Pull thermal into release branch
[linux-drm-fsl-dcu.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/profile.h>
22 #include <linux/timex.h>
23
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
28 #include <asm/sal.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
31
32 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
33
34 #ifdef CONFIG_IA64_DEBUG_IRQ
35
36 unsigned long last_cli_ip;
37 EXPORT_SYMBOL(last_cli_ip);
38
39 #endif
40
41 static struct time_interpolator itc_interpolator = {
42         .shift = 16,
43         .mask = 0xffffffffffffffffLL,
44         .source = TIME_SOURCE_CPU
45 };
46
47 static irqreturn_t
48 timer_interrupt (int irq, void *dev_id)
49 {
50         unsigned long new_itm;
51
52         if (unlikely(cpu_is_offline(smp_processor_id()))) {
53                 return IRQ_HANDLED;
54         }
55
56         platform_timer_interrupt(irq, dev_id);
57
58         new_itm = local_cpu_data->itm_next;
59
60         if (!time_after(ia64_get_itc(), new_itm))
61                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
62                        ia64_get_itc(), new_itm);
63
64         profile_tick(CPU_PROFILING);
65
66         while (1) {
67                 update_process_times(user_mode(get_irq_regs()));
68
69                 new_itm += local_cpu_data->itm_delta;
70
71                 if (smp_processor_id() == time_keeper_id) {
72                         /*
73                          * Here we are in the timer irq handler. We have irqs locally
74                          * disabled, but we don't know if the timer_bh is running on
75                          * another CPU. We need to avoid to SMP race by acquiring the
76                          * xtime_lock.
77                          */
78                         write_seqlock(&xtime_lock);
79                         do_timer(1);
80                         local_cpu_data->itm_next = new_itm;
81                         write_sequnlock(&xtime_lock);
82                 } else
83                         local_cpu_data->itm_next = new_itm;
84
85                 if (time_after(new_itm, ia64_get_itc()))
86                         break;
87
88                 /*
89                  * Allow IPIs to interrupt the timer loop.
90                  */
91                 local_irq_enable();
92                 local_irq_disable();
93         }
94
95         do {
96                 /*
97                  * If we're too close to the next clock tick for
98                  * comfort, we increase the safety margin by
99                  * intentionally dropping the next tick(s).  We do NOT
100                  * update itm.next because that would force us to call
101                  * do_timer() which in turn would let our clock run
102                  * too fast (with the potentially devastating effect
103                  * of losing monotony of time).
104                  */
105                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
106                         new_itm += local_cpu_data->itm_delta;
107                 ia64_set_itm(new_itm);
108                 /* double check, in case we got hit by a (slow) PMI: */
109         } while (time_after_eq(ia64_get_itc(), new_itm));
110         return IRQ_HANDLED;
111 }
112
113 /*
114  * Encapsulate access to the itm structure for SMP.
115  */
116 void
117 ia64_cpu_local_tick (void)
118 {
119         int cpu = smp_processor_id();
120         unsigned long shift = 0, delta;
121
122         /* arrange for the cycle counter to generate a timer interrupt: */
123         ia64_set_itv(IA64_TIMER_VECTOR);
124
125         delta = local_cpu_data->itm_delta;
126         /*
127          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
128          * same time:
129          */
130         if (cpu) {
131                 unsigned long hi = 1UL << ia64_fls(cpu);
132                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
133         }
134         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
135         ia64_set_itm(local_cpu_data->itm_next);
136 }
137
138 static int nojitter;
139
140 static int __init nojitter_setup(char *str)
141 {
142         nojitter = 1;
143         printk("Jitter checking for ITC timers disabled\n");
144         return 1;
145 }
146
147 __setup("nojitter", nojitter_setup);
148
149
150 void __devinit
151 ia64_init_itm (void)
152 {
153         unsigned long platform_base_freq, itc_freq;
154         struct pal_freq_ratio itc_ratio, proc_ratio;
155         long status, platform_base_drift, itc_drift;
156
157         /*
158          * According to SAL v2.6, we need to use a SAL call to determine the platform base
159          * frequency and then a PAL call to determine the frequency ratio between the ITC
160          * and the base frequency.
161          */
162         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
163                                     &platform_base_freq, &platform_base_drift);
164         if (status != 0) {
165                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
166         } else {
167                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
168                 if (status != 0)
169                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
170         }
171         if (status != 0) {
172                 /* invent "random" values */
173                 printk(KERN_ERR
174                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
175                 platform_base_freq = 100000000;
176                 platform_base_drift = -1;       /* no drift info */
177                 itc_ratio.num = 3;
178                 itc_ratio.den = 1;
179         }
180         if (platform_base_freq < 40000000) {
181                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
182                        platform_base_freq);
183                 platform_base_freq = 75000000;
184                 platform_base_drift = -1;
185         }
186         if (!proc_ratio.den)
187                 proc_ratio.den = 1;     /* avoid division by zero */
188         if (!itc_ratio.den)
189                 itc_ratio.den = 1;      /* avoid division by zero */
190
191         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
192
193         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
194         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
195                "ITC freq=%lu.%03luMHz", smp_processor_id(),
196                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
197                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
198
199         if (platform_base_drift != -1) {
200                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
201                 printk("+/-%ldppm\n", itc_drift);
202         } else {
203                 itc_drift = -1;
204                 printk("\n");
205         }
206
207         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
208         local_cpu_data->itc_freq = itc_freq;
209         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
210         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
211                                         + itc_freq/2)/itc_freq;
212
213         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
214                 itc_interpolator.frequency = local_cpu_data->itc_freq;
215                 itc_interpolator.drift = itc_drift;
216 #ifdef CONFIG_SMP
217                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
218                  * Jitter compensation requires a cmpxchg which may limit
219                  * the scalability of the syscalls for retrieving time.
220                  * The ITC synchronization is usually successful to within a few
221                  * ITC ticks but this is not a sure thing. If you need to improve
222                  * timer performance in SMP situations then boot the kernel with the
223                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
224                  * even going backward) if the ITC offsets between the individual CPUs
225                  * are too large.
226                  */
227                 if (!nojitter) itc_interpolator.jitter = 1;
228 #endif
229                 register_time_interpolator(&itc_interpolator);
230         }
231
232         /* Setup the CPU local timer tick */
233         ia64_cpu_local_tick();
234 }
235
236 static struct irqaction timer_irqaction = {
237         .handler =      timer_interrupt,
238         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
239         .name =         "timer"
240 };
241
242 void __devinit ia64_disable_timer(void)
243 {
244         ia64_set_itv(1 << 16);
245 }
246
247 void __init
248 time_init (void)
249 {
250         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
251         efi_gettimeofday(&xtime);
252         ia64_init_itm();
253
254         /*
255          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
256          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
257          */
258         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
259 }
260
261 /*
262  * Generic udelay assumes that if preemption is allowed and the thread
263  * migrates to another CPU, that the ITC values are synchronized across
264  * all CPUs.
265  */
266 static void
267 ia64_itc_udelay (unsigned long usecs)
268 {
269         unsigned long start = ia64_get_itc();
270         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
271
272         while (time_before(ia64_get_itc(), end))
273                 cpu_relax();
274 }
275
276 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
277
278 void
279 udelay (unsigned long usecs)
280 {
281         (*ia64_udelay)(usecs);
282 }
283 EXPORT_SYMBOL(udelay);
284
285 static unsigned long long ia64_itc_printk_clock(void)
286 {
287         if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
288                 return sched_clock();
289         return 0;
290 }
291
292 static unsigned long long ia64_default_printk_clock(void)
293 {
294         return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
295                 (1000000000/HZ);
296 }
297
298 unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
299
300 unsigned long long printk_clock(void)
301 {
302         return ia64_printk_clock();
303 }
304
305 void __init
306 ia64_setup_printk_clock(void)
307 {
308         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
309                 ia64_printk_clock = ia64_itc_printk_clock;
310 }