Pull button into test branch
[linux-drm-fsl-dcu.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36
37 #include <linux/acpi.h>
38 #include <acpi/processor.h>
39
40 #include <asm/io.h>
41 #include <asm/msr.h>
42 #include <asm/processor.h>
43 #include <asm/cpufeature.h>
44 #include <asm/delay.h>
45 #include <asm/uaccess.h>
46
47 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
48
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52
53 enum {
54         UNDEFINED_CAPABLE = 0,
55         SYSTEM_INTEL_MSR_CAPABLE,
56         SYSTEM_IO_CAPABLE,
57 };
58
59 #define INTEL_MSR_RANGE         (0xffff)
60 #define CPUID_6_ECX_APERFMPERF_CAPABILITY       (0x1)
61
62 struct acpi_cpufreq_data {
63         struct acpi_processor_performance *acpi_data;
64         struct cpufreq_frequency_table *freq_table;
65         unsigned int max_freq;
66         unsigned int resume;
67         unsigned int cpu_feature;
68 };
69
70 static struct acpi_cpufreq_data *drv_data[NR_CPUS];
71 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
72
73 static struct cpufreq_driver acpi_cpufreq_driver;
74
75 static unsigned int acpi_pstate_strict;
76
77 static int check_est_cpu(unsigned int cpuid)
78 {
79         struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
80
81         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
82             !cpu_has(cpu, X86_FEATURE_EST))
83                 return 0;
84
85         return 1;
86 }
87
88 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
89 {
90         struct acpi_processor_performance *perf;
91         int i;
92
93         perf = data->acpi_data;
94
95         for (i=0; i<perf->state_count; i++) {
96                 if (value == perf->states[i].status)
97                         return data->freq_table[i].frequency;
98         }
99         return 0;
100 }
101
102 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
103 {
104         int i;
105         struct acpi_processor_performance *perf;
106
107         msr &= INTEL_MSR_RANGE;
108         perf = data->acpi_data;
109
110         for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
111                 if (msr == perf->states[data->freq_table[i].index].status)
112                         return data->freq_table[i].frequency;
113         }
114         return data->freq_table[0].frequency;
115 }
116
117 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
118 {
119         switch (data->cpu_feature) {
120         case SYSTEM_INTEL_MSR_CAPABLE:
121                 return extract_msr(val, data);
122         case SYSTEM_IO_CAPABLE:
123                 return extract_io(val, data);
124         default:
125                 return 0;
126         }
127 }
128
129 static void wrport(u16 port, u8 bit_width, u32 value)
130 {
131         if (bit_width <= 8)
132                 outb(value, port);
133         else if (bit_width <= 16)
134                 outw(value, port);
135         else if (bit_width <= 32)
136                 outl(value, port);
137 }
138
139 static void rdport(u16 port, u8 bit_width, u32 * ret)
140 {
141         *ret = 0;
142         if (bit_width <= 8)
143                 *ret = inb(port);
144         else if (bit_width <= 16)
145                 *ret = inw(port);
146         else if (bit_width <= 32)
147                 *ret = inl(port);
148 }
149
150 struct msr_addr {
151         u32 reg;
152 };
153
154 struct io_addr {
155         u16 port;
156         u8 bit_width;
157 };
158
159 typedef union {
160         struct msr_addr msr;
161         struct io_addr io;
162 } drv_addr_union;
163
164 struct drv_cmd {
165         unsigned int type;
166         cpumask_t mask;
167         drv_addr_union addr;
168         u32 val;
169 };
170
171 static void do_drv_read(struct drv_cmd *cmd)
172 {
173         u32 h;
174
175         switch (cmd->type) {
176         case SYSTEM_INTEL_MSR_CAPABLE:
177                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
178                 break;
179         case SYSTEM_IO_CAPABLE:
180                 rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
181                 break;
182         default:
183                 break;
184         }
185 }
186
187 static void do_drv_write(struct drv_cmd *cmd)
188 {
189         u32 h = 0;
190
191         switch (cmd->type) {
192         case SYSTEM_INTEL_MSR_CAPABLE:
193                 wrmsr(cmd->addr.msr.reg, cmd->val, h);
194                 break;
195         case SYSTEM_IO_CAPABLE:
196                 wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
197                 break;
198         default:
199                 break;
200         }
201 }
202
203 static void drv_read(struct drv_cmd *cmd)
204 {
205         cpumask_t saved_mask = current->cpus_allowed;
206         cmd->val = 0;
207
208         set_cpus_allowed(current, cmd->mask);
209         do_drv_read(cmd);
210         set_cpus_allowed(current, saved_mask);
211 }
212
213 static void drv_write(struct drv_cmd *cmd)
214 {
215         cpumask_t saved_mask = current->cpus_allowed;
216         unsigned int i;
217
218         for_each_cpu_mask(i, cmd->mask) {
219                 set_cpus_allowed(current, cpumask_of_cpu(i));
220                 do_drv_write(cmd);
221         }
222
223         set_cpus_allowed(current, saved_mask);
224         return;
225 }
226
227 static u32 get_cur_val(cpumask_t mask)
228 {
229         struct acpi_processor_performance *perf;
230         struct drv_cmd cmd;
231
232         if (unlikely(cpus_empty(mask)))
233                 return 0;
234
235         switch (drv_data[first_cpu(mask)]->cpu_feature) {
236         case SYSTEM_INTEL_MSR_CAPABLE:
237                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
238                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
239                 break;
240         case SYSTEM_IO_CAPABLE:
241                 cmd.type = SYSTEM_IO_CAPABLE;
242                 perf = drv_data[first_cpu(mask)]->acpi_data;
243                 cmd.addr.io.port = perf->control_register.address;
244                 cmd.addr.io.bit_width = perf->control_register.bit_width;
245                 break;
246         default:
247                 return 0;
248         }
249
250         cmd.mask = mask;
251
252         drv_read(&cmd);
253
254         dprintk("get_cur_val = %u\n", cmd.val);
255
256         return cmd.val;
257 }
258
259 /*
260  * Return the measured active (C0) frequency on this CPU since last call
261  * to this function.
262  * Input: cpu number
263  * Return: Average CPU frequency in terms of max frequency (zero on error)
264  *
265  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
266  * over a period of time, while CPU is in C0 state.
267  * IA32_MPERF counts at the rate of max advertised frequency
268  * IA32_APERF counts at the rate of actual CPU frequency
269  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
270  * no meaning should be associated with absolute values of these MSRs.
271  */
272 static unsigned int get_measured_perf(unsigned int cpu)
273 {
274         union {
275                 struct {
276                         u32 lo;
277                         u32 hi;
278                 } split;
279                 u64 whole;
280         } aperf_cur, mperf_cur;
281
282         cpumask_t saved_mask;
283         unsigned int perf_percent;
284         unsigned int retval;
285
286         saved_mask = current->cpus_allowed;
287         set_cpus_allowed(current, cpumask_of_cpu(cpu));
288         if (get_cpu() != cpu) {
289                 /* We were not able to run on requested processor */
290                 put_cpu();
291                 return 0;
292         }
293
294         rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
295         rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
296
297         wrmsr(MSR_IA32_APERF, 0,0);
298         wrmsr(MSR_IA32_MPERF, 0,0);
299
300 #ifdef __i386__
301         /*
302          * We dont want to do 64 bit divide with 32 bit kernel
303          * Get an approximate value. Return failure in case we cannot get
304          * an approximate value.
305          */
306         if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
307                 int shift_count;
308                 u32 h;
309
310                 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
311                 shift_count = fls(h);
312
313                 aperf_cur.whole >>= shift_count;
314                 mperf_cur.whole >>= shift_count;
315         }
316
317         if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
318                 int shift_count = 7;
319                 aperf_cur.split.lo >>= shift_count;
320                 mperf_cur.split.lo >>= shift_count;
321         }
322
323         if (aperf_cur.split.lo && mperf_cur.split.lo)
324                 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
325         else
326                 perf_percent = 0;
327
328 #else
329         if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
330                 int shift_count = 7;
331                 aperf_cur.whole >>= shift_count;
332                 mperf_cur.whole >>= shift_count;
333         }
334
335         if (aperf_cur.whole && mperf_cur.whole)
336                 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
337         else
338                 perf_percent = 0;
339
340 #endif
341
342         retval = drv_data[cpu]->max_freq * perf_percent / 100;
343
344         put_cpu();
345         set_cpus_allowed(current, saved_mask);
346
347         dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
348         return retval;
349 }
350
351 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
352 {
353         struct acpi_cpufreq_data *data = drv_data[cpu];
354         unsigned int freq;
355
356         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
357
358         if (unlikely(data == NULL ||
359                      data->acpi_data == NULL || data->freq_table == NULL)) {
360                 return 0;
361         }
362
363         freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
364         dprintk("cur freq = %u\n", freq);
365
366         return freq;
367 }
368
369 static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
370                                 struct acpi_cpufreq_data *data)
371 {
372         unsigned int cur_freq;
373         unsigned int i;
374
375         for (i=0; i<100; i++) {
376                 cur_freq = extract_freq(get_cur_val(mask), data);
377                 if (cur_freq == freq)
378                         return 1;
379                 udelay(10);
380         }
381         return 0;
382 }
383
384 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
385                                unsigned int target_freq, unsigned int relation)
386 {
387         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
388         struct acpi_processor_performance *perf;
389         struct cpufreq_freqs freqs;
390         cpumask_t online_policy_cpus;
391         struct drv_cmd cmd;
392         unsigned int msr;
393         unsigned int next_state = 0;
394         unsigned int next_perf_state = 0;
395         unsigned int i;
396         int result = 0;
397
398         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
399
400         if (unlikely(data == NULL ||
401              data->acpi_data == NULL || data->freq_table == NULL)) {
402                 return -ENODEV;
403         }
404
405         perf = data->acpi_data;
406         result = cpufreq_frequency_table_target(policy,
407                                                 data->freq_table,
408                                                 target_freq,
409                                                 relation, &next_state);
410         if (unlikely(result))
411                 return -ENODEV;
412
413 #ifdef CONFIG_HOTPLUG_CPU
414         /* cpufreq holds the hotplug lock, so we are safe from here on */
415         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
416 #else
417         online_policy_cpus = policy->cpus;
418 #endif
419
420         next_perf_state = data->freq_table[next_state].index;
421         if (perf->state == next_perf_state) {
422                 if (unlikely(data->resume)) {
423                         dprintk("Called after resume, resetting to P%d\n",
424                                 next_perf_state);
425                         data->resume = 0;
426                 } else {
427                         dprintk("Already at target state (P%d)\n",
428                                 next_perf_state);
429                         return 0;
430                 }
431         }
432
433         switch (data->cpu_feature) {
434         case SYSTEM_INTEL_MSR_CAPABLE:
435                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
436                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
437                 msr =
438                     (u32) perf->states[next_perf_state].
439                     control & INTEL_MSR_RANGE;
440                 cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
441                 break;
442         case SYSTEM_IO_CAPABLE:
443                 cmd.type = SYSTEM_IO_CAPABLE;
444                 cmd.addr.io.port = perf->control_register.address;
445                 cmd.addr.io.bit_width = perf->control_register.bit_width;
446                 cmd.val = (u32) perf->states[next_perf_state].control;
447                 break;
448         default:
449                 return -ENODEV;
450         }
451
452         cpus_clear(cmd.mask);
453
454         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
455                 cmd.mask = online_policy_cpus;
456         else
457                 cpu_set(policy->cpu, cmd.mask);
458
459         freqs.old = data->freq_table[perf->state].frequency;
460         freqs.new = data->freq_table[next_perf_state].frequency;
461         for_each_cpu_mask(i, cmd.mask) {
462                 freqs.cpu = i;
463                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
464         }
465
466         drv_write(&cmd);
467
468         if (acpi_pstate_strict) {
469                 if (!check_freqs(cmd.mask, freqs.new, data)) {
470                         dprintk("acpi_cpufreq_target failed (%d)\n",
471                                 policy->cpu);
472                         return -EAGAIN;
473                 }
474         }
475
476         for_each_cpu_mask(i, cmd.mask) {
477                 freqs.cpu = i;
478                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
479         }
480         perf->state = next_perf_state;
481
482         return result;
483 }
484
485 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
486 {
487         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
488
489         dprintk("acpi_cpufreq_verify\n");
490
491         return cpufreq_frequency_table_verify(policy, data->freq_table);
492 }
493
494 static unsigned long
495 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
496 {
497         struct acpi_processor_performance *perf = data->acpi_data;
498
499         if (cpu_khz) {
500                 /* search the closest match to cpu_khz */
501                 unsigned int i;
502                 unsigned long freq;
503                 unsigned long freqn = perf->states[0].core_frequency * 1000;
504
505                 for (i=0; i<(perf->state_count-1); i++) {
506                         freq = freqn;
507                         freqn = perf->states[i+1].core_frequency * 1000;
508                         if ((2 * cpu_khz) > (freqn + freq)) {
509                                 perf->state = i;
510                                 return freq;
511                         }
512                 }
513                 perf->state = perf->state_count-1;
514                 return freqn;
515         } else {
516                 /* assume CPU is at P0... */
517                 perf->state = 0;
518                 return perf->states[0].core_frequency * 1000;
519         }
520 }
521
522 /*
523  * acpi_cpufreq_early_init - initialize ACPI P-States library
524  *
525  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
526  * in order to determine correct frequency and voltage pairings. We can
527  * do _PDC and _PSD and find out the processor dependency for the
528  * actual init that will happen later...
529  */
530 static int acpi_cpufreq_early_init(void)
531 {
532         struct acpi_processor_performance *data;
533         cpumask_t covered;
534         unsigned int i, j;
535
536         dprintk("acpi_cpufreq_early_init\n");
537
538         for_each_possible_cpu(i) {
539                 data = kzalloc(sizeof(struct acpi_processor_performance),
540                                GFP_KERNEL);
541                 if (!data) {
542                         for_each_cpu_mask(j, covered) {
543                                 kfree(acpi_perf_data[j]);
544                                 acpi_perf_data[j] = NULL;
545                         }
546                         return -ENOMEM;
547                 }
548                 acpi_perf_data[i] = data;
549                 cpu_set(i, covered);
550         }
551
552         /* Do initialization in ACPI core */
553         acpi_processor_preregister_performance(acpi_perf_data);
554         return 0;
555 }
556
557 #ifdef CONFIG_SMP
558 /*
559  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
560  * or do it in BIOS firmware and won't inform about it to OS. If not
561  * detected, this has a side effect of making CPU run at a different speed
562  * than OS intended it to run at. Detect it and handle it cleanly.
563  */
564 static int bios_with_sw_any_bug;
565
566 static int sw_any_bug_found(struct dmi_system_id *d)
567 {
568         bios_with_sw_any_bug = 1;
569         return 0;
570 }
571
572 static struct dmi_system_id sw_any_bug_dmi_table[] = {
573         {
574                 .callback = sw_any_bug_found,
575                 .ident = "Supermicro Server X6DLP",
576                 .matches = {
577                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
578                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
579                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
580                 },
581         },
582         { }
583 };
584 #endif
585
586 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
587 {
588         unsigned int i;
589         unsigned int valid_states = 0;
590         unsigned int cpu = policy->cpu;
591         struct acpi_cpufreq_data *data;
592         unsigned int result = 0;
593         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
594         struct acpi_processor_performance *perf;
595
596         dprintk("acpi_cpufreq_cpu_init\n");
597
598         if (!acpi_perf_data[cpu])
599                 return -ENODEV;
600
601         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
602         if (!data)
603                 return -ENOMEM;
604
605         data->acpi_data = acpi_perf_data[cpu];
606         drv_data[cpu] = data;
607
608         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
609                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
610
611         result = acpi_processor_register_performance(data->acpi_data, cpu);
612         if (result)
613                 goto err_free;
614
615         perf = data->acpi_data;
616         policy->shared_type = perf->shared_type;
617
618         /*
619          * Will let policy->cpus know about dependency only when software
620          * coordination is required.
621          */
622         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
623             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
624                 policy->cpus = perf->shared_cpu_map;
625         }
626
627 #ifdef CONFIG_SMP
628         dmi_check_system(sw_any_bug_dmi_table);
629         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
630                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
631                 policy->cpus = cpu_core_map[cpu];
632         }
633 #endif
634
635         /* capability check */
636         if (perf->state_count <= 1) {
637                 dprintk("No P-States\n");
638                 result = -ENODEV;
639                 goto err_unreg;
640         }
641
642         if (perf->control_register.space_id != perf->status_register.space_id) {
643                 result = -ENODEV;
644                 goto err_unreg;
645         }
646
647         switch (perf->control_register.space_id) {
648         case ACPI_ADR_SPACE_SYSTEM_IO:
649                 dprintk("SYSTEM IO addr space\n");
650                 data->cpu_feature = SYSTEM_IO_CAPABLE;
651                 break;
652         case ACPI_ADR_SPACE_FIXED_HARDWARE:
653                 dprintk("HARDWARE addr space\n");
654                 if (!check_est_cpu(cpu)) {
655                         result = -ENODEV;
656                         goto err_unreg;
657                 }
658                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
659                 break;
660         default:
661                 dprintk("Unknown addr space %d\n",
662                         (u32) (perf->control_register.space_id));
663                 result = -ENODEV;
664                 goto err_unreg;
665         }
666
667         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
668                     (perf->state_count+1), GFP_KERNEL);
669         if (!data->freq_table) {
670                 result = -ENOMEM;
671                 goto err_unreg;
672         }
673
674         /* detect transition latency */
675         policy->cpuinfo.transition_latency = 0;
676         for (i=0; i<perf->state_count; i++) {
677                 if ((perf->states[i].transition_latency * 1000) >
678                     policy->cpuinfo.transition_latency)
679                         policy->cpuinfo.transition_latency =
680                             perf->states[i].transition_latency * 1000;
681         }
682         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
683
684         data->max_freq = perf->states[0].core_frequency * 1000;
685         /* table init */
686         for (i=0; i<perf->state_count; i++) {
687                 if (i>0 && perf->states[i].core_frequency ==
688                     perf->states[i-1].core_frequency)
689                         continue;
690
691                 data->freq_table[valid_states].index = i;
692                 data->freq_table[valid_states].frequency =
693                     perf->states[i].core_frequency * 1000;
694                 valid_states++;
695         }
696         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
697
698         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
699         if (result)
700                 goto err_freqfree;
701
702         switch (data->cpu_feature) {
703         case ACPI_ADR_SPACE_SYSTEM_IO:
704                 /* Current speed is unknown and not detectable by IO port */
705                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
706                 break;
707         case ACPI_ADR_SPACE_FIXED_HARDWARE:
708                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
709                 get_cur_freq_on_cpu(cpu);
710                 break;
711         default:
712                 break;
713         }
714
715         /* notify BIOS that we exist */
716         acpi_processor_notify_smm(THIS_MODULE);
717
718         /* Check for APERF/MPERF support in hardware */
719         if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
720                 unsigned int ecx;
721                 ecx = cpuid_ecx(6);
722                 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
723                         acpi_cpufreq_driver.getavg = get_measured_perf;
724         }
725
726         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
727         for (i = 0; i < perf->state_count; i++)
728                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
729                         (i == perf->state ? '*' : ' '), i,
730                         (u32) perf->states[i].core_frequency,
731                         (u32) perf->states[i].power,
732                         (u32) perf->states[i].transition_latency);
733
734         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
735
736         /*
737          * the first call to ->target() should result in us actually
738          * writing something to the appropriate registers.
739          */
740         data->resume = 1;
741
742         return result;
743
744 err_freqfree:
745         kfree(data->freq_table);
746 err_unreg:
747         acpi_processor_unregister_performance(perf, cpu);
748 err_free:
749         kfree(data);
750         drv_data[cpu] = NULL;
751
752         return result;
753 }
754
755 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
756 {
757         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
758
759         dprintk("acpi_cpufreq_cpu_exit\n");
760
761         if (data) {
762                 cpufreq_frequency_table_put_attr(policy->cpu);
763                 drv_data[policy->cpu] = NULL;
764                 acpi_processor_unregister_performance(data->acpi_data,
765                                                       policy->cpu);
766                 kfree(data);
767         }
768
769         return 0;
770 }
771
772 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
773 {
774         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
775
776         dprintk("acpi_cpufreq_resume\n");
777
778         data->resume = 1;
779
780         return 0;
781 }
782
783 static struct freq_attr *acpi_cpufreq_attr[] = {
784         &cpufreq_freq_attr_scaling_available_freqs,
785         NULL,
786 };
787
788 static struct cpufreq_driver acpi_cpufreq_driver = {
789         .verify = acpi_cpufreq_verify,
790         .target = acpi_cpufreq_target,
791         .init = acpi_cpufreq_cpu_init,
792         .exit = acpi_cpufreq_cpu_exit,
793         .resume = acpi_cpufreq_resume,
794         .name = "acpi-cpufreq",
795         .owner = THIS_MODULE,
796         .attr = acpi_cpufreq_attr,
797 };
798
799 static int __init acpi_cpufreq_init(void)
800 {
801         dprintk("acpi_cpufreq_init\n");
802
803         acpi_cpufreq_early_init();
804
805         return cpufreq_register_driver(&acpi_cpufreq_driver);
806 }
807
808 static void __exit acpi_cpufreq_exit(void)
809 {
810         unsigned int i;
811         dprintk("acpi_cpufreq_exit\n");
812
813         cpufreq_unregister_driver(&acpi_cpufreq_driver);
814
815         for_each_possible_cpu(i) {
816                 kfree(acpi_perf_data[i]);
817                 acpi_perf_data[i] = NULL;
818         }
819         return;
820 }
821
822 module_param(acpi_pstate_strict, uint, 0644);
823 MODULE_PARM_DESC(acpi_pstate_strict,
824         "value 0 or non-zero. non-zero -> strict ACPI checks are "
825         "performed during frequency changes.");
826
827 late_initcall(acpi_cpufreq_init);
828 module_exit(acpi_cpufreq_exit);
829
830 MODULE_ALIAS("acpi");