Merge remote-tracking branch 'spi/fix/core' into spi-linus
[linux-drm-fsl-dcu.git] / arch / arm / mach-omap2 / omap-smp.c
1 /*
2  * OMAP4 SMP source file. It contains platform specific functions
3  * needed for the linux smp kernel.
4  *
5  * Copyright (C) 2009 Texas Instruments, Inc.
6  *
7  * Author:
8  *      Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *
10  * Platform file needed for the OMAP4 SMP. This file is based on arm
11  * realview smp platform.
12  * * Copyright (c) 2002 ARM Limited.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23
24 #include <asm/smp_scu.h>
25
26 #include "omap-secure.h"
27 #include "omap-wakeupgen.h"
28 #include <asm/cputype.h>
29
30 #include "soc.h"
31 #include "iomap.h"
32 #include "common.h"
33 #include "clockdomain.h"
34 #include "pm.h"
35
36 #define CPU_MASK                0xff0ffff0
37 #define CPU_CORTEX_A9           0x410FC090
38 #define CPU_CORTEX_A15          0x410FC0F0
39
40 #define OMAP5_CORE_COUNT        0x2
41
42 u16 pm44xx_errata;
43
44 /* SCU base address */
45 static void __iomem *scu_base;
46
47 static DEFINE_SPINLOCK(boot_lock);
48
49 void __iomem *omap4_get_scu_base(void)
50 {
51         return scu_base;
52 }
53
54 static void omap4_secondary_init(unsigned int cpu)
55 {
56         /*
57          * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
58          * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
59          * init and for CPU1, a secure PPA API provided. CPU0 must be ON
60          * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
61          * OMAP443X GP devices- SMP bit isn't accessible.
62          * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
63          */
64         if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
65                 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
66                                                         4, 0, 0, 0, 0, 0);
67
68         /*
69          * Configure the CNTFRQ register for the secondary cpu's which
70          * indicates the frequency of the cpu local timers.
71          */
72         if (soc_is_omap54xx() || soc_is_dra7xx())
73                 set_cntfreq();
74
75         /*
76          * Synchronise with the boot thread.
77          */
78         spin_lock(&boot_lock);
79         spin_unlock(&boot_lock);
80 }
81
82 static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
83 {
84         static struct clockdomain *cpu1_clkdm;
85         static bool booted;
86         static struct powerdomain *cpu1_pwrdm;
87         void __iomem *base = omap_get_wakeupgen_base();
88
89         /*
90          * Set synchronisation state between this boot processor
91          * and the secondary one
92          */
93         spin_lock(&boot_lock);
94
95         /*
96          * Update the AuxCoreBoot0 with boot state for secondary core.
97          * omap4_secondary_startup() routine will hold the secondary core till
98          * the AuxCoreBoot1 register is updated with cpu state
99          * A barrier is added to ensure that write buffer is drained
100          */
101         if (omap_secure_apis_support())
102                 omap_modify_auxcoreboot0(0x200, 0xfffffdff);
103         else
104                 __raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0);
105
106         if (!cpu1_clkdm && !cpu1_pwrdm) {
107                 cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
108                 cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
109         }
110
111         /*
112          * The SGI(Software Generated Interrupts) are not wakeup capable
113          * from low power states. This is known limitation on OMAP4 and
114          * needs to be worked around by using software forced clockdomain
115          * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
116          * software force wakeup. The clockdomain is then put back to
117          * hardware supervised mode.
118          * More details can be found in OMAP4430 TRM - Version J
119          * Section :
120          *      4.3.4.2 Power States of CPU0 and CPU1
121          */
122         if (booted && cpu1_pwrdm && cpu1_clkdm) {
123                 /*
124                  * GIC distributor control register has changed between
125                  * CortexA9 r1pX and r2pX. The Control Register secure
126                  * banked version is now composed of 2 bits:
127                  * bit 0 == Secure Enable
128                  * bit 1 == Non-Secure Enable
129                  * The Non-Secure banked register has not changed
130                  * Because the ROM Code is based on the r1pX GIC, the CPU1
131                  * GIC restoration will cause a problem to CPU0 Non-Secure SW.
132                  * The workaround must be:
133                  * 1) Before doing the CPU1 wakeup, CPU0 must disable
134                  * the GIC distributor
135                  * 2) CPU1 must re-enable the GIC distributor on
136                  * it's wakeup path.
137                  */
138                 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
139                         local_irq_disable();
140                         gic_dist_disable();
141                 }
142
143                 /*
144                  * Ensure that CPU power state is set to ON to avoid CPU
145                  * powerdomain transition on wfi
146                  */
147                 clkdm_wakeup(cpu1_clkdm);
148                 omap_set_pwrdm_state(cpu1_pwrdm, PWRDM_POWER_ON);
149                 clkdm_allow_idle(cpu1_clkdm);
150
151                 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
152                         while (gic_dist_disabled()) {
153                                 udelay(1);
154                                 cpu_relax();
155                         }
156                         gic_timer_retrigger();
157                         local_irq_enable();
158                 }
159         } else {
160                 dsb_sev();
161                 booted = true;
162         }
163
164         arch_send_wakeup_ipi_mask(cpumask_of(cpu));
165
166         /*
167          * Now the secondary core is starting up let it run its
168          * calibrations, then wait for it to finish
169          */
170         spin_unlock(&boot_lock);
171
172         return 0;
173 }
174
175 /*
176  * Initialise the CPU possible map early - this describes the CPUs
177  * which may be present or become present in the system.
178  */
179 static void __init omap4_smp_init_cpus(void)
180 {
181         unsigned int i = 0, ncores = 1, cpu_id;
182
183         /* Use ARM cpuid check here, as SoC detection will not work so early */
184         cpu_id = read_cpuid_id() & CPU_MASK;
185         if (cpu_id == CPU_CORTEX_A9) {
186                 /*
187                  * Currently we can't call ioremap here because
188                  * SoC detection won't work until after init_early.
189                  */
190                 scu_base =  OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
191                 BUG_ON(!scu_base);
192                 ncores = scu_get_core_count(scu_base);
193         } else if (cpu_id == CPU_CORTEX_A15) {
194                 ncores = OMAP5_CORE_COUNT;
195         }
196
197         /* sanity check */
198         if (ncores > nr_cpu_ids) {
199                 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
200                         ncores, nr_cpu_ids);
201                 ncores = nr_cpu_ids;
202         }
203
204         for (i = 0; i < ncores; i++)
205                 set_cpu_possible(i, true);
206 }
207
208 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
209 {
210         void *startup_addr = omap4_secondary_startup;
211         void __iomem *base = omap_get_wakeupgen_base();
212
213         /*
214          * Initialise the SCU and wake up the secondary core using
215          * wakeup_secondary().
216          */
217         if (scu_base)
218                 scu_enable(scu_base);
219
220         if (cpu_is_omap446x()) {
221                 startup_addr = omap4460_secondary_startup;
222                 pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
223         }
224
225         /*
226          * Write the address of secondary startup routine into the
227          * AuxCoreBoot1 where ROM code will jump and start executing
228          * on secondary core once out of WFE
229          * A barrier is added to ensure that write buffer is drained
230          */
231         if (omap_secure_apis_support())
232                 omap_auxcoreboot_addr(virt_to_phys(startup_addr));
233         else
234                 __raw_writel(virt_to_phys(omap5_secondary_startup),
235                                                 base + OMAP_AUX_CORE_BOOT_1);
236
237 }
238
239 struct smp_operations omap4_smp_ops __initdata = {
240         .smp_init_cpus          = omap4_smp_init_cpus,
241         .smp_prepare_cpus       = omap4_smp_prepare_cpus,
242         .smp_secondary_init     = omap4_secondary_init,
243         .smp_boot_secondary     = omap4_boot_secondary,
244 #ifdef CONFIG_HOTPLUG_CPU
245         .cpu_die                = omap4_cpu_die,
246 #endif
247 };