Merge remote-tracking branches 'asoc/fix/atmel', 'asoc/fix/fsl', 'asoc/fix/tegra...
[linux-drm-fsl-dcu.git] / arch / arc / kernel / kprobes.c
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/types.h>
10 #include <linux/kprobes.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/kdebug.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16 #include <asm/cacheflush.h>
17 #include <asm/current.h>
18 #include <asm/disasm.h>
19
20 #define MIN_STACK_SIZE(addr)    min((unsigned long)MAX_STACK_SIZE, \
21                 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
22
23 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
24 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
25
26 int __kprobes arch_prepare_kprobe(struct kprobe *p)
27 {
28         /* Attempt to probe at unaligned address */
29         if ((unsigned long)p->addr & 0x01)
30                 return -EINVAL;
31
32         /* Address should not be in exception handling code */
33
34         p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
35         p->opcode = *p->addr;
36
37         return 0;
38 }
39
40 void __kprobes arch_arm_kprobe(struct kprobe *p)
41 {
42         *p->addr = UNIMP_S_INSTRUCTION;
43
44         flush_icache_range((unsigned long)p->addr,
45                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
46 }
47
48 void __kprobes arch_disarm_kprobe(struct kprobe *p)
49 {
50         *p->addr = p->opcode;
51
52         flush_icache_range((unsigned long)p->addr,
53                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
54 }
55
56 void __kprobes arch_remove_kprobe(struct kprobe *p)
57 {
58         arch_disarm_kprobe(p);
59
60         /* Can we remove the kprobe in the middle of kprobe handling? */
61         if (p->ainsn.t1_addr) {
62                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
63
64                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
65                                    (unsigned long)p->ainsn.t1_addr +
66                                    sizeof(kprobe_opcode_t));
67
68                 p->ainsn.t1_addr = NULL;
69         }
70
71         if (p->ainsn.t2_addr) {
72                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
73
74                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
75                                    (unsigned long)p->ainsn.t2_addr +
76                                    sizeof(kprobe_opcode_t));
77
78                 p->ainsn.t2_addr = NULL;
79         }
80 }
81
82 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
83 {
84         kcb->prev_kprobe.kp = kprobe_running();
85         kcb->prev_kprobe.status = kcb->kprobe_status;
86 }
87
88 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
89 {
90         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
91         kcb->kprobe_status = kcb->prev_kprobe.status;
92 }
93
94 static inline void __kprobes set_current_kprobe(struct kprobe *p)
95 {
96         __this_cpu_write(current_kprobe, p);
97 }
98
99 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
100                                        struct pt_regs *regs)
101 {
102         /* Remove the trap instructions inserted for single step and
103          * restore the original instructions
104          */
105         if (p->ainsn.t1_addr) {
106                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
107
108                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
109                                    (unsigned long)p->ainsn.t1_addr +
110                                    sizeof(kprobe_opcode_t));
111
112                 p->ainsn.t1_addr = NULL;
113         }
114
115         if (p->ainsn.t2_addr) {
116                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
117
118                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
119                                    (unsigned long)p->ainsn.t2_addr +
120                                    sizeof(kprobe_opcode_t));
121
122                 p->ainsn.t2_addr = NULL;
123         }
124
125         return;
126 }
127
128 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
129 {
130         unsigned long next_pc;
131         unsigned long tgt_if_br = 0;
132         int is_branch;
133         unsigned long bta;
134
135         /* Copy the opcode back to the kprobe location and execute the
136          * instruction. Because of this we will not be able to get into the
137          * same kprobe until this kprobe is done
138          */
139         *(p->addr) = p->opcode;
140
141         flush_icache_range((unsigned long)p->addr,
142                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
143
144         /* Now we insert the trap at the next location after this instruction to
145          * single step. If it is a branch we insert the trap at possible branch
146          * targets
147          */
148
149         bta = regs->bta;
150
151         if (regs->status32 & 0x40) {
152                 /* We are in a delay slot with the branch taken */
153
154                 next_pc = bta & ~0x01;
155
156                 if (!p->ainsn.is_short) {
157                         if (bta & 0x01)
158                                 regs->blink += 2;
159                         else {
160                                 /* Branch not taken */
161                                 next_pc += 2;
162
163                                 /* next pc is taken from bta after executing the
164                                  * delay slot instruction
165                                  */
166                                 regs->bta += 2;
167                         }
168                 }
169
170                 is_branch = 0;
171         } else
172                 is_branch =
173                     disasm_next_pc((unsigned long)p->addr, regs,
174                         (struct callee_regs *) current->thread.callee_reg,
175                         &next_pc, &tgt_if_br);
176
177         p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
178         p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
179         *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
180
181         flush_icache_range((unsigned long)p->ainsn.t1_addr,
182                            (unsigned long)p->ainsn.t1_addr +
183                            sizeof(kprobe_opcode_t));
184
185         if (is_branch) {
186                 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
187                 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
188                 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
189
190                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
191                                    (unsigned long)p->ainsn.t2_addr +
192                                    sizeof(kprobe_opcode_t));
193         }
194 }
195
196 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
197 {
198         struct kprobe *p;
199         struct kprobe_ctlblk *kcb;
200
201         preempt_disable();
202
203         kcb = get_kprobe_ctlblk();
204         p = get_kprobe((unsigned long *)addr);
205
206         if (p) {
207                 /*
208                  * We have reentered the kprobe_handler, since another kprobe
209                  * was hit while within the handler, we save the original
210                  * kprobes and single step on the instruction of the new probe
211                  * without calling any user handlers to avoid recursive
212                  * kprobes.
213                  */
214                 if (kprobe_running()) {
215                         save_previous_kprobe(kcb);
216                         set_current_kprobe(p);
217                         kprobes_inc_nmissed_count(p);
218                         setup_singlestep(p, regs);
219                         kcb->kprobe_status = KPROBE_REENTER;
220                         return 1;
221                 }
222
223                 set_current_kprobe(p);
224                 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
225
226                 /* If we have no pre-handler or it returned 0, we continue with
227                  * normal processing. If we have a pre-handler and it returned
228                  * non-zero - which is expected from setjmp_pre_handler for
229                  * jprobe, we return without single stepping and leave that to
230                  * the break-handler which is invoked by a kprobe from
231                  * jprobe_return
232                  */
233                 if (!p->pre_handler || !p->pre_handler(p, regs)) {
234                         setup_singlestep(p, regs);
235                         kcb->kprobe_status = KPROBE_HIT_SS;
236                 }
237
238                 return 1;
239         } else if (kprobe_running()) {
240                 p = __this_cpu_read(current_kprobe);
241                 if (p->break_handler && p->break_handler(p, regs)) {
242                         setup_singlestep(p, regs);
243                         kcb->kprobe_status = KPROBE_HIT_SS;
244                         return 1;
245                 }
246         }
247
248         /* no_kprobe: */
249         preempt_enable_no_resched();
250         return 0;
251 }
252
253 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
254                                          struct pt_regs *regs)
255 {
256         struct kprobe *cur = kprobe_running();
257         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
258
259         if (!cur)
260                 return 0;
261
262         resume_execution(cur, addr, regs);
263
264         /* Rearm the kprobe */
265         arch_arm_kprobe(cur);
266
267         /*
268          * When we return from trap instruction we go to the next instruction
269          * We restored the actual instruction in resume_exectuiont and we to
270          * return to the same address and execute it
271          */
272         regs->ret = addr;
273
274         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
275                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
276                 cur->post_handler(cur, regs, 0);
277         }
278
279         if (kcb->kprobe_status == KPROBE_REENTER) {
280                 restore_previous_kprobe(kcb);
281                 goto out;
282         }
283
284         reset_current_kprobe();
285
286 out:
287         preempt_enable_no_resched();
288         return 1;
289 }
290
291 /*
292  * Fault can be for the instruction being single stepped or for the
293  * pre/post handlers in the module.
294  * This is applicable for applications like user probes, where we have the
295  * probe in user space and the handlers in the kernel
296  */
297
298 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
299 {
300         struct kprobe *cur = kprobe_running();
301         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
302
303         switch (kcb->kprobe_status) {
304         case KPROBE_HIT_SS:
305         case KPROBE_REENTER:
306                 /*
307                  * We are here because the instruction being single stepped
308                  * caused the fault. We reset the current kprobe and allow the
309                  * exception handler as if it is regular exception. In our
310                  * case it doesn't matter because the system will be halted
311                  */
312                 resume_execution(cur, (unsigned long)cur->addr, regs);
313
314                 if (kcb->kprobe_status == KPROBE_REENTER)
315                         restore_previous_kprobe(kcb);
316                 else
317                         reset_current_kprobe();
318
319                 preempt_enable_no_resched();
320                 break;
321
322         case KPROBE_HIT_ACTIVE:
323         case KPROBE_HIT_SSDONE:
324                 /*
325                  * We are here because the instructions in the pre/post handler
326                  * caused the fault.
327                  */
328
329                 /* We increment the nmissed count for accounting,
330                  * we can also use npre/npostfault count for accounting
331                  * these specific fault cases.
332                  */
333                 kprobes_inc_nmissed_count(cur);
334
335                 /*
336                  * We come here because instructions in the pre/post
337                  * handler caused the page_fault, this could happen
338                  * if handler tries to access user space by
339                  * copy_from_user(), get_user() etc. Let the
340                  * user-specified handler try to fix it first.
341                  */
342                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
343                         return 1;
344
345                 /*
346                  * In case the user-specified fault handler returned zero,
347                  * try to fix up.
348                  */
349                 if (fixup_exception(regs))
350                         return 1;
351
352                 /*
353                  * fixup_exception() could not handle it,
354                  * Let do_page_fault() fix it.
355                  */
356                 break;
357
358         default:
359                 break;
360         }
361         return 0;
362 }
363
364 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
365                                        unsigned long val, void *data)
366 {
367         struct die_args *args = data;
368         unsigned long addr = args->err;
369         int ret = NOTIFY_DONE;
370
371         switch (val) {
372         case DIE_IERR:
373                 if (arc_kprobe_handler(addr, args->regs))
374                         return NOTIFY_STOP;
375                 break;
376
377         case DIE_TRAP:
378                 if (arc_post_kprobe_handler(addr, args->regs))
379                         return NOTIFY_STOP;
380                 break;
381
382         default:
383                 break;
384         }
385
386         return ret;
387 }
388
389 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
390 {
391         struct jprobe *jp = container_of(p, struct jprobe, kp);
392         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393         unsigned long sp_addr = regs->sp;
394
395         kcb->jprobe_saved_regs = *regs;
396         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
397         regs->ret = (unsigned long)(jp->entry);
398
399         return 1;
400 }
401
402 void __kprobes jprobe_return(void)
403 {
404         __asm__ __volatile__("unimp_s");
405         return;
406 }
407
408 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
409 {
410         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411         unsigned long sp_addr;
412
413         *regs = kcb->jprobe_saved_regs;
414         sp_addr = regs->sp;
415         memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr));
416         preempt_enable_no_resched();
417
418         return 1;
419 }
420
421 static void __used kretprobe_trampoline_holder(void)
422 {
423         __asm__ __volatile__(".global kretprobe_trampoline\n"
424                              "kretprobe_trampoline:\n" "nop\n");
425 }
426
427 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
428                                       struct pt_regs *regs)
429 {
430
431         ri->ret_addr = (kprobe_opcode_t *) regs->blink;
432
433         /* Replace the return addr with trampoline addr */
434         regs->blink = (unsigned long)&kretprobe_trampoline;
435 }
436
437 static int __kprobes trampoline_probe_handler(struct kprobe *p,
438                                               struct pt_regs *regs)
439 {
440         struct kretprobe_instance *ri = NULL;
441         struct hlist_head *head, empty_rp;
442         struct hlist_node *tmp;
443         unsigned long flags, orig_ret_address = 0;
444         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
445
446         INIT_HLIST_HEAD(&empty_rp);
447         kretprobe_hash_lock(current, &head, &flags);
448
449         /*
450          * It is possible to have multiple instances associated with a given
451          * task either because an multiple functions in the call path
452          * have a return probe installed on them, and/or more than one return
453          * return probe was registered for a target function.
454          *
455          * We can handle this because:
456          *     - instances are always inserted at the head of the list
457          *     - when multiple return probes are registered for the same
458          *       function, the first instance's ret_addr will point to the
459          *       real return address, and all the rest will point to
460          *       kretprobe_trampoline
461          */
462         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
463                 if (ri->task != current)
464                         /* another task is sharing our hash bucket */
465                         continue;
466
467                 if (ri->rp && ri->rp->handler)
468                         ri->rp->handler(ri, regs);
469
470                 orig_ret_address = (unsigned long)ri->ret_addr;
471                 recycle_rp_inst(ri, &empty_rp);
472
473                 if (orig_ret_address != trampoline_address) {
474                         /*
475                          * This is the real return address. Any other
476                          * instances associated with this task are for
477                          * other calls deeper on the call stack
478                          */
479                         break;
480                 }
481         }
482
483         kretprobe_assert(ri, orig_ret_address, trampoline_address);
484         regs->ret = orig_ret_address;
485
486         reset_current_kprobe();
487         kretprobe_hash_unlock(current, &flags);
488         preempt_enable_no_resched();
489
490         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
491                 hlist_del(&ri->hlist);
492                 kfree(ri);
493         }
494
495         /* By returning a non zero value, we are telling the kprobe handler
496          * that we don't want the post_handler to run
497          */
498         return 1;
499 }
500
501 static struct kprobe trampoline_p = {
502         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
503         .pre_handler = trampoline_probe_handler
504 };
505
506 int __init arch_init_kprobes(void)
507 {
508         /* Registering the trampoline code for the kret probe */
509         return register_kprobe(&trampoline_p);
510 }
511
512 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
513 {
514         if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
515                 return 1;
516
517         return 0;
518 }
519
520 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
521 {
522         notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
523 }