &
526                                                 md->msi_enabled_mask;
527         else
528                 status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) &
529                                                 md->msi_enabled_mask;
530         while (status) {
531                 i = __ffs(status);
532                 do_IRQ(irqbase + i);
533                 status &= status - 1;
534         }
535
536         /* Ack at eirr and PIC */
537         ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link));
538         if (cpu_is_xlp9xx())
539                 nlm_pic_ack(md->node->picbase,
540                                 PIC_9XX_IRT_PCIE_LINK_INDEX(link));
541         else
542                 nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link));
543 }
544
545 void nlm_dispatch_msix(int node, int lirq)
546 {
547         struct xlp_msi_data *md;
548         int link, i, irqbase;
549         u32 status;
550
551         link = lirq - PIC_PCIE_MSIX_IRQ_BASE;
552         irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
553         md = irq_get_chip_data(irqbase);
554         if (cpu_is_xlp9xx())
555                 status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link));
556         else
557                 status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS);
558
559         /* narrow it down to the MSI-x vectors for our link */
560         if (!cpu_is_xlp9xx())
561                 status = (status >> (link * XLP_MSIXVEC_PER_LINK)) &
562                         ((1 << XLP_MSIXVEC_PER_LINK) - 1);
563
564         while (status) {
565                 i = __ffs(status);
566                 do_IRQ(irqbase + i);
567                 status &= status - 1;
568         }
569         /* Ack at eirr and PIC */
570         ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link));
571 }