Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21
22 #include <asm/meminit.h>
23 #include <asm/pgalloc.h>
24 #include <asm/pgtable.h>
25 #include <asm/sections.h>
26 #include <asm/mca.h>
27
28 #ifdef CONFIG_VIRTUAL_MEM_MAP
29 static unsigned long max_gap;
30 #endif
31
32 /**
33  * show_mem - give short summary of memory stats
34  *
35  * Shows a simple page count of reserved and used pages in the system.
36  * For discontig machines, it does this on a per-pgdat basis.
37  */
38 void show_mem(void)
39 {
40         int i, total_reserved = 0;
41         int total_shared = 0, total_cached = 0;
42         unsigned long total_present = 0;
43         pg_data_t *pgdat;
44
45         printk(KERN_INFO "Mem-info:\n");
46         show_free_areas();
47         printk(KERN_INFO "Free swap:       %6ldkB\n",
48                nr_swap_pages<<(PAGE_SHIFT-10));
49         printk(KERN_INFO "Node memory in pages:\n");
50         for_each_online_pgdat(pgdat) {
51                 unsigned long present;
52                 unsigned long flags;
53                 int shared = 0, cached = 0, reserved = 0;
54
55                 pgdat_resize_lock(pgdat, &flags);
56                 present = pgdat->node_present_pages;
57                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
58                         struct page *page;
59                         if (pfn_valid(pgdat->node_start_pfn + i))
60                                 page = pfn_to_page(pgdat->node_start_pfn + i);
61                         else {
62 #ifdef CONFIG_VIRTUAL_MEM_MAP
63                                 if (max_gap < LARGE_GAP)
64                                         continue;
65 #endif
66                                 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
67                                          i) - 1;
68                                 continue;
69                         }
70                         if (PageReserved(page))
71                                 reserved++;
72                         else if (PageSwapCache(page))
73                                 cached++;
74                         else if (page_count(page))
75                                 shared += page_count(page)-1;
76                 }
77                 pgdat_resize_unlock(pgdat, &flags);
78                 total_present += present;
79                 total_reserved += reserved;
80                 total_cached += cached;
81                 total_shared += shared;
82                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
83                        "shrd: %10d, swpd: %10d\n", pgdat->node_id,
84                        present, reserved, shared, cached);
85         }
86         printk(KERN_INFO "%ld pages of RAM\n", total_present);
87         printk(KERN_INFO "%d reserved pages\n", total_reserved);
88         printk(KERN_INFO "%d pages shared\n", total_shared);
89         printk(KERN_INFO "%d pages swap cached\n", total_cached);
90         printk(KERN_INFO "Total of %ld pages in page table cache\n",
91                pgtable_quicklist_total_size());
92         printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
93 }
94
95
96 /* physical address where the bootmem map is located */
97 unsigned long bootmap_start;
98
99 /**
100  * find_max_pfn - adjust the maximum page number callback
101  * @start: start of range
102  * @end: end of range
103  * @arg: address of pointer to global max_pfn variable
104  *
105  * Passed as a callback function to efi_memmap_walk() to determine the highest
106  * available page frame number in the system.
107  */
108 int
109 find_max_pfn (unsigned long start, unsigned long end, void *arg)
110 {
111         unsigned long *max_pfnp = arg, pfn;
112
113         pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
114         if (pfn > *max_pfnp)
115                 *max_pfnp = pfn;
116         return 0;
117 }
118
119 /**
120  * find_bootmap_location - callback to find a memory area for the bootmap
121  * @start: start of region
122  * @end: end of region
123  * @arg: unused callback data
124  *
125  * Find a place to put the bootmap and return its starting address in
126  * bootmap_start.  This address must be page-aligned.
127  */
128 static int __init
129 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
130 {
131         unsigned long needed = *(unsigned long *)arg;
132         unsigned long range_start, range_end, free_start;
133         int i;
134
135 #if IGNORE_PFN0
136         if (start == PAGE_OFFSET) {
137                 start += PAGE_SIZE;
138                 if (start >= end)
139                         return 0;
140         }
141 #endif
142
143         free_start = PAGE_OFFSET;
144
145         for (i = 0; i < num_rsvd_regions; i++) {
146                 range_start = max(start, free_start);
147                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
148
149                 free_start = PAGE_ALIGN(rsvd_region[i].end);
150
151                 if (range_end <= range_start)
152                         continue; /* skip over empty range */
153
154                 if (range_end - range_start >= needed) {
155                         bootmap_start = __pa(range_start);
156                         return -1;      /* done */
157                 }
158
159                 /* nothing more available in this segment */
160                 if (range_end == end)
161                         return 0;
162         }
163         return 0;
164 }
165
166 /**
167  * find_memory - setup memory map
168  *
169  * Walk the EFI memory map and find usable memory for the system, taking
170  * into account reserved areas.
171  */
172 void __init
173 find_memory (void)
174 {
175         unsigned long bootmap_size;
176
177         reserve_memory();
178
179         /* first find highest page frame number */
180         max_pfn = 0;
181         efi_memmap_walk(find_max_pfn, &max_pfn);
182
183         /* how many bytes to cover all the pages */
184         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
185
186         /* look for a location to hold the bootmap */
187         bootmap_start = ~0UL;
188         efi_memmap_walk(find_bootmap_location, &bootmap_size);
189         if (bootmap_start == ~0UL)
190                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
191
192         bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
193
194         /* Free all available memory, then mark bootmem-map as being in use. */
195         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
196         reserve_bootmem(bootmap_start, bootmap_size);
197
198         find_initrd();
199
200 #ifdef CONFIG_CRASH_DUMP
201         /* If we are doing a crash dump, we still need to know the real mem
202          * size before original memory map is reset. */
203         saved_max_pfn = max_pfn;
204 #endif
205 }
206
207 #ifdef CONFIG_SMP
208 /**
209  * per_cpu_init - setup per-cpu variables
210  *
211  * Allocate and setup per-cpu data areas.
212  */
213 void * __cpuinit
214 per_cpu_init (void)
215 {
216         void *cpu_data;
217         int cpu;
218         static int first_time=1;
219
220         /*
221          * get_free_pages() cannot be used before cpu_init() done.  BSP
222          * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
223          * get_zeroed_page().
224          */
225         if (first_time) {
226                 first_time=0;
227                 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
228                                            PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
229                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
230                         memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
231                         __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
232                         cpu_data += PERCPU_PAGE_SIZE;
233                         per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
234                 }
235         }
236         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
237 }
238 #endif /* CONFIG_SMP */
239
240 static int
241 count_pages (u64 start, u64 end, void *arg)
242 {
243         unsigned long *count = arg;
244
245         *count += (end - start) >> PAGE_SHIFT;
246         return 0;
247 }
248
249 /*
250  * Set up the page tables.
251  */
252
253 void __init
254 paging_init (void)
255 {
256         unsigned long max_dma;
257         unsigned long max_zone_pfns[MAX_NR_ZONES];
258
259         num_physpages = 0;
260         efi_memmap_walk(count_pages, &num_physpages);
261
262         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
263 #ifdef CONFIG_ZONE_DMA
264         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
265         max_zone_pfns[ZONE_DMA] = max_dma;
266 #endif
267         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
268
269 #ifdef CONFIG_VIRTUAL_MEM_MAP
270         efi_memmap_walk(register_active_ranges, NULL);
271         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
272         if (max_gap < LARGE_GAP) {
273                 vmem_map = (struct page *) 0;
274                 free_area_init_nodes(max_zone_pfns);
275         } else {
276                 unsigned long map_size;
277
278                 /* allocate virtual_mem_map */
279
280                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
281                         sizeof(struct page));
282                 vmalloc_end -= map_size;
283                 vmem_map = (struct page *) vmalloc_end;
284                 efi_memmap_walk(create_mem_map_page_table, NULL);
285
286                 /*
287                  * alloc_node_mem_map makes an adjustment for mem_map
288                  * which isn't compatible with vmem_map.
289                  */
290                 NODE_DATA(0)->node_mem_map = vmem_map +
291                         find_min_pfn_with_active_regions();
292                 free_area_init_nodes(max_zone_pfns);
293
294                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
295         }
296 #else /* !CONFIG_VIRTUAL_MEM_MAP */
297         add_active_range(0, 0, max_low_pfn);
298         free_area_init_nodes(max_zone_pfns);
299 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
300         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
301 }