Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / arch / ia64 / pci / pci.c
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33
34 /*
35  * Low-level SAL-based PCI configuration access functions. Note that SAL
36  * calls are already serialized (via sal_lock), so we don't need another
37  * synchronization mechanism here.
38  */
39
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)           \
41         (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42
43 /* SAL 3.2 adds support for extended config space. */
44
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)       \
46         (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49               int reg, int len, u32 *value)
50 {
51         u64 addr, data = 0;
52         int mode, result;
53
54         if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55                 return -EINVAL;
56
57         if ((seg | reg) <= 255) {
58                 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59                 mode = 0;
60         } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61                 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62                 mode = 1;
63         } else {
64                 return -EINVAL;
65         }
66
67         result = ia64_sal_pci_config_read(addr, mode, len, &data);
68         if (result != 0)
69                 return -EINVAL;
70
71         *value = (u32) data;
72         return 0;
73 }
74
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76                int reg, int len, u32 value)
77 {
78         u64 addr;
79         int mode, result;
80
81         if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82                 return -EINVAL;
83
84         if ((seg | reg) <= 255) {
85                 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86                 mode = 0;
87         } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88                 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89                 mode = 1;
90         } else {
91                 return -EINVAL;
92         }
93         result = ia64_sal_pci_config_write(addr, mode, len, value);
94         if (result != 0)
95                 return -EINVAL;
96         return 0;
97 }
98
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100                                                         int size, u32 *value)
101 {
102         return raw_pci_read(pci_domain_nr(bus), bus->number,
103                                  devfn, where, size, value);
104 }
105
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107                                                         int size, u32 value)
108 {
109         return raw_pci_write(pci_domain_nr(bus), bus->number,
110                                   devfn, where, size, value);
111 }
112
113 struct pci_ops pci_root_ops = {
114         .read = pci_read,
115         .write = pci_write,
116 };
117
118 /* Called by ACPI when it finds a new root bus.  */
119
120 static struct pci_controller *alloc_pci_controller(int seg)
121 {
122         struct pci_controller *controller;
123
124         controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125         if (!controller)
126                 return NULL;
127
128         controller->segment = seg;
129         return controller;
130 }
131
132 struct pci_root_info {
133         struct acpi_device *bridge;
134         struct pci_controller *controller;
135         struct list_head resources;
136         struct resource *res;
137         resource_size_t *res_offset;
138         unsigned int res_num;
139         struct list_head io_resources;
140         char *name;
141 };
142
143 static unsigned int
144 new_space (u64 phys_base, int sparse)
145 {
146         u64 mmio_base;
147         int i;
148
149         if (phys_base == 0)
150                 return 0;       /* legacy I/O port space */
151
152         mmio_base = (u64) ioremap(phys_base, 0);
153         for (i = 0; i < num_io_spaces; i++)
154                 if (io_space[i].mmio_base == mmio_base &&
155                     io_space[i].sparse == sparse)
156                         return i;
157
158         if (num_io_spaces == MAX_IO_SPACES) {
159                 pr_err("PCI: Too many IO port spaces "
160                         "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
161                 return ~0;
162         }
163
164         i = num_io_spaces++;
165         io_space[i].mmio_base = mmio_base;
166         io_space[i].sparse = sparse;
167
168         return i;
169 }
170
171 static u64 add_io_space(struct pci_root_info *info,
172                         struct acpi_resource_address64 *addr)
173 {
174         struct iospace_resource *iospace;
175         struct resource *resource;
176         char *name;
177         unsigned long base, min, max, base_port;
178         unsigned int sparse = 0, space_nr, len;
179
180         len = strlen(info->name) + 32;
181         iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
182         if (!iospace) {
183                 dev_err(&info->bridge->dev,
184                                 "PCI: No memory for %s I/O port space\n",
185                                 info->name);
186                 goto out;
187         }
188
189         name = (char *)(iospace + 1);
190
191         min = addr->address.minimum;
192         max = min + addr->address.address_length - 1;
193         if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194                 sparse = 1;
195
196         space_nr = new_space(addr->address.translation_offset, sparse);
197         if (space_nr == ~0)
198                 goto free_resource;
199
200         base = __pa(io_space[space_nr].mmio_base);
201         base_port = IO_SPACE_BASE(space_nr);
202         snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203                 base_port + min, base_port + max);
204
205         /*
206          * The SDM guarantees the legacy 0-64K space is sparse, but if the
207          * mapping is done by the processor (not the bridge), ACPI may not
208          * mark it as sparse.
209          */
210         if (space_nr == 0)
211                 sparse = 1;
212
213         resource = &iospace->res;
214         resource->name  = name;
215         resource->flags = IORESOURCE_MEM;
216         resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217         resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218         if (insert_resource(&iomem_resource, resource)) {
219                 dev_err(&info->bridge->dev,
220                                 "can't allocate host bridge io space resource  %pR\n",
221                                 resource);
222                 goto free_resource;
223         }
224
225         list_add_tail(&iospace->list, &info->io_resources);
226         return base_port;
227
228 free_resource:
229         kfree(iospace);
230 out:
231         return ~0;
232 }
233
234 static acpi_status resource_to_window(struct acpi_resource *resource,
235                                       struct acpi_resource_address64 *addr)
236 {
237         acpi_status status;
238
239         /*
240          * We're only interested in _CRS descriptors that are
241          *      - address space descriptors for memory or I/O space
242          *      - non-zero size
243          *      - producers, i.e., the address space is routed downstream,
244          *        not consumed by the bridge itself
245          */
246         status = acpi_resource_to_address64(resource, addr);
247         if (ACPI_SUCCESS(status) &&
248             (addr->resource_type == ACPI_MEMORY_RANGE ||
249              addr->resource_type == ACPI_IO_RANGE) &&
250             addr->address.address_length &&
251             addr->producer_consumer == ACPI_PRODUCER)
252                 return AE_OK;
253
254         return AE_ERROR;
255 }
256
257 static acpi_status count_window(struct acpi_resource *resource, void *data)
258 {
259         unsigned int *windows = (unsigned int *) data;
260         struct acpi_resource_address64 addr;
261         acpi_status status;
262
263         status = resource_to_window(resource, &addr);
264         if (ACPI_SUCCESS(status))
265                 (*windows)++;
266
267         return AE_OK;
268 }
269
270 static acpi_status add_window(struct acpi_resource *res, void *data)
271 {
272         struct pci_root_info *info = data;
273         struct resource *resource;
274         struct acpi_resource_address64 addr;
275         acpi_status status;
276         unsigned long flags, offset = 0;
277         struct resource *root;
278
279         /* Return AE_OK for non-window resources to keep scanning for more */
280         status = resource_to_window(res, &addr);
281         if (!ACPI_SUCCESS(status))
282                 return AE_OK;
283
284         if (addr.resource_type == ACPI_MEMORY_RANGE) {
285                 flags = IORESOURCE_MEM;
286                 root = &iomem_resource;
287                 offset = addr.address.translation_offset;
288         } else if (addr.resource_type == ACPI_IO_RANGE) {
289                 flags = IORESOURCE_IO;
290                 root = &ioport_resource;
291                 offset = add_io_space(info, &addr);
292                 if (offset == ~0)
293                         return AE_OK;
294         } else
295                 return AE_OK;
296
297         resource = &info->res[info->res_num];
298         resource->name = info->name;
299         resource->flags = flags;
300         resource->start = addr.address.minimum + offset;
301         resource->end = resource->start + addr.address.address_length - 1;
302         info->res_offset[info->res_num] = offset;
303
304         if (insert_resource(root, resource)) {
305                 dev_err(&info->bridge->dev,
306                         "can't allocate host bridge window %pR\n",
307                         resource);
308         } else {
309                 if (offset)
310                         dev_info(&info->bridge->dev, "host bridge window %pR "
311                                  "(PCI address [%#llx-%#llx])\n",
312                                  resource,
313                                  resource->start - offset,
314                                  resource->end - offset);
315                 else
316                         dev_info(&info->bridge->dev,
317                                  "host bridge window %pR\n", resource);
318         }
319         /* HP's firmware has a hack to work around a Windows bug.
320          * Ignore these tiny memory ranges */
321         if (!((resource->flags & IORESOURCE_MEM) &&
322               (resource->end - resource->start < 16)))
323                 pci_add_resource_offset(&info->resources, resource,
324                                         info->res_offset[info->res_num]);
325
326         info->res_num++;
327         return AE_OK;
328 }
329
330 static void free_pci_root_info_res(struct pci_root_info *info)
331 {
332         struct iospace_resource *iospace, *tmp;
333
334         list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
335                 kfree(iospace);
336
337         kfree(info->name);
338         kfree(info->res);
339         info->res = NULL;
340         kfree(info->res_offset);
341         info->res_offset = NULL;
342         info->res_num = 0;
343         kfree(info->controller);
344         info->controller = NULL;
345 }
346
347 static void __release_pci_root_info(struct pci_root_info *info)
348 {
349         int i;
350         struct resource *res;
351         struct iospace_resource *iospace;
352
353         list_for_each_entry(iospace, &info->io_resources, list)
354                 release_resource(&iospace->res);
355
356         for (i = 0; i < info->res_num; i++) {
357                 res = &info->res[i];
358
359                 if (!res->parent)
360                         continue;
361
362                 if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
363                         continue;
364
365                 release_resource(res);
366         }
367
368         free_pci_root_info_res(info);
369         kfree(info);
370 }
371
372 static void release_pci_root_info(struct pci_host_bridge *bridge)
373 {
374         struct pci_root_info *info = bridge->release_data;
375
376         __release_pci_root_info(info);
377 }
378
379 static int
380 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
381                 int busnum, int domain)
382 {
383         char *name;
384
385         name = kmalloc(16, GFP_KERNEL);
386         if (!name)
387                 return -ENOMEM;
388
389         sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
390         info->bridge = device;
391         info->name = name;
392
393         acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
394                         &info->res_num);
395         if (info->res_num) {
396                 info->res =
397                         kzalloc_node(sizeof(*info->res) * info->res_num,
398                                      GFP_KERNEL, info->controller->node);
399                 if (!info->res) {
400                         kfree(name);
401                         return -ENOMEM;
402                 }
403
404                 info->res_offset =
405                         kzalloc_node(sizeof(*info->res_offset) * info->res_num,
406                                         GFP_KERNEL, info->controller->node);
407                 if (!info->res_offset) {
408                         kfree(name);
409                         kfree(info->res);
410                         info->res = NULL;
411                         return -ENOMEM;
412                 }
413
414                 info->res_num = 0;
415                 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
416                         add_window, info);
417         } else
418                 kfree(name);
419
420         return 0;
421 }
422
423 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
424 {
425         struct acpi_device *device = root->device;
426         int domain = root->segment;
427         int bus = root->secondary.start;
428         struct pci_controller *controller;
429         struct pci_root_info *info = NULL;
430         int busnum = root->secondary.start;
431         struct pci_bus *pbus;
432         int ret;
433
434         controller = alloc_pci_controller(domain);
435         if (!controller)
436                 return NULL;
437
438         controller->companion = device;
439         controller->node = acpi_get_node(device->handle);
440
441         info = kzalloc(sizeof(*info), GFP_KERNEL);
442         if (!info) {
443                 dev_err(&device->dev,
444                                 "pci_bus %04x:%02x: ignored (out of memory)\n",
445                                 domain, busnum);
446                 kfree(controller);
447                 return NULL;
448         }
449
450         info->controller = controller;
451         INIT_LIST_HEAD(&info->io_resources);
452         INIT_LIST_HEAD(&info->resources);
453
454         ret = probe_pci_root_info(info, device, busnum, domain);
455         if (ret) {
456                 kfree(info->controller);
457                 kfree(info);
458                 return NULL;
459         }
460         /* insert busn resource at first */
461         pci_add_resource(&info->resources, &root->secondary);
462         /*
463          * See arch/x86/pci/acpi.c.
464          * The desired pci bus might already be scanned in a quirk. We
465          * should handle the case here, but it appears that IA64 hasn't
466          * such quirk. So we just ignore the case now.
467          */
468         pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
469                                    &info->resources);
470         if (!pbus) {
471                 pci_free_resource_list(&info->resources);
472                 __release_pci_root_info(info);
473                 return NULL;
474         }
475
476         pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
477                         release_pci_root_info, info);
478         pci_scan_child_bus(pbus);
479         return pbus;
480 }
481
482 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
483 {
484         struct pci_controller *controller = bridge->bus->sysdata;
485
486         ACPI_COMPANION_SET(&bridge->dev, controller->companion);
487         return 0;
488 }
489
490 void pcibios_fixup_device_resources(struct pci_dev *dev)
491 {
492         int idx;
493
494         if (!dev->bus)
495                 return;
496
497         for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
498                 struct resource *r = &dev->resource[idx];
499
500                 if (!r->flags || r->parent || !r->start)
501                         continue;
502
503                 pci_claim_resource(dev, idx);
504         }
505 }
506 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
507
508 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
509 {
510         int idx;
511
512         if (!dev->bus)
513                 return;
514
515         for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
516                 struct resource *r = &dev->resource[idx];
517
518                 if (!r->flags || r->parent || !r->start)
519                         continue;
520
521                 pci_claim_bridge_resource(dev, idx);
522         }
523 }
524
525 /*
526  *  Called after each bus is probed, but before its children are examined.
527  */
528 void pcibios_fixup_bus(struct pci_bus *b)
529 {
530         struct pci_dev *dev;
531
532         if (b->self) {
533                 pci_read_bridge_bases(b);
534                 pcibios_fixup_bridge_resources(b->self);
535         }
536         list_for_each_entry(dev, &b->devices, bus_list)
537                 pcibios_fixup_device_resources(dev);
538         platform_pci_fixup_bus(b);
539 }
540
541 void pcibios_add_bus(struct pci_bus *bus)
542 {
543         acpi_pci_add_bus(bus);
544 }
545
546 void pcibios_remove_bus(struct pci_bus *bus)
547 {
548         acpi_pci_remove_bus(bus);
549 }
550
551 void pcibios_set_master (struct pci_dev *dev)
552 {
553         /* No special bus mastering setup handling */
554 }
555
556 int
557 pcibios_enable_device (struct pci_dev *dev, int mask)
558 {
559         int ret;
560
561         ret = pci_enable_resources(dev, mask);
562         if (ret < 0)
563                 return ret;
564
565         if (!dev->msi_enabled)
566                 return acpi_pci_irq_enable(dev);
567         return 0;
568 }
569
570 void
571 pcibios_disable_device (struct pci_dev *dev)
572 {
573         BUG_ON(atomic_read(&dev->enable_cnt));
574         if (!dev->msi_enabled)
575                 acpi_pci_irq_disable(dev);
576 }
577
578 resource_size_t
579 pcibios_align_resource (void *data, const struct resource *res,
580                         resource_size_t size, resource_size_t align)
581 {
582         return res->start;
583 }
584
585 int
586 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
587                      enum pci_mmap_state mmap_state, int write_combine)
588 {
589         unsigned long size = vma->vm_end - vma->vm_start;
590         pgprot_t prot;
591
592         /*
593          * I/O space cannot be accessed via normal processor loads and
594          * stores on this platform.
595          */
596         if (mmap_state == pci_mmap_io)
597                 /*
598                  * XXX we could relax this for I/O spaces for which ACPI
599                  * indicates that the space is 1-to-1 mapped.  But at the
600                  * moment, we don't support multiple PCI address spaces and
601                  * the legacy I/O space is not 1-to-1 mapped, so this is moot.
602                  */
603                 return -EINVAL;
604
605         if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
606                 return -EINVAL;
607
608         prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
609                                     vma->vm_page_prot);
610
611         /*
612          * If the user requested WC, the kernel uses UC or WC for this region,
613          * and the chipset supports WC, we can use WC. Otherwise, we have to
614          * use the same attribute the kernel uses.
615          */
616         if (write_combine &&
617             ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
618              (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
619             efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
620                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
621         else
622                 vma->vm_page_prot = prot;
623
624         if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
625                              vma->vm_end - vma->vm_start, vma->vm_page_prot))
626                 return -EAGAIN;
627
628         return 0;
629 }
630
631 /**
632  * ia64_pci_get_legacy_mem - generic legacy mem routine
633  * @bus: bus to get legacy memory base address for
634  *
635  * Find the base of legacy memory for @bus.  This is typically the first
636  * megabyte of bus address space for @bus or is simply 0 on platforms whose
637  * chipsets support legacy I/O and memory routing.  Returns the base address
638  * or an error pointer if an error occurred.
639  *
640  * This is the ia64 generic version of this routine.  Other platforms
641  * are free to override it with a machine vector.
642  */
643 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
644 {
645         return (char *)__IA64_UNCACHED_OFFSET;
646 }
647
648 /**
649  * pci_mmap_legacy_page_range - map legacy memory space to userland
650  * @bus: bus whose legacy space we're mapping
651  * @vma: vma passed in by mmap
652  *
653  * Map legacy memory space for this device back to userspace using a machine
654  * vector to get the base address.
655  */
656 int
657 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
658                            enum pci_mmap_state mmap_state)
659 {
660         unsigned long size = vma->vm_end - vma->vm_start;
661         pgprot_t prot;
662         char *addr;
663
664         /* We only support mmap'ing of legacy memory space */
665         if (mmap_state != pci_mmap_mem)
666                 return -ENOSYS;
667
668         /*
669          * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
670          * for more details.
671          */
672         if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
673                 return -EINVAL;
674         prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
675                                     vma->vm_page_prot);
676
677         addr = pci_get_legacy_mem(bus);
678         if (IS_ERR(addr))
679                 return PTR_ERR(addr);
680
681         vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
682         vma->vm_page_prot = prot;
683
684         if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
685                             size, vma->vm_page_prot))
686                 return -EAGAIN;
687
688         return 0;
689 }
690
691 /**
692  * ia64_pci_legacy_read - read from legacy I/O space
693  * @bus: bus to read
694  * @port: legacy port value
695  * @val: caller allocated storage for returned value
696  * @size: number of bytes to read
697  *
698  * Simply reads @size bytes from @port and puts the result in @val.
699  *
700  * Again, this (and the write routine) are generic versions that can be
701  * overridden by the platform.  This is necessary on platforms that don't
702  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
703  */
704 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
705 {
706         int ret = size;
707
708         switch (size) {
709         case 1:
710                 *val = inb(port);
711                 break;
712         case 2:
713                 *val = inw(port);
714                 break;
715         case 4:
716                 *val = inl(port);
717                 break;
718         default:
719                 ret = -EINVAL;
720                 break;
721         }
722
723         return ret;
724 }
725
726 /**
727  * ia64_pci_legacy_write - perform a legacy I/O write
728  * @bus: bus pointer
729  * @port: port to write
730  * @val: value to write
731  * @size: number of bytes to write from @val
732  *
733  * Simply writes @size bytes of @val to @port.
734  */
735 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
736 {
737         int ret = size;
738
739         switch (size) {
740         case 1:
741                 outb(val, port);
742                 break;
743         case 2:
744                 outw(val, port);
745                 break;
746         case 4:
747                 outl(val, port);
748                 break;
749         default:
750                 ret = -EINVAL;
751                 break;
752         }
753
754         return ret;
755 }
756
757 /**
758  * set_pci_cacheline_size - determine cacheline size for PCI devices
759  *
760  * We want to use the line-size of the outer-most cache.  We assume
761  * that this line-size is the same for all CPUs.
762  *
763  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
764  */
765 static void __init set_pci_dfl_cacheline_size(void)
766 {
767         unsigned long levels, unique_caches;
768         long status;
769         pal_cache_config_info_t cci;
770
771         status = ia64_pal_cache_summary(&levels, &unique_caches);
772         if (status != 0) {
773                 pr_err("%s: ia64_pal_cache_summary() failed "
774                         "(status=%ld)\n", __func__, status);
775                 return;
776         }
777
778         status = ia64_pal_cache_config_info(levels - 1,
779                                 /* cache_type (data_or_unified)= */ 2, &cci);
780         if (status != 0) {
781                 pr_err("%s: ia64_pal_cache_config_info() failed "
782                         "(status=%ld)\n", __func__, status);
783                 return;
784         }
785         pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
786 }
787
788 u64 ia64_dma_get_required_mask(struct device *dev)
789 {
790         u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
791         u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
792         u64 mask;
793
794         if (!high_totalram) {
795                 /* convert to mask just covering totalram */
796                 low_totalram = (1 << (fls(low_totalram) - 1));
797                 low_totalram += low_totalram - 1;
798                 mask = low_totalram;
799         } else {
800                 high_totalram = (1 << (fls(high_totalram) - 1));
801                 high_totalram += high_totalram - 1;
802                 mask = (((u64)high_totalram) << 32) + 0xffffffff;
803         }
804         return mask;
805 }
806 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
807
808 u64 dma_get_required_mask(struct device *dev)
809 {
810         return platform_dma_get_required_mask(dev);
811 }
812 EXPORT_SYMBOL_GPL(dma_get_required_mask);
813
814 static int __init pcibios_init(void)
815 {
816         set_pci_dfl_cacheline_size();
817         return 0;
818 }
819
820 subsys_initcall(pcibios_init);