MIPS: Whitespace cleanup.
[linux-drm-fsl-dcu.git] / arch / mips / alchemy / common / dbdma.c
1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      The Descriptor Based DMA channel manager that first appeared
5  *      on the Au1550.  I started with dma.c, but I think all that is
6  *      left is this initial comment :-)
7  *
8  * Copyright 2004 Embedded Edge, LLC
9  *      dan@embeddededge.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
42
43 /*
44  * The Descriptor Based DMA supports up to 16 channels.
45  *
46  * There are 32 devices defined. We keep an internal structure
47  * of devices using these channels, along with additional
48  * information.
49  *
50  * We allocate the descriptors and allow access to them through various
51  * functions.  The drivers allocate the data buffers and assign them
52  * to the descriptors.
53  */
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
55
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a)        ((((u32)(x)) + (a-1)) & ~(a-1))
58
59 static dbdma_global_t *dbdma_gptr =
60                         (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
61 static int dbdma_initialized;
62
63 static dbdev_tab_t *dbdev_tab;
64
65 static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
66         /* UARTS */
67         { AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
68         { AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
69         { AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
70         { AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8, 0x11400000, 0, 0 },
71
72         /* EXT DMA */
73         { AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
74         { AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
75         { AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
76         { AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
77
78         /* USB DEV */
79         { AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN,  4, 8, 0x10200000, 0, 0 },
80         { AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
81         { AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
82         { AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
83         { AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN,  4, 8, 0x10200010, 0, 0 },
84         { AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN,  4, 8, 0x10200014, 0, 0 },
85
86         /* PSCs */
87         { AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
88         { AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,  0, 0, 0x11a0001c, 0, 0 },
89         { AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
90         { AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,  0, 0, 0x11b0001c, 0, 0 },
91         { AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
92         { AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,  0, 0, 0x10a0001c, 0, 0 },
93         { AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
94         { AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,  0, 0, 0x10b0001c, 0, 0 },
95
96         { AU1550_DSCR_CMD0_PCI_WRITE,  0, 0, 0, 0x00000000, 0, 0 },  /* PCI */
97         { AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
98
99         /* MAC 0 */
100         { AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
101         { AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
102
103         /* MAC 1 */
104         { AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
105         { AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
106
107         { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
108         { DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
109 };
110
111 static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
112         { AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
113         { AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
114         { AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
115         { AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8, 0x11200000, 0, 0 },
116
117         { AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
118         { AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
119
120         { AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
121         { AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
122         { AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
123         { AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124
125         { AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
126         { AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8, 0x10600004, 0, 0 },
127         { AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
128         { AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  4, 8, 0x10680004, 0, 0 },
129
130         { AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
131         { AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
132
133         { AU1200_DSCR_CMD0_PSC0_TX,   DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
134         { AU1200_DSCR_CMD0_PSC0_RX,   DEV_FLAGS_IN,  0, 16, 0x11a0001c, 0, 0 },
135         { AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
136         { AU1200_DSCR_CMD0_PSC1_TX,   DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
137         { AU1200_DSCR_CMD0_PSC1_RX,   DEV_FLAGS_IN,  0, 16, 0x11b0001c, 0, 0 },
138         { AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
139
140         { AU1200_DSCR_CMD0_CIM_RXA,  DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
141         { AU1200_DSCR_CMD0_CIM_RXB,  DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
142         { AU1200_DSCR_CMD0_CIM_RXC,  DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
143         { AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
144
145         { AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
146
147         { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
148         { DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
149 };
150
151 static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
152         { AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8,  0x10100004, 0, 0 },
153         { AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8,  0x10100000, 0, 0 },
154         { AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8,  0x10101004, 0, 0 },
155         { AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8,  0x10101000, 0, 0 },
156         { AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8,  0x10102004, 0, 0 },
157         { AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN,  0, 8,  0x10102000, 0, 0 },
158         { AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8,  0x10103004, 0, 0 },
159         { AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8,  0x10103000, 0, 0 },
160
161         { AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8,  0x10600000, 0, 0 },
162         { AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8,  0x10600004, 0, 0 },
163         { AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8,  0x10601000, 0, 0 },
164         { AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  8, 8,  0x10601004, 0, 0 },
165
166         { AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN ,   4, 32, 0x10300008, 0, 0 },
167         { AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT,   4, 32, 0x10300004, 0, 0 },
168
169         { AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0001c, 0, 0 },
170         { AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,   0, 16, 0x10a0001c, 0, 0 },
171         { AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0101c, 0, 0 },
172         { AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,   0, 16, 0x10a0101c, 0, 0 },
173         { AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0201c, 0, 0 },
174         { AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,   0, 16, 0x10a0201c, 0, 0 },
175         { AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0301c, 0, 0 },
176         { AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,   0, 16, 0x10a0301c, 0, 0 },
177
178         { AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE,   0, 0,  0x00000000, 0, 0 },
179         { AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
180
181         { AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8,  0x10602000, 0, 0 },
182         { AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN,  4, 8,  0x10602004, 0, 0 },
183
184         { AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
185
186         { AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE,  0, 32, 0x14001810, 0, 0 },
187
188         { AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
189         { AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
190
191         { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
192         { DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
193 };
194
195 /* 32 predefined plus 32 custom */
196 #define DBDEV_TAB_SIZE          64
197
198 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
199
200 static dbdev_tab_t *find_dbdev_id(u32 id)
201 {
202         int i;
203         dbdev_tab_t *p;
204         for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
205                 p = &dbdev_tab[i];
206                 if (p->dev_id == id)
207                         return p;
208         }
209         return NULL;
210 }
211
212 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
213 {
214         return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
215 }
216 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
217
218 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
219 {
220         u32 ret = 0;
221         dbdev_tab_t *p;
222         static u16 new_id = 0x1000;
223
224         p = find_dbdev_id(~0);
225         if (NULL != p) {
226                 memcpy(p, dev, sizeof(dbdev_tab_t));
227                 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
228                 ret = p->dev_id;
229                 new_id++;
230 #if 0
231                 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
232                                   p->dev_id, p->dev_flags, p->dev_physaddr);
233 #endif
234         }
235
236         return ret;
237 }
238 EXPORT_SYMBOL(au1xxx_ddma_add_device);
239
240 void au1xxx_ddma_del_device(u32 devid)
241 {
242         dbdev_tab_t *p = find_dbdev_id(devid);
243
244         if (p != NULL) {
245                 memset(p, 0, sizeof(dbdev_tab_t));
246                 p->dev_id = ~0;
247         }
248 }
249 EXPORT_SYMBOL(au1xxx_ddma_del_device);
250
251 /* Allocate a channel and return a non-zero descriptor if successful. */
252 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
253        void (*callback)(int, void *), void *callparam)
254 {
255         unsigned long   flags;
256         u32             used, chan;
257         u32             dcp;
258         int             i;
259         dbdev_tab_t     *stp, *dtp;
260         chan_tab_t      *ctp;
261         au1x_dma_chan_t *cp;
262
263         /*
264          * We do the intialization on the first channel allocation.
265          * We have to wait because of the interrupt handler initialization
266          * which can't be done successfully during board set up.
267          */
268         if (!dbdma_initialized)
269                 return 0;
270
271         stp = find_dbdev_id(srcid);
272         if (stp == NULL)
273                 return 0;
274         dtp = find_dbdev_id(destid);
275         if (dtp == NULL)
276                 return 0;
277
278         used = 0;
279
280         /* Check to see if we can get both channels. */
281         spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
282         if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
283              (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
284                 /* Got source */
285                 stp->dev_flags |= DEV_FLAGS_INUSE;
286                 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
287                      (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
288                         /* Got destination */
289                         dtp->dev_flags |= DEV_FLAGS_INUSE;
290                 } else {
291                         /* Can't get dest.  Release src. */
292                         stp->dev_flags &= ~DEV_FLAGS_INUSE;
293                         used++;
294                 }
295         } else
296                 used++;
297         spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
298
299         if (used)
300                 return 0;
301
302         /* Let's see if we can allocate a channel for it. */
303         ctp = NULL;
304         chan = 0;
305         spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
306         for (i = 0; i < NUM_DBDMA_CHANS; i++)
307                 if (chan_tab_ptr[i] == NULL) {
308                         /*
309                          * If kmalloc fails, it is caught below same
310                          * as a channel not available.
311                          */
312                         ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
313                         chan_tab_ptr[i] = ctp;
314                         break;
315                 }
316         spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
317
318         if (ctp != NULL) {
319                 memset(ctp, 0, sizeof(chan_tab_t));
320                 ctp->chan_index = chan = i;
321                 dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
322                 dcp += (0x0100 * chan);
323                 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
324                 cp = (au1x_dma_chan_t *)dcp;
325                 ctp->chan_src = stp;
326                 ctp->chan_dest = dtp;
327                 ctp->chan_callback = callback;
328                 ctp->chan_callparam = callparam;
329
330                 /* Initialize channel configuration. */
331                 i = 0;
332                 if (stp->dev_intlevel)
333                         i |= DDMA_CFG_SED;
334                 if (stp->dev_intpolarity)
335                         i |= DDMA_CFG_SP;
336                 if (dtp->dev_intlevel)
337                         i |= DDMA_CFG_DED;
338                 if (dtp->dev_intpolarity)
339                         i |= DDMA_CFG_DP;
340                 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
341                         (dtp->dev_flags & DEV_FLAGS_SYNC))
342                                 i |= DDMA_CFG_SYNC;
343                 cp->ddma_cfg = i;
344                 au_sync();
345
346                 /*
347                  * Return a non-zero value that can be used to find the channel
348                  * information in subsequent operations.
349                  */
350                 return (u32)(&chan_tab_ptr[chan]);
351         }
352
353         /* Release devices */
354         stp->dev_flags &= ~DEV_FLAGS_INUSE;
355         dtp->dev_flags &= ~DEV_FLAGS_INUSE;
356
357         return 0;
358 }
359 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
360
361 /*
362  * Set the device width if source or destination is a FIFO.
363  * Should be 8, 16, or 32 bits.
364  */
365 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
366 {
367         u32             rv;
368         chan_tab_t      *ctp;
369         dbdev_tab_t     *stp, *dtp;
370
371         ctp = *((chan_tab_t **)chanid);
372         stp = ctp->chan_src;
373         dtp = ctp->chan_dest;
374         rv = 0;
375
376         if (stp->dev_flags & DEV_FLAGS_IN) {    /* Source in fifo */
377                 rv = stp->dev_devwidth;
378                 stp->dev_devwidth = bits;
379         }
380         if (dtp->dev_flags & DEV_FLAGS_OUT) {   /* Destination out fifo */
381                 rv = dtp->dev_devwidth;
382                 dtp->dev_devwidth = bits;
383         }
384
385         return rv;
386 }
387 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
388
389 /* Allocate a descriptor ring, initializing as much as possible. */
390 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
391 {
392         int                     i;
393         u32                     desc_base, srcid, destid;
394         u32                     cmd0, cmd1, src1, dest1;
395         u32                     src0, dest0;
396         chan_tab_t              *ctp;
397         dbdev_tab_t             *stp, *dtp;
398         au1x_ddma_desc_t        *dp;
399
400         /*
401          * I guess we could check this to be within the
402          * range of the table......
403          */
404         ctp = *((chan_tab_t **)chanid);
405         stp = ctp->chan_src;
406         dtp = ctp->chan_dest;
407
408         /*
409          * The descriptors must be 32-byte aligned.  There is a
410          * possibility the allocation will give us such an address,
411          * and if we try that first we are likely to not waste larger
412          * slabs of memory.
413          */
414         desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
415                                  GFP_KERNEL|GFP_DMA);
416         if (desc_base == 0)
417                 return 0;
418
419         if (desc_base & 0x1f) {
420                 /*
421                  * Lost....do it again, allocate extra, and round
422                  * the address base.
423                  */
424                 kfree((const void *)desc_base);
425                 i = entries * sizeof(au1x_ddma_desc_t);
426                 i += (sizeof(au1x_ddma_desc_t) - 1);
427                 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
428                 if (desc_base == 0)
429                         return 0;
430
431                 ctp->cdb_membase = desc_base;
432                 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
433         } else
434                 ctp->cdb_membase = desc_base;
435
436         dp = (au1x_ddma_desc_t *)desc_base;
437
438         /* Keep track of the base descriptor. */
439         ctp->chan_desc_base = dp;
440
441         /* Initialize the rings with as much information as we know. */
442         srcid = stp->dev_id;
443         destid = dtp->dev_id;
444
445         cmd0 = cmd1 = src1 = dest1 = 0;
446         src0 = dest0 = 0;
447
448         cmd0 |= DSCR_CMD0_SID(srcid);
449         cmd0 |= DSCR_CMD0_DID(destid);
450         cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
451         cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
452
453         /* Is it mem to mem transfer? */
454         if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
455              (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
456             ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
457              (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
458                 cmd0 |= DSCR_CMD0_MEM;
459
460         switch (stp->dev_devwidth) {
461         case 8:
462                 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
463                 break;
464         case 16:
465                 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
466                 break;
467         case 32:
468         default:
469                 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
470                 break;
471         }
472
473         switch (dtp->dev_devwidth) {
474         case 8:
475                 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
476                 break;
477         case 16:
478                 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
479                 break;
480         case 32:
481         default:
482                 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
483                 break;
484         }
485
486         /*
487          * If the device is marked as an in/out FIFO, ensure it is
488          * set non-coherent.
489          */
490         if (stp->dev_flags & DEV_FLAGS_IN)
491                 cmd0 |= DSCR_CMD0_SN;           /* Source in FIFO */
492         if (dtp->dev_flags & DEV_FLAGS_OUT)
493                 cmd0 |= DSCR_CMD0_DN;           /* Destination out FIFO */
494
495         /*
496          * Set up source1.  For now, assume no stride and increment.
497          * A channel attribute update can change this later.
498          */
499         switch (stp->dev_tsize) {
500         case 1:
501                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
502                 break;
503         case 2:
504                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
505                 break;
506         case 4:
507                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
508                 break;
509         case 8:
510         default:
511                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
512                 break;
513         }
514
515         /* If source input is FIFO, set static address. */
516         if (stp->dev_flags & DEV_FLAGS_IN) {
517                 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
518                         src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
519                 else
520                         src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
521         }
522
523         if (stp->dev_physaddr)
524                 src0 = stp->dev_physaddr;
525
526         /*
527          * Set up dest1.  For now, assume no stride and increment.
528          * A channel attribute update can change this later.
529          */
530         switch (dtp->dev_tsize) {
531         case 1:
532                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
533                 break;
534         case 2:
535                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
536                 break;
537         case 4:
538                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
539                 break;
540         case 8:
541         default:
542                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
543                 break;
544         }
545
546         /* If destination output is FIFO, set static address. */
547         if (dtp->dev_flags & DEV_FLAGS_OUT) {
548                 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
549                         dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
550                 else
551                         dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
552         }
553
554         if (dtp->dev_physaddr)
555                 dest0 = dtp->dev_physaddr;
556
557 #if 0
558                 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
559                                   "source1:%x dest0:%x dest1:%x\n",
560                                   dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
561                                   src1, dest0, dest1);
562 #endif
563         for (i = 0; i < entries; i++) {
564                 dp->dscr_cmd0 = cmd0;
565                 dp->dscr_cmd1 = cmd1;
566                 dp->dscr_source0 = src0;
567                 dp->dscr_source1 = src1;
568                 dp->dscr_dest0 = dest0;
569                 dp->dscr_dest1 = dest1;
570                 dp->dscr_stat = 0;
571                 dp->sw_context = 0;
572                 dp->sw_status = 0;
573                 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
574                 dp++;
575         }
576
577         /* Make last descrptor point to the first. */
578         dp--;
579         dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
580         ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
581
582         return (u32)ctp->chan_desc_base;
583 }
584 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
585
586 /*
587  * Put a source buffer into the DMA ring.
588  * This updates the source pointer and byte count.  Normally used
589  * for memory to fifo transfers.
590  */
591 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
592 {
593         chan_tab_t              *ctp;
594         au1x_ddma_desc_t        *dp;
595
596         /*
597          * I guess we could check this to be within the
598          * range of the table......
599          */
600         ctp = *(chan_tab_t **)chanid;
601
602         /*
603          * We should have multiple callers for a particular channel,
604          * an interrupt doesn't affect this pointer nor the descriptor,
605          * so no locking should be needed.
606          */
607         dp = ctp->put_ptr;
608
609         /*
610          * If the descriptor is valid, we are way ahead of the DMA
611          * engine, so just return an error condition.
612          */
613         if (dp->dscr_cmd0 & DSCR_CMD0_V)
614                 return 0;
615
616         /* Load up buffer address and byte count. */
617         dp->dscr_source0 = buf & ~0UL;
618         dp->dscr_cmd1 = nbytes;
619         /* Check flags */
620         if (flags & DDMA_FLAGS_IE)
621                 dp->dscr_cmd0 |= DSCR_CMD0_IE;
622         if (flags & DDMA_FLAGS_NOIE)
623                 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
624
625         /*
626          * There is an errata on the Au1200/Au1550 parts that could result
627          * in "stale" data being DMA'ed. It has to do with the snoop logic on
628          * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
629          * these parts. If it is fixed in the future, these dma_cache_inv will
630          * just be nothing more than empty macros. See io.h.
631          */
632         dma_cache_wback_inv((unsigned long)buf, nbytes);
633         dp->dscr_cmd0 |= DSCR_CMD0_V;   /* Let it rip */
634         au_sync();
635         dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
636         ctp->chan_ptr->ddma_dbell = 0;
637
638         /* Get next descriptor pointer. */
639         ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
640
641         /* Return something non-zero. */
642         return nbytes;
643 }
644 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
645
646 /* Put a destination buffer into the DMA ring.
647  * This updates the destination pointer and byte count.  Normally used
648  * to place an empty buffer into the ring for fifo to memory transfers.
649  */
650 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
651 {
652         chan_tab_t              *ctp;
653         au1x_ddma_desc_t        *dp;
654
655         /* I guess we could check this to be within the
656          * range of the table......
657          */
658         ctp = *((chan_tab_t **)chanid);
659
660         /* We should have multiple callers for a particular channel,
661          * an interrupt doesn't affect this pointer nor the descriptor,
662          * so no locking should be needed.
663          */
664         dp = ctp->put_ptr;
665
666         /* If the descriptor is valid, we are way ahead of the DMA
667          * engine, so just return an error condition.
668          */
669         if (dp->dscr_cmd0 & DSCR_CMD0_V)
670                 return 0;
671
672         /* Load up buffer address and byte count */
673
674         /* Check flags  */
675         if (flags & DDMA_FLAGS_IE)
676                 dp->dscr_cmd0 |= DSCR_CMD0_IE;
677         if (flags & DDMA_FLAGS_NOIE)
678                 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
679
680         dp->dscr_dest0 = buf & ~0UL;
681         dp->dscr_cmd1 = nbytes;
682 #if 0
683         printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
684                           dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
685                           dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
686 #endif
687         /*
688          * There is an errata on the Au1200/Au1550 parts that could result in
689          * "stale" data being DMA'ed. It has to do with the snoop logic on the
690          * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
691          * parts. If it is fixed in the future, these dma_cache_inv will just
692          * be nothing more than empty macros. See io.h.
693          */
694         dma_cache_inv((unsigned long)buf, nbytes);
695         dp->dscr_cmd0 |= DSCR_CMD0_V;   /* Let it rip */
696         au_sync();
697         dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
698         ctp->chan_ptr->ddma_dbell = 0;
699
700         /* Get next descriptor pointer. */
701         ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
702
703         /* Return something non-zero. */
704         return nbytes;
705 }
706 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
707
708 /*
709  * Get a destination buffer into the DMA ring.
710  * Normally used to get a full buffer from the ring during fifo
711  * to memory transfers.  This does not set the valid bit, you will
712  * have to put another destination buffer to keep the DMA going.
713  */
714 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
715 {
716         chan_tab_t              *ctp;
717         au1x_ddma_desc_t        *dp;
718         u32                     rv;
719
720         /*
721          * I guess we could check this to be within the
722          * range of the table......
723          */
724         ctp = *((chan_tab_t **)chanid);
725
726         /*
727          * We should have multiple callers for a particular channel,
728          * an interrupt doesn't affect this pointer nor the descriptor,
729          * so no locking should be needed.
730          */
731         dp = ctp->get_ptr;
732
733         /*
734          * If the descriptor is valid, we are way ahead of the DMA
735          * engine, so just return an error condition.
736          */
737         if (dp->dscr_cmd0 & DSCR_CMD0_V)
738                 return 0;
739
740         /* Return buffer address and byte count. */
741         *buf = (void *)(phys_to_virt(dp->dscr_dest0));
742         *nbytes = dp->dscr_cmd1;
743         rv = dp->dscr_stat;
744
745         /* Get next descriptor pointer. */
746         ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
747
748         /* Return something non-zero. */
749         return rv;
750 }
751 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
752
753 void au1xxx_dbdma_stop(u32 chanid)
754 {
755         chan_tab_t      *ctp;
756         au1x_dma_chan_t *cp;
757         int halt_timeout = 0;
758
759         ctp = *((chan_tab_t **)chanid);
760
761         cp = ctp->chan_ptr;
762         cp->ddma_cfg &= ~DDMA_CFG_EN;   /* Disable channel */
763         au_sync();
764         while (!(cp->ddma_stat & DDMA_STAT_H)) {
765                 udelay(1);
766                 halt_timeout++;
767                 if (halt_timeout > 100) {
768                         printk(KERN_WARNING "warning: DMA channel won't halt\n");
769                         break;
770                 }
771         }
772         /* clear current desc valid and doorbell */
773         cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
774         au_sync();
775 }
776 EXPORT_SYMBOL(au1xxx_dbdma_stop);
777
778 /*
779  * Start using the current descriptor pointer.  If the DBDMA encounters
780  * a non-valid descriptor, it will stop.  In this case, we can just
781  * continue by adding a buffer to the list and starting again.
782  */
783 void au1xxx_dbdma_start(u32 chanid)
784 {
785         chan_tab_t      *ctp;
786         au1x_dma_chan_t *cp;
787
788         ctp = *((chan_tab_t **)chanid);
789         cp = ctp->chan_ptr;
790         cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
791         cp->ddma_cfg |= DDMA_CFG_EN;    /* Enable channel */
792         au_sync();
793         cp->ddma_dbell = 0;
794         au_sync();
795 }
796 EXPORT_SYMBOL(au1xxx_dbdma_start);
797
798 void au1xxx_dbdma_reset(u32 chanid)
799 {
800         chan_tab_t              *ctp;
801         au1x_ddma_desc_t        *dp;
802
803         au1xxx_dbdma_stop(chanid);
804
805         ctp = *((chan_tab_t **)chanid);
806         ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
807
808         /* Run through the descriptors and reset the valid indicator. */
809         dp = ctp->chan_desc_base;
810
811         do {
812                 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
813                 /*
814                  * Reset our software status -- this is used to determine
815                  * if a descriptor is in use by upper level software. Since
816                  * posting can reset 'V' bit.
817                  */
818                 dp->sw_status = 0;
819                 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
820         } while (dp != ctp->chan_desc_base);
821 }
822 EXPORT_SYMBOL(au1xxx_dbdma_reset);
823
824 u32 au1xxx_get_dma_residue(u32 chanid)
825 {
826         chan_tab_t      *ctp;
827         au1x_dma_chan_t *cp;
828         u32             rv;
829
830         ctp = *((chan_tab_t **)chanid);
831         cp = ctp->chan_ptr;
832
833         /* This is only valid if the channel is stopped. */
834         rv = cp->ddma_bytecnt;
835         au_sync();
836
837         return rv;
838 }
839 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
840
841 void au1xxx_dbdma_chan_free(u32 chanid)
842 {
843         chan_tab_t      *ctp;
844         dbdev_tab_t     *stp, *dtp;
845
846         ctp = *((chan_tab_t **)chanid);
847         stp = ctp->chan_src;
848         dtp = ctp->chan_dest;
849
850         au1xxx_dbdma_stop(chanid);
851
852         kfree((void *)ctp->cdb_membase);
853
854         stp->dev_flags &= ~DEV_FLAGS_INUSE;
855         dtp->dev_flags &= ~DEV_FLAGS_INUSE;
856         chan_tab_ptr[ctp->chan_index] = NULL;
857
858         kfree(ctp);
859 }
860 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
861
862 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
863 {
864         u32 intstat;
865         u32 chan_index;
866         chan_tab_t              *ctp;
867         au1x_ddma_desc_t        *dp;
868         au1x_dma_chan_t *cp;
869
870         intstat = dbdma_gptr->ddma_intstat;
871         au_sync();
872         chan_index = __ffs(intstat);
873
874         ctp = chan_tab_ptr[chan_index];
875         cp = ctp->chan_ptr;
876         dp = ctp->cur_ptr;
877
878         /* Reset interrupt. */
879         cp->ddma_irq = 0;
880         au_sync();
881
882         if (ctp->chan_callback)
883                 ctp->chan_callback(irq, ctp->chan_callparam);
884
885         ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
886         return IRQ_RETVAL(1);
887 }
888
889 void au1xxx_dbdma_dump(u32 chanid)
890 {
891         chan_tab_t       *ctp;
892         au1x_ddma_desc_t *dp;
893         dbdev_tab_t      *stp, *dtp;
894         au1x_dma_chan_t  *cp;
895         u32 i            = 0;
896
897         ctp = *((chan_tab_t **)chanid);
898         stp = ctp->chan_src;
899         dtp = ctp->chan_dest;
900         cp = ctp->chan_ptr;
901
902         printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
903                           (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
904                           dtp - dbdev_tab);
905         printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
906                           (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
907                           (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
908
909         printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
910         printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
911                           cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
912         printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
913                           cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
914                           cp->ddma_bytecnt);
915
916         /* Run through the descriptors */
917         dp = ctp->chan_desc_base;
918
919         do {
920                 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
921                                   i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
922                 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
923                                   dp->dscr_source0, dp->dscr_source1,
924                                   dp->dscr_dest0, dp->dscr_dest1);
925                 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
926                                   dp->dscr_stat, dp->dscr_nxtptr);
927                 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
928         } while (dp != ctp->chan_desc_base);
929 }
930
931 /* Put a descriptor into the DMA ring.
932  * This updates the source/destination pointers and byte count.
933  */
934 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
935 {
936         chan_tab_t *ctp;
937         au1x_ddma_desc_t *dp;
938         u32 nbytes = 0;
939
940         /*
941          * I guess we could check this to be within the
942          * range of the table......
943          */
944         ctp = *((chan_tab_t **)chanid);
945
946         /*
947          * We should have multiple callers for a particular channel,
948          * an interrupt doesn't affect this pointer nor the descriptor,
949          * so no locking should be needed.
950          */
951         dp = ctp->put_ptr;
952
953         /*
954          * If the descriptor is valid, we are way ahead of the DMA
955          * engine, so just return an error condition.
956          */
957         if (dp->dscr_cmd0 & DSCR_CMD0_V)
958                 return 0;
959
960         /* Load up buffer addresses and byte count. */
961         dp->dscr_dest0 = dscr->dscr_dest0;
962         dp->dscr_source0 = dscr->dscr_source0;
963         dp->dscr_dest1 = dscr->dscr_dest1;
964         dp->dscr_source1 = dscr->dscr_source1;
965         dp->dscr_cmd1 = dscr->dscr_cmd1;
966         nbytes = dscr->dscr_cmd1;
967         /* Allow the caller to specifiy if an interrupt is generated */
968         dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
969         dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
970         ctp->chan_ptr->ddma_dbell = 0;
971
972         /* Get next descriptor pointer. */
973         ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
974
975         /* Return something non-zero. */
976         return nbytes;
977 }
978
979
980 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
981
982 static int alchemy_dbdma_suspend(void)
983 {
984         int i;
985         void __iomem *addr;
986
987         addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
988         alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
989         alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
990         alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
991         alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
992
993         /* save channel configurations */
994         addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
995         for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
996                 alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
997                 alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
998                 alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
999                 alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
1000                 alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
1001                 alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
1002
1003                 /* halt channel */
1004                 __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
1005                 wmb();
1006                 while (!(__raw_readl(addr + 0x14) & 1))
1007                         wmb();
1008
1009                 addr += 0x100;  /* next channel base */
1010         }
1011         /* disable channel interrupts */
1012         addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1013         __raw_writel(0, addr + 0x0c);
1014         wmb();
1015
1016         return 0;
1017 }
1018
1019 static void alchemy_dbdma_resume(void)
1020 {
1021         int i;
1022         void __iomem *addr;
1023
1024         addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1025         __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1026         __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1027         __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1028         __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1029
1030         /* restore channel configurations */
1031         addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1032         for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1033                 __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1034                 __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1035                 __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1036                 __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1037                 __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1038                 __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1039                 wmb();
1040                 addr += 0x100;  /* next channel base */
1041         }
1042 }
1043
1044 static struct syscore_ops alchemy_dbdma_syscore_ops = {
1045         .suspend        = alchemy_dbdma_suspend,
1046         .resume         = alchemy_dbdma_resume,
1047 };
1048
1049 static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
1050 {
1051         int ret;
1052
1053         dbdev_tab = kzalloc(sizeof(dbdev_tab_t) * DBDEV_TAB_SIZE, GFP_KERNEL);
1054         if (!dbdev_tab)
1055                 return -ENOMEM;
1056
1057         memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
1058         for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
1059                 dbdev_tab[ret].dev_id = ~0;
1060
1061         dbdma_gptr->ddma_config = 0;
1062         dbdma_gptr->ddma_throttle = 0;
1063         dbdma_gptr->ddma_inten = 0xffff;
1064         au_sync();
1065
1066         ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
1067         if (ret)
1068                 printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1069         else {
1070                 dbdma_initialized = 1;
1071                 register_syscore_ops(&alchemy_dbdma_syscore_ops);
1072         }
1073
1074         return ret;
1075 }
1076
1077 static int __init alchemy_dbdma_init(void)
1078 {
1079         switch (alchemy_get_cputype()) {
1080         case ALCHEMY_CPU_AU1550:
1081                 return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
1082         case ALCHEMY_CPU_AU1200:
1083                 return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
1084         case ALCHEMY_CPU_AU1300:
1085                 return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
1086         }
1087         return 0;
1088 }
1089 subsys_initcall(alchemy_dbdma_init);