Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[linux-drm-fsl-dcu.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 if (se->start_page <= start_page &&
169                     start_page < se->start_page + se->nr_pages) {
170                         pgoff_t offset = start_page - se->start_page;
171                         sector_t start_block = se->start_block + offset;
172                         sector_t nr_blocks = se->nr_pages - offset;
173
174                         if (nr_blocks > nr_pages)
175                                 nr_blocks = nr_pages;
176                         start_page += nr_blocks;
177                         nr_pages -= nr_blocks;
178
179                         if (!found_extent++)
180                                 si->curr_swap_extent = se;
181
182                         start_block <<= PAGE_SHIFT - 9;
183                         nr_blocks <<= PAGE_SHIFT - 9;
184                         if (blkdev_issue_discard(si->bdev, start_block,
185                                     nr_blocks, GFP_NOIO, 0))
186                                 break;
187                 }
188
189                 se = list_next_entry(se, list);
190         }
191 }
192
193 #define SWAPFILE_CLUSTER        256
194 #define LATENCY_LIMIT           256
195
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197         unsigned int flag)
198 {
199         info->flags = flag;
200 }
201
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
203 {
204         return info->data;
205 }
206
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208                                      unsigned int c)
209 {
210         info->data = c;
211 }
212
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214                                          unsigned int c, unsigned int f)
215 {
216         info->flags = f;
217         info->data = c;
218 }
219
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
221 {
222         return info->data;
223 }
224
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226                                     unsigned int n)
227 {
228         info->data = n;
229 }
230
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232                                          unsigned int n, unsigned int f)
233 {
234         info->flags = f;
235         info->data = n;
236 }
237
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
239 {
240         return info->flags & CLUSTER_FLAG_FREE;
241 }
242
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
244 {
245         return info->flags & CLUSTER_FLAG_NEXT_NULL;
246 }
247
248 static inline void cluster_set_null(struct swap_cluster_info *info)
249 {
250         info->flags = CLUSTER_FLAG_NEXT_NULL;
251         info->data = 0;
252 }
253
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256                 unsigned int idx)
257 {
258         /*
259          * If scan_swap_map() can't find a free cluster, it will check
260          * si->swap_map directly. To make sure the discarding cluster isn't
261          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262          * will be cleared after discard
263          */
264         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267         if (cluster_is_null(&si->discard_cluster_head)) {
268                 cluster_set_next_flag(&si->discard_cluster_head,
269                                                 idx, 0);
270                 cluster_set_next_flag(&si->discard_cluster_tail,
271                                                 idx, 0);
272         } else {
273                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274                 cluster_set_next(&si->cluster_info[tail], idx);
275                 cluster_set_next_flag(&si->discard_cluster_tail,
276                                                 idx, 0);
277         }
278
279         schedule_work(&si->discard_work);
280 }
281
282 /*
283  * Doing discard actually. After a cluster discard is finished, the cluster
284  * will be added to free cluster list. caller should hold si->lock.
285 */
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
287 {
288         struct swap_cluster_info *info;
289         unsigned int idx;
290
291         info = si->cluster_info;
292
293         while (!cluster_is_null(&si->discard_cluster_head)) {
294                 idx = cluster_next(&si->discard_cluster_head);
295
296                 cluster_set_next_flag(&si->discard_cluster_head,
297                                                 cluster_next(&info[idx]), 0);
298                 if (cluster_next(&si->discard_cluster_tail) == idx) {
299                         cluster_set_null(&si->discard_cluster_head);
300                         cluster_set_null(&si->discard_cluster_tail);
301                 }
302                 spin_unlock(&si->lock);
303
304                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305                                 SWAPFILE_CLUSTER);
306
307                 spin_lock(&si->lock);
308                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309                 if (cluster_is_null(&si->free_cluster_head)) {
310                         cluster_set_next_flag(&si->free_cluster_head,
311                                                 idx, 0);
312                         cluster_set_next_flag(&si->free_cluster_tail,
313                                                 idx, 0);
314                 } else {
315                         unsigned int tail;
316
317                         tail = cluster_next(&si->free_cluster_tail);
318                         cluster_set_next(&info[tail], idx);
319                         cluster_set_next_flag(&si->free_cluster_tail,
320                                                 idx, 0);
321                 }
322                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323                                 0, SWAPFILE_CLUSTER);
324         }
325 }
326
327 static void swap_discard_work(struct work_struct *work)
328 {
329         struct swap_info_struct *si;
330
331         si = container_of(work, struct swap_info_struct, discard_work);
332
333         spin_lock(&si->lock);
334         swap_do_scheduled_discard(si);
335         spin_unlock(&si->lock);
336 }
337
338 /*
339  * The cluster corresponding to page_nr will be used. The cluster will be
340  * removed from free cluster list and its usage counter will be increased.
341  */
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343         struct swap_cluster_info *cluster_info, unsigned long page_nr)
344 {
345         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347         if (!cluster_info)
348                 return;
349         if (cluster_is_free(&cluster_info[idx])) {
350                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351                 cluster_set_next_flag(&p->free_cluster_head,
352                         cluster_next(&cluster_info[idx]), 0);
353                 if (cluster_next(&p->free_cluster_tail) == idx) {
354                         cluster_set_null(&p->free_cluster_tail);
355                         cluster_set_null(&p->free_cluster_head);
356                 }
357                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358         }
359
360         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361         cluster_set_count(&cluster_info[idx],
362                 cluster_count(&cluster_info[idx]) + 1);
363 }
364
365 /*
366  * The cluster corresponding to page_nr decreases one usage. If the usage
367  * counter becomes 0, which means no page in the cluster is in using, we can
368  * optionally discard the cluster and add it to free cluster list.
369  */
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371         struct swap_cluster_info *cluster_info, unsigned long page_nr)
372 {
373         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375         if (!cluster_info)
376                 return;
377
378         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379         cluster_set_count(&cluster_info[idx],
380                 cluster_count(&cluster_info[idx]) - 1);
381
382         if (cluster_count(&cluster_info[idx]) == 0) {
383                 /*
384                  * If the swap is discardable, prepare discard the cluster
385                  * instead of free it immediately. The cluster will be freed
386                  * after discard.
387                  */
388                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390                         swap_cluster_schedule_discard(p, idx);
391                         return;
392                 }
393
394                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395                 if (cluster_is_null(&p->free_cluster_head)) {
396                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398                 } else {
399                         unsigned int tail = cluster_next(&p->free_cluster_tail);
400                         cluster_set_next(&cluster_info[tail], idx);
401                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402                 }
403         }
404 }
405
406 /*
407  * It's possible scan_swap_map() uses a free cluster in the middle of free
408  * cluster list. Avoiding such abuse to avoid list corruption.
409  */
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412         unsigned long offset)
413 {
414         struct percpu_cluster *percpu_cluster;
415         bool conflict;
416
417         offset /= SWAPFILE_CLUSTER;
418         conflict = !cluster_is_null(&si->free_cluster_head) &&
419                 offset != cluster_next(&si->free_cluster_head) &&
420                 cluster_is_free(&si->cluster_info[offset]);
421
422         if (!conflict)
423                 return false;
424
425         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426         cluster_set_null(&percpu_cluster->index);
427         return true;
428 }
429
430 /*
431  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432  * might involve allocating a new cluster for current CPU too.
433  */
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435         unsigned long *offset, unsigned long *scan_base)
436 {
437         struct percpu_cluster *cluster;
438         bool found_free;
439         unsigned long tmp;
440
441 new_cluster:
442         cluster = this_cpu_ptr(si->percpu_cluster);
443         if (cluster_is_null(&cluster->index)) {
444                 if (!cluster_is_null(&si->free_cluster_head)) {
445                         cluster->index = si->free_cluster_head;
446                         cluster->next = cluster_next(&cluster->index) *
447                                         SWAPFILE_CLUSTER;
448                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449                         /*
450                          * we don't have free cluster but have some clusters in
451                          * discarding, do discard now and reclaim them
452                          */
453                         swap_do_scheduled_discard(si);
454                         *scan_base = *offset = si->cluster_next;
455                         goto new_cluster;
456                 } else
457                         return;
458         }
459
460         found_free = false;
461
462         /*
463          * Other CPUs can use our cluster if they can't find a free cluster,
464          * check if there is still free entry in the cluster
465          */
466         tmp = cluster->next;
467         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468                SWAPFILE_CLUSTER) {
469                 if (!si->swap_map[tmp]) {
470                         found_free = true;
471                         break;
472                 }
473                 tmp++;
474         }
475         if (!found_free) {
476                 cluster_set_null(&cluster->index);
477                 goto new_cluster;
478         }
479         cluster->next = tmp + 1;
480         *offset = tmp;
481         *scan_base = tmp;
482 }
483
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485                                    unsigned char usage)
486 {
487         unsigned long offset;
488         unsigned long scan_base;
489         unsigned long last_in_cluster = 0;
490         int latency_ration = LATENCY_LIMIT;
491
492         /*
493          * We try to cluster swap pages by allocating them sequentially
494          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
495          * way, however, we resort to first-free allocation, starting
496          * a new cluster.  This prevents us from scattering swap pages
497          * all over the entire swap partition, so that we reduce
498          * overall disk seek times between swap pages.  -- sct
499          * But we do now try to find an empty cluster.  -Andrea
500          * And we let swap pages go all over an SSD partition.  Hugh
501          */
502
503         si->flags += SWP_SCANNING;
504         scan_base = offset = si->cluster_next;
505
506         /* SSD algorithm */
507         if (si->cluster_info) {
508                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509                 goto checks;
510         }
511
512         if (unlikely(!si->cluster_nr--)) {
513                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
515                         goto checks;
516                 }
517
518                 spin_unlock(&si->lock);
519
520                 /*
521                  * If seek is expensive, start searching for new cluster from
522                  * start of partition, to minimize the span of allocated swap.
523                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
525                  */
526                 scan_base = offset = si->lowest_bit;
527                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529                 /* Locate the first empty (unaligned) cluster */
530                 for (; last_in_cluster <= si->highest_bit; offset++) {
531                         if (si->swap_map[offset])
532                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
533                         else if (offset == last_in_cluster) {
534                                 spin_lock(&si->lock);
535                                 offset -= SWAPFILE_CLUSTER - 1;
536                                 si->cluster_next = offset;
537                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
538                                 goto checks;
539                         }
540                         if (unlikely(--latency_ration < 0)) {
541                                 cond_resched();
542                                 latency_ration = LATENCY_LIMIT;
543                         }
544                 }
545
546                 offset = scan_base;
547                 spin_lock(&si->lock);
548                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549         }
550
551 checks:
552         if (si->cluster_info) {
553                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555         }
556         if (!(si->flags & SWP_WRITEOK))
557                 goto no_page;
558         if (!si->highest_bit)
559                 goto no_page;
560         if (offset > si->highest_bit)
561                 scan_base = offset = si->lowest_bit;
562
563         /* reuse swap entry of cache-only swap if not busy. */
564         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565                 int swap_was_freed;
566                 spin_unlock(&si->lock);
567                 swap_was_freed = __try_to_reclaim_swap(si, offset);
568                 spin_lock(&si->lock);
569                 /* entry was freed successfully, try to use this again */
570                 if (swap_was_freed)
571                         goto checks;
572                 goto scan; /* check next one */
573         }
574
575         if (si->swap_map[offset])
576                 goto scan;
577
578         if (offset == si->lowest_bit)
579                 si->lowest_bit++;
580         if (offset == si->highest_bit)
581                 si->highest_bit--;
582         si->inuse_pages++;
583         if (si->inuse_pages == si->pages) {
584                 si->lowest_bit = si->max;
585                 si->highest_bit = 0;
586                 spin_lock(&swap_avail_lock);
587                 plist_del(&si->avail_list, &swap_avail_head);
588                 spin_unlock(&swap_avail_lock);
589         }
590         si->swap_map[offset] = usage;
591         inc_cluster_info_page(si, si->cluster_info, offset);
592         si->cluster_next = offset + 1;
593         si->flags -= SWP_SCANNING;
594
595         return offset;
596
597 scan:
598         spin_unlock(&si->lock);
599         while (++offset <= si->highest_bit) {
600                 if (!si->swap_map[offset]) {
601                         spin_lock(&si->lock);
602                         goto checks;
603                 }
604                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605                         spin_lock(&si->lock);
606                         goto checks;
607                 }
608                 if (unlikely(--latency_ration < 0)) {
609                         cond_resched();
610                         latency_ration = LATENCY_LIMIT;
611                 }
612         }
613         offset = si->lowest_bit;
614         while (offset < scan_base) {
615                 if (!si->swap_map[offset]) {
616                         spin_lock(&si->lock);
617                         goto checks;
618                 }
619                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620                         spin_lock(&si->lock);
621                         goto checks;
622                 }
623                 if (unlikely(--latency_ration < 0)) {
624                         cond_resched();
625                         latency_ration = LATENCY_LIMIT;
626                 }
627                 offset++;
628         }
629         spin_lock(&si->lock);
630
631 no_page:
632         si->flags -= SWP_SCANNING;
633         return 0;
634 }
635
636 swp_entry_t get_swap_page(void)
637 {
638         struct swap_info_struct *si, *next;
639         pgoff_t offset;
640
641         if (atomic_long_read(&nr_swap_pages) <= 0)
642                 goto noswap;
643         atomic_long_dec(&nr_swap_pages);
644
645         spin_lock(&swap_avail_lock);
646
647 start_over:
648         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649                 /* requeue si to after same-priority siblings */
650                 plist_requeue(&si->avail_list, &swap_avail_head);
651                 spin_unlock(&swap_avail_lock);
652                 spin_lock(&si->lock);
653                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654                         spin_lock(&swap_avail_lock);
655                         if (plist_node_empty(&si->avail_list)) {
656                                 spin_unlock(&si->lock);
657                                 goto nextsi;
658                         }
659                         WARN(!si->highest_bit,
660                              "swap_info %d in list but !highest_bit\n",
661                              si->type);
662                         WARN(!(si->flags & SWP_WRITEOK),
663                              "swap_info %d in list but !SWP_WRITEOK\n",
664                              si->type);
665                         plist_del(&si->avail_list, &swap_avail_head);
666                         spin_unlock(&si->lock);
667                         goto nextsi;
668                 }
669
670                 /* This is called for allocating swap entry for cache */
671                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
672                 spin_unlock(&si->lock);
673                 if (offset)
674                         return swp_entry(si->type, offset);
675                 pr_debug("scan_swap_map of si %d failed to find offset\n",
676                        si->type);
677                 spin_lock(&swap_avail_lock);
678 nextsi:
679                 /*
680                  * if we got here, it's likely that si was almost full before,
681                  * and since scan_swap_map() can drop the si->lock, multiple
682                  * callers probably all tried to get a page from the same si
683                  * and it filled up before we could get one; or, the si filled
684                  * up between us dropping swap_avail_lock and taking si->lock.
685                  * Since we dropped the swap_avail_lock, the swap_avail_head
686                  * list may have been modified; so if next is still in the
687                  * swap_avail_head list then try it, otherwise start over.
688                  */
689                 if (plist_node_empty(&next->avail_list))
690                         goto start_over;
691         }
692
693         spin_unlock(&swap_avail_lock);
694
695         atomic_long_inc(&nr_swap_pages);
696 noswap:
697         return (swp_entry_t) {0};
698 }
699
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
702 {
703         struct swap_info_struct *si;
704         pgoff_t offset;
705
706         si = swap_info[type];
707         spin_lock(&si->lock);
708         if (si && (si->flags & SWP_WRITEOK)) {
709                 atomic_long_dec(&nr_swap_pages);
710                 /* This is called for allocating swap entry, not cache */
711                 offset = scan_swap_map(si, 1);
712                 if (offset) {
713                         spin_unlock(&si->lock);
714                         return swp_entry(type, offset);
715                 }
716                 atomic_long_inc(&nr_swap_pages);
717         }
718         spin_unlock(&si->lock);
719         return (swp_entry_t) {0};
720 }
721
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
723 {
724         struct swap_info_struct *p;
725         unsigned long offset, type;
726
727         if (!entry.val)
728                 goto out;
729         type = swp_type(entry);
730         if (type >= nr_swapfiles)
731                 goto bad_nofile;
732         p = swap_info[type];
733         if (!(p->flags & SWP_USED))
734                 goto bad_device;
735         offset = swp_offset(entry);
736         if (offset >= p->max)
737                 goto bad_offset;
738         if (!p->swap_map[offset])
739                 goto bad_free;
740         spin_lock(&p->lock);
741         return p;
742
743 bad_free:
744         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745         goto out;
746 bad_offset:
747         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748         goto out;
749 bad_device:
750         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751         goto out;
752 bad_nofile:
753         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755         return NULL;
756 }
757
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759                                      swp_entry_t entry, unsigned char usage)
760 {
761         unsigned long offset = swp_offset(entry);
762         unsigned char count;
763         unsigned char has_cache;
764
765         count = p->swap_map[offset];
766         has_cache = count & SWAP_HAS_CACHE;
767         count &= ~SWAP_HAS_CACHE;
768
769         if (usage == SWAP_HAS_CACHE) {
770                 VM_BUG_ON(!has_cache);
771                 has_cache = 0;
772         } else if (count == SWAP_MAP_SHMEM) {
773                 /*
774                  * Or we could insist on shmem.c using a special
775                  * swap_shmem_free() and free_shmem_swap_and_cache()...
776                  */
777                 count = 0;
778         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779                 if (count == COUNT_CONTINUED) {
780                         if (swap_count_continued(p, offset, count))
781                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782                         else
783                                 count = SWAP_MAP_MAX;
784                 } else
785                         count--;
786         }
787
788         if (!count)
789                 mem_cgroup_uncharge_swap(entry);
790
791         usage = count | has_cache;
792         p->swap_map[offset] = usage;
793
794         /* free if no reference */
795         if (!usage) {
796                 dec_cluster_info_page(p, p->cluster_info, offset);
797                 if (offset < p->lowest_bit)
798                         p->lowest_bit = offset;
799                 if (offset > p->highest_bit) {
800                         bool was_full = !p->highest_bit;
801                         p->highest_bit = offset;
802                         if (was_full && (p->flags & SWP_WRITEOK)) {
803                                 spin_lock(&swap_avail_lock);
804                                 WARN_ON(!plist_node_empty(&p->avail_list));
805                                 if (plist_node_empty(&p->avail_list))
806                                         plist_add(&p->avail_list,
807                                                   &swap_avail_head);
808                                 spin_unlock(&swap_avail_lock);
809                         }
810                 }
811                 atomic_long_inc(&nr_swap_pages);
812                 p->inuse_pages--;
813                 frontswap_invalidate_page(p->type, offset);
814                 if (p->flags & SWP_BLKDEV) {
815                         struct gendisk *disk = p->bdev->bd_disk;
816                         if (disk->fops->swap_slot_free_notify)
817                                 disk->fops->swap_slot_free_notify(p->bdev,
818                                                                   offset);
819                 }
820         }
821
822         return usage;
823 }
824
825 /*
826  * Caller has made sure that the swap device corresponding to entry
827  * is still around or has not been recycled.
828  */
829 void swap_free(swp_entry_t entry)
830 {
831         struct swap_info_struct *p;
832
833         p = swap_info_get(entry);
834         if (p) {
835                 swap_entry_free(p, entry, 1);
836                 spin_unlock(&p->lock);
837         }
838 }
839
840 /*
841  * Called after dropping swapcache to decrease refcnt to swap entries.
842  */
843 void swapcache_free(swp_entry_t entry)
844 {
845         struct swap_info_struct *p;
846
847         p = swap_info_get(entry);
848         if (p) {
849                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
850                 spin_unlock(&p->lock);
851         }
852 }
853
854 /*
855  * How many references to page are currently swapped out?
856  * This does not give an exact answer when swap count is continued,
857  * but does include the high COUNT_CONTINUED flag to allow for that.
858  */
859 int page_swapcount(struct page *page)
860 {
861         int count = 0;
862         struct swap_info_struct *p;
863         swp_entry_t entry;
864
865         entry.val = page_private(page);
866         p = swap_info_get(entry);
867         if (p) {
868                 count = swap_count(p->swap_map[swp_offset(entry)]);
869                 spin_unlock(&p->lock);
870         }
871         return count;
872 }
873
874 /*
875  * How many references to @entry are currently swapped out?
876  * This considers COUNT_CONTINUED so it returns exact answer.
877  */
878 int swp_swapcount(swp_entry_t entry)
879 {
880         int count, tmp_count, n;
881         struct swap_info_struct *p;
882         struct page *page;
883         pgoff_t offset;
884         unsigned char *map;
885
886         p = swap_info_get(entry);
887         if (!p)
888                 return 0;
889
890         count = swap_count(p->swap_map[swp_offset(entry)]);
891         if (!(count & COUNT_CONTINUED))
892                 goto out;
893
894         count &= ~COUNT_CONTINUED;
895         n = SWAP_MAP_MAX + 1;
896
897         offset = swp_offset(entry);
898         page = vmalloc_to_page(p->swap_map + offset);
899         offset &= ~PAGE_MASK;
900         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
901
902         do {
903                 page = list_next_entry(page, lru);
904                 map = kmap_atomic(page);
905                 tmp_count = map[offset];
906                 kunmap_atomic(map);
907
908                 count += (tmp_count & ~COUNT_CONTINUED) * n;
909                 n *= (SWAP_CONT_MAX + 1);
910         } while (tmp_count & COUNT_CONTINUED);
911 out:
912         spin_unlock(&p->lock);
913         return count;
914 }
915
916 /*
917  * We can write to an anon page without COW if there are no other references
918  * to it.  And as a side-effect, free up its swap: because the old content
919  * on disk will never be read, and seeking back there to write new content
920  * later would only waste time away from clustering.
921  */
922 int reuse_swap_page(struct page *page)
923 {
924         int count;
925
926         VM_BUG_ON_PAGE(!PageLocked(page), page);
927         if (unlikely(PageKsm(page)))
928                 return 0;
929         count = page_mapcount(page);
930         if (count <= 1 && PageSwapCache(page)) {
931                 count += page_swapcount(page);
932                 if (count == 1 && !PageWriteback(page)) {
933                         delete_from_swap_cache(page);
934                         SetPageDirty(page);
935                 }
936         }
937         return count <= 1;
938 }
939
940 /*
941  * If swap is getting full, or if there are no more mappings of this page,
942  * then try_to_free_swap is called to free its swap space.
943  */
944 int try_to_free_swap(struct page *page)
945 {
946         VM_BUG_ON_PAGE(!PageLocked(page), page);
947
948         if (!PageSwapCache(page))
949                 return 0;
950         if (PageWriteback(page))
951                 return 0;
952         if (page_swapcount(page))
953                 return 0;
954
955         /*
956          * Once hibernation has begun to create its image of memory,
957          * there's a danger that one of the calls to try_to_free_swap()
958          * - most probably a call from __try_to_reclaim_swap() while
959          * hibernation is allocating its own swap pages for the image,
960          * but conceivably even a call from memory reclaim - will free
961          * the swap from a page which has already been recorded in the
962          * image as a clean swapcache page, and then reuse its swap for
963          * another page of the image.  On waking from hibernation, the
964          * original page might be freed under memory pressure, then
965          * later read back in from swap, now with the wrong data.
966          *
967          * Hibernation suspends storage while it is writing the image
968          * to disk so check that here.
969          */
970         if (pm_suspended_storage())
971                 return 0;
972
973         delete_from_swap_cache(page);
974         SetPageDirty(page);
975         return 1;
976 }
977
978 /*
979  * Free the swap entry like above, but also try to
980  * free the page cache entry if it is the last user.
981  */
982 int free_swap_and_cache(swp_entry_t entry)
983 {
984         struct swap_info_struct *p;
985         struct page *page = NULL;
986
987         if (non_swap_entry(entry))
988                 return 1;
989
990         p = swap_info_get(entry);
991         if (p) {
992                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
993                         page = find_get_page(swap_address_space(entry),
994                                                 entry.val);
995                         if (page && !trylock_page(page)) {
996                                 page_cache_release(page);
997                                 page = NULL;
998                         }
999                 }
1000                 spin_unlock(&p->lock);
1001         }
1002         if (page) {
1003                 /*
1004                  * Not mapped elsewhere, or swap space full? Free it!
1005                  * Also recheck PageSwapCache now page is locked (above).
1006                  */
1007                 if (PageSwapCache(page) && !PageWriteback(page) &&
1008                                 (!page_mapped(page) || vm_swap_full())) {
1009                         delete_from_swap_cache(page);
1010                         SetPageDirty(page);
1011                 }
1012                 unlock_page(page);
1013                 page_cache_release(page);
1014         }
1015         return p != NULL;
1016 }
1017
1018 #ifdef CONFIG_HIBERNATION
1019 /*
1020  * Find the swap type that corresponds to given device (if any).
1021  *
1022  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1023  * from 0, in which the swap header is expected to be located.
1024  *
1025  * This is needed for the suspend to disk (aka swsusp).
1026  */
1027 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1028 {
1029         struct block_device *bdev = NULL;
1030         int type;
1031
1032         if (device)
1033                 bdev = bdget(device);
1034
1035         spin_lock(&swap_lock);
1036         for (type = 0; type < nr_swapfiles; type++) {
1037                 struct swap_info_struct *sis = swap_info[type];
1038
1039                 if (!(sis->flags & SWP_WRITEOK))
1040                         continue;
1041
1042                 if (!bdev) {
1043                         if (bdev_p)
1044                                 *bdev_p = bdgrab(sis->bdev);
1045
1046                         spin_unlock(&swap_lock);
1047                         return type;
1048                 }
1049                 if (bdev == sis->bdev) {
1050                         struct swap_extent *se = &sis->first_swap_extent;
1051
1052                         if (se->start_block == offset) {
1053                                 if (bdev_p)
1054                                         *bdev_p = bdgrab(sis->bdev);
1055
1056                                 spin_unlock(&swap_lock);
1057                                 bdput(bdev);
1058                                 return type;
1059                         }
1060                 }
1061         }
1062         spin_unlock(&swap_lock);
1063         if (bdev)
1064                 bdput(bdev);
1065
1066         return -ENODEV;
1067 }
1068
1069 /*
1070  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1071  * corresponding to given index in swap_info (swap type).
1072  */
1073 sector_t swapdev_block(int type, pgoff_t offset)
1074 {
1075         struct block_device *bdev;
1076
1077         if ((unsigned int)type >= nr_swapfiles)
1078                 return 0;
1079         if (!(swap_info[type]->flags & SWP_WRITEOK))
1080                 return 0;
1081         return map_swap_entry(swp_entry(type, offset), &bdev);
1082 }
1083
1084 /*
1085  * Return either the total number of swap pages of given type, or the number
1086  * of free pages of that type (depending on @free)
1087  *
1088  * This is needed for software suspend
1089  */
1090 unsigned int count_swap_pages(int type, int free)
1091 {
1092         unsigned int n = 0;
1093
1094         spin_lock(&swap_lock);
1095         if ((unsigned int)type < nr_swapfiles) {
1096                 struct swap_info_struct *sis = swap_info[type];
1097
1098                 spin_lock(&sis->lock);
1099                 if (sis->flags & SWP_WRITEOK) {
1100                         n = sis->pages;
1101                         if (free)
1102                                 n -= sis->inuse_pages;
1103                 }
1104                 spin_unlock(&sis->lock);
1105         }
1106         spin_unlock(&swap_lock);
1107         return n;
1108 }
1109 #endif /* CONFIG_HIBERNATION */
1110
1111 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1112 {
1113 #ifdef CONFIG_MEM_SOFT_DIRTY
1114         /*
1115          * When pte keeps soft dirty bit the pte generated
1116          * from swap entry does not has it, still it's same
1117          * pte from logical point of view.
1118          */
1119         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1120         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1121 #else
1122         return pte_same(pte, swp_pte);
1123 #endif
1124 }
1125
1126 /*
1127  * No need to decide whether this PTE shares the swap entry with others,
1128  * just let do_wp_page work it out if a write is requested later - to
1129  * force COW, vm_page_prot omits write permission from any private vma.
1130  */
1131 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1132                 unsigned long addr, swp_entry_t entry, struct page *page)
1133 {
1134         struct page *swapcache;
1135         struct mem_cgroup *memcg;
1136         spinlock_t *ptl;
1137         pte_t *pte;
1138         int ret = 1;
1139
1140         swapcache = page;
1141         page = ksm_might_need_to_copy(page, vma, addr);
1142         if (unlikely(!page))
1143                 return -ENOMEM;
1144
1145         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
1146                 ret = -ENOMEM;
1147                 goto out_nolock;
1148         }
1149
1150         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1151         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1152                 mem_cgroup_cancel_charge(page, memcg);
1153                 ret = 0;
1154                 goto out;
1155         }
1156
1157         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1158         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1159         get_page(page);
1160         set_pte_at(vma->vm_mm, addr, pte,
1161                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1162         if (page == swapcache) {
1163                 page_add_anon_rmap(page, vma, addr);
1164                 mem_cgroup_commit_charge(page, memcg, true);
1165         } else { /* ksm created a completely new copy */
1166                 page_add_new_anon_rmap(page, vma, addr);
1167                 mem_cgroup_commit_charge(page, memcg, false);
1168                 lru_cache_add_active_or_unevictable(page, vma);
1169         }
1170         swap_free(entry);
1171         /*
1172          * Move the page to the active list so it is not
1173          * immediately swapped out again after swapon.
1174          */
1175         activate_page(page);
1176 out:
1177         pte_unmap_unlock(pte, ptl);
1178 out_nolock:
1179         if (page != swapcache) {
1180                 unlock_page(page);
1181                 put_page(page);
1182         }
1183         return ret;
1184 }
1185
1186 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1187                                 unsigned long addr, unsigned long end,
1188                                 swp_entry_t entry, struct page *page)
1189 {
1190         pte_t swp_pte = swp_entry_to_pte(entry);
1191         pte_t *pte;
1192         int ret = 0;
1193
1194         /*
1195          * We don't actually need pte lock while scanning for swp_pte: since
1196          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1197          * page table while we're scanning; though it could get zapped, and on
1198          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1199          * of unmatched parts which look like swp_pte, so unuse_pte must
1200          * recheck under pte lock.  Scanning without pte lock lets it be
1201          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1202          */
1203         pte = pte_offset_map(pmd, addr);
1204         do {
1205                 /*
1206                  * swapoff spends a _lot_ of time in this loop!
1207                  * Test inline before going to call unuse_pte.
1208                  */
1209                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1210                         pte_unmap(pte);
1211                         ret = unuse_pte(vma, pmd, addr, entry, page);
1212                         if (ret)
1213                                 goto out;
1214                         pte = pte_offset_map(pmd, addr);
1215                 }
1216         } while (pte++, addr += PAGE_SIZE, addr != end);
1217         pte_unmap(pte - 1);
1218 out:
1219         return ret;
1220 }
1221
1222 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1223                                 unsigned long addr, unsigned long end,
1224                                 swp_entry_t entry, struct page *page)
1225 {
1226         pmd_t *pmd;
1227         unsigned long next;
1228         int ret;
1229
1230         pmd = pmd_offset(pud, addr);
1231         do {
1232                 next = pmd_addr_end(addr, end);
1233                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1234                         continue;
1235                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1236                 if (ret)
1237                         return ret;
1238         } while (pmd++, addr = next, addr != end);
1239         return 0;
1240 }
1241
1242 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1243                                 unsigned long addr, unsigned long end,
1244                                 swp_entry_t entry, struct page *page)
1245 {
1246         pud_t *pud;
1247         unsigned long next;
1248         int ret;
1249
1250         pud = pud_offset(pgd, addr);
1251         do {
1252                 next = pud_addr_end(addr, end);
1253                 if (pud_none_or_clear_bad(pud))
1254                         continue;
1255                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1256                 if (ret)
1257                         return ret;
1258         } while (pud++, addr = next, addr != end);
1259         return 0;
1260 }
1261
1262 static int unuse_vma(struct vm_area_struct *vma,
1263                                 swp_entry_t entry, struct page *page)
1264 {
1265         pgd_t *pgd;
1266         unsigned long addr, end, next;
1267         int ret;
1268
1269         if (page_anon_vma(page)) {
1270                 addr = page_address_in_vma(page, vma);
1271                 if (addr == -EFAULT)
1272                         return 0;
1273                 else
1274                         end = addr + PAGE_SIZE;
1275         } else {
1276                 addr = vma->vm_start;
1277                 end = vma->vm_end;
1278         }
1279
1280         pgd = pgd_offset(vma->vm_mm, addr);
1281         do {
1282                 next = pgd_addr_end(addr, end);
1283                 if (pgd_none_or_clear_bad(pgd))
1284                         continue;
1285                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1286                 if (ret)
1287                         return ret;
1288         } while (pgd++, addr = next, addr != end);
1289         return 0;
1290 }
1291
1292 static int unuse_mm(struct mm_struct *mm,
1293                                 swp_entry_t entry, struct page *page)
1294 {
1295         struct vm_area_struct *vma;
1296         int ret = 0;
1297
1298         if (!down_read_trylock(&mm->mmap_sem)) {
1299                 /*
1300                  * Activate page so shrink_inactive_list is unlikely to unmap
1301                  * its ptes while lock is dropped, so swapoff can make progress.
1302                  */
1303                 activate_page(page);
1304                 unlock_page(page);
1305                 down_read(&mm->mmap_sem);
1306                 lock_page(page);
1307         }
1308         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1309                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1310                         break;
1311         }
1312         up_read(&mm->mmap_sem);
1313         return (ret < 0)? ret: 0;
1314 }
1315
1316 /*
1317  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1318  * from current position to next entry still in use.
1319  * Recycle to start on reaching the end, returning 0 when empty.
1320  */
1321 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1322                                         unsigned int prev, bool frontswap)
1323 {
1324         unsigned int max = si->max;
1325         unsigned int i = prev;
1326         unsigned char count;
1327
1328         /*
1329          * No need for swap_lock here: we're just looking
1330          * for whether an entry is in use, not modifying it; false
1331          * hits are okay, and sys_swapoff() has already prevented new
1332          * allocations from this area (while holding swap_lock).
1333          */
1334         for (;;) {
1335                 if (++i >= max) {
1336                         if (!prev) {
1337                                 i = 0;
1338                                 break;
1339                         }
1340                         /*
1341                          * No entries in use at top of swap_map,
1342                          * loop back to start and recheck there.
1343                          */
1344                         max = prev + 1;
1345                         prev = 0;
1346                         i = 1;
1347                 }
1348                 if (frontswap) {
1349                         if (frontswap_test(si, i))
1350                                 break;
1351                         else
1352                                 continue;
1353                 }
1354                 count = READ_ONCE(si->swap_map[i]);
1355                 if (count && swap_count(count) != SWAP_MAP_BAD)
1356                         break;
1357         }
1358         return i;
1359 }
1360
1361 /*
1362  * We completely avoid races by reading each swap page in advance,
1363  * and then search for the process using it.  All the necessary
1364  * page table adjustments can then be made atomically.
1365  *
1366  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1367  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1368  */
1369 int try_to_unuse(unsigned int type, bool frontswap,
1370                  unsigned long pages_to_unuse)
1371 {
1372         struct swap_info_struct *si = swap_info[type];
1373         struct mm_struct *start_mm;
1374         volatile unsigned char *swap_map; /* swap_map is accessed without
1375                                            * locking. Mark it as volatile
1376                                            * to prevent compiler doing
1377                                            * something odd.
1378                                            */
1379         unsigned char swcount;
1380         struct page *page;
1381         swp_entry_t entry;
1382         unsigned int i = 0;
1383         int retval = 0;
1384
1385         /*
1386          * When searching mms for an entry, a good strategy is to
1387          * start at the first mm we freed the previous entry from
1388          * (though actually we don't notice whether we or coincidence
1389          * freed the entry).  Initialize this start_mm with a hold.
1390          *
1391          * A simpler strategy would be to start at the last mm we
1392          * freed the previous entry from; but that would take less
1393          * advantage of mmlist ordering, which clusters forked mms
1394          * together, child after parent.  If we race with dup_mmap(), we
1395          * prefer to resolve parent before child, lest we miss entries
1396          * duplicated after we scanned child: using last mm would invert
1397          * that.
1398          */
1399         start_mm = &init_mm;
1400         atomic_inc(&init_mm.mm_users);
1401
1402         /*
1403          * Keep on scanning until all entries have gone.  Usually,
1404          * one pass through swap_map is enough, but not necessarily:
1405          * there are races when an instance of an entry might be missed.
1406          */
1407         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1408                 if (signal_pending(current)) {
1409                         retval = -EINTR;
1410                         break;
1411                 }
1412
1413                 /*
1414                  * Get a page for the entry, using the existing swap
1415                  * cache page if there is one.  Otherwise, get a clean
1416                  * page and read the swap into it.
1417                  */
1418                 swap_map = &si->swap_map[i];
1419                 entry = swp_entry(type, i);
1420                 page = read_swap_cache_async(entry,
1421                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1422                 if (!page) {
1423                         /*
1424                          * Either swap_duplicate() failed because entry
1425                          * has been freed independently, and will not be
1426                          * reused since sys_swapoff() already disabled
1427                          * allocation from here, or alloc_page() failed.
1428                          */
1429                         swcount = *swap_map;
1430                         /*
1431                          * We don't hold lock here, so the swap entry could be
1432                          * SWAP_MAP_BAD (when the cluster is discarding).
1433                          * Instead of fail out, We can just skip the swap
1434                          * entry because swapoff will wait for discarding
1435                          * finish anyway.
1436                          */
1437                         if (!swcount || swcount == SWAP_MAP_BAD)
1438                                 continue;
1439                         retval = -ENOMEM;
1440                         break;
1441                 }
1442
1443                 /*
1444                  * Don't hold on to start_mm if it looks like exiting.
1445                  */
1446                 if (atomic_read(&start_mm->mm_users) == 1) {
1447                         mmput(start_mm);
1448                         start_mm = &init_mm;
1449                         atomic_inc(&init_mm.mm_users);
1450                 }
1451
1452                 /*
1453                  * Wait for and lock page.  When do_swap_page races with
1454                  * try_to_unuse, do_swap_page can handle the fault much
1455                  * faster than try_to_unuse can locate the entry.  This
1456                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1457                  * defer to do_swap_page in such a case - in some tests,
1458                  * do_swap_page and try_to_unuse repeatedly compete.
1459                  */
1460                 wait_on_page_locked(page);
1461                 wait_on_page_writeback(page);
1462                 lock_page(page);
1463                 wait_on_page_writeback(page);
1464
1465                 /*
1466                  * Remove all references to entry.
1467                  */
1468                 swcount = *swap_map;
1469                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1470                         retval = shmem_unuse(entry, page);
1471                         /* page has already been unlocked and released */
1472                         if (retval < 0)
1473                                 break;
1474                         continue;
1475                 }
1476                 if (swap_count(swcount) && start_mm != &init_mm)
1477                         retval = unuse_mm(start_mm, entry, page);
1478
1479                 if (swap_count(*swap_map)) {
1480                         int set_start_mm = (*swap_map >= swcount);
1481                         struct list_head *p = &start_mm->mmlist;
1482                         struct mm_struct *new_start_mm = start_mm;
1483                         struct mm_struct *prev_mm = start_mm;
1484                         struct mm_struct *mm;
1485
1486                         atomic_inc(&new_start_mm->mm_users);
1487                         atomic_inc(&prev_mm->mm_users);
1488                         spin_lock(&mmlist_lock);
1489                         while (swap_count(*swap_map) && !retval &&
1490                                         (p = p->next) != &start_mm->mmlist) {
1491                                 mm = list_entry(p, struct mm_struct, mmlist);
1492                                 if (!atomic_inc_not_zero(&mm->mm_users))
1493                                         continue;
1494                                 spin_unlock(&mmlist_lock);
1495                                 mmput(prev_mm);
1496                                 prev_mm = mm;
1497
1498                                 cond_resched();
1499
1500                                 swcount = *swap_map;
1501                                 if (!swap_count(swcount)) /* any usage ? */
1502                                         ;
1503                                 else if (mm == &init_mm)
1504                                         set_start_mm = 1;
1505                                 else
1506                                         retval = unuse_mm(mm, entry, page);
1507
1508                                 if (set_start_mm && *swap_map < swcount) {
1509                                         mmput(new_start_mm);
1510                                         atomic_inc(&mm->mm_users);
1511                                         new_start_mm = mm;
1512                                         set_start_mm = 0;
1513                                 }
1514                                 spin_lock(&mmlist_lock);
1515                         }
1516                         spin_unlock(&mmlist_lock);
1517                         mmput(prev_mm);
1518                         mmput(start_mm);
1519                         start_mm = new_start_mm;
1520                 }
1521                 if (retval) {
1522                         unlock_page(page);
1523                         page_cache_release(page);
1524                         break;
1525                 }
1526
1527                 /*
1528                  * If a reference remains (rare), we would like to leave
1529                  * the page in the swap cache; but try_to_unmap could
1530                  * then re-duplicate the entry once we drop page lock,
1531                  * so we might loop indefinitely; also, that page could
1532                  * not be swapped out to other storage meanwhile.  So:
1533                  * delete from cache even if there's another reference,
1534                  * after ensuring that the data has been saved to disk -
1535                  * since if the reference remains (rarer), it will be
1536                  * read from disk into another page.  Splitting into two
1537                  * pages would be incorrect if swap supported "shared
1538                  * private" pages, but they are handled by tmpfs files.
1539                  *
1540                  * Given how unuse_vma() targets one particular offset
1541                  * in an anon_vma, once the anon_vma has been determined,
1542                  * this splitting happens to be just what is needed to
1543                  * handle where KSM pages have been swapped out: re-reading
1544                  * is unnecessarily slow, but we can fix that later on.
1545                  */
1546                 if (swap_count(*swap_map) &&
1547                      PageDirty(page) && PageSwapCache(page)) {
1548                         struct writeback_control wbc = {
1549                                 .sync_mode = WB_SYNC_NONE,
1550                         };
1551
1552                         swap_writepage(page, &wbc);
1553                         lock_page(page);
1554                         wait_on_page_writeback(page);
1555                 }
1556
1557                 /*
1558                  * It is conceivable that a racing task removed this page from
1559                  * swap cache just before we acquired the page lock at the top,
1560                  * or while we dropped it in unuse_mm().  The page might even
1561                  * be back in swap cache on another swap area: that we must not
1562                  * delete, since it may not have been written out to swap yet.
1563                  */
1564                 if (PageSwapCache(page) &&
1565                     likely(page_private(page) == entry.val))
1566                         delete_from_swap_cache(page);
1567
1568                 /*
1569                  * So we could skip searching mms once swap count went
1570                  * to 1, we did not mark any present ptes as dirty: must
1571                  * mark page dirty so shrink_page_list will preserve it.
1572                  */
1573                 SetPageDirty(page);
1574                 unlock_page(page);
1575                 page_cache_release(page);
1576
1577                 /*
1578                  * Make sure that we aren't completely killing
1579                  * interactive performance.
1580                  */
1581                 cond_resched();
1582                 if (frontswap && pages_to_unuse > 0) {
1583                         if (!--pages_to_unuse)
1584                                 break;
1585                 }
1586         }
1587
1588         mmput(start_mm);
1589         return retval;
1590 }
1591
1592 /*
1593  * After a successful try_to_unuse, if no swap is now in use, we know
1594  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1595  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1596  * added to the mmlist just after page_duplicate - before would be racy.
1597  */
1598 static void drain_mmlist(void)
1599 {
1600         struct list_head *p, *next;
1601         unsigned int type;
1602
1603         for (type = 0; type < nr_swapfiles; type++)
1604                 if (swap_info[type]->inuse_pages)
1605                         return;
1606         spin_lock(&mmlist_lock);
1607         list_for_each_safe(p, next, &init_mm.mmlist)
1608                 list_del_init(p);
1609         spin_unlock(&mmlist_lock);
1610 }
1611
1612 /*
1613  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1614  * corresponds to page offset for the specified swap entry.
1615  * Note that the type of this function is sector_t, but it returns page offset
1616  * into the bdev, not sector offset.
1617  */
1618 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1619 {
1620         struct swap_info_struct *sis;
1621         struct swap_extent *start_se;
1622         struct swap_extent *se;
1623         pgoff_t offset;
1624
1625         sis = swap_info[swp_type(entry)];
1626         *bdev = sis->bdev;
1627
1628         offset = swp_offset(entry);
1629         start_se = sis->curr_swap_extent;
1630         se = start_se;
1631
1632         for ( ; ; ) {
1633                 if (se->start_page <= offset &&
1634                                 offset < (se->start_page + se->nr_pages)) {
1635                         return se->start_block + (offset - se->start_page);
1636                 }
1637                 se = list_next_entry(se, list);
1638                 sis->curr_swap_extent = se;
1639                 BUG_ON(se == start_se);         /* It *must* be present */
1640         }
1641 }
1642
1643 /*
1644  * Returns the page offset into bdev for the specified page's swap entry.
1645  */
1646 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1647 {
1648         swp_entry_t entry;
1649         entry.val = page_private(page);
1650         return map_swap_entry(entry, bdev);
1651 }
1652
1653 /*
1654  * Free all of a swapdev's extent information
1655  */
1656 static void destroy_swap_extents(struct swap_info_struct *sis)
1657 {
1658         while (!list_empty(&sis->first_swap_extent.list)) {
1659                 struct swap_extent *se;
1660
1661                 se = list_first_entry(&sis->first_swap_extent.list,
1662                                 struct swap_extent, list);
1663                 list_del(&se->list);
1664                 kfree(se);
1665         }
1666
1667         if (sis->flags & SWP_FILE) {
1668                 struct file *swap_file = sis->swap_file;
1669                 struct address_space *mapping = swap_file->f_mapping;
1670
1671                 sis->flags &= ~SWP_FILE;
1672                 mapping->a_ops->swap_deactivate(swap_file);
1673         }
1674 }
1675
1676 /*
1677  * Add a block range (and the corresponding page range) into this swapdev's
1678  * extent list.  The extent list is kept sorted in page order.
1679  *
1680  * This function rather assumes that it is called in ascending page order.
1681  */
1682 int
1683 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1684                 unsigned long nr_pages, sector_t start_block)
1685 {
1686         struct swap_extent *se;
1687         struct swap_extent *new_se;
1688         struct list_head *lh;
1689
1690         if (start_page == 0) {
1691                 se = &sis->first_swap_extent;
1692                 sis->curr_swap_extent = se;
1693                 se->start_page = 0;
1694                 se->nr_pages = nr_pages;
1695                 se->start_block = start_block;
1696                 return 1;
1697         } else {
1698                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1699                 se = list_entry(lh, struct swap_extent, list);
1700                 BUG_ON(se->start_page + se->nr_pages != start_page);
1701                 if (se->start_block + se->nr_pages == start_block) {
1702                         /* Merge it */
1703                         se->nr_pages += nr_pages;
1704                         return 0;
1705                 }
1706         }
1707
1708         /*
1709          * No merge.  Insert a new extent, preserving ordering.
1710          */
1711         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1712         if (new_se == NULL)
1713                 return -ENOMEM;
1714         new_se->start_page = start_page;
1715         new_se->nr_pages = nr_pages;
1716         new_se->start_block = start_block;
1717
1718         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1719         return 1;
1720 }
1721
1722 /*
1723  * A `swap extent' is a simple thing which maps a contiguous range of pages
1724  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1725  * is built at swapon time and is then used at swap_writepage/swap_readpage
1726  * time for locating where on disk a page belongs.
1727  *
1728  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1729  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1730  * swap files identically.
1731  *
1732  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1733  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1734  * swapfiles are handled *identically* after swapon time.
1735  *
1736  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1737  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1738  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1739  * requirements, they are simply tossed out - we will never use those blocks
1740  * for swapping.
1741  *
1742  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1743  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1744  * which will scribble on the fs.
1745  *
1746  * The amount of disk space which a single swap extent represents varies.
1747  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1748  * extents in the list.  To avoid much list walking, we cache the previous
1749  * search location in `curr_swap_extent', and start new searches from there.
1750  * This is extremely effective.  The average number of iterations in
1751  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1752  */
1753 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1754 {
1755         struct file *swap_file = sis->swap_file;
1756         struct address_space *mapping = swap_file->f_mapping;
1757         struct inode *inode = mapping->host;
1758         int ret;
1759
1760         if (S_ISBLK(inode->i_mode)) {
1761                 ret = add_swap_extent(sis, 0, sis->max, 0);
1762                 *span = sis->pages;
1763                 return ret;
1764         }
1765
1766         if (mapping->a_ops->swap_activate) {
1767                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1768                 if (!ret) {
1769                         sis->flags |= SWP_FILE;
1770                         ret = add_swap_extent(sis, 0, sis->max, 0);
1771                         *span = sis->pages;
1772                 }
1773                 return ret;
1774         }
1775
1776         return generic_swapfile_activate(sis, swap_file, span);
1777 }
1778
1779 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1780                                 unsigned char *swap_map,
1781                                 struct swap_cluster_info *cluster_info)
1782 {
1783         if (prio >= 0)
1784                 p->prio = prio;
1785         else
1786                 p->prio = --least_priority;
1787         /*
1788          * the plist prio is negated because plist ordering is
1789          * low-to-high, while swap ordering is high-to-low
1790          */
1791         p->list.prio = -p->prio;
1792         p->avail_list.prio = -p->prio;
1793         p->swap_map = swap_map;
1794         p->cluster_info = cluster_info;
1795         p->flags |= SWP_WRITEOK;
1796         atomic_long_add(p->pages, &nr_swap_pages);
1797         total_swap_pages += p->pages;
1798
1799         assert_spin_locked(&swap_lock);
1800         /*
1801          * both lists are plists, and thus priority ordered.
1802          * swap_active_head needs to be priority ordered for swapoff(),
1803          * which on removal of any swap_info_struct with an auto-assigned
1804          * (i.e. negative) priority increments the auto-assigned priority
1805          * of any lower-priority swap_info_structs.
1806          * swap_avail_head needs to be priority ordered for get_swap_page(),
1807          * which allocates swap pages from the highest available priority
1808          * swap_info_struct.
1809          */
1810         plist_add(&p->list, &swap_active_head);
1811         spin_lock(&swap_avail_lock);
1812         plist_add(&p->avail_list, &swap_avail_head);
1813         spin_unlock(&swap_avail_lock);
1814 }
1815
1816 static void enable_swap_info(struct swap_info_struct *p, int prio,
1817                                 unsigned char *swap_map,
1818                                 struct swap_cluster_info *cluster_info,
1819                                 unsigned long *frontswap_map)
1820 {
1821         frontswap_init(p->type, frontswap_map);
1822         spin_lock(&swap_lock);
1823         spin_lock(&p->lock);
1824          _enable_swap_info(p, prio, swap_map, cluster_info);
1825         spin_unlock(&p->lock);
1826         spin_unlock(&swap_lock);
1827 }
1828
1829 static void reinsert_swap_info(struct swap_info_struct *p)
1830 {
1831         spin_lock(&swap_lock);
1832         spin_lock(&p->lock);
1833         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1834         spin_unlock(&p->lock);
1835         spin_unlock(&swap_lock);
1836 }
1837
1838 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1839 {
1840         struct swap_info_struct *p = NULL;
1841         unsigned char *swap_map;
1842         struct swap_cluster_info *cluster_info;
1843         unsigned long *frontswap_map;
1844         struct file *swap_file, *victim;
1845         struct address_space *mapping;
1846         struct inode *inode;
1847         struct filename *pathname;
1848         int err, found = 0;
1849         unsigned int old_block_size;
1850
1851         if (!capable(CAP_SYS_ADMIN))
1852                 return -EPERM;
1853
1854         BUG_ON(!current->mm);
1855
1856         pathname = getname(specialfile);
1857         if (IS_ERR(pathname))
1858                 return PTR_ERR(pathname);
1859
1860         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1861         err = PTR_ERR(victim);
1862         if (IS_ERR(victim))
1863                 goto out;
1864
1865         mapping = victim->f_mapping;
1866         spin_lock(&swap_lock);
1867         plist_for_each_entry(p, &swap_active_head, list) {
1868                 if (p->flags & SWP_WRITEOK) {
1869                         if (p->swap_file->f_mapping == mapping) {
1870                                 found = 1;
1871                                 break;
1872                         }
1873                 }
1874         }
1875         if (!found) {
1876                 err = -EINVAL;
1877                 spin_unlock(&swap_lock);
1878                 goto out_dput;
1879         }
1880         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1881                 vm_unacct_memory(p->pages);
1882         else {
1883                 err = -ENOMEM;
1884                 spin_unlock(&swap_lock);
1885                 goto out_dput;
1886         }
1887         spin_lock(&swap_avail_lock);
1888         plist_del(&p->avail_list, &swap_avail_head);
1889         spin_unlock(&swap_avail_lock);
1890         spin_lock(&p->lock);
1891         if (p->prio < 0) {
1892                 struct swap_info_struct *si = p;
1893
1894                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1895                         si->prio++;
1896                         si->list.prio--;
1897                         si->avail_list.prio--;
1898                 }
1899                 least_priority++;
1900         }
1901         plist_del(&p->list, &swap_active_head);
1902         atomic_long_sub(p->pages, &nr_swap_pages);
1903         total_swap_pages -= p->pages;
1904         p->flags &= ~SWP_WRITEOK;
1905         spin_unlock(&p->lock);
1906         spin_unlock(&swap_lock);
1907
1908         set_current_oom_origin();
1909         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1910         clear_current_oom_origin();
1911
1912         if (err) {
1913                 /* re-insert swap space back into swap_list */
1914                 reinsert_swap_info(p);
1915                 goto out_dput;
1916         }
1917
1918         flush_work(&p->discard_work);
1919
1920         destroy_swap_extents(p);
1921         if (p->flags & SWP_CONTINUED)
1922                 free_swap_count_continuations(p);
1923
1924         mutex_lock(&swapon_mutex);
1925         spin_lock(&swap_lock);
1926         spin_lock(&p->lock);
1927         drain_mmlist();
1928
1929         /* wait for anyone still in scan_swap_map */
1930         p->highest_bit = 0;             /* cuts scans short */
1931         while (p->flags >= SWP_SCANNING) {
1932                 spin_unlock(&p->lock);
1933                 spin_unlock(&swap_lock);
1934                 schedule_timeout_uninterruptible(1);
1935                 spin_lock(&swap_lock);
1936                 spin_lock(&p->lock);
1937         }
1938
1939         swap_file = p->swap_file;
1940         old_block_size = p->old_block_size;
1941         p->swap_file = NULL;
1942         p->max = 0;
1943         swap_map = p->swap_map;
1944         p->swap_map = NULL;
1945         cluster_info = p->cluster_info;
1946         p->cluster_info = NULL;
1947         frontswap_map = frontswap_map_get(p);
1948         spin_unlock(&p->lock);
1949         spin_unlock(&swap_lock);
1950         frontswap_invalidate_area(p->type);
1951         frontswap_map_set(p, NULL);
1952         mutex_unlock(&swapon_mutex);
1953         free_percpu(p->percpu_cluster);
1954         p->percpu_cluster = NULL;
1955         vfree(swap_map);
1956         vfree(cluster_info);
1957         vfree(frontswap_map);
1958         /* Destroy swap account information */
1959         swap_cgroup_swapoff(p->type);
1960
1961         inode = mapping->host;
1962         if (S_ISBLK(inode->i_mode)) {
1963                 struct block_device *bdev = I_BDEV(inode);
1964                 set_blocksize(bdev, old_block_size);
1965                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1966         } else {
1967                 mutex_lock(&inode->i_mutex);
1968                 inode->i_flags &= ~S_SWAPFILE;
1969                 mutex_unlock(&inode->i_mutex);
1970         }
1971         filp_close(swap_file, NULL);
1972
1973         /*
1974          * Clear the SWP_USED flag after all resources are freed so that swapon
1975          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1976          * not hold p->lock after we cleared its SWP_WRITEOK.
1977          */
1978         spin_lock(&swap_lock);
1979         p->flags = 0;
1980         spin_unlock(&swap_lock);
1981
1982         err = 0;
1983         atomic_inc(&proc_poll_event);
1984         wake_up_interruptible(&proc_poll_wait);
1985
1986 out_dput:
1987         filp_close(victim, NULL);
1988 out:
1989         putname(pathname);
1990         return err;
1991 }
1992
1993 #ifdef CONFIG_PROC_FS
1994 static unsigned swaps_poll(struct file *file, poll_table *wait)
1995 {
1996         struct seq_file *seq = file->private_data;
1997
1998         poll_wait(file, &proc_poll_wait, wait);
1999
2000         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2001                 seq->poll_event = atomic_read(&proc_poll_event);
2002                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2003         }
2004
2005         return POLLIN | POLLRDNORM;
2006 }
2007
2008 /* iterator */
2009 static void *swap_start(struct seq_file *swap, loff_t *pos)
2010 {
2011         struct swap_info_struct *si;
2012         int type;
2013         loff_t l = *pos;
2014
2015         mutex_lock(&swapon_mutex);
2016
2017         if (!l)
2018                 return SEQ_START_TOKEN;
2019
2020         for (type = 0; type < nr_swapfiles; type++) {
2021                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2022                 si = swap_info[type];
2023                 if (!(si->flags & SWP_USED) || !si->swap_map)
2024                         continue;
2025                 if (!--l)
2026                         return si;
2027         }
2028
2029         return NULL;
2030 }
2031
2032 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2033 {
2034         struct swap_info_struct *si = v;
2035         int type;
2036
2037         if (v == SEQ_START_TOKEN)
2038                 type = 0;
2039         else
2040                 type = si->type + 1;
2041
2042         for (; type < nr_swapfiles; type++) {
2043                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2044                 si = swap_info[type];
2045                 if (!(si->flags & SWP_USED) || !si->swap_map)
2046                         continue;
2047                 ++*pos;
2048                 return si;
2049         }
2050
2051         return NULL;
2052 }
2053
2054 static void swap_stop(struct seq_file *swap, void *v)
2055 {
2056         mutex_unlock(&swapon_mutex);
2057 }
2058
2059 static int swap_show(struct seq_file *swap, void *v)
2060 {
2061         struct swap_info_struct *si = v;
2062         struct file *file;
2063         int len;
2064
2065         if (si == SEQ_START_TOKEN) {
2066                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2067                 return 0;
2068         }
2069
2070         file = si->swap_file;
2071         len = seq_file_path(swap, file, " \t\n\\");
2072         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2073                         len < 40 ? 40 - len : 1, " ",
2074                         S_ISBLK(file_inode(file)->i_mode) ?
2075                                 "partition" : "file\t",
2076                         si->pages << (PAGE_SHIFT - 10),
2077                         si->inuse_pages << (PAGE_SHIFT - 10),
2078                         si->prio);
2079         return 0;
2080 }
2081
2082 static const struct seq_operations swaps_op = {
2083         .start =        swap_start,
2084         .next =         swap_next,
2085         .stop =         swap_stop,
2086         .show =         swap_show
2087 };
2088
2089 static int swaps_open(struct inode *inode, struct file *file)
2090 {
2091         struct seq_file *seq;
2092         int ret;
2093
2094         ret = seq_open(file, &swaps_op);
2095         if (ret)
2096                 return ret;
2097
2098         seq = file->private_data;
2099         seq->poll_event = atomic_read(&proc_poll_event);
2100         return 0;
2101 }
2102
2103 static const struct file_operations proc_swaps_operations = {
2104         .open           = swaps_open,
2105         .read           = seq_read,
2106         .llseek         = seq_lseek,
2107         .release        = seq_release,
2108         .poll           = swaps_poll,
2109 };
2110
2111 static int __init procswaps_init(void)
2112 {
2113         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2114         return 0;
2115 }
2116 __initcall(procswaps_init);
2117 #endif /* CONFIG_PROC_FS */
2118
2119 #ifdef MAX_SWAPFILES_CHECK
2120 static int __init max_swapfiles_check(void)
2121 {
2122         MAX_SWAPFILES_CHECK();
2123         return 0;
2124 }
2125 late_initcall(max_swapfiles_check);
2126 #endif
2127
2128 static struct swap_info_struct *alloc_swap_info(void)
2129 {
2130         struct swap_info_struct *p;
2131         unsigned int type;
2132
2133         p = kzalloc(sizeof(*p), GFP_KERNEL);
2134         if (!p)
2135                 return ERR_PTR(-ENOMEM);
2136
2137         spin_lock(&swap_lock);
2138         for (type = 0; type < nr_swapfiles; type++) {
2139                 if (!(swap_info[type]->flags & SWP_USED))
2140                         break;
2141         }
2142         if (type >= MAX_SWAPFILES) {
2143                 spin_unlock(&swap_lock);
2144                 kfree(p);
2145                 return ERR_PTR(-EPERM);
2146         }
2147         if (type >= nr_swapfiles) {
2148                 p->type = type;
2149                 swap_info[type] = p;
2150                 /*
2151                  * Write swap_info[type] before nr_swapfiles, in case a
2152                  * racing procfs swap_start() or swap_next() is reading them.
2153                  * (We never shrink nr_swapfiles, we never free this entry.)
2154                  */
2155                 smp_wmb();
2156                 nr_swapfiles++;
2157         } else {
2158                 kfree(p);
2159                 p = swap_info[type];
2160                 /*
2161                  * Do not memset this entry: a racing procfs swap_next()
2162                  * would be relying on p->type to remain valid.
2163                  */
2164         }
2165         INIT_LIST_HEAD(&p->first_swap_extent.list);
2166         plist_node_init(&p->list, 0);
2167         plist_node_init(&p->avail_list, 0);
2168         p->flags = SWP_USED;
2169         spin_unlock(&swap_lock);
2170         spin_lock_init(&p->lock);
2171
2172         return p;
2173 }
2174
2175 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2176 {
2177         int error;
2178
2179         if (S_ISBLK(inode->i_mode)) {
2180                 p->bdev = bdgrab(I_BDEV(inode));
2181                 error = blkdev_get(p->bdev,
2182                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2183                 if (error < 0) {
2184                         p->bdev = NULL;
2185                         return error;
2186                 }
2187                 p->old_block_size = block_size(p->bdev);
2188                 error = set_blocksize(p->bdev, PAGE_SIZE);
2189                 if (error < 0)
2190                         return error;
2191                 p->flags |= SWP_BLKDEV;
2192         } else if (S_ISREG(inode->i_mode)) {
2193                 p->bdev = inode->i_sb->s_bdev;
2194                 mutex_lock(&inode->i_mutex);
2195                 if (IS_SWAPFILE(inode))
2196                         return -EBUSY;
2197         } else
2198                 return -EINVAL;
2199
2200         return 0;
2201 }
2202
2203 static unsigned long read_swap_header(struct swap_info_struct *p,
2204                                         union swap_header *swap_header,
2205                                         struct inode *inode)
2206 {
2207         int i;
2208         unsigned long maxpages;
2209         unsigned long swapfilepages;
2210         unsigned long last_page;
2211
2212         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2213                 pr_err("Unable to find swap-space signature\n");
2214                 return 0;
2215         }
2216
2217         /* swap partition endianess hack... */
2218         if (swab32(swap_header->info.version) == 1) {
2219                 swab32s(&swap_header->info.version);
2220                 swab32s(&swap_header->info.last_page);
2221                 swab32s(&swap_header->info.nr_badpages);
2222                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2223                         swab32s(&swap_header->info.badpages[i]);
2224         }
2225         /* Check the swap header's sub-version */
2226         if (swap_header->info.version != 1) {
2227                 pr_warn("Unable to handle swap header version %d\n",
2228                         swap_header->info.version);
2229                 return 0;
2230         }
2231
2232         p->lowest_bit  = 1;
2233         p->cluster_next = 1;
2234         p->cluster_nr = 0;
2235
2236         /*
2237          * Find out how many pages are allowed for a single swap
2238          * device. There are two limiting factors: 1) the number
2239          * of bits for the swap offset in the swp_entry_t type, and
2240          * 2) the number of bits in the swap pte as defined by the
2241          * different architectures. In order to find the
2242          * largest possible bit mask, a swap entry with swap type 0
2243          * and swap offset ~0UL is created, encoded to a swap pte,
2244          * decoded to a swp_entry_t again, and finally the swap
2245          * offset is extracted. This will mask all the bits from
2246          * the initial ~0UL mask that can't be encoded in either
2247          * the swp_entry_t or the architecture definition of a
2248          * swap pte.
2249          */
2250         maxpages = swp_offset(pte_to_swp_entry(
2251                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2252         last_page = swap_header->info.last_page;
2253         if (last_page > maxpages) {
2254                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2255                         maxpages << (PAGE_SHIFT - 10),
2256                         last_page << (PAGE_SHIFT - 10));
2257         }
2258         if (maxpages > last_page) {
2259                 maxpages = last_page + 1;
2260                 /* p->max is an unsigned int: don't overflow it */
2261                 if ((unsigned int)maxpages == 0)
2262                         maxpages = UINT_MAX;
2263         }
2264         p->highest_bit = maxpages - 1;
2265
2266         if (!maxpages)
2267                 return 0;
2268         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2269         if (swapfilepages && maxpages > swapfilepages) {
2270                 pr_warn("Swap area shorter than signature indicates\n");
2271                 return 0;
2272         }
2273         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2274                 return 0;
2275         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2276                 return 0;
2277
2278         return maxpages;
2279 }
2280
2281 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2282                                         union swap_header *swap_header,
2283                                         unsigned char *swap_map,
2284                                         struct swap_cluster_info *cluster_info,
2285                                         unsigned long maxpages,
2286                                         sector_t *span)
2287 {
2288         int i;
2289         unsigned int nr_good_pages;
2290         int nr_extents;
2291         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2292         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2293
2294         nr_good_pages = maxpages - 1;   /* omit header page */
2295
2296         cluster_set_null(&p->free_cluster_head);
2297         cluster_set_null(&p->free_cluster_tail);
2298         cluster_set_null(&p->discard_cluster_head);
2299         cluster_set_null(&p->discard_cluster_tail);
2300
2301         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2302                 unsigned int page_nr = swap_header->info.badpages[i];
2303                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2304                         return -EINVAL;
2305                 if (page_nr < maxpages) {
2306                         swap_map[page_nr] = SWAP_MAP_BAD;
2307                         nr_good_pages--;
2308                         /*
2309                          * Haven't marked the cluster free yet, no list
2310                          * operation involved
2311                          */
2312                         inc_cluster_info_page(p, cluster_info, page_nr);
2313                 }
2314         }
2315
2316         /* Haven't marked the cluster free yet, no list operation involved */
2317         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2318                 inc_cluster_info_page(p, cluster_info, i);
2319
2320         if (nr_good_pages) {
2321                 swap_map[0] = SWAP_MAP_BAD;
2322                 /*
2323                  * Not mark the cluster free yet, no list
2324                  * operation involved
2325                  */
2326                 inc_cluster_info_page(p, cluster_info, 0);
2327                 p->max = maxpages;
2328                 p->pages = nr_good_pages;
2329                 nr_extents = setup_swap_extents(p, span);
2330                 if (nr_extents < 0)
2331                         return nr_extents;
2332                 nr_good_pages = p->pages;
2333         }
2334         if (!nr_good_pages) {
2335                 pr_warn("Empty swap-file\n");
2336                 return -EINVAL;
2337         }
2338
2339         if (!cluster_info)
2340                 return nr_extents;
2341
2342         for (i = 0; i < nr_clusters; i++) {
2343                 if (!cluster_count(&cluster_info[idx])) {
2344                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2345                         if (cluster_is_null(&p->free_cluster_head)) {
2346                                 cluster_set_next_flag(&p->free_cluster_head,
2347                                                                 idx, 0);
2348                                 cluster_set_next_flag(&p->free_cluster_tail,
2349                                                                 idx, 0);
2350                         } else {
2351                                 unsigned int tail;
2352
2353                                 tail = cluster_next(&p->free_cluster_tail);
2354                                 cluster_set_next(&cluster_info[tail], idx);
2355                                 cluster_set_next_flag(&p->free_cluster_tail,
2356                                                                 idx, 0);
2357                         }
2358                 }
2359                 idx++;
2360                 if (idx == nr_clusters)
2361                         idx = 0;
2362         }
2363         return nr_extents;
2364 }
2365
2366 /*
2367  * Helper to sys_swapon determining if a given swap
2368  * backing device queue supports DISCARD operations.
2369  */
2370 static bool swap_discardable(struct swap_info_struct *si)
2371 {
2372         struct request_queue *q = bdev_get_queue(si->bdev);
2373
2374         if (!q || !blk_queue_discard(q))
2375                 return false;
2376
2377         return true;
2378 }
2379
2380 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2381 {
2382         struct swap_info_struct *p;
2383         struct filename *name;
2384         struct file *swap_file = NULL;
2385         struct address_space *mapping;
2386         int prio;
2387         int error;
2388         union swap_header *swap_header;
2389         int nr_extents;
2390         sector_t span;
2391         unsigned long maxpages;
2392         unsigned char *swap_map = NULL;
2393         struct swap_cluster_info *cluster_info = NULL;
2394         unsigned long *frontswap_map = NULL;
2395         struct page *page = NULL;
2396         struct inode *inode = NULL;
2397
2398         if (swap_flags & ~SWAP_FLAGS_VALID)
2399                 return -EINVAL;
2400
2401         if (!capable(CAP_SYS_ADMIN))
2402                 return -EPERM;
2403
2404         p = alloc_swap_info();
2405         if (IS_ERR(p))
2406                 return PTR_ERR(p);
2407
2408         INIT_WORK(&p->discard_work, swap_discard_work);
2409
2410         name = getname(specialfile);
2411         if (IS_ERR(name)) {
2412                 error = PTR_ERR(name);
2413                 name = NULL;
2414                 goto bad_swap;
2415         }
2416         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2417         if (IS_ERR(swap_file)) {
2418                 error = PTR_ERR(swap_file);
2419                 swap_file = NULL;
2420                 goto bad_swap;
2421         }
2422
2423         p->swap_file = swap_file;
2424         mapping = swap_file->f_mapping;
2425         inode = mapping->host;
2426
2427         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2428         error = claim_swapfile(p, inode);
2429         if (unlikely(error))
2430                 goto bad_swap;
2431
2432         /*
2433          * Read the swap header.
2434          */
2435         if (!mapping->a_ops->readpage) {
2436                 error = -EINVAL;
2437                 goto bad_swap;
2438         }
2439         page = read_mapping_page(mapping, 0, swap_file);
2440         if (IS_ERR(page)) {
2441                 error = PTR_ERR(page);
2442                 goto bad_swap;
2443         }
2444         swap_header = kmap(page);
2445
2446         maxpages = read_swap_header(p, swap_header, inode);
2447         if (unlikely(!maxpages)) {
2448                 error = -EINVAL;
2449                 goto bad_swap;
2450         }
2451
2452         /* OK, set up the swap map and apply the bad block list */
2453         swap_map = vzalloc(maxpages);
2454         if (!swap_map) {
2455                 error = -ENOMEM;
2456                 goto bad_swap;
2457         }
2458         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2459                 int cpu;
2460
2461                 p->flags |= SWP_SOLIDSTATE;
2462                 /*
2463                  * select a random position to start with to help wear leveling
2464                  * SSD
2465                  */
2466                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2467
2468                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2469                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2470                 if (!cluster_info) {
2471                         error = -ENOMEM;
2472                         goto bad_swap;
2473                 }
2474                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2475                 if (!p->percpu_cluster) {
2476                         error = -ENOMEM;
2477                         goto bad_swap;
2478                 }
2479                 for_each_possible_cpu(cpu) {
2480                         struct percpu_cluster *cluster;
2481                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2482                         cluster_set_null(&cluster->index);
2483                 }
2484         }
2485
2486         error = swap_cgroup_swapon(p->type, maxpages);
2487         if (error)
2488                 goto bad_swap;
2489
2490         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2491                 cluster_info, maxpages, &span);
2492         if (unlikely(nr_extents < 0)) {
2493                 error = nr_extents;
2494                 goto bad_swap;
2495         }
2496         /* frontswap enabled? set up bit-per-page map for frontswap */
2497         if (frontswap_enabled)
2498                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2499
2500         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2501                 /*
2502                  * When discard is enabled for swap with no particular
2503                  * policy flagged, we set all swap discard flags here in
2504                  * order to sustain backward compatibility with older
2505                  * swapon(8) releases.
2506                  */
2507                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2508                              SWP_PAGE_DISCARD);
2509
2510                 /*
2511                  * By flagging sys_swapon, a sysadmin can tell us to
2512                  * either do single-time area discards only, or to just
2513                  * perform discards for released swap page-clusters.
2514                  * Now it's time to adjust the p->flags accordingly.
2515                  */
2516                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2517                         p->flags &= ~SWP_PAGE_DISCARD;
2518                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2519                         p->flags &= ~SWP_AREA_DISCARD;
2520
2521                 /* issue a swapon-time discard if it's still required */
2522                 if (p->flags & SWP_AREA_DISCARD) {
2523                         int err = discard_swap(p);
2524                         if (unlikely(err))
2525                                 pr_err("swapon: discard_swap(%p): %d\n",
2526                                         p, err);
2527                 }
2528         }
2529
2530         mutex_lock(&swapon_mutex);
2531         prio = -1;
2532         if (swap_flags & SWAP_FLAG_PREFER)
2533                 prio =
2534                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2535         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2536
2537         pr_info("Adding %uk swap on %s.  "
2538                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2539                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2540                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2541                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2542                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2543                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2544                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2545                 (frontswap_map) ? "FS" : "");
2546
2547         mutex_unlock(&swapon_mutex);
2548         atomic_inc(&proc_poll_event);
2549         wake_up_interruptible(&proc_poll_wait);
2550
2551         if (S_ISREG(inode->i_mode))
2552                 inode->i_flags |= S_SWAPFILE;
2553         error = 0;
2554         goto out;
2555 bad_swap:
2556         free_percpu(p->percpu_cluster);
2557         p->percpu_cluster = NULL;
2558         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2559                 set_blocksize(p->bdev, p->old_block_size);
2560                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2561         }
2562         destroy_swap_extents(p);
2563         swap_cgroup_swapoff(p->type);
2564         spin_lock(&swap_lock);
2565         p->swap_file = NULL;
2566         p->flags = 0;
2567         spin_unlock(&swap_lock);
2568         vfree(swap_map);
2569         vfree(cluster_info);
2570         if (swap_file) {
2571                 if (inode && S_ISREG(inode->i_mode)) {
2572                         mutex_unlock(&inode->i_mutex);
2573                         inode = NULL;
2574                 }
2575                 filp_close(swap_file, NULL);
2576         }
2577 out:
2578         if (page && !IS_ERR(page)) {
2579                 kunmap(page);
2580                 page_cache_release(page);
2581         }
2582         if (name)
2583                 putname(name);
2584         if (inode && S_ISREG(inode->i_mode))
2585                 mutex_unlock(&inode->i_mutex);
2586         return error;
2587 }
2588
2589 void si_swapinfo(struct sysinfo *val)
2590 {
2591         unsigned int type;
2592         unsigned long nr_to_be_unused = 0;
2593
2594         spin_lock(&swap_lock);
2595         for (type = 0; type < nr_swapfiles; type++) {
2596                 struct swap_info_struct *si = swap_info[type];
2597
2598                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2599                         nr_to_be_unused += si->inuse_pages;
2600         }
2601         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2602         val->totalswap = total_swap_pages + nr_to_be_unused;
2603         spin_unlock(&swap_lock);
2604 }
2605
2606 /*
2607  * Verify that a swap entry is valid and increment its swap map count.
2608  *
2609  * Returns error code in following case.
2610  * - success -> 0
2611  * - swp_entry is invalid -> EINVAL
2612  * - swp_entry is migration entry -> EINVAL
2613  * - swap-cache reference is requested but there is already one. -> EEXIST
2614  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2615  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2616  */
2617 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2618 {
2619         struct swap_info_struct *p;
2620         unsigned long offset, type;
2621         unsigned char count;
2622         unsigned char has_cache;
2623         int err = -EINVAL;
2624
2625         if (non_swap_entry(entry))
2626                 goto out;
2627
2628         type = swp_type(entry);
2629         if (type >= nr_swapfiles)
2630                 goto bad_file;
2631         p = swap_info[type];
2632         offset = swp_offset(entry);
2633
2634         spin_lock(&p->lock);
2635         if (unlikely(offset >= p->max))
2636                 goto unlock_out;
2637
2638         count = p->swap_map[offset];
2639
2640         /*
2641          * swapin_readahead() doesn't check if a swap entry is valid, so the
2642          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2643          */
2644         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2645                 err = -ENOENT;
2646                 goto unlock_out;
2647         }
2648
2649         has_cache = count & SWAP_HAS_CACHE;
2650         count &= ~SWAP_HAS_CACHE;
2651         err = 0;
2652
2653         if (usage == SWAP_HAS_CACHE) {
2654
2655                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2656                 if (!has_cache && count)
2657                         has_cache = SWAP_HAS_CACHE;
2658                 else if (has_cache)             /* someone else added cache */
2659                         err = -EEXIST;
2660                 else                            /* no users remaining */
2661                         err = -ENOENT;
2662
2663         } else if (count || has_cache) {
2664
2665                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2666                         count += usage;
2667                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2668                         err = -EINVAL;
2669                 else if (swap_count_continued(p, offset, count))
2670                         count = COUNT_CONTINUED;
2671                 else
2672                         err = -ENOMEM;
2673         } else
2674                 err = -ENOENT;                  /* unused swap entry */
2675
2676         p->swap_map[offset] = count | has_cache;
2677
2678 unlock_out:
2679         spin_unlock(&p->lock);
2680 out:
2681         return err;
2682
2683 bad_file:
2684         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2685         goto out;
2686 }
2687
2688 /*
2689  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2690  * (in which case its reference count is never incremented).
2691  */
2692 void swap_shmem_alloc(swp_entry_t entry)
2693 {
2694         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2695 }
2696
2697 /*
2698  * Increase reference count of swap entry by 1.
2699  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2700  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2701  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2702  * might occur if a page table entry has got corrupted.
2703  */
2704 int swap_duplicate(swp_entry_t entry)
2705 {
2706         int err = 0;
2707
2708         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2709                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2710         return err;
2711 }
2712
2713 /*
2714  * @entry: swap entry for which we allocate swap cache.
2715  *
2716  * Called when allocating swap cache for existing swap entry,
2717  * This can return error codes. Returns 0 at success.
2718  * -EBUSY means there is a swap cache.
2719  * Note: return code is different from swap_duplicate().
2720  */
2721 int swapcache_prepare(swp_entry_t entry)
2722 {
2723         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2724 }
2725
2726 struct swap_info_struct *page_swap_info(struct page *page)
2727 {
2728         swp_entry_t swap = { .val = page_private(page) };
2729         BUG_ON(!PageSwapCache(page));
2730         return swap_info[swp_type(swap)];
2731 }
2732
2733 /*
2734  * out-of-line __page_file_ methods to avoid include hell.
2735  */
2736 struct address_space *__page_file_mapping(struct page *page)
2737 {
2738         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2739         return page_swap_info(page)->swap_file->f_mapping;
2740 }
2741 EXPORT_SYMBOL_GPL(__page_file_mapping);
2742
2743 pgoff_t __page_file_index(struct page *page)
2744 {
2745         swp_entry_t swap = { .val = page_private(page) };
2746         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2747         return swp_offset(swap);
2748 }
2749 EXPORT_SYMBOL_GPL(__page_file_index);
2750
2751 /*
2752  * add_swap_count_continuation - called when a swap count is duplicated
2753  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2754  * page of the original vmalloc'ed swap_map, to hold the continuation count
2755  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2756  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2757  *
2758  * These continuation pages are seldom referenced: the common paths all work
2759  * on the original swap_map, only referring to a continuation page when the
2760  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2761  *
2762  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2763  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2764  * can be called after dropping locks.
2765  */
2766 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2767 {
2768         struct swap_info_struct *si;
2769         struct page *head;
2770         struct page *page;
2771         struct page *list_page;
2772         pgoff_t offset;
2773         unsigned char count;
2774
2775         /*
2776          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2777          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2778          */
2779         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2780
2781         si = swap_info_get(entry);
2782         if (!si) {
2783                 /*
2784                  * An acceptable race has occurred since the failing
2785                  * __swap_duplicate(): the swap entry has been freed,
2786                  * perhaps even the whole swap_map cleared for swapoff.
2787                  */
2788                 goto outer;
2789         }
2790
2791         offset = swp_offset(entry);
2792         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2793
2794         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2795                 /*
2796                  * The higher the swap count, the more likely it is that tasks
2797                  * will race to add swap count continuation: we need to avoid
2798                  * over-provisioning.
2799                  */
2800                 goto out;
2801         }
2802
2803         if (!page) {
2804                 spin_unlock(&si->lock);
2805                 return -ENOMEM;
2806         }
2807
2808         /*
2809          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2810          * no architecture is using highmem pages for kernel page tables: so it
2811          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2812          */
2813         head = vmalloc_to_page(si->swap_map + offset);
2814         offset &= ~PAGE_MASK;
2815
2816         /*
2817          * Page allocation does not initialize the page's lru field,
2818          * but it does always reset its private field.
2819          */
2820         if (!page_private(head)) {
2821                 BUG_ON(count & COUNT_CONTINUED);
2822                 INIT_LIST_HEAD(&head->lru);
2823                 set_page_private(head, SWP_CONTINUED);
2824                 si->flags |= SWP_CONTINUED;
2825         }
2826
2827         list_for_each_entry(list_page, &head->lru, lru) {
2828                 unsigned char *map;
2829
2830                 /*
2831                  * If the previous map said no continuation, but we've found
2832                  * a continuation page, free our allocation and use this one.
2833                  */
2834                 if (!(count & COUNT_CONTINUED))
2835                         goto out;
2836
2837                 map = kmap_atomic(list_page) + offset;
2838                 count = *map;
2839                 kunmap_atomic(map);
2840
2841                 /*
2842                  * If this continuation count now has some space in it,
2843                  * free our allocation and use this one.
2844                  */
2845                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2846                         goto out;
2847         }
2848
2849         list_add_tail(&page->lru, &head->lru);
2850         page = NULL;                    /* now it's attached, don't free it */
2851 out:
2852         spin_unlock(&si->lock);
2853 outer:
2854         if (page)
2855                 __free_page(page);
2856         return 0;
2857 }
2858
2859 /*
2860  * swap_count_continued - when the original swap_map count is incremented
2861  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2862  * into, carry if so, or else fail until a new continuation page is allocated;
2863  * when the original swap_map count is decremented from 0 with continuation,
2864  * borrow from the continuation and report whether it still holds more.
2865  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2866  */
2867 static bool swap_count_continued(struct swap_info_struct *si,
2868                                  pgoff_t offset, unsigned char count)
2869 {
2870         struct page *head;
2871         struct page *page;
2872         unsigned char *map;
2873
2874         head = vmalloc_to_page(si->swap_map + offset);
2875         if (page_private(head) != SWP_CONTINUED) {
2876                 BUG_ON(count & COUNT_CONTINUED);
2877                 return false;           /* need to add count continuation */
2878         }
2879
2880         offset &= ~PAGE_MASK;
2881         page = list_entry(head->lru.next, struct page, lru);
2882         map = kmap_atomic(page) + offset;
2883
2884         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2885                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2886
2887         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2888                 /*
2889                  * Think of how you add 1 to 999
2890                  */
2891                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2892                         kunmap_atomic(map);
2893                         page = list_entry(page->lru.next, struct page, lru);
2894                         BUG_ON(page == head);
2895                         map = kmap_atomic(page) + offset;
2896                 }
2897                 if (*map == SWAP_CONT_MAX) {
2898                         kunmap_atomic(map);
2899                         page = list_entry(page->lru.next, struct page, lru);
2900                         if (page == head)
2901                                 return false;   /* add count continuation */
2902                         map = kmap_atomic(page) + offset;
2903 init_map:               *map = 0;               /* we didn't zero the page */
2904                 }
2905                 *map += 1;
2906                 kunmap_atomic(map);
2907                 page = list_entry(page->lru.prev, struct page, lru);
2908                 while (page != head) {
2909                         map = kmap_atomic(page) + offset;
2910                         *map = COUNT_CONTINUED;
2911                         kunmap_atomic(map);
2912                         page = list_entry(page->lru.prev, struct page, lru);
2913                 }
2914                 return true;                    /* incremented */
2915
2916         } else {                                /* decrementing */
2917                 /*
2918                  * Think of how you subtract 1 from 1000
2919                  */
2920                 BUG_ON(count != COUNT_CONTINUED);
2921                 while (*map == COUNT_CONTINUED) {
2922                         kunmap_atomic(map);
2923                         page = list_entry(page->lru.next, struct page, lru);
2924                         BUG_ON(page == head);
2925                         map = kmap_atomic(page) + offset;
2926                 }
2927                 BUG_ON(*map == 0);
2928                 *map -= 1;
2929                 if (*map == 0)
2930                         count = 0;
2931                 kunmap_atomic(map);
2932                 page = list_entry(page->lru.prev, struct page, lru);
2933                 while (page != head) {
2934                         map = kmap_atomic(page) + offset;
2935                         *map = SWAP_CONT_MAX | count;
2936                         count = COUNT_CONTINUED;
2937                         kunmap_atomic(map);
2938                         page = list_entry(page->lru.prev, struct page, lru);
2939                 }
2940                 return count == COUNT_CONTINUED;
2941         }
2942 }
2943
2944 /*
2945  * free_swap_count_continuations - swapoff free all the continuation pages
2946  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2947  */
2948 static void free_swap_count_continuations(struct swap_info_struct *si)
2949 {
2950         pgoff_t offset;
2951
2952         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2953                 struct page *head;
2954                 head = vmalloc_to_page(si->swap_map + offset);
2955                 if (page_private(head)) {
2956                         struct page *page, *next;
2957
2958                         list_for_each_entry_safe(page, next, &head->lru, lru) {
2959                                 list_del(&page->lru);
2960                                 __free_page(page);
2961                         }
2962                 }
2963         }
2964 }