Linux 4.5-rc1
[linux-drm-fsl-dcu.git] / Documentation / clk.txt
1                 The Common Clk Framework
2                 Mike Turquette <mturquette@ti.com>
3
4 This document endeavours to explain the common clk framework details,
5 and how to port a platform over to this framework.  It is not yet a
6 detailed explanation of the clock api in include/linux/clk.h, but
7 perhaps someday it will include that information.
8
9         Part 1 - introduction and interface split
10
11 The common clk framework is an interface to control the clock nodes
12 available on various devices today.  This may come in the form of clock
13 gating, rate adjustment, muxing or other operations.  This framework is
14 enabled with the CONFIG_COMMON_CLK option.
15
16 The interface itself is divided into two halves, each shielded from the
17 details of its counterpart.  First is the common definition of struct
18 clk which unifies the framework-level accounting and infrastructure that
19 has traditionally been duplicated across a variety of platforms.  Second
20 is a common implementation of the clk.h api, defined in
21 drivers/clk/clk.c.  Finally there is struct clk_ops, whose operations
22 are invoked by the clk api implementation.
23
24 The second half of the interface is comprised of the hardware-specific
25 callbacks registered with struct clk_ops and the corresponding
26 hardware-specific structures needed to model a particular clock.  For
27 the remainder of this document any reference to a callback in struct
28 clk_ops, such as .enable or .set_rate, implies the hardware-specific
29 implementation of that code.  Likewise, references to struct clk_foo
30 serve as a convenient shorthand for the implementation of the
31 hardware-specific bits for the hypothetical "foo" hardware.
32
33 Tying the two halves of this interface together is struct clk_hw, which
34 is defined in struct clk_foo and pointed to within struct clk.  This
35 allows for easy navigation between the two discrete halves of the common
36 clock interface.
37
38         Part 2 - common data structures and api
39
40 Below is the common struct clk definition from
41 include/linux/clk-private.h, modified for brevity:
42
43         struct clk {
44                 const char              *name;
45                 const struct clk_ops    *ops;
46                 struct clk_hw           *hw;
47                 char                    **parent_names;
48                 struct clk              **parents;
49                 struct clk              *parent;
50                 struct hlist_head       children;
51                 struct hlist_node       child_node;
52                 ...
53         };
54
55 The members above make up the core of the clk tree topology.  The clk
56 api itself defines several driver-facing functions which operate on
57 struct clk.  That api is documented in include/linux/clk.h.
58
59 Platforms and devices utilizing the common struct clk use the struct
60 clk_ops pointer in struct clk to perform the hardware-specific parts of
61 the operations defined in clk.h:
62
63         struct clk_ops {
64                 int             (*prepare)(struct clk_hw *hw);
65                 void            (*unprepare)(struct clk_hw *hw);
66                 int             (*enable)(struct clk_hw *hw);
67                 void            (*disable)(struct clk_hw *hw);
68                 int             (*is_enabled)(struct clk_hw *hw);
69                 unsigned long   (*recalc_rate)(struct clk_hw *hw,
70                                                 unsigned long parent_rate);
71                 long            (*round_rate)(struct clk_hw *hw,
72                                                 unsigned long rate,
73                                                 unsigned long *parent_rate);
74                 int             (*determine_rate)(struct clk_hw *hw,
75                                                   struct clk_rate_request *req);
76                 int             (*set_parent)(struct clk_hw *hw, u8 index);
77                 u8              (*get_parent)(struct clk_hw *hw);
78                 int             (*set_rate)(struct clk_hw *hw,
79                                             unsigned long rate,
80                                             unsigned long parent_rate);
81                 int             (*set_rate_and_parent)(struct clk_hw *hw,
82                                             unsigned long rate,
83                                             unsigned long parent_rate,
84                                             u8 index);
85                 unsigned long   (*recalc_accuracy)(struct clk_hw *hw,
86                                                 unsigned long parent_accuracy);
87                 void            (*init)(struct clk_hw *hw);
88                 int             (*debug_init)(struct clk_hw *hw,
89                                               struct dentry *dentry);
90         };
91
92         Part 3 - hardware clk implementations
93
94 The strength of the common struct clk comes from its .ops and .hw pointers
95 which abstract the details of struct clk from the hardware-specific bits, and
96 vice versa.  To illustrate consider the simple gateable clk implementation in
97 drivers/clk/clk-gate.c:
98
99 struct clk_gate {
100         struct clk_hw   hw;
101         void __iomem    *reg;
102         u8              bit_idx;
103         ...
104 };
105
106 struct clk_gate contains struct clk_hw hw as well as hardware-specific
107 knowledge about which register and bit controls this clk's gating.
108 Nothing about clock topology or accounting, such as enable_count or
109 notifier_count, is needed here.  That is all handled by the common
110 framework code and struct clk.
111
112 Let's walk through enabling this clk from driver code:
113
114         struct clk *clk;
115         clk = clk_get(NULL, "my_gateable_clk");
116
117         clk_prepare(clk);
118         clk_enable(clk);
119
120 The call graph for clk_enable is very simple:
121
122 clk_enable(clk);
123         clk->ops->enable(clk->hw);
124         [resolves to...]
125                 clk_gate_enable(hw);
126                 [resolves struct clk gate with to_clk_gate(hw)]
127                         clk_gate_set_bit(gate);
128
129 And the definition of clk_gate_set_bit:
130
131 static void clk_gate_set_bit(struct clk_gate *gate)
132 {
133         u32 reg;
134
135         reg = __raw_readl(gate->reg);
136         reg |= BIT(gate->bit_idx);
137         writel(reg, gate->reg);
138 }
139
140 Note that to_clk_gate is defined as:
141
142 #define to_clk_gate(_hw) container_of(_hw, struct clk_gate, clk)
143
144 This pattern of abstraction is used for every clock hardware
145 representation.
146
147         Part 4 - supporting your own clk hardware
148
149 When implementing support for a new type of clock it only necessary to
150 include the following header:
151
152 #include <linux/clk-provider.h>
153
154 include/linux/clk.h is included within that header and clk-private.h
155 must never be included from the code which implements the operations for
156 a clock.  More on that below in Part 5.
157
158 To construct a clk hardware structure for your platform you must define
159 the following:
160
161 struct clk_foo {
162         struct clk_hw hw;
163         ... hardware specific data goes here ...
164 };
165
166 To take advantage of your data you'll need to support valid operations
167 for your clk:
168
169 struct clk_ops clk_foo_ops {
170         .enable         = &clk_foo_enable;
171         .disable        = &clk_foo_disable;
172 };
173
174 Implement the above functions using container_of:
175
176 #define to_clk_foo(_hw) container_of(_hw, struct clk_foo, hw)
177
178 int clk_foo_enable(struct clk_hw *hw)
179 {
180         struct clk_foo *foo;
181
182         foo = to_clk_foo(hw);
183
184         ... perform magic on foo ...
185
186         return 0;
187 };
188
189 Below is a matrix detailing which clk_ops are mandatory based upon the
190 hardware capabilities of that clock.  A cell marked as "y" means
191 mandatory, a cell marked as "n" implies that either including that
192 callback is invalid or otherwise unnecessary.  Empty cells are either
193 optional or must be evaluated on a case-by-case basis.
194
195                               clock hardware characteristics
196                 -----------------------------------------------------------
197                 | gate | change rate | single parent | multiplexer | root |
198                 |------|-------------|---------------|-------------|------|
199 .prepare        |      |             |               |             |      |
200 .unprepare      |      |             |               |             |      |
201                 |      |             |               |             |      |
202 .enable         | y    |             |               |             |      |
203 .disable        | y    |             |               |             |      |
204 .is_enabled     | y    |             |               |             |      |
205                 |      |             |               |             |      |
206 .recalc_rate    |      | y           |               |             |      |
207 .round_rate     |      | y [1]       |               |             |      |
208 .determine_rate |      | y [1]       |               |             |      |
209 .set_rate       |      | y           |               |             |      |
210                 |      |             |               |             |      |
211 .set_parent     |      |             | n             | y           | n    |
212 .get_parent     |      |             | n             | y           | n    |
213                 |      |             |               |             |      |
214 .recalc_accuracy|      |             |               |             |      |
215                 |      |             |               |             |      |
216 .init           |      |             |               |             |      |
217                 -----------------------------------------------------------
218 [1] either one of round_rate or determine_rate is required.
219
220 Finally, register your clock at run-time with a hardware-specific
221 registration function.  This function simply populates struct clk_foo's
222 data and then passes the common struct clk parameters to the framework
223 with a call to:
224
225 clk_register(...)
226
227 See the basic clock types in drivers/clk/clk-*.c for examples.
228
229         Part 5 - Disabling clock gating of unused clocks
230
231 Sometimes during development it can be useful to be able to bypass the
232 default disabling of unused clocks. For example, if drivers aren't enabling
233 clocks properly but rely on them being on from the bootloader, bypassing
234 the disabling means that the driver will remain functional while the issues
235 are sorted out.
236
237 To bypass this disabling, include "clk_ignore_unused" in the bootargs to the
238 kernel.
239
240         Part 6 - Locking
241
242 The common clock framework uses two global locks, the prepare lock and the
243 enable lock.
244
245 The enable lock is a spinlock and is held across calls to the .enable,
246 .disable and .is_enabled operations. Those operations are thus not allowed to
247 sleep, and calls to the clk_enable(), clk_disable() and clk_is_enabled() API
248 functions are allowed in atomic context.
249
250 The prepare lock is a mutex and is held across calls to all other operations.
251 All those operations are allowed to sleep, and calls to the corresponding API
252 functions are not allowed in atomic context.
253
254 This effectively divides operations in two groups from a locking perspective.
255
256 Drivers don't need to manually protect resources shared between the operations
257 of one group, regardless of whether those resources are shared by multiple
258 clocks or not. However, access to resources that are shared between operations
259 of the two groups needs to be protected by the drivers. An example of such a
260 resource would be a register that controls both the clock rate and the clock
261 enable/disable state.
262
263 The clock framework is reentrant, in that a driver is allowed to call clock
264 framework functions from within its implementation of clock operations. This
265 can for instance cause a .set_rate operation of one clock being called from
266 within the .set_rate operation of another clock. This case must be considered
267 in the driver implementations, but the code flow is usually controlled by the
268 driver in that case.
269
270 Note that locking must also be considered when code outside of the common
271 clock framework needs to access resources used by the clock operations. This
272 is considered out of scope of this document.