Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59
60 /*
61  * control for which core is the next to come out of the secondary
62  * boot "holding pen"
63  */
64 volatile int pen_release = -1;
65
66 enum ipi_msg_type {
67         IPI_WAKEUP,
68         IPI_TIMER,
69         IPI_RESCHEDULE,
70         IPI_CALL_FUNC,
71         IPI_CALL_FUNC_SINGLE,
72         IPI_CPU_STOP,
73         IPI_IRQ_WORK,
74         IPI_COMPLETION,
75 };
76
77 static DECLARE_COMPLETION(cpu_running);
78
79 static struct smp_operations smp_ops;
80
81 void __init smp_set_ops(struct smp_operations *ops)
82 {
83         if (ops)
84                 smp_ops = *ops;
85 };
86
87 static unsigned long get_arch_pgd(pgd_t *pgd)
88 {
89 #ifdef CONFIG_ARM_LPAE
90         return __phys_to_pfn(virt_to_phys(pgd));
91 #else
92         return virt_to_phys(pgd);
93 #endif
94 }
95
96 int __cpu_up(unsigned int cpu, struct task_struct *idle)
97 {
98         int ret;
99
100         if (!smp_ops.smp_boot_secondary)
101                 return -ENOSYS;
102
103         /*
104          * We need to tell the secondary core where to find
105          * its stack and the page tables.
106          */
107         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
108 #ifdef CONFIG_ARM_MPU
109         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
110 #endif
111
112 #ifdef CONFIG_MMU
113         secondary_data.pgdir = virt_to_phys(idmap_pgd);
114         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
115 #endif
116         sync_cache_w(&secondary_data);
117
118         /*
119          * Now bring the CPU into our world.
120          */
121         ret = smp_ops.smp_boot_secondary(cpu, idle);
122         if (ret == 0) {
123                 /*
124                  * CPU was successfully started, wait for it
125                  * to come online or time out.
126                  */
127                 wait_for_completion_timeout(&cpu_running,
128                                                  msecs_to_jiffies(1000));
129
130                 if (!cpu_online(cpu)) {
131                         pr_crit("CPU%u: failed to come online\n", cpu);
132                         ret = -EIO;
133                 }
134         } else {
135                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136         }
137
138
139         memset(&secondary_data, 0, sizeof(secondary_data));
140         return ret;
141 }
142
143 /* platform specific SMP operations */
144 void __init smp_init_cpus(void)
145 {
146         if (smp_ops.smp_init_cpus)
147                 smp_ops.smp_init_cpus();
148 }
149
150 int platform_can_secondary_boot(void)
151 {
152         return !!smp_ops.smp_boot_secondary;
153 }
154
155 int platform_can_cpu_hotplug(void)
156 {
157 #ifdef CONFIG_HOTPLUG_CPU
158         if (smp_ops.cpu_kill)
159                 return 1;
160 #endif
161
162         return 0;
163 }
164
165 #ifdef CONFIG_HOTPLUG_CPU
166 static int platform_cpu_kill(unsigned int cpu)
167 {
168         if (smp_ops.cpu_kill)
169                 return smp_ops.cpu_kill(cpu);
170         return 1;
171 }
172
173 static int platform_cpu_disable(unsigned int cpu)
174 {
175         if (smp_ops.cpu_disable)
176                 return smp_ops.cpu_disable(cpu);
177
178         /*
179          * By default, allow disabling all CPUs except the first one,
180          * since this is special on a lot of platforms, e.g. because
181          * of clock tick interrupts.
182          */
183         return cpu == 0 ? -EPERM : 0;
184 }
185 /*
186  * __cpu_disable runs on the processor to be shutdown.
187  */
188 int __cpu_disable(void)
189 {
190         unsigned int cpu = smp_processor_id();
191         int ret;
192
193         ret = platform_cpu_disable(cpu);
194         if (ret)
195                 return ret;
196
197         /*
198          * Take this CPU offline.  Once we clear this, we can't return,
199          * and we must not schedule until we're ready to give up the cpu.
200          */
201         set_cpu_online(cpu, false);
202
203         /*
204          * OK - migrate IRQs away from this CPU
205          */
206         migrate_irqs();
207
208         /*
209          * Flush user cache and TLB mappings, and then remove this CPU
210          * from the vm mask set of all processes.
211          *
212          * Caches are flushed to the Level of Unification Inner Shareable
213          * to write-back dirty lines to unified caches shared by all CPUs.
214          */
215         flush_cache_louis();
216         local_flush_tlb_all();
217
218         clear_tasks_mm_cpumask(cpu);
219
220         return 0;
221 }
222
223 static DECLARE_COMPLETION(cpu_died);
224
225 /*
226  * called on the thread which is asking for a CPU to be shutdown -
227  * waits until shutdown has completed, or it is timed out.
228  */
229 void __cpu_die(unsigned int cpu)
230 {
231         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
232                 pr_err("CPU%u: cpu didn't die\n", cpu);
233                 return;
234         }
235         pr_notice("CPU%u: shutdown\n", cpu);
236
237         /*
238          * platform_cpu_kill() is generally expected to do the powering off
239          * and/or cutting of clocks to the dying CPU.  Optionally, this may
240          * be done by the CPU which is dying in preference to supporting
241          * this call, but that means there is _no_ synchronisation between
242          * the requesting CPU and the dying CPU actually losing power.
243          */
244         if (!platform_cpu_kill(cpu))
245                 pr_err("CPU%u: unable to kill\n", cpu);
246 }
247
248 /*
249  * Called from the idle thread for the CPU which has been shutdown.
250  *
251  * Note that we disable IRQs here, but do not re-enable them
252  * before returning to the caller. This is also the behaviour
253  * of the other hotplug-cpu capable cores, so presumably coming
254  * out of idle fixes this.
255  */
256 void __ref cpu_die(void)
257 {
258         unsigned int cpu = smp_processor_id();
259
260         idle_task_exit();
261
262         local_irq_disable();
263
264         /*
265          * Flush the data out of the L1 cache for this CPU.  This must be
266          * before the completion to ensure that data is safely written out
267          * before platform_cpu_kill() gets called - which may disable
268          * *this* CPU and power down its cache.
269          */
270         flush_cache_louis();
271
272         /*
273          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
274          * this returns, power and/or clocks can be removed at any point
275          * from this CPU and its cache by platform_cpu_kill().
276          */
277         complete(&cpu_died);
278
279         /*
280          * Ensure that the cache lines associated with that completion are
281          * written out.  This covers the case where _this_ CPU is doing the
282          * powering down, to ensure that the completion is visible to the
283          * CPU waiting for this one.
284          */
285         flush_cache_louis();
286
287         /*
288          * The actual CPU shutdown procedure is at least platform (if not
289          * CPU) specific.  This may remove power, or it may simply spin.
290          *
291          * Platforms are generally expected *NOT* to return from this call,
292          * although there are some which do because they have no way to
293          * power down the CPU.  These platforms are the _only_ reason we
294          * have a return path which uses the fragment of assembly below.
295          *
296          * The return path should not be used for platforms which can
297          * power off the CPU.
298          */
299         if (smp_ops.cpu_die)
300                 smp_ops.cpu_die(cpu);
301
302         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
303                 cpu);
304
305         /*
306          * Do not return to the idle loop - jump back to the secondary
307          * cpu initialisation.  There's some initialisation which needs
308          * to be repeated to undo the effects of taking the CPU offline.
309          */
310         __asm__("mov    sp, %0\n"
311         "       mov     fp, #0\n"
312         "       b       secondary_start_kernel"
313                 :
314                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
315 }
316 #endif /* CONFIG_HOTPLUG_CPU */
317
318 /*
319  * Called by both boot and secondaries to move global data into
320  * per-processor storage.
321  */
322 static void smp_store_cpu_info(unsigned int cpuid)
323 {
324         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
325
326         cpu_info->loops_per_jiffy = loops_per_jiffy;
327         cpu_info->cpuid = read_cpuid_id();
328
329         store_cpu_topology(cpuid);
330 }
331
332 /*
333  * This is the secondary CPU boot entry.  We're using this CPUs
334  * idle thread stack, but a set of temporary page tables.
335  */
336 asmlinkage void secondary_start_kernel(void)
337 {
338         struct mm_struct *mm = &init_mm;
339         unsigned int cpu;
340
341         /*
342          * The identity mapping is uncached (strongly ordered), so
343          * switch away from it before attempting any exclusive accesses.
344          */
345         cpu_switch_mm(mm->pgd, mm);
346         local_flush_bp_all();
347         enter_lazy_tlb(mm, current);
348         local_flush_tlb_all();
349
350         /*
351          * All kernel threads share the same mm context; grab a
352          * reference and switch to it.
353          */
354         cpu = smp_processor_id();
355         atomic_inc(&mm->mm_count);
356         current->active_mm = mm;
357         cpumask_set_cpu(cpu, mm_cpumask(mm));
358
359         cpu_init();
360
361         pr_debug("CPU%u: Booted secondary processor\n", cpu);
362
363         preempt_disable();
364         trace_hardirqs_off();
365
366         /*
367          * Give the platform a chance to do its own initialisation.
368          */
369         if (smp_ops.smp_secondary_init)
370                 smp_ops.smp_secondary_init(cpu);
371
372         notify_cpu_starting(cpu);
373
374         calibrate_delay();
375
376         smp_store_cpu_info(cpu);
377
378         /*
379          * OK, now it's safe to let the boot CPU continue.  Wait for
380          * the CPU migration code to notice that the CPU is online
381          * before we continue - which happens after __cpu_up returns.
382          */
383         set_cpu_online(cpu, true);
384         complete(&cpu_running);
385
386         local_irq_enable();
387         local_fiq_enable();
388
389         /*
390          * OK, it's off to the idle thread for us
391          */
392         cpu_startup_entry(CPUHP_ONLINE);
393 }
394
395 void __init smp_cpus_done(unsigned int max_cpus)
396 {
397         int cpu;
398         unsigned long bogosum = 0;
399
400         for_each_online_cpu(cpu)
401                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
402
403         printk(KERN_INFO "SMP: Total of %d processors activated "
404                "(%lu.%02lu BogoMIPS).\n",
405                num_online_cpus(),
406                bogosum / (500000/HZ),
407                (bogosum / (5000/HZ)) % 100);
408
409         hyp_mode_check();
410 }
411
412 void __init smp_prepare_boot_cpu(void)
413 {
414         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
415 }
416
417 void __init smp_prepare_cpus(unsigned int max_cpus)
418 {
419         unsigned int ncores = num_possible_cpus();
420
421         init_cpu_topology();
422
423         smp_store_cpu_info(smp_processor_id());
424
425         /*
426          * are we trying to boot more cores than exist?
427          */
428         if (max_cpus > ncores)
429                 max_cpus = ncores;
430         if (ncores > 1 && max_cpus) {
431                 /*
432                  * Initialise the present map, which describes the set of CPUs
433                  * actually populated at the present time. A platform should
434                  * re-initialize the map in the platforms smp_prepare_cpus()
435                  * if present != possible (e.g. physical hotplug).
436                  */
437                 init_cpu_present(cpu_possible_mask);
438
439                 /*
440                  * Initialise the SCU if there are more than one CPU
441                  * and let them know where to start.
442                  */
443                 if (smp_ops.smp_prepare_cpus)
444                         smp_ops.smp_prepare_cpus(max_cpus);
445         }
446 }
447
448 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
449
450 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
451 {
452         if (!__smp_cross_call)
453                 __smp_cross_call = fn;
454 }
455
456 static const char *ipi_types[NR_IPI] __tracepoint_string = {
457 #define S(x,s)  [x] = s
458         S(IPI_WAKEUP, "CPU wakeup interrupts"),
459         S(IPI_TIMER, "Timer broadcast interrupts"),
460         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
461         S(IPI_CALL_FUNC, "Function call interrupts"),
462         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
463         S(IPI_CPU_STOP, "CPU stop interrupts"),
464         S(IPI_IRQ_WORK, "IRQ work interrupts"),
465         S(IPI_COMPLETION, "completion interrupts"),
466 };
467
468 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
469 {
470         trace_ipi_raise(target, ipi_types[ipinr]);
471         __smp_cross_call(target, ipinr);
472 }
473
474 void show_ipi_list(struct seq_file *p, int prec)
475 {
476         unsigned int cpu, i;
477
478         for (i = 0; i < NR_IPI; i++) {
479                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
480
481                 for_each_online_cpu(cpu)
482                         seq_printf(p, "%10u ",
483                                    __get_irq_stat(cpu, ipi_irqs[i]));
484
485                 seq_printf(p, " %s\n", ipi_types[i]);
486         }
487 }
488
489 u64 smp_irq_stat_cpu(unsigned int cpu)
490 {
491         u64 sum = 0;
492         int i;
493
494         for (i = 0; i < NR_IPI; i++)
495                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
496
497         return sum;
498 }
499
500 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
501 {
502         smp_cross_call(mask, IPI_CALL_FUNC);
503 }
504
505 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
506 {
507         smp_cross_call(mask, IPI_WAKEUP);
508 }
509
510 void arch_send_call_function_single_ipi(int cpu)
511 {
512         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
513 }
514
515 #ifdef CONFIG_IRQ_WORK
516 void arch_irq_work_raise(void)
517 {
518         if (arch_irq_work_has_interrupt())
519                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
520 }
521 #endif
522
523 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
524 void tick_broadcast(const struct cpumask *mask)
525 {
526         smp_cross_call(mask, IPI_TIMER);
527 }
528 #endif
529
530 static DEFINE_RAW_SPINLOCK(stop_lock);
531
532 /*
533  * ipi_cpu_stop - handle IPI from smp_send_stop()
534  */
535 static void ipi_cpu_stop(unsigned int cpu)
536 {
537         if (system_state == SYSTEM_BOOTING ||
538             system_state == SYSTEM_RUNNING) {
539                 raw_spin_lock(&stop_lock);
540                 pr_crit("CPU%u: stopping\n", cpu);
541                 dump_stack();
542                 raw_spin_unlock(&stop_lock);
543         }
544
545         set_cpu_online(cpu, false);
546
547         local_fiq_disable();
548         local_irq_disable();
549
550         while (1)
551                 cpu_relax();
552 }
553
554 static DEFINE_PER_CPU(struct completion *, cpu_completion);
555
556 int register_ipi_completion(struct completion *completion, int cpu)
557 {
558         per_cpu(cpu_completion, cpu) = completion;
559         return IPI_COMPLETION;
560 }
561
562 static void ipi_complete(unsigned int cpu)
563 {
564         complete(per_cpu(cpu_completion, cpu));
565 }
566
567 /*
568  * Main handler for inter-processor interrupts
569  */
570 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
571 {
572         handle_IPI(ipinr, regs);
573 }
574
575 void handle_IPI(int ipinr, struct pt_regs *regs)
576 {
577         unsigned int cpu = smp_processor_id();
578         struct pt_regs *old_regs = set_irq_regs(regs);
579
580         if ((unsigned)ipinr < NR_IPI) {
581                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
582                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
583         }
584
585         switch (ipinr) {
586         case IPI_WAKEUP:
587                 break;
588
589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590         case IPI_TIMER:
591                 irq_enter();
592                 tick_receive_broadcast();
593                 irq_exit();
594                 break;
595 #endif
596
597         case IPI_RESCHEDULE:
598                 scheduler_ipi();
599                 break;
600
601         case IPI_CALL_FUNC:
602                 irq_enter();
603                 generic_smp_call_function_interrupt();
604                 irq_exit();
605                 break;
606
607         case IPI_CALL_FUNC_SINGLE:
608                 irq_enter();
609                 generic_smp_call_function_single_interrupt();
610                 irq_exit();
611                 break;
612
613         case IPI_CPU_STOP:
614                 irq_enter();
615                 ipi_cpu_stop(cpu);
616                 irq_exit();
617                 break;
618
619 #ifdef CONFIG_IRQ_WORK
620         case IPI_IRQ_WORK:
621                 irq_enter();
622                 irq_work_run();
623                 irq_exit();
624                 break;
625 #endif
626
627         case IPI_COMPLETION:
628                 irq_enter();
629                 ipi_complete(cpu);
630                 irq_exit();
631                 break;
632
633         default:
634                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
635                         cpu, ipinr);
636                 break;
637         }
638
639         if ((unsigned)ipinr < NR_IPI)
640                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
641         set_irq_regs(old_regs);
642 }
643
644 void smp_send_reschedule(int cpu)
645 {
646         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
647 }
648
649 void smp_send_stop(void)
650 {
651         unsigned long timeout;
652         struct cpumask mask;
653
654         cpumask_copy(&mask, cpu_online_mask);
655         cpumask_clear_cpu(smp_processor_id(), &mask);
656         if (!cpumask_empty(&mask))
657                 smp_cross_call(&mask, IPI_CPU_STOP);
658
659         /* Wait up to one second for other CPUs to stop */
660         timeout = USEC_PER_SEC;
661         while (num_online_cpus() > 1 && timeout--)
662                 udelay(1);
663
664         if (num_online_cpus() > 1)
665                 pr_warn("SMP: failed to stop secondary CPUs\n");
666 }
667
668 /*
669  * not supported here
670  */
671 int setup_profiling_timer(unsigned int multiplier)
672 {
673         return -EINVAL;
674 }
675
676 #ifdef CONFIG_CPU_FREQ
677
678 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
679 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
680 static unsigned long global_l_p_j_ref;
681 static unsigned long global_l_p_j_ref_freq;
682
683 static int cpufreq_callback(struct notifier_block *nb,
684                                         unsigned long val, void *data)
685 {
686         struct cpufreq_freqs *freq = data;
687         int cpu = freq->cpu;
688
689         if (freq->flags & CPUFREQ_CONST_LOOPS)
690                 return NOTIFY_OK;
691
692         if (!per_cpu(l_p_j_ref, cpu)) {
693                 per_cpu(l_p_j_ref, cpu) =
694                         per_cpu(cpu_data, cpu).loops_per_jiffy;
695                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
696                 if (!global_l_p_j_ref) {
697                         global_l_p_j_ref = loops_per_jiffy;
698                         global_l_p_j_ref_freq = freq->old;
699                 }
700         }
701
702         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
703             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
704                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
705                                                 global_l_p_j_ref_freq,
706                                                 freq->new);
707                 per_cpu(cpu_data, cpu).loops_per_jiffy =
708                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
709                                         per_cpu(l_p_j_ref_freq, cpu),
710                                         freq->new);
711         }
712         return NOTIFY_OK;
713 }
714
715 static struct notifier_block cpufreq_notifier = {
716         .notifier_call  = cpufreq_callback,
717 };
718
719 static int __init register_cpufreq_notifier(void)
720 {
721         return cpufreq_register_notifier(&cpufreq_notifier,
722                                                 CPUFREQ_TRANSITION_NOTIFIER);
723 }
724 core_initcall(register_cpufreq_notifier);
725
726 #endif