libceph: flush msgr queue during mon_client shutdown
[linux-drm-fsl-dcu.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265                         if (test_bit(CONNECTING, &con->state))
266                                 con->error_msg = "connection failed";
267                         else
268                                 con->error_msg = "socket closed";
269                         queue_con(con);
270                 }
271                 break;
272         case TCP_ESTABLISHED:
273                 dout("%s TCP_ESTABLISHED\n", __func__);
274                 con_sock_state_connected(con);
275                 queue_con(con);
276                 break;
277         default:        /* Everything else is uninteresting */
278                 break;
279         }
280 }
281
282 /*
283  * set up socket callbacks
284  */
285 static void set_sock_callbacks(struct socket *sock,
286                                struct ceph_connection *con)
287 {
288         struct sock *sk = sock->sk;
289         sk->sk_user_data = con;
290         sk->sk_data_ready = ceph_sock_data_ready;
291         sk->sk_write_space = ceph_sock_write_space;
292         sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297  * socket helpers
298  */
299
300 /*
301  * initiate connection to a remote socket.
302  */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306         struct socket *sock;
307         int ret;
308
309         BUG_ON(con->sock);
310         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311                                IPPROTO_TCP, &sock);
312         if (ret)
313                 return ret;
314         sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320         set_sock_callbacks(sock, con);
321
322         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324         con_sock_state_connecting(con);
325         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
326                                  O_NONBLOCK);
327         if (ret == -EINPROGRESS) {
328                 dout("connect %s EINPROGRESS sk_state = %u\n",
329                      ceph_pr_addr(&con->peer_addr.in_addr),
330                      sock->sk->sk_state);
331         } else if (ret < 0) {
332                 pr_err("connect %s error %d\n",
333                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
334                 sock_release(sock);
335                 con->error_msg = "connect error";
336
337                 return ret;
338         }
339         con->sock = sock;
340         return 0;
341 }
342
343 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
344 {
345         struct kvec iov = {buf, len};
346         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
347         int r;
348
349         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
350         if (r == -EAGAIN)
351                 r = 0;
352         return r;
353 }
354
355 /*
356  * write something.  @more is true if caller will be sending more data
357  * shortly.
358  */
359 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
360                      size_t kvlen, size_t len, int more)
361 {
362         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
363         int r;
364
365         if (more)
366                 msg.msg_flags |= MSG_MORE;
367         else
368                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
369
370         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
371         if (r == -EAGAIN)
372                 r = 0;
373         return r;
374 }
375
376 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
377                      int offset, size_t size, int more)
378 {
379         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
380         int ret;
381
382         ret = kernel_sendpage(sock, page, offset, size, flags);
383         if (ret == -EAGAIN)
384                 ret = 0;
385
386         return ret;
387 }
388
389
390 /*
391  * Shutdown/close the socket for the given connection.
392  */
393 static int con_close_socket(struct ceph_connection *con)
394 {
395         int rc;
396
397         dout("con_close_socket on %p sock %p\n", con, con->sock);
398         if (!con->sock)
399                 return 0;
400         set_bit(SOCK_CLOSED, &con->state);
401         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
402         sock_release(con->sock);
403         con->sock = NULL;
404         clear_bit(SOCK_CLOSED, &con->state);
405         con_sock_state_closed(con);
406         return rc;
407 }
408
409 /*
410  * Reset a connection.  Discard all incoming and outgoing messages
411  * and clear *_seq state.
412  */
413 static void ceph_msg_remove(struct ceph_msg *msg)
414 {
415         list_del_init(&msg->list_head);
416         BUG_ON(msg->con == NULL);
417         ceph_con_put(msg->con);
418         msg->con = NULL;
419
420         ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424         while (!list_empty(head)) {
425                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426                                                         list_head);
427                 ceph_msg_remove(msg);
428         }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433         /* reset connection, out_queue, msg_ and connect_seq */
434         /* discard existing out_queue and msg_seq */
435         ceph_msg_remove_list(&con->out_queue);
436         ceph_msg_remove_list(&con->out_sent);
437
438         if (con->in_msg) {
439                 BUG_ON(con->in_msg->con != con);
440                 con->in_msg->con = NULL;
441                 ceph_msg_put(con->in_msg);
442                 con->in_msg = NULL;
443                 ceph_con_put(con->in_msg->con);
444         }
445
446         con->connect_seq = 0;
447         con->out_seq = 0;
448         if (con->out_msg) {
449                 ceph_msg_put(con->out_msg);
450                 con->out_msg = NULL;
451         }
452         con->in_seq = 0;
453         con->in_seq_acked = 0;
454 }
455
456 /*
457  * mark a peer down.  drop any open connections.
458  */
459 void ceph_con_close(struct ceph_connection *con)
460 {
461         dout("con_close %p peer %s\n", con,
462              ceph_pr_addr(&con->peer_addr.in_addr));
463         clear_bit(NEGOTIATING, &con->state);
464         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
465         set_bit(CLOSED, &con->state);
466
467         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
468         clear_bit(KEEPALIVE_PENDING, &con->flags);
469         clear_bit(WRITE_PENDING, &con->flags);
470
471         mutex_lock(&con->mutex);
472         reset_connection(con);
473         con->peer_global_seq = 0;
474         cancel_delayed_work(&con->work);
475         mutex_unlock(&con->mutex);
476         queue_con(con);
477 }
478 EXPORT_SYMBOL(ceph_con_close);
479
480 /*
481  * Reopen a closed connection, with a new peer address.
482  */
483 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
484 {
485         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
486         set_bit(OPENING, &con->state);
487         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
488
489         memcpy(&con->peer_addr, addr, sizeof(*addr));
490         con->delay = 0;      /* reset backoff memory */
491         queue_con(con);
492 }
493 EXPORT_SYMBOL(ceph_con_open);
494
495 /*
496  * return true if this connection ever successfully opened
497  */
498 bool ceph_con_opened(struct ceph_connection *con)
499 {
500         return con->connect_seq > 0;
501 }
502
503 /*
504  * generic get/put
505  */
506 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
507 {
508         int nref = __atomic_add_unless(&con->nref, 1, 0);
509
510         dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
511
512         return nref ? con : NULL;
513 }
514
515 void ceph_con_put(struct ceph_connection *con)
516 {
517         int nref = atomic_dec_return(&con->nref);
518
519         BUG_ON(nref < 0);
520         if (nref == 0) {
521                 BUG_ON(con->sock);
522                 kfree(con);
523         }
524         dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
525 }
526
527 /*
528  * initialize a new connection.
529  */
530 void ceph_con_init(struct ceph_connection *con, void *private,
531         const struct ceph_connection_operations *ops,
532         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
533 {
534         dout("con_init %p\n", con);
535         memset(con, 0, sizeof(*con));
536         con->private = private;
537         con->ops = ops;
538         atomic_set(&con->nref, 1);
539         con->msgr = msgr;
540
541         con_sock_state_init(con);
542
543         con->peer_name.type = (__u8) entity_type;
544         con->peer_name.num = cpu_to_le64(entity_num);
545
546         mutex_init(&con->mutex);
547         INIT_LIST_HEAD(&con->out_queue);
548         INIT_LIST_HEAD(&con->out_sent);
549         INIT_DELAYED_WORK(&con->work, con_work);
550
551         set_bit(CLOSED, &con->state);
552 }
553 EXPORT_SYMBOL(ceph_con_init);
554
555
556 /*
557  * We maintain a global counter to order connection attempts.  Get
558  * a unique seq greater than @gt.
559  */
560 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
561 {
562         u32 ret;
563
564         spin_lock(&msgr->global_seq_lock);
565         if (msgr->global_seq < gt)
566                 msgr->global_seq = gt;
567         ret = ++msgr->global_seq;
568         spin_unlock(&msgr->global_seq_lock);
569         return ret;
570 }
571
572 static void con_out_kvec_reset(struct ceph_connection *con)
573 {
574         con->out_kvec_left = 0;
575         con->out_kvec_bytes = 0;
576         con->out_kvec_cur = &con->out_kvec[0];
577 }
578
579 static void con_out_kvec_add(struct ceph_connection *con,
580                                 size_t size, void *data)
581 {
582         int index;
583
584         index = con->out_kvec_left;
585         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
586
587         con->out_kvec[index].iov_len = size;
588         con->out_kvec[index].iov_base = data;
589         con->out_kvec_left++;
590         con->out_kvec_bytes += size;
591 }
592
593 /*
594  * Prepare footer for currently outgoing message, and finish things
595  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
596  */
597 static void prepare_write_message_footer(struct ceph_connection *con)
598 {
599         struct ceph_msg *m = con->out_msg;
600         int v = con->out_kvec_left;
601
602         dout("prepare_write_message_footer %p\n", con);
603         con->out_kvec_is_msg = true;
604         con->out_kvec[v].iov_base = &m->footer;
605         con->out_kvec[v].iov_len = sizeof(m->footer);
606         con->out_kvec_bytes += sizeof(m->footer);
607         con->out_kvec_left++;
608         con->out_more = m->more_to_follow;
609         con->out_msg_done = true;
610 }
611
612 /*
613  * Prepare headers for the next outgoing message.
614  */
615 static void prepare_write_message(struct ceph_connection *con)
616 {
617         struct ceph_msg *m;
618         u32 crc;
619
620         con_out_kvec_reset(con);
621         con->out_kvec_is_msg = true;
622         con->out_msg_done = false;
623
624         /* Sneak an ack in there first?  If we can get it into the same
625          * TCP packet that's a good thing. */
626         if (con->in_seq > con->in_seq_acked) {
627                 con->in_seq_acked = con->in_seq;
628                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
629                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
630                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
631                         &con->out_temp_ack);
632         }
633
634         BUG_ON(list_empty(&con->out_queue));
635         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
636         con->out_msg = m;
637         BUG_ON(m->con != con);
638
639         /* put message on sent list */
640         ceph_msg_get(m);
641         list_move_tail(&m->list_head, &con->out_sent);
642
643         /*
644          * only assign outgoing seq # if we haven't sent this message
645          * yet.  if it is requeued, resend with it's original seq.
646          */
647         if (m->needs_out_seq) {
648                 m->hdr.seq = cpu_to_le64(++con->out_seq);
649                 m->needs_out_seq = false;
650         }
651 #ifdef CONFIG_BLOCK
652         else
653                 m->bio_iter = NULL;
654 #endif
655
656         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
657              m, con->out_seq, le16_to_cpu(m->hdr.type),
658              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
659              le32_to_cpu(m->hdr.data_len),
660              m->nr_pages);
661         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
662
663         /* tag + hdr + front + middle */
664         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
665         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
666         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
667
668         if (m->middle)
669                 con_out_kvec_add(con, m->middle->vec.iov_len,
670                         m->middle->vec.iov_base);
671
672         /* fill in crc (except data pages), footer */
673         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
674         con->out_msg->hdr.crc = cpu_to_le32(crc);
675         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
676
677         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
678         con->out_msg->footer.front_crc = cpu_to_le32(crc);
679         if (m->middle) {
680                 crc = crc32c(0, m->middle->vec.iov_base,
681                                 m->middle->vec.iov_len);
682                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
683         } else
684                 con->out_msg->footer.middle_crc = 0;
685         con->out_msg->footer.data_crc = 0;
686         dout("prepare_write_message front_crc %u data_crc %u\n",
687              le32_to_cpu(con->out_msg->footer.front_crc),
688              le32_to_cpu(con->out_msg->footer.middle_crc));
689
690         /* is there a data payload? */
691         if (le32_to_cpu(m->hdr.data_len) > 0) {
692                 /* initialize page iterator */
693                 con->out_msg_pos.page = 0;
694                 if (m->pages)
695                         con->out_msg_pos.page_pos = m->page_alignment;
696                 else
697                         con->out_msg_pos.page_pos = 0;
698                 con->out_msg_pos.data_pos = 0;
699                 con->out_msg_pos.did_page_crc = false;
700                 con->out_more = 1;  /* data + footer will follow */
701         } else {
702                 /* no, queue up footer too and be done */
703                 prepare_write_message_footer(con);
704         }
705
706         set_bit(WRITE_PENDING, &con->flags);
707 }
708
709 /*
710  * Prepare an ack.
711  */
712 static void prepare_write_ack(struct ceph_connection *con)
713 {
714         dout("prepare_write_ack %p %llu -> %llu\n", con,
715              con->in_seq_acked, con->in_seq);
716         con->in_seq_acked = con->in_seq;
717
718         con_out_kvec_reset(con);
719
720         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
721
722         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
723         con_out_kvec_add(con, sizeof (con->out_temp_ack),
724                                 &con->out_temp_ack);
725
726         con->out_more = 1;  /* more will follow.. eventually.. */
727         set_bit(WRITE_PENDING, &con->flags);
728 }
729
730 /*
731  * Prepare to write keepalive byte.
732  */
733 static void prepare_write_keepalive(struct ceph_connection *con)
734 {
735         dout("prepare_write_keepalive %p\n", con);
736         con_out_kvec_reset(con);
737         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
738         set_bit(WRITE_PENDING, &con->flags);
739 }
740
741 /*
742  * Connection negotiation.
743  */
744
745 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
746                                                 int *auth_proto)
747 {
748         struct ceph_auth_handshake *auth;
749
750         if (!con->ops->get_authorizer) {
751                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
752                 con->out_connect.authorizer_len = 0;
753
754                 return NULL;
755         }
756
757         /* Can't hold the mutex while getting authorizer */
758
759         mutex_unlock(&con->mutex);
760
761         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
762
763         mutex_lock(&con->mutex);
764
765         if (IS_ERR(auth))
766                 return auth;
767         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
768                 return ERR_PTR(-EAGAIN);
769
770         con->auth_reply_buf = auth->authorizer_reply_buf;
771         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
772
773
774         return auth;
775 }
776
777 /*
778  * We connected to a peer and are saying hello.
779  */
780 static void prepare_write_banner(struct ceph_connection *con)
781 {
782         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
783         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
784                                         &con->msgr->my_enc_addr);
785
786         con->out_more = 0;
787         set_bit(WRITE_PENDING, &con->flags);
788 }
789
790 static int prepare_write_connect(struct ceph_connection *con)
791 {
792         unsigned global_seq = get_global_seq(con->msgr, 0);
793         int proto;
794         int auth_proto;
795         struct ceph_auth_handshake *auth;
796
797         switch (con->peer_name.type) {
798         case CEPH_ENTITY_TYPE_MON:
799                 proto = CEPH_MONC_PROTOCOL;
800                 break;
801         case CEPH_ENTITY_TYPE_OSD:
802                 proto = CEPH_OSDC_PROTOCOL;
803                 break;
804         case CEPH_ENTITY_TYPE_MDS:
805                 proto = CEPH_MDSC_PROTOCOL;
806                 break;
807         default:
808                 BUG();
809         }
810
811         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
812              con->connect_seq, global_seq, proto);
813
814         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
815         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
816         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
817         con->out_connect.global_seq = cpu_to_le32(global_seq);
818         con->out_connect.protocol_version = cpu_to_le32(proto);
819         con->out_connect.flags = 0;
820
821         auth_proto = CEPH_AUTH_UNKNOWN;
822         auth = get_connect_authorizer(con, &auth_proto);
823         if (IS_ERR(auth))
824                 return PTR_ERR(auth);
825
826         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
827         con->out_connect.authorizer_len = auth ?
828                 cpu_to_le32(auth->authorizer_buf_len) : 0;
829
830         con_out_kvec_add(con, sizeof (con->out_connect),
831                                         &con->out_connect);
832         if (auth && auth->authorizer_buf_len)
833                 con_out_kvec_add(con, auth->authorizer_buf_len,
834                                         auth->authorizer_buf);
835
836         con->out_more = 0;
837         set_bit(WRITE_PENDING, &con->flags);
838
839         return 0;
840 }
841
842 /*
843  * write as much of pending kvecs to the socket as we can.
844  *  1 -> done
845  *  0 -> socket full, but more to do
846  * <0 -> error
847  */
848 static int write_partial_kvec(struct ceph_connection *con)
849 {
850         int ret;
851
852         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
853         while (con->out_kvec_bytes > 0) {
854                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
855                                        con->out_kvec_left, con->out_kvec_bytes,
856                                        con->out_more);
857                 if (ret <= 0)
858                         goto out;
859                 con->out_kvec_bytes -= ret;
860                 if (con->out_kvec_bytes == 0)
861                         break;            /* done */
862
863                 /* account for full iov entries consumed */
864                 while (ret >= con->out_kvec_cur->iov_len) {
865                         BUG_ON(!con->out_kvec_left);
866                         ret -= con->out_kvec_cur->iov_len;
867                         con->out_kvec_cur++;
868                         con->out_kvec_left--;
869                 }
870                 /* and for a partially-consumed entry */
871                 if (ret) {
872                         con->out_kvec_cur->iov_len -= ret;
873                         con->out_kvec_cur->iov_base += ret;
874                 }
875         }
876         con->out_kvec_left = 0;
877         con->out_kvec_is_msg = false;
878         ret = 1;
879 out:
880         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
881              con->out_kvec_bytes, con->out_kvec_left, ret);
882         return ret;  /* done! */
883 }
884
885 #ifdef CONFIG_BLOCK
886 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
887 {
888         if (!bio) {
889                 *iter = NULL;
890                 *seg = 0;
891                 return;
892         }
893         *iter = bio;
894         *seg = bio->bi_idx;
895 }
896
897 static void iter_bio_next(struct bio **bio_iter, int *seg)
898 {
899         if (*bio_iter == NULL)
900                 return;
901
902         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
903
904         (*seg)++;
905         if (*seg == (*bio_iter)->bi_vcnt)
906                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
907 }
908 #endif
909
910 /*
911  * Write as much message data payload as we can.  If we finish, queue
912  * up the footer.
913  *  1 -> done, footer is now queued in out_kvec[].
914  *  0 -> socket full, but more to do
915  * <0 -> error
916  */
917 static int write_partial_msg_pages(struct ceph_connection *con)
918 {
919         struct ceph_msg *msg = con->out_msg;
920         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
921         size_t len;
922         bool do_datacrc = !con->msgr->nocrc;
923         int ret;
924         int total_max_write;
925         int in_trail = 0;
926         size_t trail_len = (msg->trail ? msg->trail->length : 0);
927
928         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
929              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
930              con->out_msg_pos.page_pos);
931
932 #ifdef CONFIG_BLOCK
933         if (msg->bio && !msg->bio_iter)
934                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
935 #endif
936
937         while (data_len > con->out_msg_pos.data_pos) {
938                 struct page *page = NULL;
939                 int max_write = PAGE_SIZE;
940                 int bio_offset = 0;
941
942                 total_max_write = data_len - trail_len -
943                         con->out_msg_pos.data_pos;
944
945                 /*
946                  * if we are calculating the data crc (the default), we need
947                  * to map the page.  if our pages[] has been revoked, use the
948                  * zero page.
949                  */
950
951                 /* have we reached the trail part of the data? */
952                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
953                         in_trail = 1;
954
955                         total_max_write = data_len - con->out_msg_pos.data_pos;
956
957                         page = list_first_entry(&msg->trail->head,
958                                                 struct page, lru);
959                         max_write = PAGE_SIZE;
960                 } else if (msg->pages) {
961                         page = msg->pages[con->out_msg_pos.page];
962                 } else if (msg->pagelist) {
963                         page = list_first_entry(&msg->pagelist->head,
964                                                 struct page, lru);
965 #ifdef CONFIG_BLOCK
966                 } else if (msg->bio) {
967                         struct bio_vec *bv;
968
969                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
970                         page = bv->bv_page;
971                         bio_offset = bv->bv_offset;
972                         max_write = bv->bv_len;
973 #endif
974                 } else {
975                         page = zero_page;
976                 }
977                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
978                             total_max_write);
979
980                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
981                         void *base;
982                         u32 crc;
983                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
984                         char *kaddr;
985
986                         kaddr = kmap(page);
987                         BUG_ON(kaddr == NULL);
988                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
989                         crc = crc32c(tmpcrc, base, len);
990                         con->out_msg->footer.data_crc = cpu_to_le32(crc);
991                         con->out_msg_pos.did_page_crc = true;
992                 }
993                 ret = ceph_tcp_sendpage(con->sock, page,
994                                       con->out_msg_pos.page_pos + bio_offset,
995                                       len, 1);
996
997                 if (do_datacrc)
998                         kunmap(page);
999
1000                 if (ret <= 0)
1001                         goto out;
1002
1003                 con->out_msg_pos.data_pos += ret;
1004                 con->out_msg_pos.page_pos += ret;
1005                 if (ret == len) {
1006                         con->out_msg_pos.page_pos = 0;
1007                         con->out_msg_pos.page++;
1008                         con->out_msg_pos.did_page_crc = false;
1009                         if (in_trail)
1010                                 list_move_tail(&page->lru,
1011                                                &msg->trail->head);
1012                         else if (msg->pagelist)
1013                                 list_move_tail(&page->lru,
1014                                                &msg->pagelist->head);
1015 #ifdef CONFIG_BLOCK
1016                         else if (msg->bio)
1017                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1018 #endif
1019                 }
1020         }
1021
1022         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1023
1024         /* prepare and queue up footer, too */
1025         if (!do_datacrc)
1026                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1027         con_out_kvec_reset(con);
1028         prepare_write_message_footer(con);
1029         ret = 1;
1030 out:
1031         return ret;
1032 }
1033
1034 /*
1035  * write some zeros
1036  */
1037 static int write_partial_skip(struct ceph_connection *con)
1038 {
1039         int ret;
1040
1041         while (con->out_skip > 0) {
1042                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1043
1044                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1045                 if (ret <= 0)
1046                         goto out;
1047                 con->out_skip -= ret;
1048         }
1049         ret = 1;
1050 out:
1051         return ret;
1052 }
1053
1054 /*
1055  * Prepare to read connection handshake, or an ack.
1056  */
1057 static void prepare_read_banner(struct ceph_connection *con)
1058 {
1059         dout("prepare_read_banner %p\n", con);
1060         con->in_base_pos = 0;
1061 }
1062
1063 static void prepare_read_connect(struct ceph_connection *con)
1064 {
1065         dout("prepare_read_connect %p\n", con);
1066         con->in_base_pos = 0;
1067 }
1068
1069 static void prepare_read_ack(struct ceph_connection *con)
1070 {
1071         dout("prepare_read_ack %p\n", con);
1072         con->in_base_pos = 0;
1073 }
1074
1075 static void prepare_read_tag(struct ceph_connection *con)
1076 {
1077         dout("prepare_read_tag %p\n", con);
1078         con->in_base_pos = 0;
1079         con->in_tag = CEPH_MSGR_TAG_READY;
1080 }
1081
1082 /*
1083  * Prepare to read a message.
1084  */
1085 static int prepare_read_message(struct ceph_connection *con)
1086 {
1087         dout("prepare_read_message %p\n", con);
1088         BUG_ON(con->in_msg != NULL);
1089         con->in_base_pos = 0;
1090         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1091         return 0;
1092 }
1093
1094
1095 static int read_partial(struct ceph_connection *con,
1096                         int end, int size, void *object)
1097 {
1098         while (con->in_base_pos < end) {
1099                 int left = end - con->in_base_pos;
1100                 int have = size - left;
1101                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1102                 if (ret <= 0)
1103                         return ret;
1104                 con->in_base_pos += ret;
1105         }
1106         return 1;
1107 }
1108
1109
1110 /*
1111  * Read all or part of the connect-side handshake on a new connection
1112  */
1113 static int read_partial_banner(struct ceph_connection *con)
1114 {
1115         int size;
1116         int end;
1117         int ret;
1118
1119         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1120
1121         /* peer's banner */
1122         size = strlen(CEPH_BANNER);
1123         end = size;
1124         ret = read_partial(con, end, size, con->in_banner);
1125         if (ret <= 0)
1126                 goto out;
1127
1128         size = sizeof (con->actual_peer_addr);
1129         end += size;
1130         ret = read_partial(con, end, size, &con->actual_peer_addr);
1131         if (ret <= 0)
1132                 goto out;
1133
1134         size = sizeof (con->peer_addr_for_me);
1135         end += size;
1136         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1137         if (ret <= 0)
1138                 goto out;
1139
1140 out:
1141         return ret;
1142 }
1143
1144 static int read_partial_connect(struct ceph_connection *con)
1145 {
1146         int size;
1147         int end;
1148         int ret;
1149
1150         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1151
1152         size = sizeof (con->in_reply);
1153         end = size;
1154         ret = read_partial(con, end, size, &con->in_reply);
1155         if (ret <= 0)
1156                 goto out;
1157
1158         size = le32_to_cpu(con->in_reply.authorizer_len);
1159         end += size;
1160         ret = read_partial(con, end, size, con->auth_reply_buf);
1161         if (ret <= 0)
1162                 goto out;
1163
1164         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1165              con, (int)con->in_reply.tag,
1166              le32_to_cpu(con->in_reply.connect_seq),
1167              le32_to_cpu(con->in_reply.global_seq));
1168 out:
1169         return ret;
1170
1171 }
1172
1173 /*
1174  * Verify the hello banner looks okay.
1175  */
1176 static int verify_hello(struct ceph_connection *con)
1177 {
1178         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1179                 pr_err("connect to %s got bad banner\n",
1180                        ceph_pr_addr(&con->peer_addr.in_addr));
1181                 con->error_msg = "protocol error, bad banner";
1182                 return -1;
1183         }
1184         return 0;
1185 }
1186
1187 static bool addr_is_blank(struct sockaddr_storage *ss)
1188 {
1189         switch (ss->ss_family) {
1190         case AF_INET:
1191                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1192         case AF_INET6:
1193                 return
1194                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1195                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1196                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1197                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1198         }
1199         return false;
1200 }
1201
1202 static int addr_port(struct sockaddr_storage *ss)
1203 {
1204         switch (ss->ss_family) {
1205         case AF_INET:
1206                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1207         case AF_INET6:
1208                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1209         }
1210         return 0;
1211 }
1212
1213 static void addr_set_port(struct sockaddr_storage *ss, int p)
1214 {
1215         switch (ss->ss_family) {
1216         case AF_INET:
1217                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1218                 break;
1219         case AF_INET6:
1220                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1221                 break;
1222         }
1223 }
1224
1225 /*
1226  * Unlike other *_pton function semantics, zero indicates success.
1227  */
1228 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1229                 char delim, const char **ipend)
1230 {
1231         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1232         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1233
1234         memset(ss, 0, sizeof(*ss));
1235
1236         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1237                 ss->ss_family = AF_INET;
1238                 return 0;
1239         }
1240
1241         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1242                 ss->ss_family = AF_INET6;
1243                 return 0;
1244         }
1245
1246         return -EINVAL;
1247 }
1248
1249 /*
1250  * Extract hostname string and resolve using kernel DNS facility.
1251  */
1252 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1253 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1254                 struct sockaddr_storage *ss, char delim, const char **ipend)
1255 {
1256         const char *end, *delim_p;
1257         char *colon_p, *ip_addr = NULL;
1258         int ip_len, ret;
1259
1260         /*
1261          * The end of the hostname occurs immediately preceding the delimiter or
1262          * the port marker (':') where the delimiter takes precedence.
1263          */
1264         delim_p = memchr(name, delim, namelen);
1265         colon_p = memchr(name, ':', namelen);
1266
1267         if (delim_p && colon_p)
1268                 end = delim_p < colon_p ? delim_p : colon_p;
1269         else if (!delim_p && colon_p)
1270                 end = colon_p;
1271         else {
1272                 end = delim_p;
1273                 if (!end) /* case: hostname:/ */
1274                         end = name + namelen;
1275         }
1276
1277         if (end <= name)
1278                 return -EINVAL;
1279
1280         /* do dns_resolve upcall */
1281         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1282         if (ip_len > 0)
1283                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1284         else
1285                 ret = -ESRCH;
1286
1287         kfree(ip_addr);
1288
1289         *ipend = end;
1290
1291         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1292                         ret, ret ? "failed" : ceph_pr_addr(ss));
1293
1294         return ret;
1295 }
1296 #else
1297 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1298                 struct sockaddr_storage *ss, char delim, const char **ipend)
1299 {
1300         return -EINVAL;
1301 }
1302 #endif
1303
1304 /*
1305  * Parse a server name (IP or hostname). If a valid IP address is not found
1306  * then try to extract a hostname to resolve using userspace DNS upcall.
1307  */
1308 static int ceph_parse_server_name(const char *name, size_t namelen,
1309                         struct sockaddr_storage *ss, char delim, const char **ipend)
1310 {
1311         int ret;
1312
1313         ret = ceph_pton(name, namelen, ss, delim, ipend);
1314         if (ret)
1315                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1316
1317         return ret;
1318 }
1319
1320 /*
1321  * Parse an ip[:port] list into an addr array.  Use the default
1322  * monitor port if a port isn't specified.
1323  */
1324 int ceph_parse_ips(const char *c, const char *end,
1325                    struct ceph_entity_addr *addr,
1326                    int max_count, int *count)
1327 {
1328         int i, ret = -EINVAL;
1329         const char *p = c;
1330
1331         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1332         for (i = 0; i < max_count; i++) {
1333                 const char *ipend;
1334                 struct sockaddr_storage *ss = &addr[i].in_addr;
1335                 int port;
1336                 char delim = ',';
1337
1338                 if (*p == '[') {
1339                         delim = ']';
1340                         p++;
1341                 }
1342
1343                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1344                 if (ret)
1345                         goto bad;
1346                 ret = -EINVAL;
1347
1348                 p = ipend;
1349
1350                 if (delim == ']') {
1351                         if (*p != ']') {
1352                                 dout("missing matching ']'\n");
1353                                 goto bad;
1354                         }
1355                         p++;
1356                 }
1357
1358                 /* port? */
1359                 if (p < end && *p == ':') {
1360                         port = 0;
1361                         p++;
1362                         while (p < end && *p >= '0' && *p <= '9') {
1363                                 port = (port * 10) + (*p - '0');
1364                                 p++;
1365                         }
1366                         if (port > 65535 || port == 0)
1367                                 goto bad;
1368                 } else {
1369                         port = CEPH_MON_PORT;
1370                 }
1371
1372                 addr_set_port(ss, port);
1373
1374                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1375
1376                 if (p == end)
1377                         break;
1378                 if (*p != ',')
1379                         goto bad;
1380                 p++;
1381         }
1382
1383         if (p != end)
1384                 goto bad;
1385
1386         if (count)
1387                 *count = i + 1;
1388         return 0;
1389
1390 bad:
1391         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1392         return ret;
1393 }
1394 EXPORT_SYMBOL(ceph_parse_ips);
1395
1396 static int process_banner(struct ceph_connection *con)
1397 {
1398         dout("process_banner on %p\n", con);
1399
1400         if (verify_hello(con) < 0)
1401                 return -1;
1402
1403         ceph_decode_addr(&con->actual_peer_addr);
1404         ceph_decode_addr(&con->peer_addr_for_me);
1405
1406         /*
1407          * Make sure the other end is who we wanted.  note that the other
1408          * end may not yet know their ip address, so if it's 0.0.0.0, give
1409          * them the benefit of the doubt.
1410          */
1411         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1412                    sizeof(con->peer_addr)) != 0 &&
1413             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1414               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1415                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1416                            ceph_pr_addr(&con->peer_addr.in_addr),
1417                            (int)le32_to_cpu(con->peer_addr.nonce),
1418                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1419                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1420                 con->error_msg = "wrong peer at address";
1421                 return -1;
1422         }
1423
1424         /*
1425          * did we learn our address?
1426          */
1427         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1428                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1429
1430                 memcpy(&con->msgr->inst.addr.in_addr,
1431                        &con->peer_addr_for_me.in_addr,
1432                        sizeof(con->peer_addr_for_me.in_addr));
1433                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1434                 encode_my_addr(con->msgr);
1435                 dout("process_banner learned my addr is %s\n",
1436                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1437         }
1438
1439         set_bit(NEGOTIATING, &con->state);
1440         prepare_read_connect(con);
1441         return 0;
1442 }
1443
1444 static void fail_protocol(struct ceph_connection *con)
1445 {
1446         reset_connection(con);
1447         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1448 }
1449
1450 static int process_connect(struct ceph_connection *con)
1451 {
1452         u64 sup_feat = con->msgr->supported_features;
1453         u64 req_feat = con->msgr->required_features;
1454         u64 server_feat = le64_to_cpu(con->in_reply.features);
1455         int ret;
1456
1457         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1458
1459         switch (con->in_reply.tag) {
1460         case CEPH_MSGR_TAG_FEATURES:
1461                 pr_err("%s%lld %s feature set mismatch,"
1462                        " my %llx < server's %llx, missing %llx\n",
1463                        ENTITY_NAME(con->peer_name),
1464                        ceph_pr_addr(&con->peer_addr.in_addr),
1465                        sup_feat, server_feat, server_feat & ~sup_feat);
1466                 con->error_msg = "missing required protocol features";
1467                 fail_protocol(con);
1468                 return -1;
1469
1470         case CEPH_MSGR_TAG_BADPROTOVER:
1471                 pr_err("%s%lld %s protocol version mismatch,"
1472                        " my %d != server's %d\n",
1473                        ENTITY_NAME(con->peer_name),
1474                        ceph_pr_addr(&con->peer_addr.in_addr),
1475                        le32_to_cpu(con->out_connect.protocol_version),
1476                        le32_to_cpu(con->in_reply.protocol_version));
1477                 con->error_msg = "protocol version mismatch";
1478                 fail_protocol(con);
1479                 return -1;
1480
1481         case CEPH_MSGR_TAG_BADAUTHORIZER:
1482                 con->auth_retry++;
1483                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1484                      con->auth_retry);
1485                 if (con->auth_retry == 2) {
1486                         con->error_msg = "connect authorization failure";
1487                         return -1;
1488                 }
1489                 con->auth_retry = 1;
1490                 con_out_kvec_reset(con);
1491                 ret = prepare_write_connect(con);
1492                 if (ret < 0)
1493                         return ret;
1494                 prepare_read_connect(con);
1495                 break;
1496
1497         case CEPH_MSGR_TAG_RESETSESSION:
1498                 /*
1499                  * If we connected with a large connect_seq but the peer
1500                  * has no record of a session with us (no connection, or
1501                  * connect_seq == 0), they will send RESETSESION to indicate
1502                  * that they must have reset their session, and may have
1503                  * dropped messages.
1504                  */
1505                 dout("process_connect got RESET peer seq %u\n",
1506                      le32_to_cpu(con->in_connect.connect_seq));
1507                 pr_err("%s%lld %s connection reset\n",
1508                        ENTITY_NAME(con->peer_name),
1509                        ceph_pr_addr(&con->peer_addr.in_addr));
1510                 reset_connection(con);
1511                 con_out_kvec_reset(con);
1512                 ret = prepare_write_connect(con);
1513                 if (ret < 0)
1514                         return ret;
1515                 prepare_read_connect(con);
1516
1517                 /* Tell ceph about it. */
1518                 mutex_unlock(&con->mutex);
1519                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1520                 if (con->ops->peer_reset)
1521                         con->ops->peer_reset(con);
1522                 mutex_lock(&con->mutex);
1523                 if (test_bit(CLOSED, &con->state) ||
1524                     test_bit(OPENING, &con->state))
1525                         return -EAGAIN;
1526                 break;
1527
1528         case CEPH_MSGR_TAG_RETRY_SESSION:
1529                 /*
1530                  * If we sent a smaller connect_seq than the peer has, try
1531                  * again with a larger value.
1532                  */
1533                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1534                      le32_to_cpu(con->out_connect.connect_seq),
1535                      le32_to_cpu(con->in_connect.connect_seq));
1536                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1537                 con_out_kvec_reset(con);
1538                 ret = prepare_write_connect(con);
1539                 if (ret < 0)
1540                         return ret;
1541                 prepare_read_connect(con);
1542                 break;
1543
1544         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1545                 /*
1546                  * If we sent a smaller global_seq than the peer has, try
1547                  * again with a larger value.
1548                  */
1549                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1550                      con->peer_global_seq,
1551                      le32_to_cpu(con->in_connect.global_seq));
1552                 get_global_seq(con->msgr,
1553                                le32_to_cpu(con->in_connect.global_seq));
1554                 con_out_kvec_reset(con);
1555                 ret = prepare_write_connect(con);
1556                 if (ret < 0)
1557                         return ret;
1558                 prepare_read_connect(con);
1559                 break;
1560
1561         case CEPH_MSGR_TAG_READY:
1562                 if (req_feat & ~server_feat) {
1563                         pr_err("%s%lld %s protocol feature mismatch,"
1564                                " my required %llx > server's %llx, need %llx\n",
1565                                ENTITY_NAME(con->peer_name),
1566                                ceph_pr_addr(&con->peer_addr.in_addr),
1567                                req_feat, server_feat, req_feat & ~server_feat);
1568                         con->error_msg = "missing required protocol features";
1569                         fail_protocol(con);
1570                         return -1;
1571                 }
1572                 clear_bit(CONNECTING, &con->state);
1573                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1574                 con->connect_seq++;
1575                 con->peer_features = server_feat;
1576                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1577                      con->peer_global_seq,
1578                      le32_to_cpu(con->in_reply.connect_seq),
1579                      con->connect_seq);
1580                 WARN_ON(con->connect_seq !=
1581                         le32_to_cpu(con->in_reply.connect_seq));
1582
1583                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1584                         set_bit(LOSSYTX, &con->flags);
1585
1586                 prepare_read_tag(con);
1587                 break;
1588
1589         case CEPH_MSGR_TAG_WAIT:
1590                 /*
1591                  * If there is a connection race (we are opening
1592                  * connections to each other), one of us may just have
1593                  * to WAIT.  This shouldn't happen if we are the
1594                  * client.
1595                  */
1596                 pr_err("process_connect got WAIT as client\n");
1597                 con->error_msg = "protocol error, got WAIT as client";
1598                 return -1;
1599
1600         default:
1601                 pr_err("connect protocol error, will retry\n");
1602                 con->error_msg = "protocol error, garbage tag during connect";
1603                 return -1;
1604         }
1605         return 0;
1606 }
1607
1608
1609 /*
1610  * read (part of) an ack
1611  */
1612 static int read_partial_ack(struct ceph_connection *con)
1613 {
1614         int size = sizeof (con->in_temp_ack);
1615         int end = size;
1616
1617         return read_partial(con, end, size, &con->in_temp_ack);
1618 }
1619
1620
1621 /*
1622  * We can finally discard anything that's been acked.
1623  */
1624 static void process_ack(struct ceph_connection *con)
1625 {
1626         struct ceph_msg *m;
1627         u64 ack = le64_to_cpu(con->in_temp_ack);
1628         u64 seq;
1629
1630         while (!list_empty(&con->out_sent)) {
1631                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1632                                      list_head);
1633                 seq = le64_to_cpu(m->hdr.seq);
1634                 if (seq > ack)
1635                         break;
1636                 dout("got ack for seq %llu type %d at %p\n", seq,
1637                      le16_to_cpu(m->hdr.type), m);
1638                 m->ack_stamp = jiffies;
1639                 ceph_msg_remove(m);
1640         }
1641         prepare_read_tag(con);
1642 }
1643
1644
1645
1646
1647 static int read_partial_message_section(struct ceph_connection *con,
1648                                         struct kvec *section,
1649                                         unsigned int sec_len, u32 *crc)
1650 {
1651         int ret, left;
1652
1653         BUG_ON(!section);
1654
1655         while (section->iov_len < sec_len) {
1656                 BUG_ON(section->iov_base == NULL);
1657                 left = sec_len - section->iov_len;
1658                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1659                                        section->iov_len, left);
1660                 if (ret <= 0)
1661                         return ret;
1662                 section->iov_len += ret;
1663         }
1664         if (section->iov_len == sec_len)
1665                 *crc = crc32c(0, section->iov_base, section->iov_len);
1666
1667         return 1;
1668 }
1669
1670 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1671                                 struct ceph_msg_header *hdr);
1672
1673
1674 static int read_partial_message_pages(struct ceph_connection *con,
1675                                       struct page **pages,
1676                                       unsigned data_len, bool do_datacrc)
1677 {
1678         void *p;
1679         int ret;
1680         int left;
1681
1682         left = min((int)(data_len - con->in_msg_pos.data_pos),
1683                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1684         /* (page) data */
1685         BUG_ON(pages == NULL);
1686         p = kmap(pages[con->in_msg_pos.page]);
1687         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1688                                left);
1689         if (ret > 0 && do_datacrc)
1690                 con->in_data_crc =
1691                         crc32c(con->in_data_crc,
1692                                   p + con->in_msg_pos.page_pos, ret);
1693         kunmap(pages[con->in_msg_pos.page]);
1694         if (ret <= 0)
1695                 return ret;
1696         con->in_msg_pos.data_pos += ret;
1697         con->in_msg_pos.page_pos += ret;
1698         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1699                 con->in_msg_pos.page_pos = 0;
1700                 con->in_msg_pos.page++;
1701         }
1702
1703         return ret;
1704 }
1705
1706 #ifdef CONFIG_BLOCK
1707 static int read_partial_message_bio(struct ceph_connection *con,
1708                                     struct bio **bio_iter, int *bio_seg,
1709                                     unsigned data_len, bool do_datacrc)
1710 {
1711         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1712         void *p;
1713         int ret, left;
1714
1715         if (IS_ERR(bv))
1716                 return PTR_ERR(bv);
1717
1718         left = min((int)(data_len - con->in_msg_pos.data_pos),
1719                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1720
1721         p = kmap(bv->bv_page) + bv->bv_offset;
1722
1723         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1724                                left);
1725         if (ret > 0 && do_datacrc)
1726                 con->in_data_crc =
1727                         crc32c(con->in_data_crc,
1728                                   p + con->in_msg_pos.page_pos, ret);
1729         kunmap(bv->bv_page);
1730         if (ret <= 0)
1731                 return ret;
1732         con->in_msg_pos.data_pos += ret;
1733         con->in_msg_pos.page_pos += ret;
1734         if (con->in_msg_pos.page_pos == bv->bv_len) {
1735                 con->in_msg_pos.page_pos = 0;
1736                 iter_bio_next(bio_iter, bio_seg);
1737         }
1738
1739         return ret;
1740 }
1741 #endif
1742
1743 /*
1744  * read (part of) a message.
1745  */
1746 static int read_partial_message(struct ceph_connection *con)
1747 {
1748         struct ceph_msg *m = con->in_msg;
1749         int size;
1750         int end;
1751         int ret;
1752         unsigned front_len, middle_len, data_len;
1753         bool do_datacrc = !con->msgr->nocrc;
1754         u64 seq;
1755         u32 crc;
1756
1757         dout("read_partial_message con %p msg %p\n", con, m);
1758
1759         /* header */
1760         size = sizeof (con->in_hdr);
1761         end = size;
1762         ret = read_partial(con, end, size, &con->in_hdr);
1763         if (ret <= 0)
1764                 return ret;
1765
1766         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1767         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1768                 pr_err("read_partial_message bad hdr "
1769                        " crc %u != expected %u\n",
1770                        crc, con->in_hdr.crc);
1771                 return -EBADMSG;
1772         }
1773
1774         front_len = le32_to_cpu(con->in_hdr.front_len);
1775         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1776                 return -EIO;
1777         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1778         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1779                 return -EIO;
1780         data_len = le32_to_cpu(con->in_hdr.data_len);
1781         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1782                 return -EIO;
1783
1784         /* verify seq# */
1785         seq = le64_to_cpu(con->in_hdr.seq);
1786         if ((s64)seq - (s64)con->in_seq < 1) {
1787                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1788                         ENTITY_NAME(con->peer_name),
1789                         ceph_pr_addr(&con->peer_addr.in_addr),
1790                         seq, con->in_seq + 1);
1791                 con->in_base_pos = -front_len - middle_len - data_len -
1792                         sizeof(m->footer);
1793                 con->in_tag = CEPH_MSGR_TAG_READY;
1794                 return 0;
1795         } else if ((s64)seq - (s64)con->in_seq > 1) {
1796                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1797                        seq, con->in_seq + 1);
1798                 con->error_msg = "bad message sequence # for incoming message";
1799                 return -EBADMSG;
1800         }
1801
1802         /* allocate message? */
1803         if (!con->in_msg) {
1804                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1805                      con->in_hdr.front_len, con->in_hdr.data_len);
1806                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1807                         /* skip this message */
1808                         dout("alloc_msg said skip message\n");
1809                         BUG_ON(con->in_msg);
1810                         con->in_base_pos = -front_len - middle_len - data_len -
1811                                 sizeof(m->footer);
1812                         con->in_tag = CEPH_MSGR_TAG_READY;
1813                         con->in_seq++;
1814                         return 0;
1815                 }
1816                 if (!con->in_msg) {
1817                         con->error_msg =
1818                                 "error allocating memory for incoming message";
1819                         return -ENOMEM;
1820                 }
1821
1822                 BUG_ON(con->in_msg->con != con);
1823                 m = con->in_msg;
1824                 m->front.iov_len = 0;    /* haven't read it yet */
1825                 if (m->middle)
1826                         m->middle->vec.iov_len = 0;
1827
1828                 con->in_msg_pos.page = 0;
1829                 if (m->pages)
1830                         con->in_msg_pos.page_pos = m->page_alignment;
1831                 else
1832                         con->in_msg_pos.page_pos = 0;
1833                 con->in_msg_pos.data_pos = 0;
1834         }
1835
1836         /* front */
1837         ret = read_partial_message_section(con, &m->front, front_len,
1838                                            &con->in_front_crc);
1839         if (ret <= 0)
1840                 return ret;
1841
1842         /* middle */
1843         if (m->middle) {
1844                 ret = read_partial_message_section(con, &m->middle->vec,
1845                                                    middle_len,
1846                                                    &con->in_middle_crc);
1847                 if (ret <= 0)
1848                         return ret;
1849         }
1850 #ifdef CONFIG_BLOCK
1851         if (m->bio && !m->bio_iter)
1852                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1853 #endif
1854
1855         /* (page) data */
1856         while (con->in_msg_pos.data_pos < data_len) {
1857                 if (m->pages) {
1858                         ret = read_partial_message_pages(con, m->pages,
1859                                                  data_len, do_datacrc);
1860                         if (ret <= 0)
1861                                 return ret;
1862 #ifdef CONFIG_BLOCK
1863                 } else if (m->bio) {
1864
1865                         ret = read_partial_message_bio(con,
1866                                                  &m->bio_iter, &m->bio_seg,
1867                                                  data_len, do_datacrc);
1868                         if (ret <= 0)
1869                                 return ret;
1870 #endif
1871                 } else {
1872                         BUG_ON(1);
1873                 }
1874         }
1875
1876         /* footer */
1877         size = sizeof (m->footer);
1878         end += size;
1879         ret = read_partial(con, end, size, &m->footer);
1880         if (ret <= 0)
1881                 return ret;
1882
1883         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1884              m, front_len, m->footer.front_crc, middle_len,
1885              m->footer.middle_crc, data_len, m->footer.data_crc);
1886
1887         /* crc ok? */
1888         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1889                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1890                        m, con->in_front_crc, m->footer.front_crc);
1891                 return -EBADMSG;
1892         }
1893         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1894                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1895                        m, con->in_middle_crc, m->footer.middle_crc);
1896                 return -EBADMSG;
1897         }
1898         if (do_datacrc &&
1899             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1900             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1901                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1902                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1903                 return -EBADMSG;
1904         }
1905
1906         return 1; /* done! */
1907 }
1908
1909 /*
1910  * Process message.  This happens in the worker thread.  The callback should
1911  * be careful not to do anything that waits on other incoming messages or it
1912  * may deadlock.
1913  */
1914 static void process_message(struct ceph_connection *con)
1915 {
1916         struct ceph_msg *msg;
1917
1918         BUG_ON(con->in_msg->con != con);
1919         con->in_msg->con = NULL;
1920         msg = con->in_msg;
1921         con->in_msg = NULL;
1922         ceph_con_put(con);
1923
1924         /* if first message, set peer_name */
1925         if (con->peer_name.type == 0)
1926                 con->peer_name = msg->hdr.src;
1927
1928         con->in_seq++;
1929         mutex_unlock(&con->mutex);
1930
1931         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1932              msg, le64_to_cpu(msg->hdr.seq),
1933              ENTITY_NAME(msg->hdr.src),
1934              le16_to_cpu(msg->hdr.type),
1935              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1936              le32_to_cpu(msg->hdr.front_len),
1937              le32_to_cpu(msg->hdr.data_len),
1938              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1939         con->ops->dispatch(con, msg);
1940
1941         mutex_lock(&con->mutex);
1942         prepare_read_tag(con);
1943 }
1944
1945
1946 /*
1947  * Write something to the socket.  Called in a worker thread when the
1948  * socket appears to be writeable and we have something ready to send.
1949  */
1950 static int try_write(struct ceph_connection *con)
1951 {
1952         int ret = 1;
1953
1954         dout("try_write start %p state %lu nref %d\n", con, con->state,
1955              atomic_read(&con->nref));
1956
1957 more:
1958         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1959
1960         /* open the socket first? */
1961         if (con->sock == NULL) {
1962                 clear_bit(NEGOTIATING, &con->state);
1963                 set_bit(CONNECTING, &con->state);
1964
1965                 con_out_kvec_reset(con);
1966                 prepare_write_banner(con);
1967                 ret = prepare_write_connect(con);
1968                 if (ret < 0)
1969                         goto out;
1970                 prepare_read_banner(con);
1971
1972                 BUG_ON(con->in_msg);
1973                 con->in_tag = CEPH_MSGR_TAG_READY;
1974                 dout("try_write initiating connect on %p new state %lu\n",
1975                      con, con->state);
1976                 ret = ceph_tcp_connect(con);
1977                 if (ret < 0) {
1978                         con->error_msg = "connect error";
1979                         goto out;
1980                 }
1981         }
1982
1983 more_kvec:
1984         /* kvec data queued? */
1985         if (con->out_skip) {
1986                 ret = write_partial_skip(con);
1987                 if (ret <= 0)
1988                         goto out;
1989         }
1990         if (con->out_kvec_left) {
1991                 ret = write_partial_kvec(con);
1992                 if (ret <= 0)
1993                         goto out;
1994         }
1995
1996         /* msg pages? */
1997         if (con->out_msg) {
1998                 if (con->out_msg_done) {
1999                         ceph_msg_put(con->out_msg);
2000                         con->out_msg = NULL;   /* we're done with this one */
2001                         goto do_next;
2002                 }
2003
2004                 ret = write_partial_msg_pages(con);
2005                 if (ret == 1)
2006                         goto more_kvec;  /* we need to send the footer, too! */
2007                 if (ret == 0)
2008                         goto out;
2009                 if (ret < 0) {
2010                         dout("try_write write_partial_msg_pages err %d\n",
2011                              ret);
2012                         goto out;
2013                 }
2014         }
2015
2016 do_next:
2017         if (!test_bit(CONNECTING, &con->state)) {
2018                 /* is anything else pending? */
2019                 if (!list_empty(&con->out_queue)) {
2020                         prepare_write_message(con);
2021                         goto more;
2022                 }
2023                 if (con->in_seq > con->in_seq_acked) {
2024                         prepare_write_ack(con);
2025                         goto more;
2026                 }
2027                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2028                         prepare_write_keepalive(con);
2029                         goto more;
2030                 }
2031         }
2032
2033         /* Nothing to do! */
2034         clear_bit(WRITE_PENDING, &con->flags);
2035         dout("try_write nothing else to write.\n");
2036         ret = 0;
2037 out:
2038         dout("try_write done on %p ret %d\n", con, ret);
2039         return ret;
2040 }
2041
2042
2043
2044 /*
2045  * Read what we can from the socket.
2046  */
2047 static int try_read(struct ceph_connection *con)
2048 {
2049         int ret = -1;
2050
2051         if (!con->sock)
2052                 return 0;
2053
2054         if (test_bit(STANDBY, &con->state))
2055                 return 0;
2056
2057         dout("try_read start on %p\n", con);
2058
2059 more:
2060         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2061              con->in_base_pos);
2062
2063         /*
2064          * process_connect and process_message drop and re-take
2065          * con->mutex.  make sure we handle a racing close or reopen.
2066          */
2067         if (test_bit(CLOSED, &con->state) ||
2068             test_bit(OPENING, &con->state)) {
2069                 ret = -EAGAIN;
2070                 goto out;
2071         }
2072
2073         if (test_bit(CONNECTING, &con->state)) {
2074                 if (!test_bit(NEGOTIATING, &con->state)) {
2075                         dout("try_read connecting\n");
2076                         ret = read_partial_banner(con);
2077                         if (ret <= 0)
2078                                 goto out;
2079                         ret = process_banner(con);
2080                         if (ret < 0)
2081                                 goto out;
2082                 }
2083                 ret = read_partial_connect(con);
2084                 if (ret <= 0)
2085                         goto out;
2086                 ret = process_connect(con);
2087                 if (ret < 0)
2088                         goto out;
2089                 goto more;
2090         }
2091
2092         if (con->in_base_pos < 0) {
2093                 /*
2094                  * skipping + discarding content.
2095                  *
2096                  * FIXME: there must be a better way to do this!
2097                  */
2098                 static char buf[SKIP_BUF_SIZE];
2099                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2100
2101                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2102                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2103                 if (ret <= 0)
2104                         goto out;
2105                 con->in_base_pos += ret;
2106                 if (con->in_base_pos)
2107                         goto more;
2108         }
2109         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2110                 /*
2111                  * what's next?
2112                  */
2113                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2114                 if (ret <= 0)
2115                         goto out;
2116                 dout("try_read got tag %d\n", (int)con->in_tag);
2117                 switch (con->in_tag) {
2118                 case CEPH_MSGR_TAG_MSG:
2119                         prepare_read_message(con);
2120                         break;
2121                 case CEPH_MSGR_TAG_ACK:
2122                         prepare_read_ack(con);
2123                         break;
2124                 case CEPH_MSGR_TAG_CLOSE:
2125                         set_bit(CLOSED, &con->state);   /* fixme */
2126                         goto out;
2127                 default:
2128                         goto bad_tag;
2129                 }
2130         }
2131         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2132                 ret = read_partial_message(con);
2133                 if (ret <= 0) {
2134                         switch (ret) {
2135                         case -EBADMSG:
2136                                 con->error_msg = "bad crc";
2137                                 ret = -EIO;
2138                                 break;
2139                         case -EIO:
2140                                 con->error_msg = "io error";
2141                                 break;
2142                         }
2143                         goto out;
2144                 }
2145                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2146                         goto more;
2147                 process_message(con);
2148                 goto more;
2149         }
2150         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2151                 ret = read_partial_ack(con);
2152                 if (ret <= 0)
2153                         goto out;
2154                 process_ack(con);
2155                 goto more;
2156         }
2157
2158 out:
2159         dout("try_read done on %p ret %d\n", con, ret);
2160         return ret;
2161
2162 bad_tag:
2163         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2164         con->error_msg = "protocol error, garbage tag";
2165         ret = -1;
2166         goto out;
2167 }
2168
2169
2170 /*
2171  * Atomically queue work on a connection.  Bump @con reference to
2172  * avoid races with connection teardown.
2173  */
2174 static void queue_con(struct ceph_connection *con)
2175 {
2176         if (!con->ops->get(con)) {
2177                 dout("queue_con %p ref count 0\n", con);
2178                 return;
2179         }
2180
2181         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2182                 dout("queue_con %p - already queued\n", con);
2183                 con->ops->put(con);
2184         } else {
2185                 dout("queue_con %p\n", con);
2186         }
2187 }
2188
2189 /*
2190  * Do some work on a connection.  Drop a connection ref when we're done.
2191  */
2192 static void con_work(struct work_struct *work)
2193 {
2194         struct ceph_connection *con = container_of(work, struct ceph_connection,
2195                                                    work.work);
2196         int ret;
2197
2198         mutex_lock(&con->mutex);
2199 restart:
2200         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2201                 dout("con_work %p backing off\n", con);
2202                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2203                                        round_jiffies_relative(con->delay))) {
2204                         dout("con_work %p backoff %lu\n", con, con->delay);
2205                         mutex_unlock(&con->mutex);
2206                         return;
2207                 } else {
2208                         con->ops->put(con);
2209                         dout("con_work %p FAILED to back off %lu\n", con,
2210                              con->delay);
2211                 }
2212         }
2213
2214         if (test_bit(STANDBY, &con->state)) {
2215                 dout("con_work %p STANDBY\n", con);
2216                 goto done;
2217         }
2218         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2219                 dout("con_work CLOSED\n");
2220                 con_close_socket(con);
2221                 goto done;
2222         }
2223         if (test_and_clear_bit(OPENING, &con->state)) {
2224                 /* reopen w/ new peer */
2225                 dout("con_work OPENING\n");
2226                 con_close_socket(con);
2227         }
2228
2229         if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2230                 goto fault;
2231
2232         ret = try_read(con);
2233         if (ret == -EAGAIN)
2234                 goto restart;
2235         if (ret < 0)
2236                 goto fault;
2237
2238         ret = try_write(con);
2239         if (ret == -EAGAIN)
2240                 goto restart;
2241         if (ret < 0)
2242                 goto fault;
2243
2244 done:
2245         mutex_unlock(&con->mutex);
2246 done_unlocked:
2247         con->ops->put(con);
2248         return;
2249
2250 fault:
2251         mutex_unlock(&con->mutex);
2252         ceph_fault(con);     /* error/fault path */
2253         goto done_unlocked;
2254 }
2255
2256
2257 /*
2258  * Generic error/fault handler.  A retry mechanism is used with
2259  * exponential backoff
2260  */
2261 static void ceph_fault(struct ceph_connection *con)
2262 {
2263         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2264                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2265         dout("fault %p state %lu to peer %s\n",
2266              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2267
2268         if (test_bit(LOSSYTX, &con->flags)) {
2269                 dout("fault on LOSSYTX channel\n");
2270                 goto out;
2271         }
2272
2273         mutex_lock(&con->mutex);
2274         if (test_bit(CLOSED, &con->state))
2275                 goto out_unlock;
2276
2277         con_close_socket(con);
2278
2279         if (con->in_msg) {
2280                 BUG_ON(con->in_msg->con != con);
2281                 con->in_msg->con = NULL;
2282                 ceph_msg_put(con->in_msg);
2283                 con->in_msg = NULL;
2284                 ceph_con_put(con);
2285         }
2286
2287         /* Requeue anything that hasn't been acked */
2288         list_splice_init(&con->out_sent, &con->out_queue);
2289
2290         /* If there are no messages queued or keepalive pending, place
2291          * the connection in a STANDBY state */
2292         if (list_empty(&con->out_queue) &&
2293             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2294                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2295                 clear_bit(WRITE_PENDING, &con->flags);
2296                 set_bit(STANDBY, &con->state);
2297         } else {
2298                 /* retry after a delay. */
2299                 if (con->delay == 0)
2300                         con->delay = BASE_DELAY_INTERVAL;
2301                 else if (con->delay < MAX_DELAY_INTERVAL)
2302                         con->delay *= 2;
2303                 con->ops->get(con);
2304                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2305                                        round_jiffies_relative(con->delay))) {
2306                         dout("fault queued %p delay %lu\n", con, con->delay);
2307                 } else {
2308                         con->ops->put(con);
2309                         dout("fault failed to queue %p delay %lu, backoff\n",
2310                              con, con->delay);
2311                         /*
2312                          * In many cases we see a socket state change
2313                          * while con_work is running and end up
2314                          * queuing (non-delayed) work, such that we
2315                          * can't backoff with a delay.  Set a flag so
2316                          * that when con_work restarts we schedule the
2317                          * delay then.
2318                          */
2319                         set_bit(BACKOFF, &con->flags);
2320                 }
2321         }
2322
2323 out_unlock:
2324         mutex_unlock(&con->mutex);
2325 out:
2326         /*
2327          * in case we faulted due to authentication, invalidate our
2328          * current tickets so that we can get new ones.
2329          */
2330         if (con->auth_retry && con->ops->invalidate_authorizer) {
2331                 dout("calling invalidate_authorizer()\n");
2332                 con->ops->invalidate_authorizer(con);
2333         }
2334
2335         if (con->ops->fault)
2336                 con->ops->fault(con);
2337 }
2338
2339
2340
2341 /*
2342  * initialize a new messenger instance
2343  */
2344 void ceph_messenger_init(struct ceph_messenger *msgr,
2345                         struct ceph_entity_addr *myaddr,
2346                         u32 supported_features,
2347                         u32 required_features,
2348                         bool nocrc)
2349 {
2350         msgr->supported_features = supported_features;
2351         msgr->required_features = required_features;
2352
2353         spin_lock_init(&msgr->global_seq_lock);
2354
2355         if (myaddr)
2356                 msgr->inst.addr = *myaddr;
2357
2358         /* select a random nonce */
2359         msgr->inst.addr.type = 0;
2360         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2361         encode_my_addr(msgr);
2362         msgr->nocrc = nocrc;
2363
2364         dout("%s %p\n", __func__, msgr);
2365 }
2366 EXPORT_SYMBOL(ceph_messenger_init);
2367
2368 static void clear_standby(struct ceph_connection *con)
2369 {
2370         /* come back from STANDBY? */
2371         if (test_and_clear_bit(STANDBY, &con->state)) {
2372                 mutex_lock(&con->mutex);
2373                 dout("clear_standby %p and ++connect_seq\n", con);
2374                 con->connect_seq++;
2375                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2376                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2377                 mutex_unlock(&con->mutex);
2378         }
2379 }
2380
2381 /*
2382  * Queue up an outgoing message on the given connection.
2383  */
2384 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2385 {
2386         if (test_bit(CLOSED, &con->state)) {
2387                 dout("con_send %p closed, dropping %p\n", con, msg);
2388                 ceph_msg_put(msg);
2389                 return;
2390         }
2391
2392         /* set src+dst */
2393         msg->hdr.src = con->msgr->inst.name;
2394
2395         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2396
2397         msg->needs_out_seq = true;
2398
2399         /* queue */
2400         mutex_lock(&con->mutex);
2401
2402         BUG_ON(msg->con != NULL);
2403         msg->con = ceph_con_get(con);
2404         BUG_ON(msg->con == NULL);
2405
2406         BUG_ON(!list_empty(&msg->list_head));
2407         list_add_tail(&msg->list_head, &con->out_queue);
2408         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2409              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2410              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2411              le32_to_cpu(msg->hdr.front_len),
2412              le32_to_cpu(msg->hdr.middle_len),
2413              le32_to_cpu(msg->hdr.data_len));
2414         mutex_unlock(&con->mutex);
2415
2416         /* if there wasn't anything waiting to send before, queue
2417          * new work */
2418         clear_standby(con);
2419         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2420                 queue_con(con);
2421 }
2422 EXPORT_SYMBOL(ceph_con_send);
2423
2424 /*
2425  * Revoke a message that was previously queued for send
2426  */
2427 void ceph_msg_revoke(struct ceph_msg *msg)
2428 {
2429         struct ceph_connection *con = msg->con;
2430
2431         if (!con)
2432                 return;         /* Message not in our possession */
2433
2434         mutex_lock(&con->mutex);
2435         if (!list_empty(&msg->list_head)) {
2436                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2437                 list_del_init(&msg->list_head);
2438                 BUG_ON(msg->con == NULL);
2439                 ceph_con_put(msg->con);
2440                 msg->con = NULL;
2441                 msg->hdr.seq = 0;
2442
2443                 ceph_msg_put(msg);
2444         }
2445         if (con->out_msg == msg) {
2446                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2447                 con->out_msg = NULL;
2448                 if (con->out_kvec_is_msg) {
2449                         con->out_skip = con->out_kvec_bytes;
2450                         con->out_kvec_is_msg = false;
2451                 }
2452                 msg->hdr.seq = 0;
2453
2454                 ceph_msg_put(msg);
2455         }
2456         mutex_unlock(&con->mutex);
2457 }
2458
2459 /*
2460  * Revoke a message that we may be reading data into
2461  */
2462 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2463 {
2464         struct ceph_connection *con;
2465
2466         BUG_ON(msg == NULL);
2467         if (!msg->con) {
2468                 dout("%s msg %p null con\n", __func__, msg);
2469
2470                 return;         /* Message not in our possession */
2471         }
2472
2473         con = msg->con;
2474         mutex_lock(&con->mutex);
2475         if (con->in_msg == msg) {
2476                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2477                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2478                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2479
2480                 /* skip rest of message */
2481                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2482                 con->in_base_pos = con->in_base_pos -
2483                                 sizeof(struct ceph_msg_header) -
2484                                 front_len -
2485                                 middle_len -
2486                                 data_len -
2487                                 sizeof(struct ceph_msg_footer);
2488                 ceph_msg_put(con->in_msg);
2489                 con->in_msg = NULL;
2490                 con->in_tag = CEPH_MSGR_TAG_READY;
2491                 con->in_seq++;
2492         } else {
2493                 dout("%s %p in_msg %p msg %p no-op\n",
2494                      __func__, con, con->in_msg, msg);
2495         }
2496         mutex_unlock(&con->mutex);
2497 }
2498
2499 /*
2500  * Queue a keepalive byte to ensure the tcp connection is alive.
2501  */
2502 void ceph_con_keepalive(struct ceph_connection *con)
2503 {
2504         dout("con_keepalive %p\n", con);
2505         clear_standby(con);
2506         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2507             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2508                 queue_con(con);
2509 }
2510 EXPORT_SYMBOL(ceph_con_keepalive);
2511
2512
2513 /*
2514  * construct a new message with given type, size
2515  * the new msg has a ref count of 1.
2516  */
2517 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2518                               bool can_fail)
2519 {
2520         struct ceph_msg *m;
2521
2522         m = kmalloc(sizeof(*m), flags);
2523         if (m == NULL)
2524                 goto out;
2525         kref_init(&m->kref);
2526
2527         m->con = NULL;
2528         INIT_LIST_HEAD(&m->list_head);
2529
2530         m->hdr.tid = 0;
2531         m->hdr.type = cpu_to_le16(type);
2532         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2533         m->hdr.version = 0;
2534         m->hdr.front_len = cpu_to_le32(front_len);
2535         m->hdr.middle_len = 0;
2536         m->hdr.data_len = 0;
2537         m->hdr.data_off = 0;
2538         m->hdr.reserved = 0;
2539         m->footer.front_crc = 0;
2540         m->footer.middle_crc = 0;
2541         m->footer.data_crc = 0;
2542         m->footer.flags = 0;
2543         m->front_max = front_len;
2544         m->front_is_vmalloc = false;
2545         m->more_to_follow = false;
2546         m->ack_stamp = 0;
2547         m->pool = NULL;
2548
2549         /* middle */
2550         m->middle = NULL;
2551
2552         /* data */
2553         m->nr_pages = 0;
2554         m->page_alignment = 0;
2555         m->pages = NULL;
2556         m->pagelist = NULL;
2557         m->bio = NULL;
2558         m->bio_iter = NULL;
2559         m->bio_seg = 0;
2560         m->trail = NULL;
2561
2562         /* front */
2563         if (front_len) {
2564                 if (front_len > PAGE_CACHE_SIZE) {
2565                         m->front.iov_base = __vmalloc(front_len, flags,
2566                                                       PAGE_KERNEL);
2567                         m->front_is_vmalloc = true;
2568                 } else {
2569                         m->front.iov_base = kmalloc(front_len, flags);
2570                 }
2571                 if (m->front.iov_base == NULL) {
2572                         dout("ceph_msg_new can't allocate %d bytes\n",
2573                              front_len);
2574                         goto out2;
2575                 }
2576         } else {
2577                 m->front.iov_base = NULL;
2578         }
2579         m->front.iov_len = front_len;
2580
2581         dout("ceph_msg_new %p front %d\n", m, front_len);
2582         return m;
2583
2584 out2:
2585         ceph_msg_put(m);
2586 out:
2587         if (!can_fail) {
2588                 pr_err("msg_new can't create type %d front %d\n", type,
2589                        front_len);
2590                 WARN_ON(1);
2591         } else {
2592                 dout("msg_new can't create type %d front %d\n", type,
2593                      front_len);
2594         }
2595         return NULL;
2596 }
2597 EXPORT_SYMBOL(ceph_msg_new);
2598
2599 /*
2600  * Allocate "middle" portion of a message, if it is needed and wasn't
2601  * allocated by alloc_msg.  This allows us to read a small fixed-size
2602  * per-type header in the front and then gracefully fail (i.e.,
2603  * propagate the error to the caller based on info in the front) when
2604  * the middle is too large.
2605  */
2606 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2607 {
2608         int type = le16_to_cpu(msg->hdr.type);
2609         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2610
2611         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2612              ceph_msg_type_name(type), middle_len);
2613         BUG_ON(!middle_len);
2614         BUG_ON(msg->middle);
2615
2616         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2617         if (!msg->middle)
2618                 return -ENOMEM;
2619         return 0;
2620 }
2621
2622 /*
2623  * Allocate a message for receiving an incoming message on a
2624  * connection, and save the result in con->in_msg.  Uses the
2625  * connection's private alloc_msg op if available.
2626  *
2627  * Returns true if the message should be skipped, false otherwise.
2628  * If true is returned (skip message), con->in_msg will be NULL.
2629  * If false is returned, con->in_msg will contain a pointer to the
2630  * newly-allocated message, or NULL in case of memory exhaustion.
2631  */
2632 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2633                                 struct ceph_msg_header *hdr)
2634 {
2635         int type = le16_to_cpu(hdr->type);
2636         int front_len = le32_to_cpu(hdr->front_len);
2637         int middle_len = le32_to_cpu(hdr->middle_len);
2638         int ret;
2639
2640         BUG_ON(con->in_msg != NULL);
2641
2642         if (con->ops->alloc_msg) {
2643                 int skip = 0;
2644
2645                 mutex_unlock(&con->mutex);
2646                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2647                 mutex_lock(&con->mutex);
2648                 if (con->in_msg) {
2649                         con->in_msg->con = ceph_con_get(con);
2650                         BUG_ON(con->in_msg->con == NULL);
2651                 }
2652                 if (skip)
2653                         con->in_msg = NULL;
2654
2655                 if (!con->in_msg)
2656                         return skip != 0;
2657         }
2658         if (!con->in_msg) {
2659                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2660                 if (!con->in_msg) {
2661                         pr_err("unable to allocate msg type %d len %d\n",
2662                                type, front_len);
2663                         return false;
2664                 }
2665                 con->in_msg->con = ceph_con_get(con);
2666                 BUG_ON(con->in_msg->con == NULL);
2667                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2668         }
2669         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2670
2671         if (middle_len && !con->in_msg->middle) {
2672                 ret = ceph_alloc_middle(con, con->in_msg);
2673                 if (ret < 0) {
2674                         ceph_msg_put(con->in_msg);
2675                         con->in_msg = NULL;
2676                 }
2677         }
2678
2679         return false;
2680 }
2681
2682
2683 /*
2684  * Free a generically kmalloc'd message.
2685  */
2686 void ceph_msg_kfree(struct ceph_msg *m)
2687 {
2688         dout("msg_kfree %p\n", m);
2689         if (m->front_is_vmalloc)
2690                 vfree(m->front.iov_base);
2691         else
2692                 kfree(m->front.iov_base);
2693         kfree(m);
2694 }
2695
2696 /*
2697  * Drop a msg ref.  Destroy as needed.
2698  */
2699 void ceph_msg_last_put(struct kref *kref)
2700 {
2701         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2702
2703         dout("ceph_msg_put last one on %p\n", m);
2704         WARN_ON(!list_empty(&m->list_head));
2705
2706         /* drop middle, data, if any */
2707         if (m->middle) {
2708                 ceph_buffer_put(m->middle);
2709                 m->middle = NULL;
2710         }
2711         m->nr_pages = 0;
2712         m->pages = NULL;
2713
2714         if (m->pagelist) {
2715                 ceph_pagelist_release(m->pagelist);
2716                 kfree(m->pagelist);
2717                 m->pagelist = NULL;
2718         }
2719
2720         m->trail = NULL;
2721
2722         if (m->pool)
2723                 ceph_msgpool_put(m->pool, m);
2724         else
2725                 ceph_msg_kfree(m);
2726 }
2727 EXPORT_SYMBOL(ceph_msg_last_put);
2728
2729 void ceph_msg_dump(struct ceph_msg *msg)
2730 {
2731         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2732                  msg->front_max, msg->nr_pages);
2733         print_hex_dump(KERN_DEBUG, "header: ",
2734                        DUMP_PREFIX_OFFSET, 16, 1,
2735                        &msg->hdr, sizeof(msg->hdr), true);
2736         print_hex_dump(KERN_DEBUG, " front: ",
2737                        DUMP_PREFIX_OFFSET, 16, 1,
2738                        msg->front.iov_base, msg->front.iov_len, true);
2739         if (msg->middle)
2740                 print_hex_dump(KERN_DEBUG, "middle: ",
2741                                DUMP_PREFIX_OFFSET, 16, 1,
2742                                msg->middle->vec.iov_base,
2743                                msg->middle->vec.iov_len, true);
2744         print_hex_dump(KERN_DEBUG, "footer: ",
2745                        DUMP_PREFIX_OFFSET, 16, 1,
2746                        &msg->footer, sizeof(msg->footer), true);
2747 }
2748 EXPORT_SYMBOL(ceph_msg_dump);