MIPS: Whitespace cleanup.
[linux-drm-fsl-dcu.git] / arch / mips / cavium-octeon / smp.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2008, 2009, 2010 Cavium Networks
7  */
8 #include <linux/cpu.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/time.h>
19 #include <asm/setup.h>
20
21 #include <asm/octeon/octeon.h>
22
23 #include "octeon_boot.h"
24
25 volatile unsigned long octeon_processor_boot = 0xff;
26 volatile unsigned long octeon_processor_sp;
27 volatile unsigned long octeon_processor_gp;
28
29 #ifdef CONFIG_HOTPLUG_CPU
30 uint64_t octeon_bootloader_entry_addr;
31 EXPORT_SYMBOL(octeon_bootloader_entry_addr);
32 #endif
33
34 static irqreturn_t mailbox_interrupt(int irq, void *dev_id)
35 {
36         const int coreid = cvmx_get_core_num();
37         uint64_t action;
38
39         /* Load the mailbox register to figure out what we're supposed to do */
40         action = cvmx_read_csr(CVMX_CIU_MBOX_CLRX(coreid)) & 0xffff;
41
42         /* Clear the mailbox to clear the interrupt */
43         cvmx_write_csr(CVMX_CIU_MBOX_CLRX(coreid), action);
44
45         if (action & SMP_CALL_FUNCTION)
46                 smp_call_function_interrupt();
47         if (action & SMP_RESCHEDULE_YOURSELF)
48                 scheduler_ipi();
49
50         /* Check if we've been told to flush the icache */
51         if (action & SMP_ICACHE_FLUSH)
52                 asm volatile ("synci 0($0)\n");
53         return IRQ_HANDLED;
54 }
55
56 /**
57  * Cause the function described by call_data to be executed on the passed
58  * cpu.  When the function has finished, increment the finished field of
59  * call_data.
60  */
61 void octeon_send_ipi_single(int cpu, unsigned int action)
62 {
63         int coreid = cpu_logical_map(cpu);
64         /*
65         pr_info("SMP: Mailbox send cpu=%d, coreid=%d, action=%u\n", cpu,
66                coreid, action);
67         */
68         cvmx_write_csr(CVMX_CIU_MBOX_SETX(coreid), action);
69 }
70
71 static inline void octeon_send_ipi_mask(const struct cpumask *mask,
72                                         unsigned int action)
73 {
74         unsigned int i;
75
76         for_each_cpu_mask(i, *mask)
77                 octeon_send_ipi_single(i, action);
78 }
79
80 /**
81  * Detect available CPUs, populate cpu_possible_mask
82  */
83 static void octeon_smp_hotplug_setup(void)
84 {
85 #ifdef CONFIG_HOTPLUG_CPU
86         struct linux_app_boot_info *labi;
87
88         labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
89         if (labi->labi_signature != LABI_SIGNATURE)
90                 panic("The bootloader version on this board is incorrect.");
91
92         octeon_bootloader_entry_addr = labi->InitTLBStart_addr;
93 #endif
94 }
95
96 static void octeon_smp_setup(void)
97 {
98         const int coreid = cvmx_get_core_num();
99         int cpus;
100         int id;
101         int core_mask = octeon_get_boot_coremask();
102 #ifdef CONFIG_HOTPLUG_CPU
103         unsigned int num_cores = cvmx_octeon_num_cores();
104 #endif
105
106         /* The present CPUs are initially just the boot cpu (CPU 0). */
107         for (id = 0; id < NR_CPUS; id++) {
108                 set_cpu_possible(id, id == 0);
109                 set_cpu_present(id, id == 0);
110         }
111
112         __cpu_number_map[coreid] = 0;
113         __cpu_logical_map[0] = coreid;
114
115         /* The present CPUs get the lowest CPU numbers. */
116         cpus = 1;
117         for (id = 0; id < NR_CPUS; id++) {
118                 if ((id != coreid) && (core_mask & (1 << id))) {
119                         set_cpu_possible(cpus, true);
120                         set_cpu_present(cpus, true);
121                         __cpu_number_map[id] = cpus;
122                         __cpu_logical_map[cpus] = id;
123                         cpus++;
124                 }
125         }
126
127 #ifdef CONFIG_HOTPLUG_CPU
128         /*
129          * The possible CPUs are all those present on the chip.  We
130          * will assign CPU numbers for possible cores as well.  Cores
131          * are always consecutively numberd from 0.
132          */
133         for (id = 0; id < num_cores && id < NR_CPUS; id++) {
134                 if (!(core_mask & (1 << id))) {
135                         set_cpu_possible(cpus, true);
136                         __cpu_number_map[id] = cpus;
137                         __cpu_logical_map[cpus] = id;
138                         cpus++;
139                 }
140         }
141 #endif
142
143         octeon_smp_hotplug_setup();
144 }
145
146 /**
147  * Firmware CPU startup hook
148  *
149  */
150 static void octeon_boot_secondary(int cpu, struct task_struct *idle)
151 {
152         int count;
153
154         pr_info("SMP: Booting CPU%02d (CoreId %2d)...\n", cpu,
155                 cpu_logical_map(cpu));
156
157         octeon_processor_sp = __KSTK_TOS(idle);
158         octeon_processor_gp = (unsigned long)(task_thread_info(idle));
159         octeon_processor_boot = cpu_logical_map(cpu);
160         mb();
161
162         count = 10000;
163         while (octeon_processor_sp && count) {
164                 /* Waiting for processor to get the SP and GP */
165                 udelay(1);
166                 count--;
167         }
168         if (count == 0)
169                 pr_err("Secondary boot timeout\n");
170 }
171
172 /**
173  * After we've done initial boot, this function is called to allow the
174  * board code to clean up state, if needed
175  */
176 static void __cpuinit octeon_init_secondary(void)
177 {
178         unsigned int sr;
179
180         sr = set_c0_status(ST0_BEV);
181         write_c0_ebase((u32)ebase);
182         write_c0_status(sr);
183
184         octeon_check_cpu_bist();
185         octeon_init_cvmcount();
186
187         octeon_irq_setup_secondary();
188 }
189
190 /**
191  * Callout to firmware before smp_init
192  *
193  */
194 void octeon_prepare_cpus(unsigned int max_cpus)
195 {
196 #ifdef CONFIG_HOTPLUG_CPU
197         struct linux_app_boot_info *labi;
198
199         labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
200
201         if (labi->labi_signature != LABI_SIGNATURE)
202                 panic("The bootloader version on this board is incorrect.");
203 #endif
204         /*
205          * Only the low order mailbox bits are used for IPIs, leave
206          * the other bits alone.
207          */
208         cvmx_write_csr(CVMX_CIU_MBOX_CLRX(cvmx_get_core_num()), 0xffff);
209         if (request_irq(OCTEON_IRQ_MBOX0, mailbox_interrupt,
210                         IRQF_PERCPU | IRQF_NO_THREAD, "SMP-IPI",
211                         mailbox_interrupt)) {
212                 panic("Cannot request_irq(OCTEON_IRQ_MBOX0)");
213         }
214 }
215
216 /**
217  * Last chance for the board code to finish SMP initialization before
218  * the CPU is "online".
219  */
220 static void octeon_smp_finish(void)
221 {
222 #ifdef CONFIG_CAVIUM_GDB
223         unsigned long tmp;
224         /* Pulse MCD0 signal on Ctrl-C to stop all the cores. Also set the MCD0
225            to be not masked by this core so we know the signal is received by
226            someone */
227         asm volatile ("dmfc0 %0, $22\n"
228                       "ori   %0, %0, 0x9100\n" "dmtc0 %0, $22\n" : "=r" (tmp));
229 #endif
230
231         octeon_user_io_init();
232
233         /* to generate the first CPU timer interrupt */
234         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
235         local_irq_enable();
236 }
237
238 /**
239  * Hook for after all CPUs are online
240  */
241 static void octeon_cpus_done(void)
242 {
243 #ifdef CONFIG_CAVIUM_GDB
244         unsigned long tmp;
245         /* Pulse MCD0 signal on Ctrl-C to stop all the cores. Also set the MCD0
246            to be not masked by this core so we know the signal is received by
247            someone */
248         asm volatile ("dmfc0 %0, $22\n"
249                       "ori   %0, %0, 0x9100\n" "dmtc0 %0, $22\n" : "=r" (tmp));
250 #endif
251 }
252
253 #ifdef CONFIG_HOTPLUG_CPU
254
255 /* State of each CPU. */
256 DEFINE_PER_CPU(int, cpu_state);
257
258 extern void fixup_irqs(void);
259
260 static int octeon_cpu_disable(void)
261 {
262         unsigned int cpu = smp_processor_id();
263
264         if (cpu == 0)
265                 return -EBUSY;
266
267         set_cpu_online(cpu, false);
268         cpu_clear(cpu, cpu_callin_map);
269         local_irq_disable();
270         fixup_irqs();
271         local_irq_enable();
272
273         flush_cache_all();
274         local_flush_tlb_all();
275
276         return 0;
277 }
278
279 static void octeon_cpu_die(unsigned int cpu)
280 {
281         int coreid = cpu_logical_map(cpu);
282         uint32_t mask, new_mask;
283         const struct cvmx_bootmem_named_block_desc *block_desc;
284
285         while (per_cpu(cpu_state, cpu) != CPU_DEAD)
286                 cpu_relax();
287
288         /*
289          * This is a bit complicated strategics of getting/settig available
290          * cores mask, copied from bootloader
291          */
292
293         mask = 1 << coreid;
294         /* LINUX_APP_BOOT_BLOCK is initialized in bootoct binary */
295         block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME);
296
297         if (!block_desc) {
298                 struct linux_app_boot_info *labi;
299
300                 labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
301
302                 labi->avail_coremask |= mask;
303                 new_mask = labi->avail_coremask;
304         } else {                       /* alternative, already initialized */
305                 uint32_t *p = (uint32_t *)PHYS_TO_XKSEG_CACHED(block_desc->base_addr +
306                                                                AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK);
307                 *p |= mask;
308                 new_mask = *p;
309         }
310
311         pr_info("Reset core %d. Available Coremask = 0x%x \n", coreid, new_mask);
312         mb();
313         cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid);
314         cvmx_write_csr(CVMX_CIU_PP_RST, 0);
315 }
316
317 void play_dead(void)
318 {
319         int cpu = cpu_number_map(cvmx_get_core_num());
320
321         idle_task_exit();
322         octeon_processor_boot = 0xff;
323         per_cpu(cpu_state, cpu) = CPU_DEAD;
324
325         mb();
326
327         while (1)       /* core will be reset here */
328                 ;
329 }
330
331 extern void kernel_entry(unsigned long arg1, ...);
332
333 static void start_after_reset(void)
334 {
335         kernel_entry(0, 0, 0);  /* set a2 = 0 for secondary core */
336 }
337
338 static int octeon_update_boot_vector(unsigned int cpu)
339 {
340
341         int coreid = cpu_logical_map(cpu);
342         uint32_t avail_coremask;
343         const struct cvmx_bootmem_named_block_desc *block_desc;
344         struct boot_init_vector *boot_vect =
345                 (struct boot_init_vector *)PHYS_TO_XKSEG_CACHED(BOOTLOADER_BOOT_VECTOR);
346
347         block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME);
348
349         if (!block_desc) {
350                 struct linux_app_boot_info *labi;
351
352                 labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
353
354                 avail_coremask = labi->avail_coremask;
355                 labi->avail_coremask &= ~(1 << coreid);
356         } else {                       /* alternative, already initialized */
357                 avail_coremask = *(uint32_t *)PHYS_TO_XKSEG_CACHED(
358                         block_desc->base_addr + AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK);
359         }
360
361         if (!(avail_coremask & (1 << coreid))) {
362                 /* core not available, assume, that catched by simple-executive */
363                 cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid);
364                 cvmx_write_csr(CVMX_CIU_PP_RST, 0);
365         }
366
367         boot_vect[coreid].app_start_func_addr =
368                 (uint32_t) (unsigned long) start_after_reset;
369         boot_vect[coreid].code_addr = octeon_bootloader_entry_addr;
370
371         mb();
372
373         cvmx_write_csr(CVMX_CIU_NMI, (1 << coreid) & avail_coremask);
374
375         return 0;
376 }
377
378 static int __cpuinit octeon_cpu_callback(struct notifier_block *nfb,
379         unsigned long action, void *hcpu)
380 {
381         unsigned int cpu = (unsigned long)hcpu;
382
383         switch (action) {
384         case CPU_UP_PREPARE:
385                 octeon_update_boot_vector(cpu);
386                 break;
387         case CPU_ONLINE:
388                 pr_info("Cpu %d online\n", cpu);
389                 break;
390         case CPU_DEAD:
391                 break;
392         }
393
394         return NOTIFY_OK;
395 }
396
397 static int __cpuinit register_cavium_notifier(void)
398 {
399         hotcpu_notifier(octeon_cpu_callback, 0);
400         return 0;
401 }
402 late_initcall(register_cavium_notifier);
403
404 #endif  /* CONFIG_HOTPLUG_CPU */
405
406 struct plat_smp_ops octeon_smp_ops = {
407         .send_ipi_single        = octeon_send_ipi_single,
408         .send_ipi_mask          = octeon_send_ipi_mask,
409         .init_secondary         = octeon_init_secondary,
410         .smp_finish             = octeon_smp_finish,
411         .cpus_done              = octeon_cpus_done,
412         .boot_secondary         = octeon_boot_secondary,
413         .smp_setup              = octeon_smp_setup,
414         .prepare_cpus           = octeon_prepare_cpus,
415 #ifdef CONFIG_HOTPLUG_CPU
416         .cpu_disable            = octeon_cpu_disable,
417         .cpu_die                = octeon_cpu_die,
418 #endif
419 };