a6d1b03cdf3693d2905e27ff113f6bbe34c7c056
[linux-drm-fsl-dcu.git] / arch / blackfin / mach-common / ints-priority.c
1 /*
2  * Set up the interrupt priorities
3  *
4  * Copyright  2004-2009 Analog Devices Inc.
5  *                 2003 Bas Vermeulen <bas@buyways.nl>
6  *                 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7  *            2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8  *                 1999 D. Jeff Dionne <jeff@uclinux.org>
9  *                 1996 Roman Zippel
10  *
11  * Licensed under the GPL-2
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/syscore_ops.h>
20 #include <asm/delay.h>
21 #ifdef CONFIG_IPIPE
22 #include <linux/ipipe.h>
23 #endif
24 #include <asm/traps.h>
25 #include <asm/blackfin.h>
26 #include <asm/gpio.h>
27 #include <asm/irq_handler.h>
28 #include <asm/dpmc.h>
29 #include <asm/traps.h>
30
31 /*
32  * NOTES:
33  * - we have separated the physical Hardware interrupt from the
34  * levels that the LINUX kernel sees (see the description in irq.h)
35  * -
36  */
37
38 #ifndef CONFIG_SMP
39 /* Initialize this to an actual value to force it into the .data
40  * section so that we know it is properly initialized at entry into
41  * the kernel but before bss is initialized to zero (which is where
42  * it would live otherwise).  The 0x1f magic represents the IRQs we
43  * cannot actually mask out in hardware.
44  */
45 unsigned long bfin_irq_flags = 0x1f;
46 EXPORT_SYMBOL(bfin_irq_flags);
47 #endif
48
49 #ifdef CONFIG_PM
50 unsigned long bfin_sic_iwr[3];  /* Up to 3 SIC_IWRx registers */
51 unsigned vr_wakeup;
52 #endif
53
54 #ifndef SEC_GCTL
55 static struct ivgx {
56         /* irq number for request_irq, available in mach-bf5xx/irq.h */
57         unsigned int irqno;
58         /* corresponding bit in the SIC_ISR register */
59         unsigned int isrflag;
60 } ivg_table[NR_PERI_INTS];
61
62 static struct ivg_slice {
63         /* position of first irq in ivg_table for given ivg */
64         struct ivgx *ifirst;
65         struct ivgx *istop;
66 } ivg7_13[IVG13 - IVG7 + 1];
67
68
69 /*
70  * Search SIC_IAR and fill tables with the irqvalues
71  * and their positions in the SIC_ISR register.
72  */
73 static void __init search_IAR(void)
74 {
75         unsigned ivg, irq_pos = 0;
76         for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
77                 int irqN;
78
79                 ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
80
81                 for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
82                         int irqn;
83                         u32 iar =
84                                 bfin_read32((unsigned long *)SIC_IAR0 +
85 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
86         defined(CONFIG_BF538) || defined(CONFIG_BF539)
87                                 ((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
88 #else
89                                 (irqN >> 3)
90 #endif
91                                 );
92                         for (irqn = irqN; irqn < irqN + 4; ++irqn) {
93                                 int iar_shift = (irqn & 7) * 4;
94                                 if (ivg == (0xf & (iar >> iar_shift))) {
95                                         ivg_table[irq_pos].irqno = IVG7 + irqn;
96                                         ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
97                                         ivg7_13[ivg].istop++;
98                                         irq_pos++;
99                                 }
100                         }
101                 }
102         }
103 }
104 #endif
105
106 /*
107  * This is for core internal IRQs
108  */
109 void bfin_ack_noop(struct irq_data *d)
110 {
111         /* Dummy function.  */
112 }
113
114 static void bfin_core_mask_irq(struct irq_data *d)
115 {
116         bfin_irq_flags &= ~(1 << d->irq);
117         if (!hard_irqs_disabled())
118                 hard_local_irq_enable();
119 }
120
121 static void bfin_core_unmask_irq(struct irq_data *d)
122 {
123         bfin_irq_flags |= 1 << d->irq;
124         /*
125          * If interrupts are enabled, IMASK must contain the same value
126          * as bfin_irq_flags.  Make sure that invariant holds.  If interrupts
127          * are currently disabled we need not do anything; one of the
128          * callers will take care of setting IMASK to the proper value
129          * when reenabling interrupts.
130          * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
131          * what we need.
132          */
133         if (!hard_irqs_disabled())
134                 hard_local_irq_enable();
135         return;
136 }
137
138 #ifndef SEC_GCTL
139 void bfin_internal_mask_irq(unsigned int irq)
140 {
141         unsigned long flags = hard_local_irq_save();
142 #ifdef SIC_IMASK0
143         unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
144         unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
145         bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
146                         ~(1 << mask_bit));
147 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
148         bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
149                         ~(1 << mask_bit));
150 # endif
151 #else
152         bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
153                         ~(1 << BFIN_SYSIRQ(irq)));
154 #endif /* end of SIC_IMASK0 */
155         hard_local_irq_restore(flags);
156 }
157
158 static void bfin_internal_mask_irq_chip(struct irq_data *d)
159 {
160         bfin_internal_mask_irq(d->irq);
161 }
162
163 #ifdef CONFIG_SMP
164 void bfin_internal_unmask_irq_affinity(unsigned int irq,
165                 const struct cpumask *affinity)
166 #else
167 void bfin_internal_unmask_irq(unsigned int irq)
168 #endif
169 {
170         unsigned long flags = hard_local_irq_save();
171
172 #ifdef SIC_IMASK0
173         unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
174         unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
175 # ifdef CONFIG_SMP
176         if (cpumask_test_cpu(0, affinity))
177 # endif
178                 bfin_write_SIC_IMASK(mask_bank,
179                                 bfin_read_SIC_IMASK(mask_bank) |
180                                 (1 << mask_bit));
181 # ifdef CONFIG_SMP
182         if (cpumask_test_cpu(1, affinity))
183                 bfin_write_SICB_IMASK(mask_bank,
184                                 bfin_read_SICB_IMASK(mask_bank) |
185                                 (1 << mask_bit));
186 # endif
187 #else
188         bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
189                         (1 << BFIN_SYSIRQ(irq)));
190 #endif
191         hard_local_irq_restore(flags);
192 }
193
194 #ifdef CONFIG_SMP
195 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
196 {
197         bfin_internal_unmask_irq_affinity(d->irq,
198                                           irq_data_get_affinity_mask(d));
199 }
200
201 static int bfin_internal_set_affinity(struct irq_data *d,
202                                       const struct cpumask *mask, bool force)
203 {
204         bfin_internal_mask_irq(d->irq);
205         bfin_internal_unmask_irq_affinity(d->irq, mask);
206
207         return 0;
208 }
209 #else
210 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
211 {
212         bfin_internal_unmask_irq(d->irq);
213 }
214 #endif
215
216 #if defined(CONFIG_PM)
217 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
218 {
219         u32 bank, bit, wakeup = 0;
220         unsigned long flags;
221         bank = BFIN_SYSIRQ(irq) / 32;
222         bit = BFIN_SYSIRQ(irq) % 32;
223
224         switch (irq) {
225 #ifdef IRQ_RTC
226         case IRQ_RTC:
227         wakeup |= WAKE;
228         break;
229 #endif
230 #ifdef IRQ_CAN0_RX
231         case IRQ_CAN0_RX:
232         wakeup |= CANWE;
233         break;
234 #endif
235 #ifdef IRQ_CAN1_RX
236         case IRQ_CAN1_RX:
237         wakeup |= CANWE;
238         break;
239 #endif
240 #ifdef IRQ_USB_INT0
241         case IRQ_USB_INT0:
242         wakeup |= USBWE;
243         break;
244 #endif
245 #ifdef CONFIG_BF54x
246         case IRQ_CNT:
247         wakeup |= ROTWE;
248         break;
249 #endif
250         default:
251         break;
252         }
253
254         flags = hard_local_irq_save();
255
256         if (state) {
257                 bfin_sic_iwr[bank] |= (1 << bit);
258                 vr_wakeup  |= wakeup;
259
260         } else {
261                 bfin_sic_iwr[bank] &= ~(1 << bit);
262                 vr_wakeup  &= ~wakeup;
263         }
264
265         hard_local_irq_restore(flags);
266
267         return 0;
268 }
269
270 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
271 {
272         return bfin_internal_set_wake(d->irq, state);
273 }
274 #else
275 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
276 {
277         return 0;
278 }
279 # define bfin_internal_set_wake_chip NULL
280 #endif
281
282 #else /* SEC_GCTL */
283 static void bfin_sec_preflow_handler(struct irq_data *d)
284 {
285         unsigned long flags = hard_local_irq_save();
286         unsigned int sid = BFIN_SYSIRQ(d->irq);
287
288         bfin_write_SEC_SCI(0, SEC_CSID, sid);
289
290         hard_local_irq_restore(flags);
291 }
292
293 static void bfin_sec_mask_ack_irq(struct irq_data *d)
294 {
295         unsigned long flags = hard_local_irq_save();
296         unsigned int sid = BFIN_SYSIRQ(d->irq);
297
298         bfin_write_SEC_SCI(0, SEC_CSID, sid);
299
300         hard_local_irq_restore(flags);
301 }
302
303 static void bfin_sec_unmask_irq(struct irq_data *d)
304 {
305         unsigned long flags = hard_local_irq_save();
306         unsigned int sid = BFIN_SYSIRQ(d->irq);
307
308         bfin_write32(SEC_END, sid);
309
310         hard_local_irq_restore(flags);
311 }
312
313 static void bfin_sec_enable_ssi(unsigned int sid)
314 {
315         unsigned long flags = hard_local_irq_save();
316         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
317
318         reg_sctl |= SEC_SCTL_SRC_EN;
319         bfin_write_SEC_SCTL(sid, reg_sctl);
320
321         hard_local_irq_restore(flags);
322 }
323
324 static void bfin_sec_disable_ssi(unsigned int sid)
325 {
326         unsigned long flags = hard_local_irq_save();
327         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
328
329         reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
330         bfin_write_SEC_SCTL(sid, reg_sctl);
331
332         hard_local_irq_restore(flags);
333 }
334
335 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
336 {
337         unsigned long flags = hard_local_irq_save();
338         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
339
340         reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
341         bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
342
343         hard_local_irq_restore(flags);
344 }
345
346 static void bfin_sec_enable_sci(unsigned int sid)
347 {
348         unsigned long flags = hard_local_irq_save();
349         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
350
351         if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
352                 reg_sctl |= SEC_SCTL_FAULT_EN;
353         else
354                 reg_sctl |= SEC_SCTL_INT_EN;
355         bfin_write_SEC_SCTL(sid, reg_sctl);
356
357         hard_local_irq_restore(flags);
358 }
359
360 static void bfin_sec_disable_sci(unsigned int sid)
361 {
362         unsigned long flags = hard_local_irq_save();
363         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
364
365         reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
366         bfin_write_SEC_SCTL(sid, reg_sctl);
367
368         hard_local_irq_restore(flags);
369 }
370
371 static void bfin_sec_enable(struct irq_data *d)
372 {
373         unsigned long flags = hard_local_irq_save();
374         unsigned int sid = BFIN_SYSIRQ(d->irq);
375
376         bfin_sec_enable_sci(sid);
377         bfin_sec_enable_ssi(sid);
378
379         hard_local_irq_restore(flags);
380 }
381
382 static void bfin_sec_disable(struct irq_data *d)
383 {
384         unsigned long flags = hard_local_irq_save();
385         unsigned int sid = BFIN_SYSIRQ(d->irq);
386
387         bfin_sec_disable_sci(sid);
388         bfin_sec_disable_ssi(sid);
389
390         hard_local_irq_restore(flags);
391 }
392
393 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
394 {
395         unsigned long flags = hard_local_irq_save();
396         uint32_t reg_sctl;
397         int i;
398
399         bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
400
401         for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
402                 reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
403                 reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
404                 bfin_write_SEC_SCTL(i, reg_sctl);
405         }
406
407         hard_local_irq_restore(flags);
408 }
409
410 void bfin_sec_raise_irq(unsigned int irq)
411 {
412         unsigned long flags = hard_local_irq_save();
413         unsigned int sid = BFIN_SYSIRQ(irq);
414
415         bfin_write32(SEC_RAISE, sid);
416
417         hard_local_irq_restore(flags);
418 }
419
420 static void init_software_driven_irq(void)
421 {
422         bfin_sec_set_ssi_coreid(34, 0);
423         bfin_sec_set_ssi_coreid(35, 1);
424
425         bfin_sec_enable_sci(35);
426         bfin_sec_enable_ssi(35);
427         bfin_sec_set_ssi_coreid(36, 0);
428         bfin_sec_set_ssi_coreid(37, 1);
429         bfin_sec_enable_sci(37);
430         bfin_sec_enable_ssi(37);
431 }
432
433 void handle_sec_sfi_fault(uint32_t gstat)
434 {
435
436 }
437
438 void handle_sec_sci_fault(uint32_t gstat)
439 {
440         uint32_t core_id;
441         uint32_t cstat;
442
443         core_id = gstat & SEC_GSTAT_SCI;
444         cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
445         if (cstat & SEC_CSTAT_ERR) {
446                 switch (cstat & SEC_CSTAT_ERRC) {
447                 case SEC_CSTAT_ACKERR:
448                         printk(KERN_DEBUG "sec ack err\n");
449                         break;
450                 default:
451                         printk(KERN_DEBUG "sec sci unknown err\n");
452                 }
453         }
454
455 }
456
457 void handle_sec_ssi_fault(uint32_t gstat)
458 {
459         uint32_t sid;
460         uint32_t sstat;
461
462         sid = gstat & SEC_GSTAT_SID;
463         sstat = bfin_read_SEC_SSTAT(sid);
464
465 }
466
467 void handle_sec_fault(uint32_t sec_gstat)
468 {
469         if (sec_gstat & SEC_GSTAT_ERR) {
470
471                 switch (sec_gstat & SEC_GSTAT_ERRC) {
472                 case 0:
473                         handle_sec_sfi_fault(sec_gstat);
474                         break;
475                 case SEC_GSTAT_SCIERR:
476                         handle_sec_sci_fault(sec_gstat);
477                         break;
478                 case SEC_GSTAT_SSIERR:
479                         handle_sec_ssi_fault(sec_gstat);
480                         break;
481                 }
482
483
484         }
485 }
486
487 static struct irqaction bfin_fault_irq = {
488         .name = "Blackfin fault",
489 };
490
491 static irqreturn_t bfin_fault_routine(int irq, void *data)
492 {
493         struct pt_regs *fp = get_irq_regs();
494
495         switch (irq) {
496         case IRQ_C0_DBL_FAULT:
497                 double_fault_c(fp);
498                 break;
499         case IRQ_C0_HW_ERR:
500                 dump_bfin_process(fp);
501                 dump_bfin_mem(fp);
502                 show_regs(fp);
503                 printk(KERN_NOTICE "Kernel Stack\n");
504                 show_stack(current, NULL);
505                 print_modules();
506                 panic("Core 0 hardware error");
507                 break;
508         case IRQ_C0_NMI_L1_PARITY_ERR:
509                 panic("Core 0 NMI L1 parity error");
510                 break;
511         case IRQ_SEC_ERR:
512                 pr_err("SEC error\n");
513                 handle_sec_fault(bfin_read32(SEC_GSTAT));
514                 break;
515         default:
516                 panic("Unknown fault %d", irq);
517         }
518
519         return IRQ_HANDLED;
520 }
521 #endif /* SEC_GCTL */
522
523 static struct irq_chip bfin_core_irqchip = {
524         .name = "CORE",
525         .irq_mask = bfin_core_mask_irq,
526         .irq_unmask = bfin_core_unmask_irq,
527 };
528
529 #ifndef SEC_GCTL
530 static struct irq_chip bfin_internal_irqchip = {
531         .name = "INTN",
532         .irq_mask = bfin_internal_mask_irq_chip,
533         .irq_unmask = bfin_internal_unmask_irq_chip,
534         .irq_disable = bfin_internal_mask_irq_chip,
535         .irq_enable = bfin_internal_unmask_irq_chip,
536 #ifdef CONFIG_SMP
537         .irq_set_affinity = bfin_internal_set_affinity,
538 #endif
539         .irq_set_wake = bfin_internal_set_wake_chip,
540 };
541 #else
542 static struct irq_chip bfin_sec_irqchip = {
543         .name = "SEC",
544         .irq_mask_ack = bfin_sec_mask_ack_irq,
545         .irq_mask = bfin_sec_mask_ack_irq,
546         .irq_unmask = bfin_sec_unmask_irq,
547         .irq_eoi = bfin_sec_unmask_irq,
548         .irq_disable = bfin_sec_disable,
549         .irq_enable = bfin_sec_enable,
550 };
551 #endif
552
553 void bfin_handle_irq(unsigned irq)
554 {
555 #ifdef CONFIG_IPIPE
556         struct pt_regs regs;    /* Contents not used. */
557         ipipe_trace_irq_entry(irq);
558         __ipipe_handle_irq(irq, &regs);
559         ipipe_trace_irq_exit(irq);
560 #else /* !CONFIG_IPIPE */
561         generic_handle_irq(irq);
562 #endif  /* !CONFIG_IPIPE */
563 }
564
565 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
566 static int mac_stat_int_mask;
567
568 static void bfin_mac_status_ack_irq(unsigned int irq)
569 {
570         switch (irq) {
571         case IRQ_MAC_MMCINT:
572                 bfin_write_EMAC_MMC_TIRQS(
573                         bfin_read_EMAC_MMC_TIRQE() &
574                         bfin_read_EMAC_MMC_TIRQS());
575                 bfin_write_EMAC_MMC_RIRQS(
576                         bfin_read_EMAC_MMC_RIRQE() &
577                         bfin_read_EMAC_MMC_RIRQS());
578                 break;
579         case IRQ_MAC_RXFSINT:
580                 bfin_write_EMAC_RX_STKY(
581                         bfin_read_EMAC_RX_IRQE() &
582                         bfin_read_EMAC_RX_STKY());
583                 break;
584         case IRQ_MAC_TXFSINT:
585                 bfin_write_EMAC_TX_STKY(
586                         bfin_read_EMAC_TX_IRQE() &
587                         bfin_read_EMAC_TX_STKY());
588                 break;
589         case IRQ_MAC_WAKEDET:
590                  bfin_write_EMAC_WKUP_CTL(
591                         bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
592                 break;
593         default:
594                 /* These bits are W1C */
595                 bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
596                 break;
597         }
598 }
599
600 static void bfin_mac_status_mask_irq(struct irq_data *d)
601 {
602         unsigned int irq = d->irq;
603
604         mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
605 #ifdef BF537_FAMILY
606         switch (irq) {
607         case IRQ_MAC_PHYINT:
608                 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
609                 break;
610         default:
611                 break;
612         }
613 #else
614         if (!mac_stat_int_mask)
615                 bfin_internal_mask_irq(IRQ_MAC_ERROR);
616 #endif
617         bfin_mac_status_ack_irq(irq);
618 }
619
620 static void bfin_mac_status_unmask_irq(struct irq_data *d)
621 {
622         unsigned int irq = d->irq;
623
624 #ifdef BF537_FAMILY
625         switch (irq) {
626         case IRQ_MAC_PHYINT:
627                 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
628                 break;
629         default:
630                 break;
631         }
632 #else
633         if (!mac_stat_int_mask)
634                 bfin_internal_unmask_irq(IRQ_MAC_ERROR);
635 #endif
636         mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
637 }
638
639 #ifdef CONFIG_PM
640 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
641 {
642 #ifdef BF537_FAMILY
643         return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
644 #else
645         return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
646 #endif
647 }
648 #else
649 # define bfin_mac_status_set_wake NULL
650 #endif
651
652 static struct irq_chip bfin_mac_status_irqchip = {
653         .name = "MACST",
654         .irq_mask = bfin_mac_status_mask_irq,
655         .irq_unmask = bfin_mac_status_unmask_irq,
656         .irq_set_wake = bfin_mac_status_set_wake,
657 };
658
659 void bfin_demux_mac_status_irq(unsigned int int_err_irq,
660                                struct irq_desc *inta_desc)
661 {
662         int i, irq = 0;
663         u32 status = bfin_read_EMAC_SYSTAT();
664
665         for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
666                 if (status & (1L << i)) {
667                         irq = IRQ_MAC_PHYINT + i;
668                         break;
669                 }
670
671         if (irq) {
672                 if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
673                         bfin_handle_irq(irq);
674                 } else {
675                         bfin_mac_status_ack_irq(irq);
676                         pr_debug("IRQ %d:"
677                                         " MASKED MAC ERROR INTERRUPT ASSERTED\n",
678                                         irq);
679                 }
680         } else
681                 printk(KERN_ERR
682                                 "%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
683                                 " INTERRUPT ASSERTED BUT NO SOURCE FOUND"
684                                 "(EMAC_SYSTAT=0x%X)\n",
685                                 __func__, __FILE__, __LINE__, status);
686 }
687 #endif
688
689 static inline void bfin_set_irq_handler(struct irq_data *d, irq_flow_handler_t handle)
690 {
691 #ifdef CONFIG_IPIPE
692         handle = handle_level_irq;
693 #endif
694         irq_set_handler_locked(d, handle);
695 }
696
697 #ifdef CONFIG_GPIO_ADI
698
699 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
700
701 static void bfin_gpio_ack_irq(struct irq_data *d)
702 {
703         /* AFAIK ack_irq in case mask_ack is provided
704          * get's only called for edge sense irqs
705          */
706         set_gpio_data(irq_to_gpio(d->irq), 0);
707 }
708
709 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
710 {
711         unsigned int irq = d->irq;
712         u32 gpionr = irq_to_gpio(irq);
713
714         if (!irqd_is_level_type(d))
715                 set_gpio_data(gpionr, 0);
716
717         set_gpio_maska(gpionr, 0);
718 }
719
720 static void bfin_gpio_mask_irq(struct irq_data *d)
721 {
722         set_gpio_maska(irq_to_gpio(d->irq), 0);
723 }
724
725 static void bfin_gpio_unmask_irq(struct irq_data *d)
726 {
727         set_gpio_maska(irq_to_gpio(d->irq), 1);
728 }
729
730 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
731 {
732         u32 gpionr = irq_to_gpio(d->irq);
733
734         if (__test_and_set_bit(gpionr, gpio_enabled))
735                 bfin_gpio_irq_prepare(gpionr);
736
737         bfin_gpio_unmask_irq(d);
738
739         return 0;
740 }
741
742 static void bfin_gpio_irq_shutdown(struct irq_data *d)
743 {
744         u32 gpionr = irq_to_gpio(d->irq);
745
746         bfin_gpio_mask_irq(d);
747         __clear_bit(gpionr, gpio_enabled);
748         bfin_gpio_irq_free(gpionr);
749 }
750
751 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
752 {
753         unsigned int irq = d->irq;
754         int ret;
755         char buf[16];
756         u32 gpionr = irq_to_gpio(irq);
757
758         if (type == IRQ_TYPE_PROBE) {
759                 /* only probe unenabled GPIO interrupt lines */
760                 if (test_bit(gpionr, gpio_enabled))
761                         return 0;
762                 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
763         }
764
765         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
766                     IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
767
768                 snprintf(buf, 16, "gpio-irq%d", irq);
769                 ret = bfin_gpio_irq_request(gpionr, buf);
770                 if (ret)
771                         return ret;
772
773                 if (__test_and_set_bit(gpionr, gpio_enabled))
774                         bfin_gpio_irq_prepare(gpionr);
775
776         } else {
777                 __clear_bit(gpionr, gpio_enabled);
778                 return 0;
779         }
780
781         set_gpio_inen(gpionr, 0);
782         set_gpio_dir(gpionr, 0);
783
784         if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
785             == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
786                 set_gpio_both(gpionr, 1);
787         else
788                 set_gpio_both(gpionr, 0);
789
790         if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
791                 set_gpio_polar(gpionr, 1);      /* low or falling edge denoted by one */
792         else
793                 set_gpio_polar(gpionr, 0);      /* high or rising edge denoted by zero */
794
795         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
796                 set_gpio_edge(gpionr, 1);
797                 set_gpio_inen(gpionr, 1);
798                 set_gpio_data(gpionr, 0);
799
800         } else {
801                 set_gpio_edge(gpionr, 0);
802                 set_gpio_inen(gpionr, 1);
803         }
804
805         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
806                 bfin_set_irq_handler(d, handle_edge_irq);
807         else
808                 bfin_set_irq_handler(d, handle_level_irq);
809
810         return 0;
811 }
812
813 static void bfin_demux_gpio_block(unsigned int irq)
814 {
815         unsigned int gpio, mask;
816
817         gpio = irq_to_gpio(irq);
818         mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
819
820         while (mask) {
821                 if (mask & 1)
822                         bfin_handle_irq(irq);
823                 irq++;
824                 mask >>= 1;
825         }
826 }
827
828 void bfin_demux_gpio_irq(unsigned int __inta_irq, struct irq_desc *desc)
829 {
830         unsigned int inta_irq = irq_desc_get_irq(desc);
831         unsigned int irq;
832
833         switch (inta_irq) {
834 #if defined(BF537_FAMILY)
835         case IRQ_PF_INTA_PG_INTA:
836                 bfin_demux_gpio_block(IRQ_PF0);
837                 irq = IRQ_PG0;
838                 break;
839         case IRQ_PH_INTA_MAC_RX:
840                 irq = IRQ_PH0;
841                 break;
842 #elif defined(BF533_FAMILY)
843         case IRQ_PROG_INTA:
844                 irq = IRQ_PF0;
845                 break;
846 #elif defined(BF538_FAMILY)
847         case IRQ_PORTF_INTA:
848                 irq = IRQ_PF0;
849                 break;
850 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
851         case IRQ_PORTF_INTA:
852                 irq = IRQ_PF0;
853                 break;
854         case IRQ_PORTG_INTA:
855                 irq = IRQ_PG0;
856                 break;
857         case IRQ_PORTH_INTA:
858                 irq = IRQ_PH0;
859                 break;
860 #elif defined(CONFIG_BF561)
861         case IRQ_PROG0_INTA:
862                 irq = IRQ_PF0;
863                 break;
864         case IRQ_PROG1_INTA:
865                 irq = IRQ_PF16;
866                 break;
867         case IRQ_PROG2_INTA:
868                 irq = IRQ_PF32;
869                 break;
870 #endif
871         default:
872                 BUG();
873                 return;
874         }
875
876         bfin_demux_gpio_block(irq);
877 }
878
879 #ifdef CONFIG_PM
880
881 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
882 {
883         return bfin_gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
884 }
885
886 #else
887
888 # define bfin_gpio_set_wake NULL
889
890 #endif
891
892 static struct irq_chip bfin_gpio_irqchip = {
893         .name = "GPIO",
894         .irq_ack = bfin_gpio_ack_irq,
895         .irq_mask = bfin_gpio_mask_irq,
896         .irq_mask_ack = bfin_gpio_mask_ack_irq,
897         .irq_unmask = bfin_gpio_unmask_irq,
898         .irq_disable = bfin_gpio_mask_irq,
899         .irq_enable = bfin_gpio_unmask_irq,
900         .irq_set_type = bfin_gpio_irq_type,
901         .irq_startup = bfin_gpio_irq_startup,
902         .irq_shutdown = bfin_gpio_irq_shutdown,
903         .irq_set_wake = bfin_gpio_set_wake,
904 };
905
906 #endif
907
908 #ifdef CONFIG_PM
909
910 #ifdef SEC_GCTL
911 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
912
913 static int sec_suspend(void)
914 {
915         u32 bank;
916
917         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
918                 save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
919         return 0;
920 }
921
922 static void sec_resume(void)
923 {
924         u32 bank;
925
926         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
927         udelay(100);
928         bfin_write_SEC_GCTL(SEC_GCTL_EN);
929         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
930
931         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
932                 bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
933 }
934
935 static struct syscore_ops sec_pm_syscore_ops = {
936         .suspend = sec_suspend,
937         .resume = sec_resume,
938 };
939 #endif
940
941 #endif
942
943 void init_exception_vectors(void)
944 {
945         /* cannot program in software:
946          * evt0 - emulation (jtag)
947          * evt1 - reset
948          */
949         bfin_write_EVT2(evt_nmi);
950         bfin_write_EVT3(trap);
951         bfin_write_EVT5(evt_ivhw);
952         bfin_write_EVT6(evt_timer);
953         bfin_write_EVT7(evt_evt7);
954         bfin_write_EVT8(evt_evt8);
955         bfin_write_EVT9(evt_evt9);
956         bfin_write_EVT10(evt_evt10);
957         bfin_write_EVT11(evt_evt11);
958         bfin_write_EVT12(evt_evt12);
959         bfin_write_EVT13(evt_evt13);
960         bfin_write_EVT14(evt_evt14);
961         bfin_write_EVT15(evt_system_call);
962         CSYNC();
963 }
964
965 #ifndef SEC_GCTL
966 /*
967  * This function should be called during kernel startup to initialize
968  * the BFin IRQ handling routines.
969  */
970
971 int __init init_arch_irq(void)
972 {
973         int irq;
974         unsigned long ilat = 0;
975
976         /*  Disable all the peripheral intrs  - page 4-29 HW Ref manual */
977 #ifdef SIC_IMASK0
978         bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
979         bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
980 # ifdef SIC_IMASK2
981         bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
982 # endif
983 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
984         bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
985         bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
986 # endif
987 #else
988         bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
989 #endif
990
991         local_irq_disable();
992
993         for (irq = 0; irq <= SYS_IRQS; irq++) {
994                 if (irq <= IRQ_CORETMR)
995                         irq_set_chip(irq, &bfin_core_irqchip);
996                 else
997                         irq_set_chip(irq, &bfin_internal_irqchip);
998
999                 switch (irq) {
1000 #if !BFIN_GPIO_PINT
1001 #if defined(BF537_FAMILY)
1002                 case IRQ_PH_INTA_MAC_RX:
1003                 case IRQ_PF_INTA_PG_INTA:
1004 #elif defined(BF533_FAMILY)
1005                 case IRQ_PROG_INTA:
1006 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1007                 case IRQ_PORTF_INTA:
1008                 case IRQ_PORTG_INTA:
1009                 case IRQ_PORTH_INTA:
1010 #elif defined(CONFIG_BF561)
1011                 case IRQ_PROG0_INTA:
1012                 case IRQ_PROG1_INTA:
1013                 case IRQ_PROG2_INTA:
1014 #elif defined(BF538_FAMILY)
1015                 case IRQ_PORTF_INTA:
1016 #endif
1017                         irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1018                         break;
1019 #endif
1020 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1021                 case IRQ_MAC_ERROR:
1022                         irq_set_chained_handler(irq,
1023                                                 bfin_demux_mac_status_irq);
1024                         break;
1025 #endif
1026 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1027                 case IRQ_SUPPLE_0:
1028                 case IRQ_SUPPLE_1:
1029                         irq_set_handler(irq, handle_percpu_irq);
1030                         break;
1031 #endif
1032
1033 #ifdef CONFIG_TICKSOURCE_CORETMR
1034                 case IRQ_CORETMR:
1035 # ifdef CONFIG_SMP
1036                         irq_set_handler(irq, handle_percpu_irq);
1037 # else
1038                         irq_set_handler(irq, handle_simple_irq);
1039 # endif
1040                         break;
1041 #endif
1042
1043 #ifdef CONFIG_TICKSOURCE_GPTMR0
1044                 case IRQ_TIMER0:
1045                         irq_set_handler(irq, handle_simple_irq);
1046                         break;
1047 #endif
1048
1049                 default:
1050 #ifdef CONFIG_IPIPE
1051                         irq_set_handler(irq, handle_level_irq);
1052 #else
1053                         irq_set_handler(irq, handle_simple_irq);
1054 #endif
1055                         break;
1056                 }
1057         }
1058
1059         init_mach_irq();
1060
1061 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1062         for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1063                 irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1064                                          handle_level_irq);
1065 #endif
1066         /* if configured as edge, then will be changed to do_edge_IRQ */
1067 #ifdef CONFIG_GPIO_ADI
1068         for (irq = GPIO_IRQ_BASE;
1069                 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1070                 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1071                                          handle_level_irq);
1072 #endif
1073         bfin_write_IMASK(0);
1074         CSYNC();
1075         ilat = bfin_read_ILAT();
1076         CSYNC();
1077         bfin_write_ILAT(ilat);
1078         CSYNC();
1079
1080         printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1081         /* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1082          * local_irq_enable()
1083          */
1084         program_IAR();
1085         /* Therefore it's better to setup IARs before interrupts enabled */
1086         search_IAR();
1087
1088         /* Enable interrupts IVG7-15 */
1089         bfin_irq_flags |= IMASK_IVG15 |
1090                 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1091                 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1092
1093
1094         /* This implicitly covers ANOMALY_05000171
1095          * Boot-ROM code modifies SICA_IWRx wakeup registers
1096          */
1097 #ifdef SIC_IWR0
1098         bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1099 # ifdef SIC_IWR1
1100         /* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1101          * will screw up the bootrom as it relies on MDMA0/1 waking it
1102          * up from IDLE instructions.  See this report for more info:
1103          * http://blackfin.uclinux.org/gf/tracker/4323
1104          */
1105         if (ANOMALY_05000435)
1106                 bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1107         else
1108                 bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1109 # endif
1110 # ifdef SIC_IWR2
1111         bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1112 # endif
1113 #else
1114         bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1115 #endif
1116         return 0;
1117 }
1118
1119 #ifdef CONFIG_DO_IRQ_L1
1120 __attribute__((l1_text))
1121 #endif
1122 static int vec_to_irq(int vec)
1123 {
1124         struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1125         struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1126         unsigned long sic_status[3];
1127         if (likely(vec == EVT_IVTMR_P))
1128                 return IRQ_CORETMR;
1129 #ifdef SIC_ISR
1130         sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1131 #else
1132         if (smp_processor_id()) {
1133 # ifdef SICB_ISR0
1134                 /* This will be optimized out in UP mode. */
1135                 sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1136                 sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1137 # endif
1138         } else {
1139                 sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1140                 sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1141         }
1142 #endif
1143 #ifdef SIC_ISR2
1144         sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1145 #endif
1146
1147         for (;; ivg++) {
1148                 if (ivg >= ivg_stop)
1149                         return -1;
1150 #ifdef SIC_ISR
1151                 if (sic_status[0] & ivg->isrflag)
1152 #else
1153                 if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1154 #endif
1155                         return ivg->irqno;
1156         }
1157 }
1158
1159 #else /* SEC_GCTL */
1160
1161 /*
1162  * This function should be called during kernel startup to initialize
1163  * the BFin IRQ handling routines.
1164  */
1165
1166 int __init init_arch_irq(void)
1167 {
1168         int irq;
1169         unsigned long ilat = 0;
1170
1171         bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1172
1173         local_irq_disable();
1174
1175         for (irq = 0; irq <= SYS_IRQS; irq++) {
1176                 if (irq <= IRQ_CORETMR) {
1177                         irq_set_chip_and_handler(irq, &bfin_core_irqchip,
1178                                 handle_simple_irq);
1179 #if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
1180                         if (irq == IRQ_CORETMR)
1181                                 irq_set_handler(irq, handle_percpu_irq);
1182 #endif
1183                 } else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1184                         irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1185                                 handle_percpu_irq);
1186                 } else {
1187                         irq_set_chip(irq, &bfin_sec_irqchip);
1188                         irq_set_handler(irq, handle_fasteoi_irq);
1189                         __irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1190                 }
1191         }
1192
1193         bfin_write_IMASK(0);
1194         CSYNC();
1195         ilat = bfin_read_ILAT();
1196         CSYNC();
1197         bfin_write_ILAT(ilat);
1198         CSYNC();
1199
1200         printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1201
1202         bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1203
1204         /* Enable interrupts IVG7-15 */
1205         bfin_irq_flags |= IMASK_IVG15 |
1206             IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1207             IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1208
1209
1210         bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1211         bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
1212         bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
1213         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1214         udelay(100);
1215         bfin_write_SEC_GCTL(SEC_GCTL_EN);
1216         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1217         bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1218
1219         init_software_driven_irq();
1220
1221 #ifdef CONFIG_PM
1222         register_syscore_ops(&sec_pm_syscore_ops);
1223 #endif
1224
1225         bfin_fault_irq.handler = bfin_fault_routine;
1226 #ifdef CONFIG_L1_PARITY_CHECK
1227         setup_irq(IRQ_C0_NMI_L1_PARITY_ERR, &bfin_fault_irq);
1228 #endif
1229         setup_irq(IRQ_C0_DBL_FAULT, &bfin_fault_irq);
1230         setup_irq(IRQ_SEC_ERR, &bfin_fault_irq);
1231
1232         return 0;
1233 }
1234
1235 #ifdef CONFIG_DO_IRQ_L1
1236 __attribute__((l1_text))
1237 #endif
1238 static int vec_to_irq(int vec)
1239 {
1240         if (likely(vec == EVT_IVTMR_P))
1241                 return IRQ_CORETMR;
1242
1243         return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1244 }
1245 #endif  /* SEC_GCTL */
1246
1247 #ifdef CONFIG_DO_IRQ_L1
1248 __attribute__((l1_text))
1249 #endif
1250 void do_irq(int vec, struct pt_regs *fp)
1251 {
1252         int irq = vec_to_irq(vec);
1253         if (irq == -1)
1254                 return;
1255         asm_do_IRQ(irq, fp);
1256 }
1257
1258 #ifdef CONFIG_IPIPE
1259
1260 int __ipipe_get_irq_priority(unsigned irq)
1261 {
1262         int ient, prio;
1263
1264         if (irq <= IRQ_CORETMR)
1265                 return irq;
1266
1267 #ifdef SEC_GCTL
1268         if (irq >= BFIN_IRQ(0))
1269                 return IVG11;
1270 #else
1271         for (ient = 0; ient < NR_PERI_INTS; ient++) {
1272                 struct ivgx *ivg = ivg_table + ient;
1273                 if (ivg->irqno == irq) {
1274                         for (prio = 0; prio <= IVG13-IVG7; prio++) {
1275                                 if (ivg7_13[prio].ifirst <= ivg &&
1276                                     ivg7_13[prio].istop > ivg)
1277                                         return IVG7 + prio;
1278                         }
1279                 }
1280         }
1281 #endif
1282
1283         return IVG15;
1284 }
1285
1286 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1287 #ifdef CONFIG_DO_IRQ_L1
1288 __attribute__((l1_text))
1289 #endif
1290 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1291 {
1292         struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1293         struct ipipe_domain *this_domain = __ipipe_current_domain;
1294         int irq, s = 0;
1295
1296         irq = vec_to_irq(vec);
1297         if (irq == -1)
1298                 return 0;
1299
1300         if (irq == IRQ_SYSTMR) {
1301 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1302                 bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1303 #endif
1304                 /* This is basically what we need from the register frame. */
1305                 __this_cpu_write(__ipipe_tick_regs.ipend, regs->ipend);
1306                 __this_cpu_write(__ipipe_tick_regs.pc, regs->pc);
1307                 if (this_domain != ipipe_root_domain)
1308                         __this_cpu_and(__ipipe_tick_regs.ipend, ~0x10);
1309                 else
1310                         __this_cpu_or(__ipipe_tick_regs.ipend, 0x10);
1311         }
1312
1313         /*
1314          * We don't want Linux interrupt handlers to run at the
1315          * current core priority level (i.e. < EVT15), since this
1316          * might delay other interrupts handled by a high priority
1317          * domain. Here is what we do instead:
1318          *
1319          * - we raise the SYNCDEFER bit to prevent
1320          * __ipipe_handle_irq() to sync the pipeline for the root
1321          * stage for the incoming interrupt. Upon return, that IRQ is
1322          * pending in the interrupt log.
1323          *
1324          * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1325          * that _schedule_and_signal_from_int will eventually sync the
1326          * pipeline from EVT15.
1327          */
1328         if (this_domain == ipipe_root_domain) {
1329                 s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1330                 barrier();
1331         }
1332
1333         ipipe_trace_irq_entry(irq);
1334         __ipipe_handle_irq(irq, regs);
1335         ipipe_trace_irq_exit(irq);
1336
1337         if (user_mode(regs) &&
1338             !ipipe_test_foreign_stack() &&
1339             (current->ipipe_flags & PF_EVTRET) != 0) {
1340                 /*
1341                  * Testing for user_regs() does NOT fully eliminate
1342                  * foreign stack contexts, because of the forged
1343                  * interrupt returns we do through
1344                  * __ipipe_call_irqtail. In that case, we might have
1345                  * preempted a foreign stack context in a high
1346                  * priority domain, with a single interrupt level now
1347                  * pending after the irqtail unwinding is done. In
1348                  * which case user_mode() is now true, and the event
1349                  * gets dispatched spuriously.
1350                  */
1351                 current->ipipe_flags &= ~PF_EVTRET;
1352                 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1353         }
1354
1355         if (this_domain == ipipe_root_domain) {
1356                 set_thread_flag(TIF_IRQ_SYNC);
1357                 if (!s) {
1358                         __clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1359                         return !test_bit(IPIPE_STALL_FLAG, &p->status);
1360                 }
1361         }
1362
1363         return 0;
1364 }
1365
1366 #endif /* CONFIG_IPIPE */