Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66         BUG_ON(preemptible());
67         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76         BUG_ON(preemptible());
77         return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85         return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_timer_init(kvm);
129
130         /* Mark the initial VMID generation invalid */
131         kvm->arch.vmid_gen = 0;
132
133         /* The maximum number of VCPUs is limited by the host's GIC model */
134         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136         return ret;
137 out_free_stage2_pgd:
138         kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140         return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145         return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150  * kvm_arch_destroy_vm - destroy the VM data structure
151  * @kvm:        pointer to the KVM struct
152  */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155         int i;
156
157         kvm_free_stage2_pgd(kvm);
158
159         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160                 if (kvm->vcpus[i]) {
161                         kvm_arch_vcpu_free(kvm->vcpus[i]);
162                         kvm->vcpus[i] = NULL;
163                 }
164         }
165
166         kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171         int r;
172         switch (ext) {
173         case KVM_CAP_IRQCHIP:
174         case KVM_CAP_IOEVENTFD:
175         case KVM_CAP_DEVICE_CTRL:
176         case KVM_CAP_USER_MEMORY:
177         case KVM_CAP_SYNC_MMU:
178         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179         case KVM_CAP_ONE_REG:
180         case KVM_CAP_ARM_PSCI:
181         case KVM_CAP_ARM_PSCI_0_2:
182         case KVM_CAP_READONLY_MEM:
183         case KVM_CAP_MP_STATE:
184                 r = 1;
185                 break;
186         case KVM_CAP_COALESCED_MMIO:
187                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
188                 break;
189         case KVM_CAP_ARM_SET_DEVICE_ADDR:
190                 r = 1;
191                 break;
192         case KVM_CAP_NR_VCPUS:
193                 r = num_online_cpus();
194                 break;
195         case KVM_CAP_MAX_VCPUS:
196                 r = KVM_MAX_VCPUS;
197                 break;
198         default:
199                 r = kvm_arch_dev_ioctl_check_extension(ext);
200                 break;
201         }
202         return r;
203 }
204
205 long kvm_arch_dev_ioctl(struct file *filp,
206                         unsigned int ioctl, unsigned long arg)
207 {
208         return -EINVAL;
209 }
210
211
212 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
213 {
214         int err;
215         struct kvm_vcpu *vcpu;
216
217         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
218                 err = -EBUSY;
219                 goto out;
220         }
221
222         if (id >= kvm->arch.max_vcpus) {
223                 err = -EINVAL;
224                 goto out;
225         }
226
227         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
228         if (!vcpu) {
229                 err = -ENOMEM;
230                 goto out;
231         }
232
233         err = kvm_vcpu_init(vcpu, kvm, id);
234         if (err)
235                 goto free_vcpu;
236
237         err = create_hyp_mappings(vcpu, vcpu + 1);
238         if (err)
239                 goto vcpu_uninit;
240
241         return vcpu;
242 vcpu_uninit:
243         kvm_vcpu_uninit(vcpu);
244 free_vcpu:
245         kmem_cache_free(kvm_vcpu_cache, vcpu);
246 out:
247         return ERR_PTR(err);
248 }
249
250 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
251 {
252 }
253
254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256         kvm_mmu_free_memory_caches(vcpu);
257         kvm_timer_vcpu_terminate(vcpu);
258         kvm_vgic_vcpu_destroy(vcpu);
259         kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264         kvm_arch_vcpu_free(vcpu);
265 }
266
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269         return kvm_timer_should_fire(vcpu);
270 }
271
272 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
273 {
274         /* Force users to call KVM_ARM_VCPU_INIT */
275         vcpu->arch.target = -1;
276         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
277
278         /* Set up the timer */
279         kvm_timer_vcpu_init(vcpu);
280
281         return 0;
282 }
283
284 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
285 {
286         vcpu->cpu = cpu;
287         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
288
289         kvm_arm_set_running_vcpu(vcpu);
290 }
291
292 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
293 {
294         /*
295          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
296          * if the vcpu is no longer assigned to a cpu.  This is used for the
297          * optimized make_all_cpus_request path.
298          */
299         vcpu->cpu = -1;
300
301         kvm_arm_set_running_vcpu(NULL);
302 }
303
304 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
305                                         struct kvm_guest_debug *dbg)
306 {
307         return -EINVAL;
308 }
309
310
311 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
312                                     struct kvm_mp_state *mp_state)
313 {
314         if (vcpu->arch.pause)
315                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
316         else
317                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
318
319         return 0;
320 }
321
322 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
323                                     struct kvm_mp_state *mp_state)
324 {
325         switch (mp_state->mp_state) {
326         case KVM_MP_STATE_RUNNABLE:
327                 vcpu->arch.pause = false;
328                 break;
329         case KVM_MP_STATE_STOPPED:
330                 vcpu->arch.pause = true;
331                 break;
332         default:
333                 return -EINVAL;
334         }
335
336         return 0;
337 }
338
339 /**
340  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
341  * @v:          The VCPU pointer
342  *
343  * If the guest CPU is not waiting for interrupts or an interrupt line is
344  * asserted, the CPU is by definition runnable.
345  */
346 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
347 {
348         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
349 }
350
351 /* Just ensure a guest exit from a particular CPU */
352 static void exit_vm_noop(void *info)
353 {
354 }
355
356 void force_vm_exit(const cpumask_t *mask)
357 {
358         smp_call_function_many(mask, exit_vm_noop, NULL, true);
359 }
360
361 /**
362  * need_new_vmid_gen - check that the VMID is still valid
363  * @kvm: The VM's VMID to checkt
364  *
365  * return true if there is a new generation of VMIDs being used
366  *
367  * The hardware supports only 256 values with the value zero reserved for the
368  * host, so we check if an assigned value belongs to a previous generation,
369  * which which requires us to assign a new value. If we're the first to use a
370  * VMID for the new generation, we must flush necessary caches and TLBs on all
371  * CPUs.
372  */
373 static bool need_new_vmid_gen(struct kvm *kvm)
374 {
375         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
376 }
377
378 /**
379  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
380  * @kvm The guest that we are about to run
381  *
382  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
383  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
384  * caches and TLBs.
385  */
386 static void update_vttbr(struct kvm *kvm)
387 {
388         phys_addr_t pgd_phys;
389         u64 vmid;
390
391         if (!need_new_vmid_gen(kvm))
392                 return;
393
394         spin_lock(&kvm_vmid_lock);
395
396         /*
397          * We need to re-check the vmid_gen here to ensure that if another vcpu
398          * already allocated a valid vmid for this vm, then this vcpu should
399          * use the same vmid.
400          */
401         if (!need_new_vmid_gen(kvm)) {
402                 spin_unlock(&kvm_vmid_lock);
403                 return;
404         }
405
406         /* First user of a new VMID generation? */
407         if (unlikely(kvm_next_vmid == 0)) {
408                 atomic64_inc(&kvm_vmid_gen);
409                 kvm_next_vmid = 1;
410
411                 /*
412                  * On SMP we know no other CPUs can use this CPU's or each
413                  * other's VMID after force_vm_exit returns since the
414                  * kvm_vmid_lock blocks them from reentry to the guest.
415                  */
416                 force_vm_exit(cpu_all_mask);
417                 /*
418                  * Now broadcast TLB + ICACHE invalidation over the inner
419                  * shareable domain to make sure all data structures are
420                  * clean.
421                  */
422                 kvm_call_hyp(__kvm_flush_vm_context);
423         }
424
425         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
426         kvm->arch.vmid = kvm_next_vmid;
427         kvm_next_vmid++;
428
429         /* update vttbr to be used with the new vmid */
430         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
431         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
432         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
433         kvm->arch.vttbr = pgd_phys | vmid;
434
435         spin_unlock(&kvm_vmid_lock);
436 }
437
438 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
439 {
440         struct kvm *kvm = vcpu->kvm;
441         int ret;
442
443         if (likely(vcpu->arch.has_run_once))
444                 return 0;
445
446         vcpu->arch.has_run_once = true;
447
448         /*
449          * Map the VGIC hardware resources before running a vcpu the first
450          * time on this VM.
451          */
452         if (unlikely(!vgic_ready(kvm))) {
453                 ret = kvm_vgic_map_resources(kvm);
454                 if (ret)
455                         return ret;
456         }
457
458         /*
459          * Enable the arch timers only if we have an in-kernel VGIC
460          * and it has been properly initialized, since we cannot handle
461          * interrupts from the virtual timer with a userspace gic.
462          */
463         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
464                 kvm_timer_enable(kvm);
465
466         return 0;
467 }
468
469 bool kvm_arch_intc_initialized(struct kvm *kvm)
470 {
471         return vgic_initialized(kvm);
472 }
473
474 static void vcpu_pause(struct kvm_vcpu *vcpu)
475 {
476         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
477
478         wait_event_interruptible(*wq, !vcpu->arch.pause);
479 }
480
481 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
482 {
483         return vcpu->arch.target >= 0;
484 }
485
486 /**
487  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
488  * @vcpu:       The VCPU pointer
489  * @run:        The kvm_run structure pointer used for userspace state exchange
490  *
491  * This function is called through the VCPU_RUN ioctl called from user space. It
492  * will execute VM code in a loop until the time slice for the process is used
493  * or some emulation is needed from user space in which case the function will
494  * return with return value 0 and with the kvm_run structure filled in with the
495  * required data for the requested emulation.
496  */
497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
498 {
499         int ret;
500         sigset_t sigsaved;
501
502         if (unlikely(!kvm_vcpu_initialized(vcpu)))
503                 return -ENOEXEC;
504
505         ret = kvm_vcpu_first_run_init(vcpu);
506         if (ret)
507                 return ret;
508
509         if (run->exit_reason == KVM_EXIT_MMIO) {
510                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
511                 if (ret)
512                         return ret;
513         }
514
515         if (vcpu->sigset_active)
516                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
517
518         ret = 1;
519         run->exit_reason = KVM_EXIT_UNKNOWN;
520         while (ret > 0) {
521                 /*
522                  * Check conditions before entering the guest
523                  */
524                 cond_resched();
525
526                 update_vttbr(vcpu->kvm);
527
528                 if (vcpu->arch.pause)
529                         vcpu_pause(vcpu);
530
531                 kvm_vgic_flush_hwstate(vcpu);
532                 kvm_timer_flush_hwstate(vcpu);
533
534                 preempt_disable();
535                 local_irq_disable();
536
537                 /*
538                  * Re-check atomic conditions
539                  */
540                 if (signal_pending(current)) {
541                         ret = -EINTR;
542                         run->exit_reason = KVM_EXIT_INTR;
543                 }
544
545                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546                         local_irq_enable();
547                         preempt_enable();
548                         kvm_timer_sync_hwstate(vcpu);
549                         kvm_vgic_sync_hwstate(vcpu);
550                         continue;
551                 }
552
553                 /**************************************************************
554                  * Enter the guest
555                  */
556                 trace_kvm_entry(*vcpu_pc(vcpu));
557                 __kvm_guest_enter();
558                 vcpu->mode = IN_GUEST_MODE;
559
560                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
561
562                 vcpu->mode = OUTSIDE_GUEST_MODE;
563                 /*
564                  * Back from guest
565                  *************************************************************/
566
567                 /*
568                  * We may have taken a host interrupt in HYP mode (ie
569                  * while executing the guest). This interrupt is still
570                  * pending, as we haven't serviced it yet!
571                  *
572                  * We're now back in SVC mode, with interrupts
573                  * disabled.  Enabling the interrupts now will have
574                  * the effect of taking the interrupt again, in SVC
575                  * mode this time.
576                  */
577                 local_irq_enable();
578
579                 /*
580                  * We do local_irq_enable() before calling kvm_guest_exit() so
581                  * that if a timer interrupt hits while running the guest we
582                  * account that tick as being spent in the guest.  We enable
583                  * preemption after calling kvm_guest_exit() so that if we get
584                  * preempted we make sure ticks after that is not counted as
585                  * guest time.
586                  */
587                 kvm_guest_exit();
588                 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
589                 preempt_enable();
590
591
592                 kvm_timer_sync_hwstate(vcpu);
593                 kvm_vgic_sync_hwstate(vcpu);
594
595                 ret = handle_exit(vcpu, run, ret);
596         }
597
598         if (vcpu->sigset_active)
599                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
600         return ret;
601 }
602
603 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
604 {
605         int bit_index;
606         bool set;
607         unsigned long *ptr;
608
609         if (number == KVM_ARM_IRQ_CPU_IRQ)
610                 bit_index = __ffs(HCR_VI);
611         else /* KVM_ARM_IRQ_CPU_FIQ */
612                 bit_index = __ffs(HCR_VF);
613
614         ptr = (unsigned long *)&vcpu->arch.irq_lines;
615         if (level)
616                 set = test_and_set_bit(bit_index, ptr);
617         else
618                 set = test_and_clear_bit(bit_index, ptr);
619
620         /*
621          * If we didn't change anything, no need to wake up or kick other CPUs
622          */
623         if (set == level)
624                 return 0;
625
626         /*
627          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
628          * trigger a world-switch round on the running physical CPU to set the
629          * virtual IRQ/FIQ fields in the HCR appropriately.
630          */
631         kvm_vcpu_kick(vcpu);
632
633         return 0;
634 }
635
636 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
637                           bool line_status)
638 {
639         u32 irq = irq_level->irq;
640         unsigned int irq_type, vcpu_idx, irq_num;
641         int nrcpus = atomic_read(&kvm->online_vcpus);
642         struct kvm_vcpu *vcpu = NULL;
643         bool level = irq_level->level;
644
645         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
646         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
647         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
648
649         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
650
651         switch (irq_type) {
652         case KVM_ARM_IRQ_TYPE_CPU:
653                 if (irqchip_in_kernel(kvm))
654                         return -ENXIO;
655
656                 if (vcpu_idx >= nrcpus)
657                         return -EINVAL;
658
659                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
660                 if (!vcpu)
661                         return -EINVAL;
662
663                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
664                         return -EINVAL;
665
666                 return vcpu_interrupt_line(vcpu, irq_num, level);
667         case KVM_ARM_IRQ_TYPE_PPI:
668                 if (!irqchip_in_kernel(kvm))
669                         return -ENXIO;
670
671                 if (vcpu_idx >= nrcpus)
672                         return -EINVAL;
673
674                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
675                 if (!vcpu)
676                         return -EINVAL;
677
678                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
679                         return -EINVAL;
680
681                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
682         case KVM_ARM_IRQ_TYPE_SPI:
683                 if (!irqchip_in_kernel(kvm))
684                         return -ENXIO;
685
686                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
687                         return -EINVAL;
688
689                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
690         }
691
692         return -EINVAL;
693 }
694
695 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
696                                const struct kvm_vcpu_init *init)
697 {
698         unsigned int i;
699         int phys_target = kvm_target_cpu();
700
701         if (init->target != phys_target)
702                 return -EINVAL;
703
704         /*
705          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
706          * use the same target.
707          */
708         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
709                 return -EINVAL;
710
711         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
712         for (i = 0; i < sizeof(init->features) * 8; i++) {
713                 bool set = (init->features[i / 32] & (1 << (i % 32)));
714
715                 if (set && i >= KVM_VCPU_MAX_FEATURES)
716                         return -ENOENT;
717
718                 /*
719                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
720                  * use the same feature set.
721                  */
722                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
723                     test_bit(i, vcpu->arch.features) != set)
724                         return -EINVAL;
725
726                 if (set)
727                         set_bit(i, vcpu->arch.features);
728         }
729
730         vcpu->arch.target = phys_target;
731
732         /* Now we know what it is, we can reset it. */
733         return kvm_reset_vcpu(vcpu);
734 }
735
736
737 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
738                                          struct kvm_vcpu_init *init)
739 {
740         int ret;
741
742         ret = kvm_vcpu_set_target(vcpu, init);
743         if (ret)
744                 return ret;
745
746         /*
747          * Ensure a rebooted VM will fault in RAM pages and detect if the
748          * guest MMU is turned off and flush the caches as needed.
749          */
750         if (vcpu->arch.has_run_once)
751                 stage2_unmap_vm(vcpu->kvm);
752
753         vcpu_reset_hcr(vcpu);
754
755         /*
756          * Handle the "start in power-off" case by marking the VCPU as paused.
757          */
758         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
759                 vcpu->arch.pause = true;
760         else
761                 vcpu->arch.pause = false;
762
763         return 0;
764 }
765
766 long kvm_arch_vcpu_ioctl(struct file *filp,
767                          unsigned int ioctl, unsigned long arg)
768 {
769         struct kvm_vcpu *vcpu = filp->private_data;
770         void __user *argp = (void __user *)arg;
771
772         switch (ioctl) {
773         case KVM_ARM_VCPU_INIT: {
774                 struct kvm_vcpu_init init;
775
776                 if (copy_from_user(&init, argp, sizeof(init)))
777                         return -EFAULT;
778
779                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
780         }
781         case KVM_SET_ONE_REG:
782         case KVM_GET_ONE_REG: {
783                 struct kvm_one_reg reg;
784
785                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
786                         return -ENOEXEC;
787
788                 if (copy_from_user(&reg, argp, sizeof(reg)))
789                         return -EFAULT;
790                 if (ioctl == KVM_SET_ONE_REG)
791                         return kvm_arm_set_reg(vcpu, &reg);
792                 else
793                         return kvm_arm_get_reg(vcpu, &reg);
794         }
795         case KVM_GET_REG_LIST: {
796                 struct kvm_reg_list __user *user_list = argp;
797                 struct kvm_reg_list reg_list;
798                 unsigned n;
799
800                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
801                         return -ENOEXEC;
802
803                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
804                         return -EFAULT;
805                 n = reg_list.n;
806                 reg_list.n = kvm_arm_num_regs(vcpu);
807                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
808                         return -EFAULT;
809                 if (n < reg_list.n)
810                         return -E2BIG;
811                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
812         }
813         default:
814                 return -EINVAL;
815         }
816 }
817
818 /**
819  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
820  * @kvm: kvm instance
821  * @log: slot id and address to which we copy the log
822  *
823  * Steps 1-4 below provide general overview of dirty page logging. See
824  * kvm_get_dirty_log_protect() function description for additional details.
825  *
826  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
827  * always flush the TLB (step 4) even if previous step failed  and the dirty
828  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
829  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
830  * writes will be marked dirty for next log read.
831  *
832  *   1. Take a snapshot of the bit and clear it if needed.
833  *   2. Write protect the corresponding page.
834  *   3. Copy the snapshot to the userspace.
835  *   4. Flush TLB's if needed.
836  */
837 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
838 {
839         bool is_dirty = false;
840         int r;
841
842         mutex_lock(&kvm->slots_lock);
843
844         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
845
846         if (is_dirty)
847                 kvm_flush_remote_tlbs(kvm);
848
849         mutex_unlock(&kvm->slots_lock);
850         return r;
851 }
852
853 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
854                                         struct kvm_arm_device_addr *dev_addr)
855 {
856         unsigned long dev_id, type;
857
858         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
859                 KVM_ARM_DEVICE_ID_SHIFT;
860         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
861                 KVM_ARM_DEVICE_TYPE_SHIFT;
862
863         switch (dev_id) {
864         case KVM_ARM_DEVICE_VGIC_V2:
865                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
866         default:
867                 return -ENODEV;
868         }
869 }
870
871 long kvm_arch_vm_ioctl(struct file *filp,
872                        unsigned int ioctl, unsigned long arg)
873 {
874         struct kvm *kvm = filp->private_data;
875         void __user *argp = (void __user *)arg;
876
877         switch (ioctl) {
878         case KVM_CREATE_IRQCHIP: {
879                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
880         }
881         case KVM_ARM_SET_DEVICE_ADDR: {
882                 struct kvm_arm_device_addr dev_addr;
883
884                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
885                         return -EFAULT;
886                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
887         }
888         case KVM_ARM_PREFERRED_TARGET: {
889                 int err;
890                 struct kvm_vcpu_init init;
891
892                 err = kvm_vcpu_preferred_target(&init);
893                 if (err)
894                         return err;
895
896                 if (copy_to_user(argp, &init, sizeof(init)))
897                         return -EFAULT;
898
899                 return 0;
900         }
901         default:
902                 return -EINVAL;
903         }
904 }
905
906 static void cpu_init_hyp_mode(void *dummy)
907 {
908         phys_addr_t boot_pgd_ptr;
909         phys_addr_t pgd_ptr;
910         unsigned long hyp_stack_ptr;
911         unsigned long stack_page;
912         unsigned long vector_ptr;
913
914         /* Switch from the HYP stub to our own HYP init vector */
915         __hyp_set_vectors(kvm_get_idmap_vector());
916
917         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
918         pgd_ptr = kvm_mmu_get_httbr();
919         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
920         hyp_stack_ptr = stack_page + PAGE_SIZE;
921         vector_ptr = (unsigned long)__kvm_hyp_vector;
922
923         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
924 }
925
926 static int hyp_init_cpu_notify(struct notifier_block *self,
927                                unsigned long action, void *cpu)
928 {
929         switch (action) {
930         case CPU_STARTING:
931         case CPU_STARTING_FROZEN:
932                 if (__hyp_get_vectors() == hyp_default_vectors)
933                         cpu_init_hyp_mode(NULL);
934                 break;
935         }
936
937         return NOTIFY_OK;
938 }
939
940 static struct notifier_block hyp_init_cpu_nb = {
941         .notifier_call = hyp_init_cpu_notify,
942 };
943
944 #ifdef CONFIG_CPU_PM
945 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
946                                     unsigned long cmd,
947                                     void *v)
948 {
949         if (cmd == CPU_PM_EXIT &&
950             __hyp_get_vectors() == hyp_default_vectors) {
951                 cpu_init_hyp_mode(NULL);
952                 return NOTIFY_OK;
953         }
954
955         return NOTIFY_DONE;
956 }
957
958 static struct notifier_block hyp_init_cpu_pm_nb = {
959         .notifier_call = hyp_init_cpu_pm_notifier,
960 };
961
962 static void __init hyp_cpu_pm_init(void)
963 {
964         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
965 }
966 #else
967 static inline void hyp_cpu_pm_init(void)
968 {
969 }
970 #endif
971
972 /**
973  * Inits Hyp-mode on all online CPUs
974  */
975 static int init_hyp_mode(void)
976 {
977         int cpu;
978         int err = 0;
979
980         /*
981          * Allocate Hyp PGD and setup Hyp identity mapping
982          */
983         err = kvm_mmu_init();
984         if (err)
985                 goto out_err;
986
987         /*
988          * It is probably enough to obtain the default on one
989          * CPU. It's unlikely to be different on the others.
990          */
991         hyp_default_vectors = __hyp_get_vectors();
992
993         /*
994          * Allocate stack pages for Hypervisor-mode
995          */
996         for_each_possible_cpu(cpu) {
997                 unsigned long stack_page;
998
999                 stack_page = __get_free_page(GFP_KERNEL);
1000                 if (!stack_page) {
1001                         err = -ENOMEM;
1002                         goto out_free_stack_pages;
1003                 }
1004
1005                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1006         }
1007
1008         /*
1009          * Map the Hyp-code called directly from the host
1010          */
1011         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1012         if (err) {
1013                 kvm_err("Cannot map world-switch code\n");
1014                 goto out_free_mappings;
1015         }
1016
1017         /*
1018          * Map the Hyp stack pages
1019          */
1020         for_each_possible_cpu(cpu) {
1021                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1022                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1023
1024                 if (err) {
1025                         kvm_err("Cannot map hyp stack\n");
1026                         goto out_free_mappings;
1027                 }
1028         }
1029
1030         /*
1031          * Map the host CPU structures
1032          */
1033         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1034         if (!kvm_host_cpu_state) {
1035                 err = -ENOMEM;
1036                 kvm_err("Cannot allocate host CPU state\n");
1037                 goto out_free_mappings;
1038         }
1039
1040         for_each_possible_cpu(cpu) {
1041                 kvm_cpu_context_t *cpu_ctxt;
1042
1043                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1044                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1045
1046                 if (err) {
1047                         kvm_err("Cannot map host CPU state: %d\n", err);
1048                         goto out_free_context;
1049                 }
1050         }
1051
1052         /*
1053          * Execute the init code on each CPU.
1054          */
1055         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1056
1057         /*
1058          * Init HYP view of VGIC
1059          */
1060         err = kvm_vgic_hyp_init();
1061         if (err)
1062                 goto out_free_context;
1063
1064         /*
1065          * Init HYP architected timer support
1066          */
1067         err = kvm_timer_hyp_init();
1068         if (err)
1069                 goto out_free_mappings;
1070
1071 #ifndef CONFIG_HOTPLUG_CPU
1072         free_boot_hyp_pgd();
1073 #endif
1074
1075         kvm_perf_init();
1076
1077         kvm_info("Hyp mode initialized successfully\n");
1078
1079         return 0;
1080 out_free_context:
1081         free_percpu(kvm_host_cpu_state);
1082 out_free_mappings:
1083         free_hyp_pgds();
1084 out_free_stack_pages:
1085         for_each_possible_cpu(cpu)
1086                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1087 out_err:
1088         kvm_err("error initializing Hyp mode: %d\n", err);
1089         return err;
1090 }
1091
1092 static void check_kvm_target_cpu(void *ret)
1093 {
1094         *(int *)ret = kvm_target_cpu();
1095 }
1096
1097 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1098 {
1099         struct kvm_vcpu *vcpu;
1100         int i;
1101
1102         mpidr &= MPIDR_HWID_BITMASK;
1103         kvm_for_each_vcpu(i, vcpu, kvm) {
1104                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1105                         return vcpu;
1106         }
1107         return NULL;
1108 }
1109
1110 /**
1111  * Initialize Hyp-mode and memory mappings on all CPUs.
1112  */
1113 int kvm_arch_init(void *opaque)
1114 {
1115         int err;
1116         int ret, cpu;
1117
1118         if (!is_hyp_mode_available()) {
1119                 kvm_err("HYP mode not available\n");
1120                 return -ENODEV;
1121         }
1122
1123         for_each_online_cpu(cpu) {
1124                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1125                 if (ret < 0) {
1126                         kvm_err("Error, CPU %d not supported!\n", cpu);
1127                         return -ENODEV;
1128                 }
1129         }
1130
1131         cpu_notifier_register_begin();
1132
1133         err = init_hyp_mode();
1134         if (err)
1135                 goto out_err;
1136
1137         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1138         if (err) {
1139                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1140                 goto out_err;
1141         }
1142
1143         cpu_notifier_register_done();
1144
1145         hyp_cpu_pm_init();
1146
1147         kvm_coproc_table_init();
1148         return 0;
1149 out_err:
1150         cpu_notifier_register_done();
1151         return err;
1152 }
1153
1154 /* NOP: Compiling as a module not supported */
1155 void kvm_arch_exit(void)
1156 {
1157         kvm_perf_teardown();
1158 }
1159
1160 static int arm_init(void)
1161 {
1162         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1163         return rc;
1164 }
1165
1166 module_init(arm_init);