336708ae5c5b4c74b75416058feabb4bef5e30b1
[linux-drm-fsl-dcu.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
39
40 static int __maybe_unused max_cpus = 1;
41
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46 unsigned long bmips_tp1_irqs = IE_IRQ1;
47
48 #define RESET_FROM_KSEG0                0x80080800
49 #define RESET_FROM_KSEG1                0xa0080800
50
51 static void bmips_set_reset_vec(int cpu, u32 val);
52
53 #ifdef CONFIG_SMP
54
55 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
56 unsigned long bmips_smp_boot_sp;
57 unsigned long bmips_smp_boot_gp;
58
59 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
60 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
61 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
62 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
63
64 /* SW interrupts 0,1 are used for interprocessor signaling */
65 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
66 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
67
68 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
69 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
70 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
72
73 static void __init bmips_smp_setup(void)
74 {
75         int i, cpu = 1, boot_cpu = 0;
76         int cpu_hw_intr;
77
78         switch (current_cpu_type()) {
79         case CPU_BMIPS4350:
80         case CPU_BMIPS4380:
81                 /* arbitration priority */
82                 clear_c0_brcm_cmt_ctrl(0x30);
83
84                 /* NBK and weak order flags */
85                 set_c0_brcm_config_0(0x30000);
86
87                 /* Find out if we are running on TP0 or TP1 */
88                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
89
90                 /*
91                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
92                  * thread
93                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
94                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
95                  */
96                 if (boot_cpu == 0)
97                         cpu_hw_intr = 0x02;
98                 else
99                         cpu_hw_intr = 0x1d;
100
101                 change_c0_brcm_cmt_intr(0xf8018000,
102                                         (cpu_hw_intr << 27) | (0x03 << 15));
103
104                 /* single core, 2 threads (2 pipelines) */
105                 max_cpus = 2;
106
107                 break;
108         case CPU_BMIPS5000:
109                 /* enable raceless SW interrupts */
110                 set_c0_brcm_config(0x03 << 22);
111
112                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
114
115                 /* N cores, 2 threads per core */
116                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
117
118                 /* clear any pending SW interrupts */
119                 for (i = 0; i < max_cpus; i++) {
120                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
122                 }
123
124                 break;
125         default:
126                 max_cpus = 1;
127         }
128
129         if (!bmips_smp_enabled)
130                 max_cpus = 1;
131
132         /* this can be overridden by the BSP */
133         if (!board_ebase_setup)
134                 board_ebase_setup = &bmips_ebase_setup;
135
136         __cpu_number_map[boot_cpu] = 0;
137         __cpu_logical_map[0] = boot_cpu;
138
139         for (i = 0; i < max_cpus; i++) {
140                 if (i != boot_cpu) {
141                         __cpu_number_map[i] = cpu;
142                         __cpu_logical_map[cpu] = i;
143                         cpu++;
144                 }
145                 set_cpu_possible(i, 1);
146                 set_cpu_present(i, 1);
147         }
148 }
149
150 /*
151  * IPI IRQ setup - runs on CPU0
152  */
153 static void bmips_prepare_cpus(unsigned int max_cpus)
154 {
155         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
156
157         switch (current_cpu_type()) {
158         case CPU_BMIPS4350:
159         case CPU_BMIPS4380:
160                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161                 break;
162         case CPU_BMIPS5000:
163                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164                 break;
165         default:
166                 return;
167         }
168
169         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170                         "smp_ipi0", NULL))
171                 panic("Can't request IPI0 interrupt");
172         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
173                         "smp_ipi1", NULL))
174                 panic("Can't request IPI1 interrupt");
175 }
176
177 /*
178  * Tell the hardware to boot CPUx - runs on CPU0
179  */
180 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
181 {
182         bmips_smp_boot_sp = __KSTK_TOS(idle);
183         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184         mb();
185
186         /*
187          * Initial boot sequence for secondary CPU:
188          *   bmips_reset_nmi_vec @ a000_0000 ->
189          *   bmips_smp_entry ->
190          *   plat_wired_tlb_setup (cached function call; optional) ->
191          *   start_secondary (cached jump)
192          *
193          * Warm restart sequence:
194          *   play_dead WAIT loop ->
195          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196          *   eret to play_dead ->
197          *   bmips_secondary_reentry ->
198          *   start_secondary
199          */
200
201         pr_info("SMP: Booting CPU%d...\n", cpu);
202
203         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204                 /* kseg1 might not exist if this CPU enabled XKS01 */
205                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
206
207                 switch (current_cpu_type()) {
208                 case CPU_BMIPS4350:
209                 case CPU_BMIPS4380:
210                         bmips43xx_send_ipi_single(cpu, 0);
211                         break;
212                 case CPU_BMIPS5000:
213                         bmips5000_send_ipi_single(cpu, 0);
214                         break;
215                 }
216         } else {
217                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
218
219                 switch (current_cpu_type()) {
220                 case CPU_BMIPS4350:
221                 case CPU_BMIPS4380:
222                         /* Reset slave TP1 if booting from TP0 */
223                         if (cpu_logical_map(cpu) == 1)
224                                 set_c0_brcm_cmt_ctrl(0x01);
225                         break;
226                 case CPU_BMIPS5000:
227                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228                         break;
229                 }
230                 cpumask_set_cpu(cpu, &bmips_booted_mask);
231         }
232 }
233
234 /*
235  * Early setup - runs on secondary CPU after cache probe
236  */
237 static void bmips_init_secondary(void)
238 {
239         switch (current_cpu_type()) {
240         case CPU_BMIPS4350:
241         case CPU_BMIPS4380:
242                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
243                 break;
244         case CPU_BMIPS5000:
245                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246                 break;
247         }
248 }
249
250 /*
251  * Late setup - runs on secondary CPU before entering the idle loop
252  */
253 static void bmips_smp_finish(void)
254 {
255         pr_info("SMP: CPU%d is running\n", smp_processor_id());
256
257         /* make sure there won't be a timer interrupt for a little while */
258         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
259
260         irq_enable_hazard();
261         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
262         irq_enable_hazard();
263 }
264
265 /*
266  * BMIPS5000 raceless IPIs
267  *
268  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
269  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
270  * IPI1 is used for SMP_CALL_FUNCTION
271  */
272
273 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
274 {
275         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
276 }
277
278 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
279 {
280         int action = irq - IPI0_IRQ;
281
282         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
283
284         if (action == 0)
285                 scheduler_ipi();
286         else
287                 smp_call_function_interrupt();
288
289         return IRQ_HANDLED;
290 }
291
292 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
293         unsigned int action)
294 {
295         unsigned int i;
296
297         for_each_cpu(i, mask)
298                 bmips5000_send_ipi_single(i, action);
299 }
300
301 /*
302  * BMIPS43xx racey IPIs
303  *
304  * We use one inbound SW IRQ for each CPU.
305  *
306  * A spinlock must be held in order to keep CPUx from accidentally clearing
307  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
308  * same spinlock is used to protect the action masks.
309  */
310
311 static DEFINE_SPINLOCK(ipi_lock);
312 static DEFINE_PER_CPU(int, ipi_action_mask);
313
314 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
315 {
316         unsigned long flags;
317
318         spin_lock_irqsave(&ipi_lock, flags);
319         set_c0_cause(cpu ? C_SW1 : C_SW0);
320         per_cpu(ipi_action_mask, cpu) |= action;
321         irq_enable_hazard();
322         spin_unlock_irqrestore(&ipi_lock, flags);
323 }
324
325 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
326 {
327         unsigned long flags;
328         int action, cpu = irq - IPI0_IRQ;
329
330         spin_lock_irqsave(&ipi_lock, flags);
331         action = __this_cpu_read(ipi_action_mask);
332         per_cpu(ipi_action_mask, cpu) = 0;
333         clear_c0_cause(cpu ? C_SW1 : C_SW0);
334         spin_unlock_irqrestore(&ipi_lock, flags);
335
336         if (action & SMP_RESCHEDULE_YOURSELF)
337                 scheduler_ipi();
338         if (action & SMP_CALL_FUNCTION)
339                 smp_call_function_interrupt();
340
341         return IRQ_HANDLED;
342 }
343
344 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
345         unsigned int action)
346 {
347         unsigned int i;
348
349         for_each_cpu(i, mask)
350                 bmips43xx_send_ipi_single(i, action);
351 }
352
353 #ifdef CONFIG_HOTPLUG_CPU
354
355 static int bmips_cpu_disable(void)
356 {
357         unsigned int cpu = smp_processor_id();
358
359         if (cpu == 0)
360                 return -EBUSY;
361
362         pr_info("SMP: CPU%d is offline\n", cpu);
363
364         set_cpu_online(cpu, false);
365         cpumask_clear_cpu(cpu, &cpu_callin_map);
366         clear_c0_status(IE_IRQ5);
367
368         local_flush_tlb_all();
369         local_flush_icache_range(0, ~0);
370
371         return 0;
372 }
373
374 static void bmips_cpu_die(unsigned int cpu)
375 {
376 }
377
378 void __ref play_dead(void)
379 {
380         idle_task_exit();
381
382         /* flush data cache */
383         _dma_cache_wback_inv(0, ~0);
384
385         /*
386          * Wakeup is on SW0 or SW1; disable everything else
387          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
388          * IRQ handlers; this clears ST0_IE and returns immediately.
389          */
390         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
391         change_c0_status(
392                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
393                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
394         irq_disable_hazard();
395
396         /*
397          * wait for SW interrupt from bmips_boot_secondary(), then jump
398          * back to start_secondary()
399          */
400         __asm__ __volatile__(
401         "       wait\n"
402         "       j       bmips_secondary_reentry\n"
403         : : : "memory");
404 }
405
406 #endif /* CONFIG_HOTPLUG_CPU */
407
408 struct plat_smp_ops bmips43xx_smp_ops = {
409         .smp_setup              = bmips_smp_setup,
410         .prepare_cpus           = bmips_prepare_cpus,
411         .boot_secondary         = bmips_boot_secondary,
412         .smp_finish             = bmips_smp_finish,
413         .init_secondary         = bmips_init_secondary,
414         .send_ipi_single        = bmips43xx_send_ipi_single,
415         .send_ipi_mask          = bmips43xx_send_ipi_mask,
416 #ifdef CONFIG_HOTPLUG_CPU
417         .cpu_disable            = bmips_cpu_disable,
418         .cpu_die                = bmips_cpu_die,
419 #endif
420 };
421
422 struct plat_smp_ops bmips5000_smp_ops = {
423         .smp_setup              = bmips_smp_setup,
424         .prepare_cpus           = bmips_prepare_cpus,
425         .boot_secondary         = bmips_boot_secondary,
426         .smp_finish             = bmips_smp_finish,
427         .init_secondary         = bmips_init_secondary,
428         .send_ipi_single        = bmips5000_send_ipi_single,
429         .send_ipi_mask          = bmips5000_send_ipi_mask,
430 #ifdef CONFIG_HOTPLUG_CPU
431         .cpu_disable            = bmips_cpu_disable,
432         .cpu_die                = bmips_cpu_die,
433 #endif
434 };
435
436 #endif /* CONFIG_SMP */
437
438 /***********************************************************************
439  * BMIPS vector relocation
440  * This is primarily used for SMP boot, but it is applicable to some
441  * UP BMIPS systems as well.
442  ***********************************************************************/
443
444 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
445 {
446         memcpy((void *)dst, start, end - start);
447         dma_cache_wback(dst, end - start);
448         local_flush_icache_range(dst, dst + (end - start));
449         instruction_hazard();
450 }
451
452 static inline void bmips_nmi_handler_setup(void)
453 {
454         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
455                 &bmips_reset_nmi_vec_end);
456         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
457                 &bmips_smp_int_vec_end);
458 }
459
460 struct reset_vec_info {
461         int cpu;
462         u32 val;
463 };
464
465 static void bmips_set_reset_vec_remote(void *vinfo)
466 {
467         struct reset_vec_info *info = vinfo;
468         int shift = info->cpu & 0x01 ? 16 : 0;
469         u32 mask = ~(0xffff << shift), val = info->val >> 16;
470
471         preempt_disable();
472         if (smp_processor_id() > 0) {
473                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
474                                          info, 1);
475         } else {
476                 if (info->cpu & 0x02) {
477                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
478                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
479                         bmips_read_zscm_reg(0xa0);
480                 } else {
481                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
482                                               (val << shift));
483                 }
484         }
485         preempt_enable();
486 }
487
488 static void bmips_set_reset_vec(int cpu, u32 val)
489 {
490         struct reset_vec_info info;
491
492         if (current_cpu_type() == CPU_BMIPS5000) {
493                 /* this needs to run from CPU0 (which is always online) */
494                 info.cpu = cpu;
495                 info.val = val;
496                 bmips_set_reset_vec_remote(&info);
497         } else {
498                 void __iomem *cbr = BMIPS_GET_CBR();
499
500                 if (cpu == 0)
501                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
502                 else {
503                         if (current_cpu_type() != CPU_BMIPS4380)
504                                 return;
505                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
506                 }
507         }
508         __sync();
509         back_to_back_c0_hazard();
510 }
511
512 void bmips_ebase_setup(void)
513 {
514         unsigned long new_ebase = ebase;
515
516         BUG_ON(ebase != CKSEG0);
517
518         switch (current_cpu_type()) {
519         case CPU_BMIPS4350:
520                 /*
521                  * BMIPS4350 cannot relocate the normal vectors, but it
522                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
523                  * the relocated BEV=1, IV=0 general exception vector @
524                  * 0xa000_0380.
525                  *
526                  * set_uncached_handler() is used here because:
527                  *  - CPU1 will run this from uncached space
528                  *  - None of the cacheflush functions are set up yet
529                  */
530                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
531                         &bmips_smp_int_vec, 0x80);
532                 __sync();
533                 return;
534         case CPU_BMIPS3300:
535         case CPU_BMIPS4380:
536                 /*
537                  * 0x8000_0000: reset/NMI (initially in kseg1)
538                  * 0x8000_0400: normal vectors
539                  */
540                 new_ebase = 0x80000400;
541                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
542                 break;
543         case CPU_BMIPS5000:
544                 /*
545                  * 0x8000_0000: reset/NMI (initially in kseg1)
546                  * 0x8000_1000: normal vectors
547                  */
548                 new_ebase = 0x80001000;
549                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
550                 write_c0_ebase(new_ebase);
551                 break;
552         default:
553                 return;
554         }
555
556         board_nmi_handler_setup = &bmips_nmi_handler_setup;
557         ebase = new_ebase;
558 }
559
560 asmlinkage void __weak plat_wired_tlb_setup(void)
561 {
562         /*
563          * Called when starting/restarting a secondary CPU.
564          * Kernel stacks and other important data might only be accessible
565          * once the wired entries are present.
566          */
567 }