6ff1dcfc9ef1585c975d8466788b43db0b047b20
[linux-drm-fsl-dcu.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:           /* not really i_format */
165         case blezl_op:
166                 /* rt field assumed to be zero */
167                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168                         epc = epc + 4 + (insn.i_format.simmediate << 2);
169                 else
170                         epc += 8;
171                 nextpc = epc;
172                 break;
173
174         case bgtz_op:
175         case bgtzl_op:
176                 /* rt field assumed to be zero */
177                 if ((long)arch->gprs[insn.i_format.rs] > 0)
178                         epc = epc + 4 + (insn.i_format.simmediate << 2);
179                 else
180                         epc += 8;
181                 nextpc = epc;
182                 break;
183
184                 /* And now the FPA/cp1 branch instructions. */
185         case cop1_op:
186                 kvm_err("%s: unsupported cop1_op\n", __func__);
187                 break;
188         }
189
190         return nextpc;
191
192 unaligned:
193         kvm_err("%s: unaligned epc\n", __func__);
194         return nextpc;
195
196 sigill:
197         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198         return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203         unsigned long branch_pc;
204         enum emulation_result er = EMULATE_DONE;
205
206         if (cause & CAUSEF_BD) {
207                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208                 if (branch_pc == KVM_INVALID_INST) {
209                         er = EMULATE_FAIL;
210                 } else {
211                         vcpu->arch.pc = branch_pc;
212                         kvm_debug("BD update_pc(): New PC: %#lx\n",
213                                   vcpu->arch.pc);
214                 }
215         } else
216                 vcpu->arch.pc += 4;
217
218         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220         return er;
221 }
222
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:       Virtual CPU.
226  *
227  * Returns:     1 if the CP0_Count timer is disabled by either the guest
228  *              CP0_Cause.DC bit or the count_ctl.DC bit.
229  *              0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233         struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248         s64 now_ns, periods;
249         u64 delta;
250
251         now_ns = ktime_to_ns(now);
252         delta = now_ns + vcpu->arch.count_dyn_bias;
253
254         if (delta >= vcpu->arch.count_period) {
255                 /* If delta is out of safe range the bias needs adjusting */
256                 periods = div64_s64(now_ns, vcpu->arch.count_period);
257                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258                 /* Recalculate delta with new bias */
259                 delta = now_ns + vcpu->arch.count_dyn_bias;
260         }
261
262         /*
263          * We've ensured that:
264          *   delta < count_period
265          *
266          * Therefore the intermediate delta*count_hz will never overflow since
267          * at the boundary condition:
268          *   delta = count_period
269          *   delta = NSEC_PER_SEC * 2^32 / count_hz
270          *   delta * count_hz = NSEC_PER_SEC * 2^32
271          */
272         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:       Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:     Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288                 return vcpu->arch.count_resume;
289
290         return ktime_get();
291 }
292
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:       Virtual CPU.
296  * @now:        Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:     The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305         ktime_t expires;
306         int running;
307
308         /* Is the hrtimer pending? */
309         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310         if (ktime_compare(now, expires) >= 0) {
311                 /*
312                  * Cancel it while we handle it so there's no chance of
313                  * interference with the timeout handler.
314                  */
315                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316
317                 /* Nothing should be waiting on the timeout */
318                 kvm_mips_callbacks->queue_timer_int(vcpu);
319
320                 /*
321                  * Restart the timer if it was running based on the expiry time
322                  * we read, so that we don't push it back 2 periods.
323                  */
324                 if (running) {
325                         expires = ktime_add_ns(expires,
326                                                vcpu->arch.count_period);
327                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328                                       HRTIMER_MODE_ABS);
329                 }
330         }
331
332         /* Return the biased and scaled guest CP0_Count */
333         return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334 }
335
336 /**
337  * kvm_mips_read_count() - Read the current count value.
338  * @vcpu:       Virtual CPU.
339  *
340  * Read the current guest CP0_Count value, taking into account whether the timer
341  * is stopped.
342  *
343  * Returns:     The current guest CP0_Count value.
344  */
345 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346 {
347         struct mips_coproc *cop0 = vcpu->arch.cop0;
348
349         /* If count disabled just read static copy of count */
350         if (kvm_mips_count_disabled(vcpu))
351                 return kvm_read_c0_guest_count(cop0);
352
353         return kvm_mips_read_count_running(vcpu, ktime_get());
354 }
355
356 /**
357  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358  * @vcpu:       Virtual CPU.
359  * @count:      Output pointer for CP0_Count value at point of freeze.
360  *
361  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362  * at the point it was frozen. It is guaranteed that any pending interrupts at
363  * the point it was frozen are handled, and none after that point.
364  *
365  * This is useful where the time/CP0_Count is needed in the calculation of the
366  * new parameters.
367  *
368  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369  *
370  * Returns:     The ktime at the point of freeze.
371  */
372 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373                                        uint32_t *count)
374 {
375         ktime_t now;
376
377         /* stop hrtimer before finding time */
378         hrtimer_cancel(&vcpu->arch.comparecount_timer);
379         now = ktime_get();
380
381         /* find count at this point and handle pending hrtimer */
382         *count = kvm_mips_read_count_running(vcpu, now);
383
384         return now;
385 }
386
387 /**
388  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389  * @vcpu:       Virtual CPU.
390  * @now:        ktime at point of resume.
391  * @count:      CP0_Count at point of resume.
392  *
393  * Resumes the timer and updates the timer expiry based on @now and @count.
394  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395  * parameters need to be changed.
396  *
397  * It is guaranteed that a timer interrupt immediately after resume will be
398  * handled, but not if CP_Compare is exactly at @count. That case is already
399  * handled by kvm_mips_freeze_timer().
400  *
401  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402  */
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404                                     ktime_t now, uint32_t count)
405 {
406         struct mips_coproc *cop0 = vcpu->arch.cop0;
407         uint32_t compare;
408         u64 delta;
409         ktime_t expire;
410
411         /* Calculate timeout (wrap 0 to 2^32) */
412         compare = kvm_read_c0_guest_compare(cop0);
413         delta = (u64)(uint32_t)(compare - count - 1) + 1;
414         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415         expire = ktime_add_ns(now, delta);
416
417         /* Update hrtimer to use new timeout */
418         hrtimer_cancel(&vcpu->arch.comparecount_timer);
419         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420 }
421
422 /**
423  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424  * @vcpu:       Virtual CPU.
425  *
426  * Recalculates and updates the expiry time of the hrtimer. This can be used
427  * after timer parameters have been altered which do not depend on the time that
428  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429  * kvm_mips_resume_hrtimer() are used directly).
430  *
431  * It is guaranteed that no timer interrupts will be lost in the process.
432  *
433  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434  */
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436 {
437         ktime_t now;
438         uint32_t count;
439
440         /*
441          * freeze_hrtimer takes care of a timer interrupts <= count, and
442          * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443          */
444         now = kvm_mips_freeze_hrtimer(vcpu, &count);
445         kvm_mips_resume_hrtimer(vcpu, now, count);
446 }
447
448 /**
449  * kvm_mips_write_count() - Modify the count and update timer.
450  * @vcpu:       Virtual CPU.
451  * @count:      Guest CP0_Count value to set.
452  *
453  * Sets the CP0_Count value and updates the timer accordingly.
454  */
455 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456 {
457         struct mips_coproc *cop0 = vcpu->arch.cop0;
458         ktime_t now;
459
460         /* Calculate bias */
461         now = kvm_mips_count_time(vcpu);
462         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463
464         if (kvm_mips_count_disabled(vcpu))
465                 /* The timer's disabled, adjust the static count */
466                 kvm_write_c0_guest_count(cop0, count);
467         else
468                 /* Update timeout */
469                 kvm_mips_resume_hrtimer(vcpu, now, count);
470 }
471
472 /**
473  * kvm_mips_init_count() - Initialise timer.
474  * @vcpu:       Virtual CPU.
475  *
476  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477  * it going if it's enabled.
478  */
479 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480 {
481         /* 100 MHz */
482         vcpu->arch.count_hz = 100*1000*1000;
483         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484                                           vcpu->arch.count_hz);
485         vcpu->arch.count_dyn_bias = 0;
486
487         /* Starting at 0 */
488         kvm_mips_write_count(vcpu, 0);
489 }
490
491 /**
492  * kvm_mips_set_count_hz() - Update the frequency of the timer.
493  * @vcpu:       Virtual CPU.
494  * @count_hz:   Frequency of CP0_Count timer in Hz.
495  *
496  * Change the frequency of the CP0_Count timer. This is done atomically so that
497  * CP0_Count is continuous and no timer interrupt is lost.
498  *
499  * Returns:     -EINVAL if @count_hz is out of range.
500  *              0 on success.
501  */
502 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503 {
504         struct mips_coproc *cop0 = vcpu->arch.cop0;
505         int dc;
506         ktime_t now;
507         u32 count;
508
509         /* ensure the frequency is in a sensible range... */
510         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511                 return -EINVAL;
512         /* ... and has actually changed */
513         if (vcpu->arch.count_hz == count_hz)
514                 return 0;
515
516         /* Safely freeze timer so we can keep it continuous */
517         dc = kvm_mips_count_disabled(vcpu);
518         if (dc) {
519                 now = kvm_mips_count_time(vcpu);
520                 count = kvm_read_c0_guest_count(cop0);
521         } else {
522                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
523         }
524
525         /* Update the frequency */
526         vcpu->arch.count_hz = count_hz;
527         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528         vcpu->arch.count_dyn_bias = 0;
529
530         /* Calculate adjusted bias so dynamic count is unchanged */
531         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532
533         /* Update and resume hrtimer */
534         if (!dc)
535                 kvm_mips_resume_hrtimer(vcpu, now, count);
536         return 0;
537 }
538
539 /**
540  * kvm_mips_write_compare() - Modify compare and update timer.
541  * @vcpu:       Virtual CPU.
542  * @compare:    New CP0_Compare value.
543  *
544  * Update CP0_Compare to a new value and update the timeout.
545  */
546 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547 {
548         struct mips_coproc *cop0 = vcpu->arch.cop0;
549
550         /* if unchanged, must just be an ack */
551         if (kvm_read_c0_guest_compare(cop0) == compare)
552                 return;
553
554         /* Update compare */
555         kvm_write_c0_guest_compare(cop0, compare);
556
557         /* Update timeout if count enabled */
558         if (!kvm_mips_count_disabled(vcpu))
559                 kvm_mips_update_hrtimer(vcpu);
560 }
561
562 /**
563  * kvm_mips_count_disable() - Disable count.
564  * @vcpu:       Virtual CPU.
565  *
566  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567  * time will be handled but not after.
568  *
569  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570  * count_ctl.DC has been set (count disabled).
571  *
572  * Returns:     The time that the timer was stopped.
573  */
574 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575 {
576         struct mips_coproc *cop0 = vcpu->arch.cop0;
577         uint32_t count;
578         ktime_t now;
579
580         /* Stop hrtimer */
581         hrtimer_cancel(&vcpu->arch.comparecount_timer);
582
583         /* Set the static count from the dynamic count, handling pending TI */
584         now = ktime_get();
585         count = kvm_mips_read_count_running(vcpu, now);
586         kvm_write_c0_guest_count(cop0, count);
587
588         return now;
589 }
590
591 /**
592  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593  * @vcpu:       Virtual CPU.
594  *
595  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596  * before the final stop time will be handled if the timer isn't disabled by
597  * count_ctl.DC, but not after.
598  *
599  * Assumes CP0_Cause.DC is clear (count enabled).
600  */
601 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602 {
603         struct mips_coproc *cop0 = vcpu->arch.cop0;
604
605         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607                 kvm_mips_count_disable(vcpu);
608 }
609
610 /**
611  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612  * @vcpu:       Virtual CPU.
613  *
614  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616  * potentially before even returning, so the caller should be careful with
617  * ordering of CP0_Cause modifications so as not to lose it.
618  *
619  * Assumes CP0_Cause.DC is set (count disabled).
620  */
621 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622 {
623         struct mips_coproc *cop0 = vcpu->arch.cop0;
624         uint32_t count;
625
626         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627
628         /*
629          * Set the dynamic count to match the static count.
630          * This starts the hrtimer if count_ctl.DC allows it.
631          * Otherwise it conveniently updates the biases.
632          */
633         count = kvm_read_c0_guest_count(cop0);
634         kvm_mips_write_count(vcpu, count);
635 }
636
637 /**
638  * kvm_mips_set_count_ctl() - Update the count control KVM register.
639  * @vcpu:       Virtual CPU.
640  * @count_ctl:  Count control register new value.
641  *
642  * Set the count control KVM register. The timer is updated accordingly.
643  *
644  * Returns:     -EINVAL if reserved bits are set.
645  *              0 on success.
646  */
647 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648 {
649         struct mips_coproc *cop0 = vcpu->arch.cop0;
650         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651         s64 delta;
652         ktime_t expire, now;
653         uint32_t count, compare;
654
655         /* Only allow defined bits to be changed */
656         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657                 return -EINVAL;
658
659         /* Apply new value */
660         vcpu->arch.count_ctl = count_ctl;
661
662         /* Master CP0_Count disable */
663         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664                 /* Is CP0_Cause.DC already disabling CP0_Count? */
665                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667                                 /* Just record the current time */
668                                 vcpu->arch.count_resume = ktime_get();
669                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670                         /* disable timer and record current time */
671                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672                 } else {
673                         /*
674                          * Calculate timeout relative to static count at resume
675                          * time (wrap 0 to 2^32).
676                          */
677                         count = kvm_read_c0_guest_count(cop0);
678                         compare = kvm_read_c0_guest_compare(cop0);
679                         delta = (u64)(uint32_t)(compare - count - 1) + 1;
680                         delta = div_u64(delta * NSEC_PER_SEC,
681                                         vcpu->arch.count_hz);
682                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683
684                         /* Handle pending interrupt */
685                         now = ktime_get();
686                         if (ktime_compare(now, expire) >= 0)
687                                 /* Nothing should be waiting on the timeout */
688                                 kvm_mips_callbacks->queue_timer_int(vcpu);
689
690                         /* Resume hrtimer without changing bias */
691                         count = kvm_mips_read_count_running(vcpu, now);
692                         kvm_mips_resume_hrtimer(vcpu, now, count);
693                 }
694         }
695
696         return 0;
697 }
698
699 /**
700  * kvm_mips_set_count_resume() - Update the count resume KVM register.
701  * @vcpu:               Virtual CPU.
702  * @count_resume:       Count resume register new value.
703  *
704  * Set the count resume KVM register.
705  *
706  * Returns:     -EINVAL if out of valid range (0..now).
707  *              0 on success.
708  */
709 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710 {
711         /*
712          * It doesn't make sense for the resume time to be in the future, as it
713          * would be possible for the next interrupt to be more than a full
714          * period in the future.
715          */
716         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717                 return -EINVAL;
718
719         vcpu->arch.count_resume = ns_to_ktime(count_resume);
720         return 0;
721 }
722
723 /**
724  * kvm_mips_count_timeout() - Push timer forward on timeout.
725  * @vcpu:       Virtual CPU.
726  *
727  * Handle an hrtimer event by push the hrtimer forward a period.
728  *
729  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
730  */
731 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732 {
733         /* Add the Count period to the current expiry time */
734         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735                                vcpu->arch.count_period);
736         return HRTIMER_RESTART;
737 }
738
739 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740 {
741         struct mips_coproc *cop0 = vcpu->arch.cop0;
742         enum emulation_result er = EMULATE_DONE;
743
744         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746                           kvm_read_c0_guest_epc(cop0));
747                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
748                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749
750         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
752                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753         } else {
754                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755                         vcpu->arch.pc);
756                 er = EMULATE_FAIL;
757         }
758
759         return er;
760 }
761
762 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763 {
764         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765                   vcpu->arch.pending_exceptions);
766
767         ++vcpu->stat.wait_exits;
768         trace_kvm_exit(vcpu, WAIT_EXITS);
769         if (!vcpu->arch.pending_exceptions) {
770                 vcpu->arch.wait = 1;
771                 kvm_vcpu_block(vcpu);
772
773                 /*
774                  * We we are runnable, then definitely go off to user space to
775                  * check if any I/O interrupts are pending.
776                  */
777                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780                 }
781         }
782
783         return EMULATE_DONE;
784 }
785
786 /*
787  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788  * we can catch this, if things ever change
789  */
790 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791 {
792         struct mips_coproc *cop0 = vcpu->arch.cop0;
793         uint32_t pc = vcpu->arch.pc;
794
795         kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796         return EMULATE_FAIL;
797 }
798
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801 {
802         struct mips_coproc *cop0 = vcpu->arch.cop0;
803         int index = kvm_read_c0_guest_index(cop0);
804         struct kvm_mips_tlb *tlb = NULL;
805         uint32_t pc = vcpu->arch.pc;
806
807         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808                 kvm_debug("%s: illegal index: %d\n", __func__, index);
809                 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810                           pc, index, kvm_read_c0_guest_entryhi(cop0),
811                           kvm_read_c0_guest_entrylo0(cop0),
812                           kvm_read_c0_guest_entrylo1(cop0),
813                           kvm_read_c0_guest_pagemask(cop0));
814                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815         }
816
817         tlb = &vcpu->arch.guest_tlb[index];
818         /*
819          * Probe the shadow host TLB for the entry being overwritten, if one
820          * matches, invalidate it
821          */
822         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823
824         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828
829         kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830                   pc, index, kvm_read_c0_guest_entryhi(cop0),
831                   kvm_read_c0_guest_entrylo0(cop0),
832                   kvm_read_c0_guest_entrylo1(cop0),
833                   kvm_read_c0_guest_pagemask(cop0));
834
835         return EMULATE_DONE;
836 }
837
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840 {
841         struct mips_coproc *cop0 = vcpu->arch.cop0;
842         struct kvm_mips_tlb *tlb = NULL;
843         uint32_t pc = vcpu->arch.pc;
844         int index;
845
846         get_random_bytes(&index, sizeof(index));
847         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848
849         tlb = &vcpu->arch.guest_tlb[index];
850
851         /*
852          * Probe the shadow host TLB for the entry being overwritten, if one
853          * matches, invalidate it
854          */
855         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
856
857         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
858         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
859         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
860         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
861
862         kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863                   pc, index, kvm_read_c0_guest_entryhi(cop0),
864                   kvm_read_c0_guest_entrylo0(cop0),
865                   kvm_read_c0_guest_entrylo1(cop0));
866
867         return EMULATE_DONE;
868 }
869
870 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
871 {
872         struct mips_coproc *cop0 = vcpu->arch.cop0;
873         long entryhi = kvm_read_c0_guest_entryhi(cop0);
874         uint32_t pc = vcpu->arch.pc;
875         int index = -1;
876
877         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
878
879         kvm_write_c0_guest_index(cop0, index);
880
881         kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
882                   index);
883
884         return EMULATE_DONE;
885 }
886
887 /**
888  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
889  * @vcpu:       Virtual CPU.
890  *
891  * Finds the mask of bits which are writable in the guest's Config1 CP0
892  * register, by userland (currently read-only to the guest).
893  */
894 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
895 {
896         unsigned int mask = 0;
897
898         /* Permit FPU to be present if FPU is supported */
899         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
900                 mask |= MIPS_CONF1_FP;
901
902         return mask;
903 }
904
905 /**
906  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
907  * @vcpu:       Virtual CPU.
908  *
909  * Finds the mask of bits which are writable in the guest's Config3 CP0
910  * register, by userland (currently read-only to the guest).
911  */
912 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
913 {
914         /* Config4 is optional */
915         unsigned int mask = MIPS_CONF_M;
916
917         /* Permit MSA to be present if MSA is supported */
918         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
919                 mask |= MIPS_CONF3_MSA;
920
921         return mask;
922 }
923
924 /**
925  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
926  * @vcpu:       Virtual CPU.
927  *
928  * Finds the mask of bits which are writable in the guest's Config4 CP0
929  * register, by userland (currently read-only to the guest).
930  */
931 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
932 {
933         /* Config5 is optional */
934         return MIPS_CONF_M;
935 }
936
937 /**
938  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
939  * @vcpu:       Virtual CPU.
940  *
941  * Finds the mask of bits which are writable in the guest's Config5 CP0
942  * register, by the guest itself.
943  */
944 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
945 {
946         unsigned int mask = 0;
947
948         /* Permit MSAEn changes if MSA supported and enabled */
949         if (kvm_mips_guest_has_msa(&vcpu->arch))
950                 mask |= MIPS_CONF5_MSAEN;
951
952         /*
953          * Permit guest FPU mode changes if FPU is enabled and the relevant
954          * feature exists according to FIR register.
955          */
956         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
957                 if (cpu_has_fre)
958                         mask |= MIPS_CONF5_FRE;
959                 /* We don't support UFR or UFE */
960         }
961
962         return mask;
963 }
964
965 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
966                                            uint32_t cause, struct kvm_run *run,
967                                            struct kvm_vcpu *vcpu)
968 {
969         struct mips_coproc *cop0 = vcpu->arch.cop0;
970         enum emulation_result er = EMULATE_DONE;
971         int32_t rt, rd, copz, sel, co_bit, op;
972         uint32_t pc = vcpu->arch.pc;
973         unsigned long curr_pc;
974
975         /*
976          * Update PC and hold onto current PC in case there is
977          * an error and we want to rollback the PC
978          */
979         curr_pc = vcpu->arch.pc;
980         er = update_pc(vcpu, cause);
981         if (er == EMULATE_FAIL)
982                 return er;
983
984         copz = (inst >> 21) & 0x1f;
985         rt = (inst >> 16) & 0x1f;
986         rd = (inst >> 11) & 0x1f;
987         sel = inst & 0x7;
988         co_bit = (inst >> 25) & 1;
989
990         if (co_bit) {
991                 op = (inst) & 0xff;
992
993                 switch (op) {
994                 case tlbr_op:   /*  Read indexed TLB entry  */
995                         er = kvm_mips_emul_tlbr(vcpu);
996                         break;
997                 case tlbwi_op:  /*  Write indexed  */
998                         er = kvm_mips_emul_tlbwi(vcpu);
999                         break;
1000                 case tlbwr_op:  /*  Write random  */
1001                         er = kvm_mips_emul_tlbwr(vcpu);
1002                         break;
1003                 case tlbp_op:   /* TLB Probe */
1004                         er = kvm_mips_emul_tlbp(vcpu);
1005                         break;
1006                 case rfe_op:
1007                         kvm_err("!!!COP0_RFE!!!\n");
1008                         break;
1009                 case eret_op:
1010                         er = kvm_mips_emul_eret(vcpu);
1011                         goto dont_update_pc;
1012                         break;
1013                 case wait_op:
1014                         er = kvm_mips_emul_wait(vcpu);
1015                         break;
1016                 }
1017         } else {
1018                 switch (copz) {
1019                 case mfc_op:
1020 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1021                         cop0->stat[rd][sel]++;
1022 #endif
1023                         /* Get reg */
1024                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1025                                 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1026                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1027                                 vcpu->arch.gprs[rt] = 0x0;
1028 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1029                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1030 #endif
1031                         } else {
1032                                 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1033
1034 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1035                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1036 #endif
1037                         }
1038
1039                         kvm_debug
1040                             ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1041                              pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1042
1043                         break;
1044
1045                 case dmfc_op:
1046                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1047                         break;
1048
1049                 case mtc_op:
1050 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1051                         cop0->stat[rd][sel]++;
1052 #endif
1053                         if ((rd == MIPS_CP0_TLB_INDEX)
1054                             && (vcpu->arch.gprs[rt] >=
1055                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1056                                 kvm_err("Invalid TLB Index: %ld",
1057                                         vcpu->arch.gprs[rt]);
1058                                 er = EMULATE_FAIL;
1059                                 break;
1060                         }
1061 #define C0_EBASE_CORE_MASK 0xff
1062                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1063                                 /* Preserve CORE number */
1064                                 kvm_change_c0_guest_ebase(cop0,
1065                                                           ~(C0_EBASE_CORE_MASK),
1066                                                           vcpu->arch.gprs[rt]);
1067                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1068                                         kvm_read_c0_guest_ebase(cop0));
1069                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1070                                 uint32_t nasid =
1071                                         vcpu->arch.gprs[rt] & ASID_MASK;
1072                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1073                                     ((kvm_read_c0_guest_entryhi(cop0) &
1074                                       ASID_MASK) != nasid)) {
1075                                         kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1076                                                 kvm_read_c0_guest_entryhi(cop0)
1077                                                 & ASID_MASK,
1078                                                 vcpu->arch.gprs[rt]
1079                                                 & ASID_MASK);
1080
1081                                         /* Blow away the shadow host TLBs */
1082                                         kvm_mips_flush_host_tlb(1);
1083                                 }
1084                                 kvm_write_c0_guest_entryhi(cop0,
1085                                                            vcpu->arch.gprs[rt]);
1086                         }
1087                         /* Are we writing to COUNT */
1088                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1089                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1090                                 goto done;
1091                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1092                                 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1093                                           pc, kvm_read_c0_guest_compare(cop0),
1094                                           vcpu->arch.gprs[rt]);
1095
1096                                 /* If we are writing to COMPARE */
1097                                 /* Clear pending timer interrupt, if any */
1098                                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
1099                                 kvm_mips_write_compare(vcpu,
1100                                                        vcpu->arch.gprs[rt]);
1101                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1102                                 unsigned int old_val, val, change;
1103
1104                                 old_val = kvm_read_c0_guest_status(cop0);
1105                                 val = vcpu->arch.gprs[rt];
1106                                 change = val ^ old_val;
1107
1108                                 /* Make sure that the NMI bit is never set */
1109                                 val &= ~ST0_NMI;
1110
1111                                 /*
1112                                  * Don't allow CU1 or FR to be set unless FPU
1113                                  * capability enabled and exists in guest
1114                                  * configuration.
1115                                  */
1116                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1117                                         val &= ~(ST0_CU1 | ST0_FR);
1118
1119                                 /*
1120                                  * Also don't allow FR to be set if host doesn't
1121                                  * support it.
1122                                  */
1123                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1124                                         val &= ~ST0_FR;
1125
1126
1127                                 /* Handle changes in FPU mode */
1128                                 preempt_disable();
1129
1130                                 /*
1131                                  * FPU and Vector register state is made
1132                                  * UNPREDICTABLE by a change of FR, so don't
1133                                  * even bother saving it.
1134                                  */
1135                                 if (change & ST0_FR)
1136                                         kvm_drop_fpu(vcpu);
1137
1138                                 /*
1139                                  * If MSA state is already live, it is undefined
1140                                  * how it interacts with FR=0 FPU state, and we
1141                                  * don't want to hit reserved instruction
1142                                  * exceptions trying to save the MSA state later
1143                                  * when CU=1 && FR=1, so play it safe and save
1144                                  * it first.
1145                                  */
1146                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1147                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1148                                         kvm_lose_fpu(vcpu);
1149
1150                                 /*
1151                                  * Propagate CU1 (FPU enable) changes
1152                                  * immediately if the FPU context is already
1153                                  * loaded. When disabling we leave the context
1154                                  * loaded so it can be quickly enabled again in
1155                                  * the near future.
1156                                  */
1157                                 if (change & ST0_CU1 &&
1158                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1159                                         change_c0_status(ST0_CU1, val);
1160
1161                                 preempt_enable();
1162
1163                                 kvm_write_c0_guest_status(cop0, val);
1164
1165 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1166                                 /*
1167                                  * If FPU present, we need CU1/FR bits to take
1168                                  * effect fairly soon.
1169                                  */
1170                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1172 #endif
1173                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1174                                 unsigned int old_val, val, change, wrmask;
1175
1176                                 old_val = kvm_read_c0_guest_config5(cop0);
1177                                 val = vcpu->arch.gprs[rt];
1178
1179                                 /* Only a few bits are writable in Config5 */
1180                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1181                                 change = (val ^ old_val) & wrmask;
1182                                 val = old_val ^ change;
1183
1184
1185                                 /* Handle changes in FPU/MSA modes */
1186                                 preempt_disable();
1187
1188                                 /*
1189                                  * Propagate FRE changes immediately if the FPU
1190                                  * context is already loaded.
1191                                  */
1192                                 if (change & MIPS_CONF5_FRE &&
1193                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1194                                         change_c0_config5(MIPS_CONF5_FRE, val);
1195
1196                                 /*
1197                                  * Propagate MSAEn changes immediately if the
1198                                  * MSA context is already loaded. When disabling
1199                                  * we leave the context loaded so it can be
1200                                  * quickly enabled again in the near future.
1201                                  */
1202                                 if (change & MIPS_CONF5_MSAEN &&
1203                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1204                                         change_c0_config5(MIPS_CONF5_MSAEN,
1205                                                           val);
1206
1207                                 preempt_enable();
1208
1209                                 kvm_write_c0_guest_config5(cop0, val);
1210                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1211                                 uint32_t old_cause, new_cause;
1212
1213                                 old_cause = kvm_read_c0_guest_cause(cop0);
1214                                 new_cause = vcpu->arch.gprs[rt];
1215                                 /* Update R/W bits */
1216                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1217                                                           new_cause);
1218                                 /* DC bit enabling/disabling timer? */
1219                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1220                                         if (new_cause & CAUSEF_DC)
1221                                                 kvm_mips_count_disable_cause(vcpu);
1222                                         else
1223                                                 kvm_mips_count_enable_cause(vcpu);
1224                                 }
1225                         } else {
1226                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1227 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1228                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1229 #endif
1230                         }
1231
1232                         kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1233                                   rd, sel, cop0->reg[rd][sel]);
1234                         break;
1235
1236                 case dmtc_op:
1237                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1238                                 vcpu->arch.pc, rt, rd, sel);
1239                         er = EMULATE_FAIL;
1240                         break;
1241
1242                 case mfmcz_op:
1243 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1244                         cop0->stat[MIPS_CP0_STATUS][0]++;
1245 #endif
1246                         if (rt != 0)
1247                                 vcpu->arch.gprs[rt] =
1248                                     kvm_read_c0_guest_status(cop0);
1249                         /* EI */
1250                         if (inst & 0x20) {
1251                                 kvm_debug("[%#lx] mfmcz_op: EI\n",
1252                                           vcpu->arch.pc);
1253                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1254                         } else {
1255                                 kvm_debug("[%#lx] mfmcz_op: DI\n",
1256                                           vcpu->arch.pc);
1257                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1258                         }
1259
1260                         break;
1261
1262                 case wrpgpr_op:
1263                         {
1264                                 uint32_t css =
1265                                     cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1266                                 uint32_t pss =
1267                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1268                                 /*
1269                                  * We don't support any shadow register sets, so
1270                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1271                                  */
1272                                 if (css || pss) {
1273                                         er = EMULATE_FAIL;
1274                                         break;
1275                                 }
1276                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1277                                           vcpu->arch.gprs[rt]);
1278                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1279                         }
1280                         break;
1281                 default:
1282                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1283                                 vcpu->arch.pc, copz);
1284                         er = EMULATE_FAIL;
1285                         break;
1286                 }
1287         }
1288
1289 done:
1290         /* Rollback PC only if emulation was unsuccessful */
1291         if (er == EMULATE_FAIL)
1292                 vcpu->arch.pc = curr_pc;
1293
1294 dont_update_pc:
1295         /*
1296          * This is for special instructions whose emulation
1297          * updates the PC, so do not overwrite the PC under
1298          * any circumstances
1299          */
1300
1301         return er;
1302 }
1303
1304 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1305                                              struct kvm_run *run,
1306                                              struct kvm_vcpu *vcpu)
1307 {
1308         enum emulation_result er = EMULATE_DO_MMIO;
1309         int32_t op, base, rt, offset;
1310         uint32_t bytes;
1311         void *data = run->mmio.data;
1312         unsigned long curr_pc;
1313
1314         /*
1315          * Update PC and hold onto current PC in case there is
1316          * an error and we want to rollback the PC
1317          */
1318         curr_pc = vcpu->arch.pc;
1319         er = update_pc(vcpu, cause);
1320         if (er == EMULATE_FAIL)
1321                 return er;
1322
1323         rt = (inst >> 16) & 0x1f;
1324         base = (inst >> 21) & 0x1f;
1325         offset = inst & 0xffff;
1326         op = (inst >> 26) & 0x3f;
1327
1328         switch (op) {
1329         case sb_op:
1330                 bytes = 1;
1331                 if (bytes > sizeof(run->mmio.data)) {
1332                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1333                                run->mmio.len);
1334                 }
1335                 run->mmio.phys_addr =
1336                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1337                                                    host_cp0_badvaddr);
1338                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1339                         er = EMULATE_FAIL;
1340                         break;
1341                 }
1342                 run->mmio.len = bytes;
1343                 run->mmio.is_write = 1;
1344                 vcpu->mmio_needed = 1;
1345                 vcpu->mmio_is_write = 1;
1346                 *(u8 *) data = vcpu->arch.gprs[rt];
1347                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1348                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1349                           *(uint8_t *) data);
1350
1351                 break;
1352
1353         case sw_op:
1354                 bytes = 4;
1355                 if (bytes > sizeof(run->mmio.data)) {
1356                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1357                                run->mmio.len);
1358                 }
1359                 run->mmio.phys_addr =
1360                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1361                                                    host_cp0_badvaddr);
1362                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1363                         er = EMULATE_FAIL;
1364                         break;
1365                 }
1366
1367                 run->mmio.len = bytes;
1368                 run->mmio.is_write = 1;
1369                 vcpu->mmio_needed = 1;
1370                 vcpu->mmio_is_write = 1;
1371                 *(uint32_t *) data = vcpu->arch.gprs[rt];
1372
1373                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1374                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1375                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1376                 break;
1377
1378         case sh_op:
1379                 bytes = 2;
1380                 if (bytes > sizeof(run->mmio.data)) {
1381                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1382                                run->mmio.len);
1383                 }
1384                 run->mmio.phys_addr =
1385                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1386                                                    host_cp0_badvaddr);
1387                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1388                         er = EMULATE_FAIL;
1389                         break;
1390                 }
1391
1392                 run->mmio.len = bytes;
1393                 run->mmio.is_write = 1;
1394                 vcpu->mmio_needed = 1;
1395                 vcpu->mmio_is_write = 1;
1396                 *(uint16_t *) data = vcpu->arch.gprs[rt];
1397
1398                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1399                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1400                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1401                 break;
1402
1403         default:
1404                 kvm_err("Store not yet supported");
1405                 er = EMULATE_FAIL;
1406                 break;
1407         }
1408
1409         /* Rollback PC if emulation was unsuccessful */
1410         if (er == EMULATE_FAIL)
1411                 vcpu->arch.pc = curr_pc;
1412
1413         return er;
1414 }
1415
1416 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1417                                             struct kvm_run *run,
1418                                             struct kvm_vcpu *vcpu)
1419 {
1420         enum emulation_result er = EMULATE_DO_MMIO;
1421         int32_t op, base, rt, offset;
1422         uint32_t bytes;
1423
1424         rt = (inst >> 16) & 0x1f;
1425         base = (inst >> 21) & 0x1f;
1426         offset = inst & 0xffff;
1427         op = (inst >> 26) & 0x3f;
1428
1429         vcpu->arch.pending_load_cause = cause;
1430         vcpu->arch.io_gpr = rt;
1431
1432         switch (op) {
1433         case lw_op:
1434                 bytes = 4;
1435                 if (bytes > sizeof(run->mmio.data)) {
1436                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1437                                run->mmio.len);
1438                         er = EMULATE_FAIL;
1439                         break;
1440                 }
1441                 run->mmio.phys_addr =
1442                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1443                                                    host_cp0_badvaddr);
1444                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1445                         er = EMULATE_FAIL;
1446                         break;
1447                 }
1448
1449                 run->mmio.len = bytes;
1450                 run->mmio.is_write = 0;
1451                 vcpu->mmio_needed = 1;
1452                 vcpu->mmio_is_write = 0;
1453                 break;
1454
1455         case lh_op:
1456         case lhu_op:
1457                 bytes = 2;
1458                 if (bytes > sizeof(run->mmio.data)) {
1459                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1460                                run->mmio.len);
1461                         er = EMULATE_FAIL;
1462                         break;
1463                 }
1464                 run->mmio.phys_addr =
1465                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1466                                                    host_cp0_badvaddr);
1467                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1468                         er = EMULATE_FAIL;
1469                         break;
1470                 }
1471
1472                 run->mmio.len = bytes;
1473                 run->mmio.is_write = 0;
1474                 vcpu->mmio_needed = 1;
1475                 vcpu->mmio_is_write = 0;
1476
1477                 if (op == lh_op)
1478                         vcpu->mmio_needed = 2;
1479                 else
1480                         vcpu->mmio_needed = 1;
1481
1482                 break;
1483
1484         case lbu_op:
1485         case lb_op:
1486                 bytes = 1;
1487                 if (bytes > sizeof(run->mmio.data)) {
1488                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1489                                run->mmio.len);
1490                         er = EMULATE_FAIL;
1491                         break;
1492                 }
1493                 run->mmio.phys_addr =
1494                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1495                                                    host_cp0_badvaddr);
1496                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1497                         er = EMULATE_FAIL;
1498                         break;
1499                 }
1500
1501                 run->mmio.len = bytes;
1502                 run->mmio.is_write = 0;
1503                 vcpu->mmio_is_write = 0;
1504
1505                 if (op == lb_op)
1506                         vcpu->mmio_needed = 2;
1507                 else
1508                         vcpu->mmio_needed = 1;
1509
1510                 break;
1511
1512         default:
1513                 kvm_err("Load not yet supported");
1514                 er = EMULATE_FAIL;
1515                 break;
1516         }
1517
1518         return er;
1519 }
1520
1521 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1522 {
1523         unsigned long offset = (va & ~PAGE_MASK);
1524         struct kvm *kvm = vcpu->kvm;
1525         unsigned long pa;
1526         gfn_t gfn;
1527         pfn_t pfn;
1528
1529         gfn = va >> PAGE_SHIFT;
1530
1531         if (gfn >= kvm->arch.guest_pmap_npages) {
1532                 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1533                 kvm_mips_dump_host_tlbs();
1534                 kvm_arch_vcpu_dump_regs(vcpu);
1535                 return -1;
1536         }
1537         pfn = kvm->arch.guest_pmap[gfn];
1538         pa = (pfn << PAGE_SHIFT) | offset;
1539
1540         kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1541                   CKSEG0ADDR(pa));
1542
1543         local_flush_icache_range(CKSEG0ADDR(pa), 32);
1544         return 0;
1545 }
1546
1547 #define MIPS_CACHE_OP_INDEX_INV         0x0
1548 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1549 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1550 #define MIPS_CACHE_OP_IMP               0x3
1551 #define MIPS_CACHE_OP_HIT_INV           0x4
1552 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1553 #define MIPS_CACHE_OP_HIT_HB            0x6
1554 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1555
1556 #define MIPS_CACHE_ICACHE               0x0
1557 #define MIPS_CACHE_DCACHE               0x1
1558 #define MIPS_CACHE_SEC                  0x3
1559
1560 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1561                                              uint32_t cause,
1562                                              struct kvm_run *run,
1563                                              struct kvm_vcpu *vcpu)
1564 {
1565         struct mips_coproc *cop0 = vcpu->arch.cop0;
1566         enum emulation_result er = EMULATE_DONE;
1567         int32_t offset, cache, op_inst, op, base;
1568         struct kvm_vcpu_arch *arch = &vcpu->arch;
1569         unsigned long va;
1570         unsigned long curr_pc;
1571
1572         /*
1573          * Update PC and hold onto current PC in case there is
1574          * an error and we want to rollback the PC
1575          */
1576         curr_pc = vcpu->arch.pc;
1577         er = update_pc(vcpu, cause);
1578         if (er == EMULATE_FAIL)
1579                 return er;
1580
1581         base = (inst >> 21) & 0x1f;
1582         op_inst = (inst >> 16) & 0x1f;
1583         offset = (int16_t)inst;
1584         cache = (inst >> 16) & 0x3;
1585         op = (inst >> 18) & 0x7;
1586
1587         va = arch->gprs[base] + offset;
1588
1589         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1590                   cache, op, base, arch->gprs[base], offset);
1591
1592         /*
1593          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1594          * invalidate the caches entirely by stepping through all the
1595          * ways/indexes
1596          */
1597         if (op == MIPS_CACHE_OP_INDEX_INV) {
1598                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1599                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1600                           arch->gprs[base], offset);
1601
1602                 if (cache == MIPS_CACHE_DCACHE)
1603                         r4k_blast_dcache();
1604                 else if (cache == MIPS_CACHE_ICACHE)
1605                         r4k_blast_icache();
1606                 else {
1607                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1608                                 __func__);
1609                         return EMULATE_FAIL;
1610                 }
1611
1612 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1613                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1614 #endif
1615                 goto done;
1616         }
1617
1618         preempt_disable();
1619         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1620                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1621                         kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1622         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1623                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1624                 int index;
1625
1626                 /* If an entry already exists then skip */
1627                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1628                         goto skip_fault;
1629
1630                 /*
1631                  * If address not in the guest TLB, then give the guest a fault,
1632                  * the resulting handler will do the right thing
1633                  */
1634                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1635                                                   (kvm_read_c0_guest_entryhi
1636                                                    (cop0) & ASID_MASK));
1637
1638                 if (index < 0) {
1639                         vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1640                         vcpu->arch.host_cp0_badvaddr = va;
1641                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1642                                                          vcpu);
1643                         preempt_enable();
1644                         goto dont_update_pc;
1645                 } else {
1646                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1647                         /*
1648                          * Check if the entry is valid, if not then setup a TLB
1649                          * invalid exception to the guest
1650                          */
1651                         if (!TLB_IS_VALID(*tlb, va)) {
1652                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1653                                                                 run, vcpu);
1654                                 preempt_enable();
1655                                 goto dont_update_pc;
1656                         } else {
1657                                 /*
1658                                  * We fault an entry from the guest tlb to the
1659                                  * shadow host TLB
1660                                  */
1661                                 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1662                                                                      NULL,
1663                                                                      NULL);
1664                         }
1665                 }
1666         } else {
1667                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1668                         cache, op, base, arch->gprs[base], offset);
1669                 er = EMULATE_FAIL;
1670                 preempt_enable();
1671                 goto dont_update_pc;
1672
1673         }
1674
1675 skip_fault:
1676         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1677         if (cache == MIPS_CACHE_DCACHE
1678             && (op == MIPS_CACHE_OP_FILL_WB_INV
1679                 || op == MIPS_CACHE_OP_HIT_INV)) {
1680                 flush_dcache_line(va);
1681
1682 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1683                 /*
1684                  * Replace the CACHE instruction, with a SYNCI, not the same,
1685                  * but avoids a trap
1686                  */
1687                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1688 #endif
1689         } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1690                 flush_dcache_line(va);
1691                 flush_icache_line(va);
1692
1693 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1694                 /* Replace the CACHE instruction, with a SYNCI */
1695                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1696 #endif
1697         } else {
1698                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1699                         cache, op, base, arch->gprs[base], offset);
1700                 er = EMULATE_FAIL;
1701                 preempt_enable();
1702                 goto dont_update_pc;
1703         }
1704
1705         preempt_enable();
1706
1707 dont_update_pc:
1708         /* Rollback PC */
1709         vcpu->arch.pc = curr_pc;
1710 done:
1711         return er;
1712 }
1713
1714 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1715                                             struct kvm_run *run,
1716                                             struct kvm_vcpu *vcpu)
1717 {
1718         enum emulation_result er = EMULATE_DONE;
1719         uint32_t inst;
1720
1721         /* Fetch the instruction. */
1722         if (cause & CAUSEF_BD)
1723                 opc += 1;
1724
1725         inst = kvm_get_inst(opc, vcpu);
1726
1727         switch (((union mips_instruction)inst).r_format.opcode) {
1728         case cop0_op:
1729                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1730                 break;
1731         case sb_op:
1732         case sh_op:
1733         case sw_op:
1734                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1735                 break;
1736         case lb_op:
1737         case lbu_op:
1738         case lhu_op:
1739         case lh_op:
1740         case lw_op:
1741                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1742                 break;
1743
1744         case cache_op:
1745                 ++vcpu->stat.cache_exits;
1746                 trace_kvm_exit(vcpu, CACHE_EXITS);
1747                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1748                 break;
1749
1750         default:
1751                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1752                         inst);
1753                 kvm_arch_vcpu_dump_regs(vcpu);
1754                 er = EMULATE_FAIL;
1755                 break;
1756         }
1757
1758         return er;
1759 }
1760
1761 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1762                                                uint32_t *opc,
1763                                                struct kvm_run *run,
1764                                                struct kvm_vcpu *vcpu)
1765 {
1766         struct mips_coproc *cop0 = vcpu->arch.cop0;
1767         struct kvm_vcpu_arch *arch = &vcpu->arch;
1768         enum emulation_result er = EMULATE_DONE;
1769
1770         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1771                 /* save old pc */
1772                 kvm_write_c0_guest_epc(cop0, arch->pc);
1773                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1774
1775                 if (cause & CAUSEF_BD)
1776                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1777                 else
1778                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1779
1780                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1781
1782                 kvm_change_c0_guest_cause(cop0, (0xff),
1783                                           (EXCCODE_SYS << CAUSEB_EXCCODE));
1784
1785                 /* Set PC to the exception entry point */
1786                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1787
1788         } else {
1789                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1790                 er = EMULATE_FAIL;
1791         }
1792
1793         return er;
1794 }
1795
1796 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1797                                                   uint32_t *opc,
1798                                                   struct kvm_run *run,
1799                                                   struct kvm_vcpu *vcpu)
1800 {
1801         struct mips_coproc *cop0 = vcpu->arch.cop0;
1802         struct kvm_vcpu_arch *arch = &vcpu->arch;
1803         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1804                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1805
1806         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1807                 /* save old pc */
1808                 kvm_write_c0_guest_epc(cop0, arch->pc);
1809                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1810
1811                 if (cause & CAUSEF_BD)
1812                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1813                 else
1814                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1815
1816                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1817                           arch->pc);
1818
1819                 /* set pc to the exception entry point */
1820                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1821
1822         } else {
1823                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1824                           arch->pc);
1825
1826                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1827         }
1828
1829         kvm_change_c0_guest_cause(cop0, (0xff),
1830                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1831
1832         /* setup badvaddr, context and entryhi registers for the guest */
1833         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1834         /* XXXKYMA: is the context register used by linux??? */
1835         kvm_write_c0_guest_entryhi(cop0, entryhi);
1836         /* Blow away the shadow host TLBs */
1837         kvm_mips_flush_host_tlb(1);
1838
1839         return EMULATE_DONE;
1840 }
1841
1842 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1843                                                  uint32_t *opc,
1844                                                  struct kvm_run *run,
1845                                                  struct kvm_vcpu *vcpu)
1846 {
1847         struct mips_coproc *cop0 = vcpu->arch.cop0;
1848         struct kvm_vcpu_arch *arch = &vcpu->arch;
1849         unsigned long entryhi =
1850                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1851                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1852
1853         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1854                 /* save old pc */
1855                 kvm_write_c0_guest_epc(cop0, arch->pc);
1856                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1857
1858                 if (cause & CAUSEF_BD)
1859                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1860                 else
1861                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1862
1863                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1864                           arch->pc);
1865
1866                 /* set pc to the exception entry point */
1867                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1868
1869         } else {
1870                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1871                           arch->pc);
1872                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1873         }
1874
1875         kvm_change_c0_guest_cause(cop0, (0xff),
1876                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1877
1878         /* setup badvaddr, context and entryhi registers for the guest */
1879         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1880         /* XXXKYMA: is the context register used by linux??? */
1881         kvm_write_c0_guest_entryhi(cop0, entryhi);
1882         /* Blow away the shadow host TLBs */
1883         kvm_mips_flush_host_tlb(1);
1884
1885         return EMULATE_DONE;
1886 }
1887
1888 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1889                                                   uint32_t *opc,
1890                                                   struct kvm_run *run,
1891                                                   struct kvm_vcpu *vcpu)
1892 {
1893         struct mips_coproc *cop0 = vcpu->arch.cop0;
1894         struct kvm_vcpu_arch *arch = &vcpu->arch;
1895         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1896                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1897
1898         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1899                 /* save old pc */
1900                 kvm_write_c0_guest_epc(cop0, arch->pc);
1901                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1902
1903                 if (cause & CAUSEF_BD)
1904                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1905                 else
1906                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1907
1908                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1909                           arch->pc);
1910
1911                 /* Set PC to the exception entry point */
1912                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1913         } else {
1914                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1915                           arch->pc);
1916                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1917         }
1918
1919         kvm_change_c0_guest_cause(cop0, (0xff),
1920                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
1921
1922         /* setup badvaddr, context and entryhi registers for the guest */
1923         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1924         /* XXXKYMA: is the context register used by linux??? */
1925         kvm_write_c0_guest_entryhi(cop0, entryhi);
1926         /* Blow away the shadow host TLBs */
1927         kvm_mips_flush_host_tlb(1);
1928
1929         return EMULATE_DONE;
1930 }
1931
1932 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1933                                                  uint32_t *opc,
1934                                                  struct kvm_run *run,
1935                                                  struct kvm_vcpu *vcpu)
1936 {
1937         struct mips_coproc *cop0 = vcpu->arch.cop0;
1938         struct kvm_vcpu_arch *arch = &vcpu->arch;
1939         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1940                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1941
1942         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1943                 /* save old pc */
1944                 kvm_write_c0_guest_epc(cop0, arch->pc);
1945                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1946
1947                 if (cause & CAUSEF_BD)
1948                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1949                 else
1950                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1951
1952                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1953                           arch->pc);
1954
1955                 /* Set PC to the exception entry point */
1956                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1957         } else {
1958                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1959                           arch->pc);
1960                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1961         }
1962
1963         kvm_change_c0_guest_cause(cop0, (0xff),
1964                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
1965
1966         /* setup badvaddr, context and entryhi registers for the guest */
1967         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1968         /* XXXKYMA: is the context register used by linux??? */
1969         kvm_write_c0_guest_entryhi(cop0, entryhi);
1970         /* Blow away the shadow host TLBs */
1971         kvm_mips_flush_host_tlb(1);
1972
1973         return EMULATE_DONE;
1974 }
1975
1976 /* TLBMOD: store into address matching TLB with Dirty bit off */
1977 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1978                                              struct kvm_run *run,
1979                                              struct kvm_vcpu *vcpu)
1980 {
1981         enum emulation_result er = EMULATE_DONE;
1982 #ifdef DEBUG
1983         struct mips_coproc *cop0 = vcpu->arch.cop0;
1984         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1985                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1986         int index;
1987
1988         /* If address not in the guest TLB, then we are in trouble */
1989         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1990         if (index < 0) {
1991                 /* XXXKYMA Invalidate and retry */
1992                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1993                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1994                      __func__, entryhi);
1995                 kvm_mips_dump_guest_tlbs(vcpu);
1996                 kvm_mips_dump_host_tlbs();
1997                 return EMULATE_FAIL;
1998         }
1999 #endif
2000
2001         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2002         return er;
2003 }
2004
2005 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2006                                               uint32_t *opc,
2007                                               struct kvm_run *run,
2008                                               struct kvm_vcpu *vcpu)
2009 {
2010         struct mips_coproc *cop0 = vcpu->arch.cop0;
2011         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2012                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2013         struct kvm_vcpu_arch *arch = &vcpu->arch;
2014
2015         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2016                 /* save old pc */
2017                 kvm_write_c0_guest_epc(cop0, arch->pc);
2018                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2019
2020                 if (cause & CAUSEF_BD)
2021                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2022                 else
2023                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2024
2025                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2026                           arch->pc);
2027
2028                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2029         } else {
2030                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2031                           arch->pc);
2032                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2033         }
2034
2035         kvm_change_c0_guest_cause(cop0, (0xff),
2036                                   (EXCCODE_MOD << CAUSEB_EXCCODE));
2037
2038         /* setup badvaddr, context and entryhi registers for the guest */
2039         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2040         /* XXXKYMA: is the context register used by linux??? */
2041         kvm_write_c0_guest_entryhi(cop0, entryhi);
2042         /* Blow away the shadow host TLBs */
2043         kvm_mips_flush_host_tlb(1);
2044
2045         return EMULATE_DONE;
2046 }
2047
2048 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2049                                                uint32_t *opc,
2050                                                struct kvm_run *run,
2051                                                struct kvm_vcpu *vcpu)
2052 {
2053         struct mips_coproc *cop0 = vcpu->arch.cop0;
2054         struct kvm_vcpu_arch *arch = &vcpu->arch;
2055
2056         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2057                 /* save old pc */
2058                 kvm_write_c0_guest_epc(cop0, arch->pc);
2059                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2060
2061                 if (cause & CAUSEF_BD)
2062                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2063                 else
2064                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2065
2066         }
2067
2068         arch->pc = KVM_GUEST_KSEG0 + 0x180;
2069
2070         kvm_change_c0_guest_cause(cop0, (0xff),
2071                                   (EXCCODE_CPU << CAUSEB_EXCCODE));
2072         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2073
2074         return EMULATE_DONE;
2075 }
2076
2077 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2078                                               uint32_t *opc,
2079                                               struct kvm_run *run,
2080                                               struct kvm_vcpu *vcpu)
2081 {
2082         struct mips_coproc *cop0 = vcpu->arch.cop0;
2083         struct kvm_vcpu_arch *arch = &vcpu->arch;
2084         enum emulation_result er = EMULATE_DONE;
2085
2086         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2087                 /* save old pc */
2088                 kvm_write_c0_guest_epc(cop0, arch->pc);
2089                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2090
2091                 if (cause & CAUSEF_BD)
2092                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2093                 else
2094                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2095
2096                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2097
2098                 kvm_change_c0_guest_cause(cop0, (0xff),
2099                                           (EXCCODE_RI << CAUSEB_EXCCODE));
2100
2101                 /* Set PC to the exception entry point */
2102                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2103
2104         } else {
2105                 kvm_err("Trying to deliver RI when EXL is already set\n");
2106                 er = EMULATE_FAIL;
2107         }
2108
2109         return er;
2110 }
2111
2112 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2113                                               uint32_t *opc,
2114                                               struct kvm_run *run,
2115                                               struct kvm_vcpu *vcpu)
2116 {
2117         struct mips_coproc *cop0 = vcpu->arch.cop0;
2118         struct kvm_vcpu_arch *arch = &vcpu->arch;
2119         enum emulation_result er = EMULATE_DONE;
2120
2121         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2122                 /* save old pc */
2123                 kvm_write_c0_guest_epc(cop0, arch->pc);
2124                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2125
2126                 if (cause & CAUSEF_BD)
2127                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2128                 else
2129                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2130
2131                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2132
2133                 kvm_change_c0_guest_cause(cop0, (0xff),
2134                                           (EXCCODE_BP << CAUSEB_EXCCODE));
2135
2136                 /* Set PC to the exception entry point */
2137                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2138
2139         } else {
2140                 kvm_err("Trying to deliver BP when EXL is already set\n");
2141                 er = EMULATE_FAIL;
2142         }
2143
2144         return er;
2145 }
2146
2147 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2148                                                 uint32_t *opc,
2149                                                 struct kvm_run *run,
2150                                                 struct kvm_vcpu *vcpu)
2151 {
2152         struct mips_coproc *cop0 = vcpu->arch.cop0;
2153         struct kvm_vcpu_arch *arch = &vcpu->arch;
2154         enum emulation_result er = EMULATE_DONE;
2155
2156         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2157                 /* save old pc */
2158                 kvm_write_c0_guest_epc(cop0, arch->pc);
2159                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2160
2161                 if (cause & CAUSEF_BD)
2162                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2163                 else
2164                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2165
2166                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2167
2168                 kvm_change_c0_guest_cause(cop0, (0xff),
2169                                           (EXCCODE_TR << CAUSEB_EXCCODE));
2170
2171                 /* Set PC to the exception entry point */
2172                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2173
2174         } else {
2175                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2176                 er = EMULATE_FAIL;
2177         }
2178
2179         return er;
2180 }
2181
2182 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2183                                                   uint32_t *opc,
2184                                                   struct kvm_run *run,
2185                                                   struct kvm_vcpu *vcpu)
2186 {
2187         struct mips_coproc *cop0 = vcpu->arch.cop0;
2188         struct kvm_vcpu_arch *arch = &vcpu->arch;
2189         enum emulation_result er = EMULATE_DONE;
2190
2191         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2192                 /* save old pc */
2193                 kvm_write_c0_guest_epc(cop0, arch->pc);
2194                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2195
2196                 if (cause & CAUSEF_BD)
2197                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2198                 else
2199                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2200
2201                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2202
2203                 kvm_change_c0_guest_cause(cop0, (0xff),
2204                                           (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2205
2206                 /* Set PC to the exception entry point */
2207                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2208
2209         } else {
2210                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2211                 er = EMULATE_FAIL;
2212         }
2213
2214         return er;
2215 }
2216
2217 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2218                                                uint32_t *opc,
2219                                                struct kvm_run *run,
2220                                                struct kvm_vcpu *vcpu)
2221 {
2222         struct mips_coproc *cop0 = vcpu->arch.cop0;
2223         struct kvm_vcpu_arch *arch = &vcpu->arch;
2224         enum emulation_result er = EMULATE_DONE;
2225
2226         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2227                 /* save old pc */
2228                 kvm_write_c0_guest_epc(cop0, arch->pc);
2229                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2230
2231                 if (cause & CAUSEF_BD)
2232                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2233                 else
2234                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2235
2236                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2237
2238                 kvm_change_c0_guest_cause(cop0, (0xff),
2239                                           (EXCCODE_FPE << CAUSEB_EXCCODE));
2240
2241                 /* Set PC to the exception entry point */
2242                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2243
2244         } else {
2245                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2246                 er = EMULATE_FAIL;
2247         }
2248
2249         return er;
2250 }
2251
2252 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2253                                                   uint32_t *opc,
2254                                                   struct kvm_run *run,
2255                                                   struct kvm_vcpu *vcpu)
2256 {
2257         struct mips_coproc *cop0 = vcpu->arch.cop0;
2258         struct kvm_vcpu_arch *arch = &vcpu->arch;
2259         enum emulation_result er = EMULATE_DONE;
2260
2261         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2262                 /* save old pc */
2263                 kvm_write_c0_guest_epc(cop0, arch->pc);
2264                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2265
2266                 if (cause & CAUSEF_BD)
2267                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2268                 else
2269                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2270
2271                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2272
2273                 kvm_change_c0_guest_cause(cop0, (0xff),
2274                                           (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2275
2276                 /* Set PC to the exception entry point */
2277                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2278
2279         } else {
2280                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2281                 er = EMULATE_FAIL;
2282         }
2283
2284         return er;
2285 }
2286
2287 /* ll/sc, rdhwr, sync emulation */
2288
2289 #define OPCODE 0xfc000000
2290 #define BASE   0x03e00000
2291 #define RT     0x001f0000
2292 #define OFFSET 0x0000ffff
2293 #define LL     0xc0000000
2294 #define SC     0xe0000000
2295 #define SPEC0  0x00000000
2296 #define SPEC3  0x7c000000
2297 #define RD     0x0000f800
2298 #define FUNC   0x0000003f
2299 #define SYNC   0x0000000f
2300 #define RDHWR  0x0000003b
2301
2302 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2303                                          struct kvm_run *run,
2304                                          struct kvm_vcpu *vcpu)
2305 {
2306         struct mips_coproc *cop0 = vcpu->arch.cop0;
2307         struct kvm_vcpu_arch *arch = &vcpu->arch;
2308         enum emulation_result er = EMULATE_DONE;
2309         unsigned long curr_pc;
2310         uint32_t inst;
2311
2312         /*
2313          * Update PC and hold onto current PC in case there is
2314          * an error and we want to rollback the PC
2315          */
2316         curr_pc = vcpu->arch.pc;
2317         er = update_pc(vcpu, cause);
2318         if (er == EMULATE_FAIL)
2319                 return er;
2320
2321         /* Fetch the instruction. */
2322         if (cause & CAUSEF_BD)
2323                 opc += 1;
2324
2325         inst = kvm_get_inst(opc, vcpu);
2326
2327         if (inst == KVM_INVALID_INST) {
2328                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2329                 return EMULATE_FAIL;
2330         }
2331
2332         if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2333                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2334                 int rd = (inst & RD) >> 11;
2335                 int rt = (inst & RT) >> 16;
2336                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2337                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2338                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2339                                   rd, opc);
2340                         goto emulate_ri;
2341                 }
2342                 switch (rd) {
2343                 case 0: /* CPU number */
2344                         arch->gprs[rt] = 0;
2345                         break;
2346                 case 1: /* SYNCI length */
2347                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2348                                              current_cpu_data.icache.linesz);
2349                         break;
2350                 case 2: /* Read count register */
2351                         arch->gprs[rt] = kvm_mips_read_count(vcpu);
2352                         break;
2353                 case 3: /* Count register resolution */
2354                         switch (current_cpu_data.cputype) {
2355                         case CPU_20KC:
2356                         case CPU_25KF:
2357                                 arch->gprs[rt] = 1;
2358                                 break;
2359                         default:
2360                                 arch->gprs[rt] = 2;
2361                         }
2362                         break;
2363                 case 29:
2364                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2365                         break;
2366
2367                 default:
2368                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2369                         goto emulate_ri;
2370                 }
2371         } else {
2372                 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2373                 goto emulate_ri;
2374         }
2375
2376         return EMULATE_DONE;
2377
2378 emulate_ri:
2379         /*
2380          * Rollback PC (if in branch delay slot then the PC already points to
2381          * branch target), and pass the RI exception to the guest OS.
2382          */
2383         vcpu->arch.pc = curr_pc;
2384         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2385 }
2386
2387 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2388                                                   struct kvm_run *run)
2389 {
2390         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2391         enum emulation_result er = EMULATE_DONE;
2392
2393         if (run->mmio.len > sizeof(*gpr)) {
2394                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2395                 er = EMULATE_FAIL;
2396                 goto done;
2397         }
2398
2399         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2400         if (er == EMULATE_FAIL)
2401                 return er;
2402
2403         switch (run->mmio.len) {
2404         case 4:
2405                 *gpr = *(int32_t *) run->mmio.data;
2406                 break;
2407
2408         case 2:
2409                 if (vcpu->mmio_needed == 2)
2410                         *gpr = *(int16_t *) run->mmio.data;
2411                 else
2412                         *gpr = *(uint16_t *)run->mmio.data;
2413
2414                 break;
2415         case 1:
2416                 if (vcpu->mmio_needed == 2)
2417                         *gpr = *(int8_t *) run->mmio.data;
2418                 else
2419                         *gpr = *(u8 *) run->mmio.data;
2420                 break;
2421         }
2422
2423         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2424                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2425                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2426                           vcpu->mmio_needed);
2427
2428 done:
2429         return er;
2430 }
2431
2432 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2433                                                   uint32_t *opc,
2434                                                   struct kvm_run *run,
2435                                                   struct kvm_vcpu *vcpu)
2436 {
2437         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2438         struct mips_coproc *cop0 = vcpu->arch.cop0;
2439         struct kvm_vcpu_arch *arch = &vcpu->arch;
2440         enum emulation_result er = EMULATE_DONE;
2441
2442         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2443                 /* save old pc */
2444                 kvm_write_c0_guest_epc(cop0, arch->pc);
2445                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2446
2447                 if (cause & CAUSEF_BD)
2448                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2449                 else
2450                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2451
2452                 kvm_change_c0_guest_cause(cop0, (0xff),
2453                                           (exccode << CAUSEB_EXCCODE));
2454
2455                 /* Set PC to the exception entry point */
2456                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2457                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2458
2459                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2460                           exccode, kvm_read_c0_guest_epc(cop0),
2461                           kvm_read_c0_guest_badvaddr(cop0));
2462         } else {
2463                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2464                 er = EMULATE_FAIL;
2465         }
2466
2467         return er;
2468 }
2469
2470 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2471                                                uint32_t *opc,
2472                                                struct kvm_run *run,
2473                                                struct kvm_vcpu *vcpu)
2474 {
2475         enum emulation_result er = EMULATE_DONE;
2476         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2477         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2478
2479         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2480
2481         if (usermode) {
2482                 switch (exccode) {
2483                 case EXCCODE_INT:
2484                 case EXCCODE_SYS:
2485                 case EXCCODE_BP:
2486                 case EXCCODE_RI:
2487                 case EXCCODE_TR:
2488                 case EXCCODE_MSAFPE:
2489                 case EXCCODE_FPE:
2490                 case EXCCODE_MSADIS:
2491                         break;
2492
2493                 case EXCCODE_CPU:
2494                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2495                                 er = EMULATE_PRIV_FAIL;
2496                         break;
2497
2498                 case EXCCODE_MOD:
2499                         break;
2500
2501                 case EXCCODE_TLBL:
2502                         /*
2503                          * We we are accessing Guest kernel space, then send an
2504                          * address error exception to the guest
2505                          */
2506                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2507                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2508                                           badvaddr);
2509                                 cause &= ~0xff;
2510                                 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2511                                 er = EMULATE_PRIV_FAIL;
2512                         }
2513                         break;
2514
2515                 case EXCCODE_TLBS:
2516                         /*
2517                          * We we are accessing Guest kernel space, then send an
2518                          * address error exception to the guest
2519                          */
2520                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2521                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2522                                           badvaddr);
2523                                 cause &= ~0xff;
2524                                 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2525                                 er = EMULATE_PRIV_FAIL;
2526                         }
2527                         break;
2528
2529                 case EXCCODE_ADES:
2530                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2531                                   badvaddr);
2532                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2533                                 cause &= ~0xff;
2534                                 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2535                         }
2536                         er = EMULATE_PRIV_FAIL;
2537                         break;
2538                 case EXCCODE_ADEL:
2539                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2540                                   badvaddr);
2541                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2542                                 cause &= ~0xff;
2543                                 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2544                         }
2545                         er = EMULATE_PRIV_FAIL;
2546                         break;
2547                 default:
2548                         er = EMULATE_PRIV_FAIL;
2549                         break;
2550                 }
2551         }
2552
2553         if (er == EMULATE_PRIV_FAIL)
2554                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2555
2556         return er;
2557 }
2558
2559 /*
2560  * User Address (UA) fault, this could happen if
2561  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2562  *     case we pass on the fault to the guest kernel and let it handle it.
2563  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2564  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2565  */
2566 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2567                                               uint32_t *opc,
2568                                               struct kvm_run *run,
2569                                               struct kvm_vcpu *vcpu)
2570 {
2571         enum emulation_result er = EMULATE_DONE;
2572         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2573         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2574         int index;
2575
2576         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2577                   vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2578
2579         /*
2580          * KVM would not have got the exception if this entry was valid in the
2581          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2582          * send the guest an exception. The guest exc handler should then inject
2583          * an entry into the guest TLB.
2584          */
2585         index = kvm_mips_guest_tlb_lookup(vcpu,
2586                       (va & VPN2_MASK) |
2587                       (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & ASID_MASK));
2588         if (index < 0) {
2589                 if (exccode == EXCCODE_TLBL) {
2590                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2591                 } else if (exccode == EXCCODE_TLBS) {
2592                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2593                 } else {
2594                         kvm_err("%s: invalid exc code: %d\n", __func__,
2595                                 exccode);
2596                         er = EMULATE_FAIL;
2597                 }
2598         } else {
2599                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2600
2601                 /*
2602                  * Check if the entry is valid, if not then setup a TLB invalid
2603                  * exception to the guest
2604                  */
2605                 if (!TLB_IS_VALID(*tlb, va)) {
2606                         if (exccode == EXCCODE_TLBL) {
2607                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2608                                                                 vcpu);
2609                         } else if (exccode == EXCCODE_TLBS) {
2610                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2611                                                                 vcpu);
2612                         } else {
2613                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2614                                         exccode);
2615                                 er = EMULATE_FAIL;
2616                         }
2617                 } else {
2618                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2619                                   tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2620                         /*
2621                          * OK we have a Guest TLB entry, now inject it into the
2622                          * shadow host TLB
2623                          */
2624                         kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2625                                                              NULL);
2626                 }
2627         }
2628
2629         return er;
2630 }