Merge tag 'ntb-3.13' of git://github.com/jonmason/ntb
[linux-drm-fsl-dcu.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension        virt");
49 #endif
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 static unsigned long hyp_default_vectors;
54
55 /* Per-CPU variable containing the currently running vcpu. */
56 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u8 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 {
67         BUG_ON(preemptible());
68         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 }
70
71 /**
72  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
73  * Must be called from non-preemptible context
74  */
75 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 {
77         BUG_ON(preemptible());
78         return __this_cpu_read(kvm_arm_running_vcpu);
79 }
80
81 /**
82  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83  */
84 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
85 {
86         return &kvm_arm_running_vcpu;
87 }
88
89 int kvm_arch_hardware_enable(void *garbage)
90 {
91         return 0;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 void kvm_arch_hardware_disable(void *garbage)
100 {
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105         return 0;
106 }
107
108 void kvm_arch_hardware_unsetup(void)
109 {
110 }
111
112 void kvm_arch_check_processor_compat(void *rtn)
113 {
114         *(int *)rtn = 0;
115 }
116
117 void kvm_arch_sync_events(struct kvm *kvm)
118 {
119 }
120
121 /**
122  * kvm_arch_init_vm - initializes a VM data structure
123  * @kvm:        pointer to the KVM struct
124  */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127         int ret = 0;
128
129         if (type)
130                 return -EINVAL;
131
132         ret = kvm_alloc_stage2_pgd(kvm);
133         if (ret)
134                 goto out_fail_alloc;
135
136         ret = create_hyp_mappings(kvm, kvm + 1);
137         if (ret)
138                 goto out_free_stage2_pgd;
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         return ret;
144 out_free_stage2_pgd:
145         kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147         return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152         return VM_FAULT_SIGBUS;
153 }
154
155 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
156                            struct kvm_memory_slot *dont)
157 {
158 }
159
160 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
161                             unsigned long npages)
162 {
163         return 0;
164 }
165
166 /**
167  * kvm_arch_destroy_vm - destroy the VM data structure
168  * @kvm:        pointer to the KVM struct
169  */
170 void kvm_arch_destroy_vm(struct kvm *kvm)
171 {
172         int i;
173
174         kvm_free_stage2_pgd(kvm);
175
176         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177                 if (kvm->vcpus[i]) {
178                         kvm_arch_vcpu_free(kvm->vcpus[i]);
179                         kvm->vcpus[i] = NULL;
180                 }
181         }
182 }
183
184 int kvm_dev_ioctl_check_extension(long ext)
185 {
186         int r;
187         switch (ext) {
188         case KVM_CAP_IRQCHIP:
189                 r = vgic_present;
190                 break;
191         case KVM_CAP_USER_MEMORY:
192         case KVM_CAP_SYNC_MMU:
193         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
194         case KVM_CAP_ONE_REG:
195         case KVM_CAP_ARM_PSCI:
196                 r = 1;
197                 break;
198         case KVM_CAP_COALESCED_MMIO:
199                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
200                 break;
201         case KVM_CAP_ARM_SET_DEVICE_ADDR:
202                 r = 1;
203                 break;
204         case KVM_CAP_NR_VCPUS:
205                 r = num_online_cpus();
206                 break;
207         case KVM_CAP_MAX_VCPUS:
208                 r = KVM_MAX_VCPUS;
209                 break;
210         default:
211                 r = kvm_arch_dev_ioctl_check_extension(ext);
212                 break;
213         }
214         return r;
215 }
216
217 long kvm_arch_dev_ioctl(struct file *filp,
218                         unsigned int ioctl, unsigned long arg)
219 {
220         return -EINVAL;
221 }
222
223 void kvm_arch_memslots_updated(struct kvm *kvm)
224 {
225 }
226
227 int kvm_arch_prepare_memory_region(struct kvm *kvm,
228                                    struct kvm_memory_slot *memslot,
229                                    struct kvm_userspace_memory_region *mem,
230                                    enum kvm_mr_change change)
231 {
232         return 0;
233 }
234
235 void kvm_arch_commit_memory_region(struct kvm *kvm,
236                                    struct kvm_userspace_memory_region *mem,
237                                    const struct kvm_memory_slot *old,
238                                    enum kvm_mr_change change)
239 {
240 }
241
242 void kvm_arch_flush_shadow_all(struct kvm *kvm)
243 {
244 }
245
246 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
247                                    struct kvm_memory_slot *slot)
248 {
249 }
250
251 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
252 {
253         int err;
254         struct kvm_vcpu *vcpu;
255
256         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
257         if (!vcpu) {
258                 err = -ENOMEM;
259                 goto out;
260         }
261
262         err = kvm_vcpu_init(vcpu, kvm, id);
263         if (err)
264                 goto free_vcpu;
265
266         err = create_hyp_mappings(vcpu, vcpu + 1);
267         if (err)
268                 goto vcpu_uninit;
269
270         return vcpu;
271 vcpu_uninit:
272         kvm_vcpu_uninit(vcpu);
273 free_vcpu:
274         kmem_cache_free(kvm_vcpu_cache, vcpu);
275 out:
276         return ERR_PTR(err);
277 }
278
279 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
280 {
281         return 0;
282 }
283
284 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
285 {
286         kvm_mmu_free_memory_caches(vcpu);
287         kvm_timer_vcpu_terminate(vcpu);
288         kmem_cache_free(kvm_vcpu_cache, vcpu);
289 }
290
291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292 {
293         kvm_arch_vcpu_free(vcpu);
294 }
295
296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297 {
298         return 0;
299 }
300
301 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
302 {
303         int ret;
304
305         /* Force users to call KVM_ARM_VCPU_INIT */
306         vcpu->arch.target = -1;
307
308         /* Set up VGIC */
309         ret = kvm_vgic_vcpu_init(vcpu);
310         if (ret)
311                 return ret;
312
313         /* Set up the timer */
314         kvm_timer_vcpu_init(vcpu);
315
316         return 0;
317 }
318
319 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
320 {
321 }
322
323 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
324 {
325         vcpu->cpu = cpu;
326         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
327
328         /*
329          * Check whether this vcpu requires the cache to be flushed on
330          * this physical CPU. This is a consequence of doing dcache
331          * operations by set/way on this vcpu. We do it here to be in
332          * a non-preemptible section.
333          */
334         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
335                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
336
337         kvm_arm_set_running_vcpu(vcpu);
338 }
339
340 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
341 {
342         kvm_arm_set_running_vcpu(NULL);
343 }
344
345 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
346                                         struct kvm_guest_debug *dbg)
347 {
348         return -EINVAL;
349 }
350
351
352 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
353                                     struct kvm_mp_state *mp_state)
354 {
355         return -EINVAL;
356 }
357
358 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
359                                     struct kvm_mp_state *mp_state)
360 {
361         return -EINVAL;
362 }
363
364 /**
365  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
366  * @v:          The VCPU pointer
367  *
368  * If the guest CPU is not waiting for interrupts or an interrupt line is
369  * asserted, the CPU is by definition runnable.
370  */
371 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
372 {
373         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
374 }
375
376 /* Just ensure a guest exit from a particular CPU */
377 static void exit_vm_noop(void *info)
378 {
379 }
380
381 void force_vm_exit(const cpumask_t *mask)
382 {
383         smp_call_function_many(mask, exit_vm_noop, NULL, true);
384 }
385
386 /**
387  * need_new_vmid_gen - check that the VMID is still valid
388  * @kvm: The VM's VMID to checkt
389  *
390  * return true if there is a new generation of VMIDs being used
391  *
392  * The hardware supports only 256 values with the value zero reserved for the
393  * host, so we check if an assigned value belongs to a previous generation,
394  * which which requires us to assign a new value. If we're the first to use a
395  * VMID for the new generation, we must flush necessary caches and TLBs on all
396  * CPUs.
397  */
398 static bool need_new_vmid_gen(struct kvm *kvm)
399 {
400         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
401 }
402
403 /**
404  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
405  * @kvm The guest that we are about to run
406  *
407  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
408  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
409  * caches and TLBs.
410  */
411 static void update_vttbr(struct kvm *kvm)
412 {
413         phys_addr_t pgd_phys;
414         u64 vmid;
415
416         if (!need_new_vmid_gen(kvm))
417                 return;
418
419         spin_lock(&kvm_vmid_lock);
420
421         /*
422          * We need to re-check the vmid_gen here to ensure that if another vcpu
423          * already allocated a valid vmid for this vm, then this vcpu should
424          * use the same vmid.
425          */
426         if (!need_new_vmid_gen(kvm)) {
427                 spin_unlock(&kvm_vmid_lock);
428                 return;
429         }
430
431         /* First user of a new VMID generation? */
432         if (unlikely(kvm_next_vmid == 0)) {
433                 atomic64_inc(&kvm_vmid_gen);
434                 kvm_next_vmid = 1;
435
436                 /*
437                  * On SMP we know no other CPUs can use this CPU's or each
438                  * other's VMID after force_vm_exit returns since the
439                  * kvm_vmid_lock blocks them from reentry to the guest.
440                  */
441                 force_vm_exit(cpu_all_mask);
442                 /*
443                  * Now broadcast TLB + ICACHE invalidation over the inner
444                  * shareable domain to make sure all data structures are
445                  * clean.
446                  */
447                 kvm_call_hyp(__kvm_flush_vm_context);
448         }
449
450         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
451         kvm->arch.vmid = kvm_next_vmid;
452         kvm_next_vmid++;
453
454         /* update vttbr to be used with the new vmid */
455         pgd_phys = virt_to_phys(kvm->arch.pgd);
456         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
457         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
458         kvm->arch.vttbr |= vmid;
459
460         spin_unlock(&kvm_vmid_lock);
461 }
462
463 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
464 {
465         if (likely(vcpu->arch.has_run_once))
466                 return 0;
467
468         vcpu->arch.has_run_once = true;
469
470         /*
471          * Initialize the VGIC before running a vcpu the first time on
472          * this VM.
473          */
474         if (irqchip_in_kernel(vcpu->kvm) &&
475             unlikely(!vgic_initialized(vcpu->kvm))) {
476                 int ret = kvm_vgic_init(vcpu->kvm);
477                 if (ret)
478                         return ret;
479         }
480
481         /*
482          * Handle the "start in power-off" case by calling into the
483          * PSCI code.
484          */
485         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
486                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
487                 kvm_psci_call(vcpu);
488         }
489
490         return 0;
491 }
492
493 static void vcpu_pause(struct kvm_vcpu *vcpu)
494 {
495         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
496
497         wait_event_interruptible(*wq, !vcpu->arch.pause);
498 }
499
500 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
501 {
502         return vcpu->arch.target >= 0;
503 }
504
505 /**
506  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
507  * @vcpu:       The VCPU pointer
508  * @run:        The kvm_run structure pointer used for userspace state exchange
509  *
510  * This function is called through the VCPU_RUN ioctl called from user space. It
511  * will execute VM code in a loop until the time slice for the process is used
512  * or some emulation is needed from user space in which case the function will
513  * return with return value 0 and with the kvm_run structure filled in with the
514  * required data for the requested emulation.
515  */
516 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
517 {
518         int ret;
519         sigset_t sigsaved;
520
521         if (unlikely(!kvm_vcpu_initialized(vcpu)))
522                 return -ENOEXEC;
523
524         ret = kvm_vcpu_first_run_init(vcpu);
525         if (ret)
526                 return ret;
527
528         if (run->exit_reason == KVM_EXIT_MMIO) {
529                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
530                 if (ret)
531                         return ret;
532         }
533
534         if (vcpu->sigset_active)
535                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
536
537         ret = 1;
538         run->exit_reason = KVM_EXIT_UNKNOWN;
539         while (ret > 0) {
540                 /*
541                  * Check conditions before entering the guest
542                  */
543                 cond_resched();
544
545                 update_vttbr(vcpu->kvm);
546
547                 if (vcpu->arch.pause)
548                         vcpu_pause(vcpu);
549
550                 kvm_vgic_flush_hwstate(vcpu);
551                 kvm_timer_flush_hwstate(vcpu);
552
553                 local_irq_disable();
554
555                 /*
556                  * Re-check atomic conditions
557                  */
558                 if (signal_pending(current)) {
559                         ret = -EINTR;
560                         run->exit_reason = KVM_EXIT_INTR;
561                 }
562
563                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
564                         local_irq_enable();
565                         kvm_timer_sync_hwstate(vcpu);
566                         kvm_vgic_sync_hwstate(vcpu);
567                         continue;
568                 }
569
570                 /**************************************************************
571                  * Enter the guest
572                  */
573                 trace_kvm_entry(*vcpu_pc(vcpu));
574                 kvm_guest_enter();
575                 vcpu->mode = IN_GUEST_MODE;
576
577                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
578
579                 vcpu->mode = OUTSIDE_GUEST_MODE;
580                 vcpu->arch.last_pcpu = smp_processor_id();
581                 kvm_guest_exit();
582                 trace_kvm_exit(*vcpu_pc(vcpu));
583                 /*
584                  * We may have taken a host interrupt in HYP mode (ie
585                  * while executing the guest). This interrupt is still
586                  * pending, as we haven't serviced it yet!
587                  *
588                  * We're now back in SVC mode, with interrupts
589                  * disabled.  Enabling the interrupts now will have
590                  * the effect of taking the interrupt again, in SVC
591                  * mode this time.
592                  */
593                 local_irq_enable();
594
595                 /*
596                  * Back from guest
597                  *************************************************************/
598
599                 kvm_timer_sync_hwstate(vcpu);
600                 kvm_vgic_sync_hwstate(vcpu);
601
602                 ret = handle_exit(vcpu, run, ret);
603         }
604
605         if (vcpu->sigset_active)
606                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
607         return ret;
608 }
609
610 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
611 {
612         int bit_index;
613         bool set;
614         unsigned long *ptr;
615
616         if (number == KVM_ARM_IRQ_CPU_IRQ)
617                 bit_index = __ffs(HCR_VI);
618         else /* KVM_ARM_IRQ_CPU_FIQ */
619                 bit_index = __ffs(HCR_VF);
620
621         ptr = (unsigned long *)&vcpu->arch.irq_lines;
622         if (level)
623                 set = test_and_set_bit(bit_index, ptr);
624         else
625                 set = test_and_clear_bit(bit_index, ptr);
626
627         /*
628          * If we didn't change anything, no need to wake up or kick other CPUs
629          */
630         if (set == level)
631                 return 0;
632
633         /*
634          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
635          * trigger a world-switch round on the running physical CPU to set the
636          * virtual IRQ/FIQ fields in the HCR appropriately.
637          */
638         kvm_vcpu_kick(vcpu);
639
640         return 0;
641 }
642
643 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
644                           bool line_status)
645 {
646         u32 irq = irq_level->irq;
647         unsigned int irq_type, vcpu_idx, irq_num;
648         int nrcpus = atomic_read(&kvm->online_vcpus);
649         struct kvm_vcpu *vcpu = NULL;
650         bool level = irq_level->level;
651
652         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
653         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
654         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
655
656         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
657
658         switch (irq_type) {
659         case KVM_ARM_IRQ_TYPE_CPU:
660                 if (irqchip_in_kernel(kvm))
661                         return -ENXIO;
662
663                 if (vcpu_idx >= nrcpus)
664                         return -EINVAL;
665
666                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
667                 if (!vcpu)
668                         return -EINVAL;
669
670                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
671                         return -EINVAL;
672
673                 return vcpu_interrupt_line(vcpu, irq_num, level);
674         case KVM_ARM_IRQ_TYPE_PPI:
675                 if (!irqchip_in_kernel(kvm))
676                         return -ENXIO;
677
678                 if (vcpu_idx >= nrcpus)
679                         return -EINVAL;
680
681                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
682                 if (!vcpu)
683                         return -EINVAL;
684
685                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
686                         return -EINVAL;
687
688                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
689         case KVM_ARM_IRQ_TYPE_SPI:
690                 if (!irqchip_in_kernel(kvm))
691                         return -ENXIO;
692
693                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
694                     irq_num > KVM_ARM_IRQ_GIC_MAX)
695                         return -EINVAL;
696
697                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
698         }
699
700         return -EINVAL;
701 }
702
703 long kvm_arch_vcpu_ioctl(struct file *filp,
704                          unsigned int ioctl, unsigned long arg)
705 {
706         struct kvm_vcpu *vcpu = filp->private_data;
707         void __user *argp = (void __user *)arg;
708
709         switch (ioctl) {
710         case KVM_ARM_VCPU_INIT: {
711                 struct kvm_vcpu_init init;
712
713                 if (copy_from_user(&init, argp, sizeof(init)))
714                         return -EFAULT;
715
716                 return kvm_vcpu_set_target(vcpu, &init);
717
718         }
719         case KVM_SET_ONE_REG:
720         case KVM_GET_ONE_REG: {
721                 struct kvm_one_reg reg;
722
723                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
724                         return -ENOEXEC;
725
726                 if (copy_from_user(&reg, argp, sizeof(reg)))
727                         return -EFAULT;
728                 if (ioctl == KVM_SET_ONE_REG)
729                         return kvm_arm_set_reg(vcpu, &reg);
730                 else
731                         return kvm_arm_get_reg(vcpu, &reg);
732         }
733         case KVM_GET_REG_LIST: {
734                 struct kvm_reg_list __user *user_list = argp;
735                 struct kvm_reg_list reg_list;
736                 unsigned n;
737
738                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
739                         return -ENOEXEC;
740
741                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
742                         return -EFAULT;
743                 n = reg_list.n;
744                 reg_list.n = kvm_arm_num_regs(vcpu);
745                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
746                         return -EFAULT;
747                 if (n < reg_list.n)
748                         return -E2BIG;
749                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
750         }
751         default:
752                 return -EINVAL;
753         }
754 }
755
756 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
757 {
758         return -EINVAL;
759 }
760
761 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
762                                         struct kvm_arm_device_addr *dev_addr)
763 {
764         unsigned long dev_id, type;
765
766         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
767                 KVM_ARM_DEVICE_ID_SHIFT;
768         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
769                 KVM_ARM_DEVICE_TYPE_SHIFT;
770
771         switch (dev_id) {
772         case KVM_ARM_DEVICE_VGIC_V2:
773                 if (!vgic_present)
774                         return -ENXIO;
775                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
776         default:
777                 return -ENODEV;
778         }
779 }
780
781 long kvm_arch_vm_ioctl(struct file *filp,
782                        unsigned int ioctl, unsigned long arg)
783 {
784         struct kvm *kvm = filp->private_data;
785         void __user *argp = (void __user *)arg;
786
787         switch (ioctl) {
788         case KVM_CREATE_IRQCHIP: {
789                 if (vgic_present)
790                         return kvm_vgic_create(kvm);
791                 else
792                         return -ENXIO;
793         }
794         case KVM_ARM_SET_DEVICE_ADDR: {
795                 struct kvm_arm_device_addr dev_addr;
796
797                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
798                         return -EFAULT;
799                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
800         }
801         case KVM_ARM_PREFERRED_TARGET: {
802                 int err;
803                 struct kvm_vcpu_init init;
804
805                 err = kvm_vcpu_preferred_target(&init);
806                 if (err)
807                         return err;
808
809                 if (copy_to_user(argp, &init, sizeof(init)))
810                         return -EFAULT;
811
812                 return 0;
813         }
814         default:
815                 return -EINVAL;
816         }
817 }
818
819 static void cpu_init_hyp_mode(void *dummy)
820 {
821         phys_addr_t boot_pgd_ptr;
822         phys_addr_t pgd_ptr;
823         unsigned long hyp_stack_ptr;
824         unsigned long stack_page;
825         unsigned long vector_ptr;
826
827         /* Switch from the HYP stub to our own HYP init vector */
828         __hyp_set_vectors(kvm_get_idmap_vector());
829
830         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
831         pgd_ptr = kvm_mmu_get_httbr();
832         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
833         hyp_stack_ptr = stack_page + PAGE_SIZE;
834         vector_ptr = (unsigned long)__kvm_hyp_vector;
835
836         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
837 }
838
839 static int hyp_init_cpu_notify(struct notifier_block *self,
840                                unsigned long action, void *cpu)
841 {
842         switch (action) {
843         case CPU_STARTING:
844         case CPU_STARTING_FROZEN:
845                 cpu_init_hyp_mode(NULL);
846                 break;
847         }
848
849         return NOTIFY_OK;
850 }
851
852 static struct notifier_block hyp_init_cpu_nb = {
853         .notifier_call = hyp_init_cpu_notify,
854 };
855
856 /**
857  * Inits Hyp-mode on all online CPUs
858  */
859 static int init_hyp_mode(void)
860 {
861         int cpu;
862         int err = 0;
863
864         /*
865          * Allocate Hyp PGD and setup Hyp identity mapping
866          */
867         err = kvm_mmu_init();
868         if (err)
869                 goto out_err;
870
871         /*
872          * It is probably enough to obtain the default on one
873          * CPU. It's unlikely to be different on the others.
874          */
875         hyp_default_vectors = __hyp_get_vectors();
876
877         /*
878          * Allocate stack pages for Hypervisor-mode
879          */
880         for_each_possible_cpu(cpu) {
881                 unsigned long stack_page;
882
883                 stack_page = __get_free_page(GFP_KERNEL);
884                 if (!stack_page) {
885                         err = -ENOMEM;
886                         goto out_free_stack_pages;
887                 }
888
889                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
890         }
891
892         /*
893          * Map the Hyp-code called directly from the host
894          */
895         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
896         if (err) {
897                 kvm_err("Cannot map world-switch code\n");
898                 goto out_free_mappings;
899         }
900
901         /*
902          * Map the Hyp stack pages
903          */
904         for_each_possible_cpu(cpu) {
905                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
906                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
907
908                 if (err) {
909                         kvm_err("Cannot map hyp stack\n");
910                         goto out_free_mappings;
911                 }
912         }
913
914         /*
915          * Map the host CPU structures
916          */
917         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
918         if (!kvm_host_cpu_state) {
919                 err = -ENOMEM;
920                 kvm_err("Cannot allocate host CPU state\n");
921                 goto out_free_mappings;
922         }
923
924         for_each_possible_cpu(cpu) {
925                 kvm_cpu_context_t *cpu_ctxt;
926
927                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
928                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
929
930                 if (err) {
931                         kvm_err("Cannot map host CPU state: %d\n", err);
932                         goto out_free_context;
933                 }
934         }
935
936         /*
937          * Execute the init code on each CPU.
938          */
939         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
940
941         /*
942          * Init HYP view of VGIC
943          */
944         err = kvm_vgic_hyp_init();
945         if (err)
946                 goto out_free_context;
947
948 #ifdef CONFIG_KVM_ARM_VGIC
949                 vgic_present = true;
950 #endif
951
952         /*
953          * Init HYP architected timer support
954          */
955         err = kvm_timer_hyp_init();
956         if (err)
957                 goto out_free_mappings;
958
959 #ifndef CONFIG_HOTPLUG_CPU
960         free_boot_hyp_pgd();
961 #endif
962
963         kvm_perf_init();
964
965         kvm_info("Hyp mode initialized successfully\n");
966
967         return 0;
968 out_free_context:
969         free_percpu(kvm_host_cpu_state);
970 out_free_mappings:
971         free_hyp_pgds();
972 out_free_stack_pages:
973         for_each_possible_cpu(cpu)
974                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
975 out_err:
976         kvm_err("error initializing Hyp mode: %d\n", err);
977         return err;
978 }
979
980 static void check_kvm_target_cpu(void *ret)
981 {
982         *(int *)ret = kvm_target_cpu();
983 }
984
985 /**
986  * Initialize Hyp-mode and memory mappings on all CPUs.
987  */
988 int kvm_arch_init(void *opaque)
989 {
990         int err;
991         int ret, cpu;
992
993         if (!is_hyp_mode_available()) {
994                 kvm_err("HYP mode not available\n");
995                 return -ENODEV;
996         }
997
998         for_each_online_cpu(cpu) {
999                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1000                 if (ret < 0) {
1001                         kvm_err("Error, CPU %d not supported!\n", cpu);
1002                         return -ENODEV;
1003                 }
1004         }
1005
1006         err = init_hyp_mode();
1007         if (err)
1008                 goto out_err;
1009
1010         err = register_cpu_notifier(&hyp_init_cpu_nb);
1011         if (err) {
1012                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1013                 goto out_err;
1014         }
1015
1016         kvm_coproc_table_init();
1017         return 0;
1018 out_err:
1019         return err;
1020 }
1021
1022 /* NOP: Compiling as a module not supported */
1023 void kvm_arch_exit(void)
1024 {
1025         kvm_perf_teardown();
1026 }
1027
1028 static int arm_init(void)
1029 {
1030         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1031         return rc;
1032 }
1033
1034 module_init(arm_init);