Merge remote-tracking branch 'spi/fix/core' into spi-linus
[linux-drm-fsl-dcu.git] / Documentation / ptp / testptp.c
1 /*
2  * PTP 1588 clock support - User space test program
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <math.h>
23 #include <signal.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/ioctl.h>
28 #include <sys/mman.h>
29 #include <sys/stat.h>
30 #include <sys/time.h>
31 #include <sys/timex.h>
32 #include <sys/types.h>
33 #include <time.h>
34 #include <unistd.h>
35
36 #include <linux/ptp_clock.h>
37
38 #define DEVICE "/dev/ptp0"
39
40 #ifndef ADJ_SETOFFSET
41 #define ADJ_SETOFFSET 0x0100
42 #endif
43
44 #ifndef CLOCK_INVALID
45 #define CLOCK_INVALID -1
46 #endif
47
48 /* When glibc offers the syscall, this will go away. */
49 #include <sys/syscall.h>
50 static int clock_adjtime(clockid_t id, struct timex *tx)
51 {
52         return syscall(__NR_clock_adjtime, id, tx);
53 }
54
55 static clockid_t get_clockid(int fd)
56 {
57 #define CLOCKFD 3
58 #define FD_TO_CLOCKID(fd)       ((~(clockid_t) (fd) << 3) | CLOCKFD)
59
60         return FD_TO_CLOCKID(fd);
61 }
62
63 static void handle_alarm(int s)
64 {
65         printf("received signal %d\n", s);
66 }
67
68 static int install_handler(int signum, void (*handler)(int))
69 {
70         struct sigaction action;
71         sigset_t mask;
72
73         /* Unblock the signal. */
74         sigemptyset(&mask);
75         sigaddset(&mask, signum);
76         sigprocmask(SIG_UNBLOCK, &mask, NULL);
77
78         /* Install the signal handler. */
79         action.sa_handler = handler;
80         action.sa_flags = 0;
81         sigemptyset(&action.sa_mask);
82         sigaction(signum, &action, NULL);
83
84         return 0;
85 }
86
87 static long ppb_to_scaled_ppm(int ppb)
88 {
89         /*
90          * The 'freq' field in the 'struct timex' is in parts per
91          * million, but with a 16 bit binary fractional field.
92          * Instead of calculating either one of
93          *
94          *    scaled_ppm = (ppb / 1000) << 16  [1]
95          *    scaled_ppm = (ppb << 16) / 1000  [2]
96          *
97          * we simply use double precision math, in order to avoid the
98          * truncation in [1] and the possible overflow in [2].
99          */
100         return (long) (ppb * 65.536);
101 }
102
103 static int64_t pctns(struct ptp_clock_time *t)
104 {
105         return t->sec * 1000000000LL + t->nsec;
106 }
107
108 static void usage(char *progname)
109 {
110         fprintf(stderr,
111                 "usage: %s [options]\n"
112                 " -a val     request a one-shot alarm after 'val' seconds\n"
113                 " -A val     request a periodic alarm every 'val' seconds\n"
114                 " -c         query the ptp clock's capabilities\n"
115                 " -d name    device to open\n"
116                 " -e val     read 'val' external time stamp events\n"
117                 " -f val     adjust the ptp clock frequency by 'val' ppb\n"
118                 " -g         get the ptp clock time\n"
119                 " -h         prints this message\n"
120                 " -k val     measure the time offset between system and phc clock\n"
121                 "            for 'val' times (Maximum 25)\n"
122                 " -p val     enable output with a period of 'val' nanoseconds\n"
123                 " -P val     enable or disable (val=1|0) the system clock PPS\n"
124                 " -s         set the ptp clock time from the system time\n"
125                 " -S         set the system time from the ptp clock time\n"
126                 " -t val     shift the ptp clock time by 'val' seconds\n",
127                 progname);
128 }
129
130 int main(int argc, char *argv[])
131 {
132         struct ptp_clock_caps caps;
133         struct ptp_extts_event event;
134         struct ptp_extts_request extts_request;
135         struct ptp_perout_request perout_request;
136         struct timespec ts;
137         struct timex tx;
138
139         static timer_t timerid;
140         struct itimerspec timeout;
141         struct sigevent sigevent;
142
143         struct ptp_clock_time *pct;
144         struct ptp_sys_offset *sysoff;
145
146
147         char *progname;
148         int i, c, cnt, fd;
149
150         char *device = DEVICE;
151         clockid_t clkid;
152         int adjfreq = 0x7fffffff;
153         int adjtime = 0;
154         int capabilities = 0;
155         int extts = 0;
156         int gettime = 0;
157         int oneshot = 0;
158         int pct_offset = 0;
159         int n_samples = 0;
160         int periodic = 0;
161         int perout = -1;
162         int pps = -1;
163         int settime = 0;
164
165         int64_t t1, t2, tp;
166         int64_t interval, offset;
167
168         progname = strrchr(argv[0], '/');
169         progname = progname ? 1+progname : argv[0];
170         while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghk:p:P:sSt:v"))) {
171                 switch (c) {
172                 case 'a':
173                         oneshot = atoi(optarg);
174                         break;
175                 case 'A':
176                         periodic = atoi(optarg);
177                         break;
178                 case 'c':
179                         capabilities = 1;
180                         break;
181                 case 'd':
182                         device = optarg;
183                         break;
184                 case 'e':
185                         extts = atoi(optarg);
186                         break;
187                 case 'f':
188                         adjfreq = atoi(optarg);
189                         break;
190                 case 'g':
191                         gettime = 1;
192                         break;
193                 case 'k':
194                         pct_offset = 1;
195                         n_samples = atoi(optarg);
196                         break;
197                 case 'p':
198                         perout = atoi(optarg);
199                         break;
200                 case 'P':
201                         pps = atoi(optarg);
202                         break;
203                 case 's':
204                         settime = 1;
205                         break;
206                 case 'S':
207                         settime = 2;
208                         break;
209                 case 't':
210                         adjtime = atoi(optarg);
211                         break;
212                 case 'h':
213                         usage(progname);
214                         return 0;
215                 case '?':
216                 default:
217                         usage(progname);
218                         return -1;
219                 }
220         }
221
222         fd = open(device, O_RDWR);
223         if (fd < 0) {
224                 fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
225                 return -1;
226         }
227
228         clkid = get_clockid(fd);
229         if (CLOCK_INVALID == clkid) {
230                 fprintf(stderr, "failed to read clock id\n");
231                 return -1;
232         }
233
234         if (capabilities) {
235                 if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
236                         perror("PTP_CLOCK_GETCAPS");
237                 } else {
238                         printf("capabilities:\n"
239                                "  %d maximum frequency adjustment (ppb)\n"
240                                "  %d programmable alarms\n"
241                                "  %d external time stamp channels\n"
242                                "  %d programmable periodic signals\n"
243                                "  %d pulse per second\n",
244                                caps.max_adj,
245                                caps.n_alarm,
246                                caps.n_ext_ts,
247                                caps.n_per_out,
248                                caps.pps);
249                 }
250         }
251
252         if (0x7fffffff != adjfreq) {
253                 memset(&tx, 0, sizeof(tx));
254                 tx.modes = ADJ_FREQUENCY;
255                 tx.freq = ppb_to_scaled_ppm(adjfreq);
256                 if (clock_adjtime(clkid, &tx)) {
257                         perror("clock_adjtime");
258                 } else {
259                         puts("frequency adjustment okay");
260                 }
261         }
262
263         if (adjtime) {
264                 memset(&tx, 0, sizeof(tx));
265                 tx.modes = ADJ_SETOFFSET;
266                 tx.time.tv_sec = adjtime;
267                 tx.time.tv_usec = 0;
268                 if (clock_adjtime(clkid, &tx) < 0) {
269                         perror("clock_adjtime");
270                 } else {
271                         puts("time shift okay");
272                 }
273         }
274
275         if (gettime) {
276                 if (clock_gettime(clkid, &ts)) {
277                         perror("clock_gettime");
278                 } else {
279                         printf("clock time: %ld.%09ld or %s",
280                                ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
281                 }
282         }
283
284         if (settime == 1) {
285                 clock_gettime(CLOCK_REALTIME, &ts);
286                 if (clock_settime(clkid, &ts)) {
287                         perror("clock_settime");
288                 } else {
289                         puts("set time okay");
290                 }
291         }
292
293         if (settime == 2) {
294                 clock_gettime(clkid, &ts);
295                 if (clock_settime(CLOCK_REALTIME, &ts)) {
296                         perror("clock_settime");
297                 } else {
298                         puts("set time okay");
299                 }
300         }
301
302         if (extts) {
303                 memset(&extts_request, 0, sizeof(extts_request));
304                 extts_request.index = 0;
305                 extts_request.flags = PTP_ENABLE_FEATURE;
306                 if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
307                         perror("PTP_EXTTS_REQUEST");
308                         extts = 0;
309                 } else {
310                         puts("external time stamp request okay");
311                 }
312                 for (; extts; extts--) {
313                         cnt = read(fd, &event, sizeof(event));
314                         if (cnt != sizeof(event)) {
315                                 perror("read");
316                                 break;
317                         }
318                         printf("event index %u at %lld.%09u\n", event.index,
319                                event.t.sec, event.t.nsec);
320                         fflush(stdout);
321                 }
322                 /* Disable the feature again. */
323                 extts_request.flags = 0;
324                 if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
325                         perror("PTP_EXTTS_REQUEST");
326                 }
327         }
328
329         if (oneshot) {
330                 install_handler(SIGALRM, handle_alarm);
331                 /* Create a timer. */
332                 sigevent.sigev_notify = SIGEV_SIGNAL;
333                 sigevent.sigev_signo = SIGALRM;
334                 if (timer_create(clkid, &sigevent, &timerid)) {
335                         perror("timer_create");
336                         return -1;
337                 }
338                 /* Start the timer. */
339                 memset(&timeout, 0, sizeof(timeout));
340                 timeout.it_value.tv_sec = oneshot;
341                 if (timer_settime(timerid, 0, &timeout, NULL)) {
342                         perror("timer_settime");
343                         return -1;
344                 }
345                 pause();
346                 timer_delete(timerid);
347         }
348
349         if (periodic) {
350                 install_handler(SIGALRM, handle_alarm);
351                 /* Create a timer. */
352                 sigevent.sigev_notify = SIGEV_SIGNAL;
353                 sigevent.sigev_signo = SIGALRM;
354                 if (timer_create(clkid, &sigevent, &timerid)) {
355                         perror("timer_create");
356                         return -1;
357                 }
358                 /* Start the timer. */
359                 memset(&timeout, 0, sizeof(timeout));
360                 timeout.it_interval.tv_sec = periodic;
361                 timeout.it_value.tv_sec = periodic;
362                 if (timer_settime(timerid, 0, &timeout, NULL)) {
363                         perror("timer_settime");
364                         return -1;
365                 }
366                 while (1) {
367                         pause();
368                 }
369                 timer_delete(timerid);
370         }
371
372         if (perout >= 0) {
373                 if (clock_gettime(clkid, &ts)) {
374                         perror("clock_gettime");
375                         return -1;
376                 }
377                 memset(&perout_request, 0, sizeof(perout_request));
378                 perout_request.index = 0;
379                 perout_request.start.sec = ts.tv_sec + 2;
380                 perout_request.start.nsec = 0;
381                 perout_request.period.sec = 0;
382                 perout_request.period.nsec = perout;
383                 if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) {
384                         perror("PTP_PEROUT_REQUEST");
385                 } else {
386                         puts("periodic output request okay");
387                 }
388         }
389
390         if (pps != -1) {
391                 int enable = pps ? 1 : 0;
392                 if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
393                         perror("PTP_ENABLE_PPS");
394                 } else {
395                         puts("pps for system time request okay");
396                 }
397         }
398
399         if (pct_offset) {
400                 if (n_samples <= 0 || n_samples > 25) {
401                         puts("n_samples should be between 1 and 25");
402                         usage(progname);
403                         return -1;
404                 }
405
406                 sysoff = calloc(1, sizeof(*sysoff));
407                 if (!sysoff) {
408                         perror("calloc");
409                         return -1;
410                 }
411                 sysoff->n_samples = n_samples;
412
413                 if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
414                         perror("PTP_SYS_OFFSET");
415                 else
416                         puts("system and phc clock time offset request okay");
417
418                 pct = &sysoff->ts[0];
419                 for (i = 0; i < sysoff->n_samples; i++) {
420                         t1 = pctns(pct+2*i);
421                         tp = pctns(pct+2*i+1);
422                         t2 = pctns(pct+2*i+2);
423                         interval = t2 - t1;
424                         offset = (t2 + t1) / 2 - tp;
425
426                         printf("system time: %ld.%ld\n",
427                                 (pct+2*i)->sec, (pct+2*i)->nsec);
428                         printf("phc    time: %ld.%ld\n",
429                                 (pct+2*i+1)->sec, (pct+2*i+1)->nsec);
430                         printf("system time: %ld.%ld\n",
431                                 (pct+2*i+2)->sec, (pct+2*i+2)->nsec);
432                         printf("system/phc clock time offset is %ld ns\n"
433                                 "system     clock time delay  is %ld ns\n",
434                                 offset, interval);
435                 }
436
437                 free(sysoff);
438         }
439
440         close(fd);
441         return 0;
442 }