MIPS: Whitespace cleanup.
[linux-drm-fsl-dcu.git] / arch / mips / cavium-octeon / executive / cvmx-bootmem.c
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27
28 /*
29  * Simple allocate only memory allocator.  Used to allocate memory at
30  * application start time.
31  */
32
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35
36 #include <asm/octeon/cvmx.h>
37 #include <asm/octeon/cvmx-spinlock.h>
38 #include <asm/octeon/cvmx-bootmem.h>
39
40 /*#define DEBUG */
41
42
43 static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
44
45 /* See header file for descriptions of functions */
46
47 /*
48  * Wrapper functions are provided for reading/writing the size and
49  * next block values as these may not be directly addressible (in 32
50  * bit applications, for instance.)  Offsets of data elements in
51  * bootmem list, must match cvmx_bootmem_block_header_t.
52  */
53 #define NEXT_OFFSET 0
54 #define SIZE_OFFSET 8
55
56 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
57 {
58         cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
59 }
60
61 static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
62 {
63         cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
64 }
65
66 static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
67 {
68         return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
69 }
70
71 static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
72 {
73         return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
74 }
75
76 void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
77                                uint64_t min_addr, uint64_t max_addr)
78 {
79         int64_t address;
80         address =
81             cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
82
83         if (address > 0)
84                 return cvmx_phys_to_ptr(address);
85         else
86                 return NULL;
87 }
88
89 void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
90                                  uint64_t alignment)
91 {
92         return cvmx_bootmem_alloc_range(size, alignment, address,
93                                         address + size);
94 }
95
96 void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
97 {
98         return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
99 }
100
101 void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr,
102                                      uint64_t max_addr, uint64_t align,
103                                      char *name)
104 {
105         int64_t addr;
106
107         addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
108                                                   align, name, 0);
109         if (addr >= 0)
110                 return cvmx_phys_to_ptr(addr);
111         else
112                 return NULL;
113 }
114
115 void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address,
116                                        char *name)
117 {
118     return cvmx_bootmem_alloc_named_range(size, address, address + size,
119                                           0, name);
120 }
121
122 void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
123 {
124     return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
125 }
126 EXPORT_SYMBOL(cvmx_bootmem_alloc_named);
127
128 int cvmx_bootmem_free_named(char *name)
129 {
130         return cvmx_bootmem_phy_named_block_free(name, 0);
131 }
132
133 struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
134 {
135         return cvmx_bootmem_phy_named_block_find(name, 0);
136 }
137 EXPORT_SYMBOL(cvmx_bootmem_find_named_block);
138
139 void cvmx_bootmem_lock(void)
140 {
141         cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
142 }
143
144 void cvmx_bootmem_unlock(void)
145 {
146         cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
147 }
148
149 int cvmx_bootmem_init(void *mem_desc_ptr)
150 {
151         /* Here we set the global pointer to the bootmem descriptor
152          * block.  This pointer will be used directly, so we will set
153          * it up to be directly usable by the application.  It is set
154          * up as follows for the various runtime/ABI combinations:
155          *
156          * Linux 64 bit: Set XKPHYS bit
157          * Linux 32 bit: use mmap to create mapping, use virtual address
158          * CVMX 64 bit:  use physical address directly
159          * CVMX 32 bit:  use physical address directly
160          *
161          * Note that the CVMX environment assumes the use of 1-1 TLB
162          * mappings so that the physical addresses can be used
163          * directly
164          */
165         if (!cvmx_bootmem_desc) {
166 #if   defined(CVMX_ABI_64)
167                 /* Set XKPHYS bit */
168                 cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
169 #else
170                 cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
171 #endif
172         }
173
174         return 0;
175 }
176
177 /*
178  * The cvmx_bootmem_phy* functions below return 64 bit physical
179  * addresses, and expose more features that the cvmx_bootmem_functions
180  * above.  These are required for full memory space access in 32 bit
181  * applications, as well as for using some advance features.  Most
182  * applications should not need to use these.
183  */
184
185 int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
186                                uint64_t address_max, uint64_t alignment,
187                                uint32_t flags)
188 {
189
190         uint64_t head_addr;
191         uint64_t ent_addr;
192         /* points to previous list entry, NULL current entry is head of list */
193         uint64_t prev_addr = 0;
194         uint64_t new_ent_addr = 0;
195         uint64_t desired_min_addr;
196
197 #ifdef DEBUG
198         cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
199                      "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
200                      (unsigned long long)req_size,
201                      (unsigned long long)address_min,
202                      (unsigned long long)address_max,
203                      (unsigned long long)alignment);
204 #endif
205
206         if (cvmx_bootmem_desc->major_version > 3) {
207                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
208                              "version: %d.%d at addr: %p\n",
209                              (int)cvmx_bootmem_desc->major_version,
210                              (int)cvmx_bootmem_desc->minor_version,
211                              cvmx_bootmem_desc);
212                 goto error_out;
213         }
214
215         /*
216          * Do a variety of checks to validate the arguments.  The
217          * allocator code will later assume that these checks have
218          * been made.  We validate that the requested constraints are
219          * not self-contradictory before we look through the list of
220          * available memory.
221          */
222
223         /* 0 is not a valid req_size for this allocator */
224         if (!req_size)
225                 goto error_out;
226
227         /* Round req_size up to mult of minimum alignment bytes */
228         req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
229                 ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
230
231         /*
232          * Convert !0 address_min and 0 address_max to special case of
233          * range that specifies an exact memory block to allocate.  Do
234          * this before other checks and adjustments so that this
235          * tranformation will be validated.
236          */
237         if (address_min && !address_max)
238                 address_max = address_min + req_size;
239         else if (!address_min && !address_max)
240                 address_max = ~0ull;  /* If no limits given, use max limits */
241
242
243         /*
244          * Enforce minimum alignment (this also keeps the minimum free block
245          * req_size the same as the alignment req_size.
246          */
247         if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
248                 alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
249
250         /*
251          * Adjust address minimum based on requested alignment (round
252          * up to meet alignment).  Do this here so we can reject
253          * impossible requests up front. (NOP for address_min == 0)
254          */
255         if (alignment)
256                 address_min = ALIGN(address_min, alignment);
257
258         /*
259          * Reject inconsistent args.  We have adjusted these, so this
260          * may fail due to our internal changes even if this check
261          * would pass for the values the user supplied.
262          */
263         if (req_size > address_max - address_min)
264                 goto error_out;
265
266         /* Walk through the list entries - first fit found is returned */
267
268         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
269                 cvmx_bootmem_lock();
270         head_addr = cvmx_bootmem_desc->head_addr;
271         ent_addr = head_addr;
272         for (; ent_addr;
273              prev_addr = ent_addr,
274              ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
275                 uint64_t usable_base, usable_max;
276                 uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
277
278                 if (cvmx_bootmem_phy_get_next(ent_addr)
279                     && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
280                         cvmx_dprintf("Internal bootmem_alloc() error: ent: "
281                                 "0x%llx, next: 0x%llx\n",
282                                 (unsigned long long)ent_addr,
283                                 (unsigned long long)
284                                 cvmx_bootmem_phy_get_next(ent_addr));
285                         goto error_out;
286                 }
287
288                 /*
289                  * Determine if this is an entry that can satisify the
290                  * request Check to make sure entry is large enough to
291                  * satisfy request.
292                  */
293                 usable_base =
294                     ALIGN(max(address_min, ent_addr), alignment);
295                 usable_max = min(address_max, ent_addr + ent_size);
296                 /*
297                  * We should be able to allocate block at address
298                  * usable_base.
299                  */
300
301                 desired_min_addr = usable_base;
302                 /*
303                  * Determine if request can be satisfied from the
304                  * current entry.
305                  */
306                 if (!((ent_addr + ent_size) > usable_base
307                                 && ent_addr < address_max
308                                 && req_size <= usable_max - usable_base))
309                         continue;
310                 /*
311                  * We have found an entry that has room to satisfy the
312                  * request, so allocate it from this entry.  If end
313                  * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
314                  * the end of this block rather than the beginning.
315                  */
316                 if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
317                         desired_min_addr = usable_max - req_size;
318                         /*
319                          * Align desired address down to required
320                          * alignment.
321                          */
322                         desired_min_addr &= ~(alignment - 1);
323                 }
324
325                 /* Match at start of entry */
326                 if (desired_min_addr == ent_addr) {
327                         if (req_size < ent_size) {
328                                 /*
329                                  * big enough to create a new block
330                                  * from top portion of block.
331                                  */
332                                 new_ent_addr = ent_addr + req_size;
333                                 cvmx_bootmem_phy_set_next(new_ent_addr,
334                                         cvmx_bootmem_phy_get_next(ent_addr));
335                                 cvmx_bootmem_phy_set_size(new_ent_addr,
336                                                         ent_size -
337                                                         req_size);
338
339                                 /*
340                                  * Adjust next pointer as following
341                                  * code uses this.
342                                  */
343                                 cvmx_bootmem_phy_set_next(ent_addr,
344                                                         new_ent_addr);
345                         }
346
347                         /*
348                          * adjust prev ptr or head to remove this
349                          * entry from list.
350                          */
351                         if (prev_addr)
352                                 cvmx_bootmem_phy_set_next(prev_addr,
353                                         cvmx_bootmem_phy_get_next(ent_addr));
354                         else
355                                 /*
356                                  * head of list being returned, so
357                                  * update head ptr.
358                                  */
359                                 cvmx_bootmem_desc->head_addr =
360                                         cvmx_bootmem_phy_get_next(ent_addr);
361
362                         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
363                                 cvmx_bootmem_unlock();
364                         return desired_min_addr;
365                 }
366                 /*
367                  * block returned doesn't start at beginning of entry,
368                  * so we know that we will be splitting a block off
369                  * the front of this one.  Create a new block from the
370                  * beginning, add to list, and go to top of loop
371                  * again.
372                  *
373                  * create new block from high portion of
374                  * block, so that top block starts at desired
375                  * addr.
376                  */
377                 new_ent_addr = desired_min_addr;
378                 cvmx_bootmem_phy_set_next(new_ent_addr,
379                                         cvmx_bootmem_phy_get_next
380                                         (ent_addr));
381                 cvmx_bootmem_phy_set_size(new_ent_addr,
382                                         cvmx_bootmem_phy_get_size
383                                         (ent_addr) -
384                                         (desired_min_addr -
385                                                 ent_addr));
386                 cvmx_bootmem_phy_set_size(ent_addr,
387                                         desired_min_addr - ent_addr);
388                 cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
389                 /* Loop again to handle actual alloc from new block */
390         }
391 error_out:
392         /* We didn't find anything, so return error */
393         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
394                 cvmx_bootmem_unlock();
395         return -1;
396 }
397
398 int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
399 {
400         uint64_t cur_addr;
401         uint64_t prev_addr = 0; /* zero is invalid */
402         int retval = 0;
403
404 #ifdef DEBUG
405         cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
406                      (unsigned long long)phy_addr, (unsigned long long)size);
407 #endif
408         if (cvmx_bootmem_desc->major_version > 3) {
409                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
410                              "version: %d.%d at addr: %p\n",
411                              (int)cvmx_bootmem_desc->major_version,
412                              (int)cvmx_bootmem_desc->minor_version,
413                              cvmx_bootmem_desc);
414                 return 0;
415         }
416
417         /* 0 is not a valid size for this allocator */
418         if (!size)
419                 return 0;
420
421         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
422                 cvmx_bootmem_lock();
423         cur_addr = cvmx_bootmem_desc->head_addr;
424         if (cur_addr == 0 || phy_addr < cur_addr) {
425                 /* add at front of list - special case with changing head ptr */
426                 if (cur_addr && phy_addr + size > cur_addr)
427                         goto bootmem_free_done; /* error, overlapping section */
428                 else if (phy_addr + size == cur_addr) {
429                         /* Add to front of existing first block */
430                         cvmx_bootmem_phy_set_next(phy_addr,
431                                                   cvmx_bootmem_phy_get_next
432                                                   (cur_addr));
433                         cvmx_bootmem_phy_set_size(phy_addr,
434                                                   cvmx_bootmem_phy_get_size
435                                                   (cur_addr) + size);
436                         cvmx_bootmem_desc->head_addr = phy_addr;
437
438                 } else {
439                         /* New block before first block.  OK if cur_addr is 0 */
440                         cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
441                         cvmx_bootmem_phy_set_size(phy_addr, size);
442                         cvmx_bootmem_desc->head_addr = phy_addr;
443                 }
444                 retval = 1;
445                 goto bootmem_free_done;
446         }
447
448         /* Find place in list to add block */
449         while (cur_addr && phy_addr > cur_addr) {
450                 prev_addr = cur_addr;
451                 cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
452         }
453
454         if (!cur_addr) {
455                 /*
456                  * We have reached the end of the list, add on to end,
457                  * checking to see if we need to combine with last
458                  * block
459                  */
460                 if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
461                     phy_addr) {
462                         cvmx_bootmem_phy_set_size(prev_addr,
463                                                   cvmx_bootmem_phy_get_size
464                                                   (prev_addr) + size);
465                 } else {
466                         cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
467                         cvmx_bootmem_phy_set_size(phy_addr, size);
468                         cvmx_bootmem_phy_set_next(phy_addr, 0);
469                 }
470                 retval = 1;
471                 goto bootmem_free_done;
472         } else {
473                 /*
474                  * insert between prev and cur nodes, checking for
475                  * merge with either/both.
476                  */
477                 if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
478                     phy_addr) {
479                         /* Merge with previous */
480                         cvmx_bootmem_phy_set_size(prev_addr,
481                                                   cvmx_bootmem_phy_get_size
482                                                   (prev_addr) + size);
483                         if (phy_addr + size == cur_addr) {
484                                 /* Also merge with current */
485                                 cvmx_bootmem_phy_set_size(prev_addr,
486                                         cvmx_bootmem_phy_get_size(cur_addr) +
487                                         cvmx_bootmem_phy_get_size(prev_addr));
488                                 cvmx_bootmem_phy_set_next(prev_addr,
489                                         cvmx_bootmem_phy_get_next(cur_addr));
490                         }
491                         retval = 1;
492                         goto bootmem_free_done;
493                 } else if (phy_addr + size == cur_addr) {
494                         /* Merge with current */
495                         cvmx_bootmem_phy_set_size(phy_addr,
496                                                   cvmx_bootmem_phy_get_size
497                                                   (cur_addr) + size);
498                         cvmx_bootmem_phy_set_next(phy_addr,
499                                                   cvmx_bootmem_phy_get_next
500                                                   (cur_addr));
501                         cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
502                         retval = 1;
503                         goto bootmem_free_done;
504                 }
505
506                 /* It is a standalone block, add in between prev and cur */
507                 cvmx_bootmem_phy_set_size(phy_addr, size);
508                 cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
509                 cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
510
511         }
512         retval = 1;
513
514 bootmem_free_done:
515         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
516                 cvmx_bootmem_unlock();
517         return retval;
518
519 }
520
521 struct cvmx_bootmem_named_block_desc *
522         cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
523 {
524         unsigned int i;
525         struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
526
527 #ifdef DEBUG
528         cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
529 #endif
530         /*
531          * Lock the structure to make sure that it is not being
532          * changed while we are examining it.
533          */
534         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
535                 cvmx_bootmem_lock();
536
537         /* Use XKPHYS for 64 bit linux */
538         named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
539             cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
540
541 #ifdef DEBUG
542         cvmx_dprintf
543             ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
544              named_block_array_ptr);
545 #endif
546         if (cvmx_bootmem_desc->major_version == 3) {
547                 for (i = 0;
548                      i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
549                         if ((name && named_block_array_ptr[i].size
550                              && !strncmp(name, named_block_array_ptr[i].name,
551                                          cvmx_bootmem_desc->named_block_name_len
552                                          - 1))
553                             || (!name && !named_block_array_ptr[i].size)) {
554                                 if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
555                                         cvmx_bootmem_unlock();
556
557                                 return &(named_block_array_ptr[i]);
558                         }
559                 }
560         } else {
561                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
562                              "version: %d.%d at addr: %p\n",
563                              (int)cvmx_bootmem_desc->major_version,
564                              (int)cvmx_bootmem_desc->minor_version,
565                              cvmx_bootmem_desc);
566         }
567         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
568                 cvmx_bootmem_unlock();
569
570         return NULL;
571 }
572
573 int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
574 {
575         struct cvmx_bootmem_named_block_desc *named_block_ptr;
576
577         if (cvmx_bootmem_desc->major_version != 3) {
578                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
579                              "%d.%d at addr: %p\n",
580                              (int)cvmx_bootmem_desc->major_version,
581                              (int)cvmx_bootmem_desc->minor_version,
582                              cvmx_bootmem_desc);
583                 return 0;
584         }
585 #ifdef DEBUG
586         cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
587 #endif
588
589         /*
590          * Take lock here, as name lookup/block free/name free need to
591          * be atomic.
592          */
593         cvmx_bootmem_lock();
594
595         named_block_ptr =
596             cvmx_bootmem_phy_named_block_find(name,
597                                               CVMX_BOOTMEM_FLAG_NO_LOCKING);
598         if (named_block_ptr) {
599 #ifdef DEBUG
600                 cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
601                              "%s, base: 0x%llx, size: 0x%llx\n",
602                              name,
603                              (unsigned long long)named_block_ptr->base_addr,
604                              (unsigned long long)named_block_ptr->size);
605 #endif
606                 __cvmx_bootmem_phy_free(named_block_ptr->base_addr,
607                                         named_block_ptr->size,
608                                         CVMX_BOOTMEM_FLAG_NO_LOCKING);
609                 named_block_ptr->size = 0;
610                 /* Set size to zero to indicate block not used. */
611         }
612
613         cvmx_bootmem_unlock();
614         return named_block_ptr != NULL; /* 0 on failure, 1 on success */
615 }
616
617 int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
618                                            uint64_t max_addr,
619                                            uint64_t alignment,
620                                            char *name,
621                                            uint32_t flags)
622 {
623         int64_t addr_allocated;
624         struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
625
626 #ifdef DEBUG
627         cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
628                      "0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
629                      (unsigned long long)size,
630                      (unsigned long long)min_addr,
631                      (unsigned long long)max_addr,
632                      (unsigned long long)alignment,
633                      name);
634 #endif
635         if (cvmx_bootmem_desc->major_version != 3) {
636                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
637                              "%d.%d at addr: %p\n",
638                              (int)cvmx_bootmem_desc->major_version,
639                              (int)cvmx_bootmem_desc->minor_version,
640                              cvmx_bootmem_desc);
641                 return -1;
642         }
643
644         /*
645          * Take lock here, as name lookup/block alloc/name add need to
646          * be atomic.
647          */
648         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
649                 cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
650
651         /* Get pointer to first available named block descriptor */
652         named_block_desc_ptr =
653                 cvmx_bootmem_phy_named_block_find(NULL,
654                                                   flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
655
656         /*
657          * Check to see if name already in use, return error if name
658          * not available or no more room for blocks.
659          */
660         if (cvmx_bootmem_phy_named_block_find(name,
661                                               flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
662                 if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
663                         cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
664                 return -1;
665         }
666
667
668         /*
669          * Round size up to mult of minimum alignment bytes We need
670          * the actual size allocated to allow for blocks to be
671          * coallesced when they are freed.  The alloc routine does the
672          * same rounding up on all allocations.
673          */
674         size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
675
676         addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
677                                                 alignment,
678                                                 flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
679         if (addr_allocated >= 0) {
680                 named_block_desc_ptr->base_addr = addr_allocated;
681                 named_block_desc_ptr->size = size;
682                 strncpy(named_block_desc_ptr->name, name,
683                         cvmx_bootmem_desc->named_block_name_len);
684                 named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
685         }
686
687         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
688                 cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
689         return addr_allocated;
690 }
691
692 struct cvmx_bootmem_desc *cvmx_bootmem_get_desc(void)
693 {
694         return cvmx_bootmem_desc;
695 }